
Vol.:(0123456789)1 3

Archives of Computational Methods in Engineering (2023) 30:2929–2958
https://doi.org/10.1007/s11831-023-09890-4

REVIEW ARTICLE

Stiff‑PDEs and Physics‑Informed Neural Networks

Prakhar Sharma1,4  · Llion Evans1,3,4 · Michelle Tindall2 · Perumal Nithiarasu1,4

Received: 28 October 2022 / Accepted: 19 January 2023 / Published online: 7 February 2023
© The Author(s) 2023

Abstract
In recent years, physics-informed neural networks (PINN) have been used to solve stiff-PDEs mostly in the 1D and 2D spatial
domain. PINNs still experience issues solving 3D problems, especially, problems with conflicting boundary conditions at
adjacent edges and corners. These problems have discontinuous solutions at edges and corners that are difficult to learn for
neural networks with a continuous activation function. In this review paper, we have investigated various PINN frameworks
that are designed to solve stiff-PDEs. We took two heat conduction problems (2D and 3D) with a discontinuous solution
at corners as test cases. We investigated these problems with a number of PINN frameworks, discussed and analysed the
results against the FEM solution. It appears that PINNs provide a more general platform for parameterisation compared to
conventional solvers. Thus, we have investigated the 2D heat conduction problem with parametric conductivity and geometry
separately. We also discuss the challenges associated with PINNs and identify areas for further investigation.

Acronyms
PINN	� Physics-informed neural network
PDE	� Partial differential equation
IC	� Initial condition
BC	� Boundary condition
NN	� Neural network
ODE	� Ordinary differential equation
DGM	� Deep Galerkin method
LSTM	� Long short-term memory

DNN	� Deep neural network
FCNN	� Fully connected neural network
SiReNs	� Sinusoidal Representation Network
L-BFGS	� Limited-memory

Broyden–Fletcher–Goldfarb–Shanno
MSE	� Mean squared error
SDF	� Signed distance function
FEM	� Finite element method
FDM	� Finite difference method

1  Introduction

For a variety of problems, conventional numerical tech-
niques for solving partial differential equations (PDEs)
remain difficult. The mesh generation is complicated, noisy
experimental data can’t be integrated with the existing
algorithms and high-dimensional parametric PDEs often
can’t be solved. Ill-posed inverse problems are prohibitively
expensive and require complicated algorithms. In an effort to
address these issues, the development of powerful computers
and machine learning libraries has taken research in physics-
informed machine learning to new heights.

Recently, physics-informed neural networks (PINNs)
have gained popularity due to the novel approach for solving
forward [1–4] and inverse problems [5–7] involving PDEs
using neural networks (NNs). Unlike conventional numeri-
cal techniques for solving PDEs, PINNs are non-data-driven
meshless models that satisfy the prescribed initial (IC) and

Llion Evans, Michelle Tindall, and Perumal Nithiarasu have
contributed equally to this work.

 *	 Prakhar Sharma
	 prakhars962@gmail.com

	 Llion Evans
	 llion.evans@swansea.ac.uk

	 Michelle Tindall
	 michelle.tindall@ukaea.uk

	 Perumal Nithiarasu
	 p.nithiarasu@swansea.ac.uk

1	 Faculty of Science and Engineering, Swansea University,
Bay Campus, Swansea SA1 8EN, UK

2	 Fusion Technology Facilities, United Kingdom
Atomic Energy Authority, Unit 2a Lanchester Way,
Rotherham S60 5FX, UK

3	 Culham Science Centre, United Kingdom Atomic Energy
Authority, Abingdon OX14 3DB, UK

4	 Zienkiewicz Institute for Modelling, Data and AI, Swansea
University, Bay Campus, Swansea SA1 8EN, UK

http://crossmark.crossref.org/dialog/?doi=10.1007/s11831-023-09890-4&domain=pdf
http://orcid.org/0000-0002-7635-1857

2930	 P. Sharma et al.

1 3

boundary conditions (BC) as well as the governing PDE.
The differential terms in the PDE are approximated using
automatic differentiation.

Although, NNs have been present in literature for a long
time, it was only in the last decade that they started gain-
ing immense popularity due to the recent advancement in
automatic differentiation and the availability of open-source
machine learning libraries such as PyTorch and TensorFlow.
It is automatic differentiation [8] producing highly accurate
derivatives that enhances the accuracy of PINNs even with
sparse data points in the spatio-temporal domain.

The numerical solution of ordinary differential equations
(ODEs) and PDEs using NNs [9–15] has been a key area of
interest for researchers. This is because the NNs behave like
meshless solvers and can be scaled to higher dimensions
without the need of additional algorithms.

In this review, we have investigated stiff-PDEs [16], spe-
cifically those with a discontinuous solution, such as con-
flicting BCs at adjacent edges or faces. The reason for this
focus is due to the significant challenge posed by solving
such problems with PINNs because it is not possible to fit a
smooth curve such as a NN on these discontinuities.

The baseline PINN, a generalised NN framework, was
proposed by Raissi et al. [17] for solving forward and inverse
problems involving PDEs. The baseline PINN takes in the
independent variables as the input and gives out the depend-
ent variables as the output, and, depending on the type of
problem we construct, the loss function. The baseline PINN
accurately predicted the solution of forward problems such
as the 1D Burgers equation, 1D Schrodinger equation, 1D
Allen–Cahn equation and inverse problems such as recover-
ing the 2D Navier–Stokes equation from the finite element
generated flow past a cylinder simulation.

The baseline PINN has several limitations such as scal-
ability to higher dimensions, imbalanced magnitude of indi-
vidual loss terms in the multiple task loss function, gradient
explosion etc. A brief description of these issues has been
given in this section and are explored further in the subse-
quent section.

The baseline PINN can be scaled to higher dimensions by
modifying the architecture of the NN. A general approach
is to deploy more activated neurons ( ∼ 500 ) with very few
hidden layers ( ∼ 4 ). This approach helps in fitting complex
local variations in the solution. Wang et al. [18] proposed
a fully connected NN (FCNN) with two transformer net-
works [19–21], which projects the input variables to a high-
dimensional feature space. Sirignano and Spiliopoulos [22]
proposed a deep Galerkin method (DGM) architecture influ-
enced by the LSTM architecture [23]. Both these architec-
tures attempt to encapsulate the complex local variations in
the solution by using more complex NN architectures.

Spectral bias [24] is a learning bias of deep NNs (DNNs)
towards low-frequency functions, which causes convergence

issues during training. Novel architectures such as Fourier
networks [25], Modified Fourier networks [26, 27], Sinusoi-
dal Representation networks, SiReNs [28] were proposed to
remove the spectral bias from computer vision problems.

Imbalanced loss terms appear when the magnitude of a
loss term is significantly larger than other loss terms, result-
ing in early convergence of other loss terms in the multi-
task loss function. A predominant approach is to multiply a
parameter � to each loss term to balance out the contribution
of each term to the overall loss [29]. Several frameworks
such as self-adaptive PINNs [30] and the self-adaptive
weight PINN [31]; algorithms such as learning rate anneal-
ing [18] and neural tangent kernel [32] were proposed to
balance out the contribution of each term to the overall loss
by introducing adaptive coefficients for each loss term.

Gradient explosion [33, 34] is a known issue while train-
ing NNs. The baseline PINN uses L-BFGS [35], a second
order optimiser, which exhibits exploding gradients when it
encounters sharp gradients [36].

Most of the PINN frameworks are readily available as
open-source libraries. Libraries such as DeepXDE [37],
SciANN [38], TensorDiffEq [39] and NeuralPDE [40] are
easy to implement and can be used to solve simple problems
in the 1D and 2D spatial domain. NVIDIA Modulus (for-
merly NVIDIA SimNet) [26, 27] is an advanced open-source
library providing access to different PINN frameworks.
NVIDIA Modulus has successfully simulated physical sys-
tems such as laminar flow over a field programmable gate
arrays (FPGA) heatsink, turbulent flow over a simple 3D
heatsink with parameterised fin dimensions, conjugate heat
transfer over NVIDIA’s NVSwitch heat sink using transfer
learning.

This review paper has been divided into five major
sections. Section 1 comprises a comprehensive literature
review of PINNs. Section 2 discusses the functioning of a
baseline PINN [17] and some advanced tools that enhance
the performance of PINNs. Section 3 discusses different
PINN frameworks that are available in DeepXDE [37] and
NVIDIA Modulus [26]. Sections 4 and 5 discuss the solution
of 2D and 3D heat conduction test case using various PINN
frameworks. Section 6 discusses the results of a series of
parametric PDEs. In Sect. 7, we discuss challenges related
to implementing PINNs for stiff-PDEs.

We took two heat conduction problems (2D and 3D) with
a discontinuous solution at corner points as test cases. In
Sects. 4 and 5, we investigated these problems with a num-
ber of PINN frameworks from Table 1 and compared the
results with the FEM solution. PINNs are also known for
solving parametric PDEs [41–44]. In Sect. 6, we investi-
gated the 2D test case with parameterised conductivity and
geometry.

For the forward problems, we used the baseline PINN,
DeepXDE’s baseline PINN, NVIDIA Modulus’s baseline

2931Stiff‑PDEs and Physics‑Informed Neural Networks﻿	

1 3

PINN, Fourier network, Modified Fourier network, SiReNs
and DGM architecture. Whereas for the parametric PDE,
we have only used the DeepXDE’s baseline PINN, Modified
Fourier network and DGM architecture.

2 � How PINNs Work

PINNs are DNNs that obey the physical constraints, such as,
the BCs, the ICs and the governing PDE.

PINNs are fundamentally different from conventional
PDE solvers such as finite difference or finite elements, in
terms of the how the system of equations are represented.
In the case of PINNs, the number of equations or the data
points are more than the number of unknowns or the network
parameters, resulting in a regression problem. On the other
hand, the conventional PDE solvers, such as FEM, often
solves the system of equations with the number of equations
and unknowns being equal.

This section discusses the theoretical aspects of PINNs.
Section 2.1 discusses the functioning of NNs. Section 2.2
discusses how the physics knowledge is embedded into the
NN. Section 3 discusses the various PINN frameworks, that
can solve stiff-PDEs. Finally, Sect. 2.3 discuss various tools
that can help in speeding the convergence and improving the
accuracy of PINNs.

2.1 � Neural Networks for Regression

NNs are nonlinear and non-convex regression frameworks
with exceptional predictive capability, widely known as uni-
versal approximators of continuous functions [45, 46]. They
are known for their ability to learn and generalise very com-
plicated information [47]. This section discusses the evolu-
tion of NNs.

One of the simplest regression models is the linear regres-
sion. In the case of linear regression, the hypothesis or the
trial function is the linear combination of weights and fea-
tures. Let us assume a dataset with n samples consisting of
m features with a bias term X =

{
1, x1, x2, x3,… , xm

}
 and

one label y . The linear regression hypothesis for the dataset
can be written as follows

where the trainable weights W =
{
w0, w1, w2,… ,wm

}
 are

tweaked such that the mean squared error (MSE) or any loss
metric of the ground truth y against the predicted output ŷ
is minimised.

In principle, we can introduce a hypothesis with a linear
combination of weights with nonlinear features too. The

(1)ŷ = w0 + w1x1 + w2x2 +⋯ + wmxm = WTX,

main drawback of linear regression is underfitting because it
essentially fits a linear equation onto the data points [48, 49].

A simple technique to prevent underfitting is to pass the
output of linear regression hypothesis (Eq. 1) to specifically
chosen nonlinear function, often referred to as the activation
function (�) [50]. These activation functions, for example,
sigmoid, hyperbolic tangent, softmax are continuous and
sometimes are infinitely differentiable in the domain of real
numbers. The resulting hypothesis (Eq. 2) is referred to as an
artificial neuron (Fig. 1) [51]. It transforms the linear regres-
sion hypothesis into a nonlinear feature space.

The artificial neuron is the building block of a NN. DNNs
have multiple hidden-layers, each hidden-layer consisting
of multiple artificial neurons thus increasing the predictive
capability even further. Each hidden layer transforms the
feature space into a more complex feature space [52]. It is an
open question in interpretable machine learning to explain
mathematically, how these nonlinear transformations influ-
ence the output [53]. Figure 2 shows the schematic diagram
of a FCNN with two hidden layers.

In Fig. 2, there are four layers, one input layer, two hidden
layers and one output layer. Both the hidden layers consist of
three artificial neurons, also known as the activated neurons
or simply the nodes. In a FCNN, each node has its own set
of weights or parameters.

Let us define some notation, a(k)
i

 is the ith activated neu-
ron in the kth layer. wk is the weight matrix controlling the
nonlinear mapping between kth layer and (k + 1) th layer. If
the network has sk activated neurons in kth layer and s(k+1)

(2)ŷ = 𝜎
(
w0 + w1x1 + w2x2 +⋯

)
= 𝜎

(
WTX

)
.

Fig. 1   Schematic diagram of an artificial neu-
ron. Here, X =

{
1, x1, x2,… , x

m

}
 is the input dataset,

W =

{
w0, w1, w2,… ,w

m

}
 is the vector of trainable weights/param-

eters, � is the activation function and ŷ is the predicted output

2932	 P. Sharma et al.

1 3

activated neurons in (k + 1) th layer then wk will be of dimen-
sion s(k+1) × sk.

2.1.1 � Forward Pass

The first step in training of a NN is to forward pass the inputs
X to obtain the predicted output ŷ . Let a(k)

i
= �

(
z
(k)

i

)
 such

that z is the term without the activation. Now, the forward
pass for the FCNN in Fig. 2 can be written as follows:

In regression problems, the last layer is not activated because
we want unbounded values. The hypothesis of a FCNN with
two hidden layers can be written as follows:

2.1.2 � Backpropagation and Automatic Gradient

Once we have obtained the predicted output ŷ from the for-
ward pass, we can calculate the difference from the ground
truth y using some loss metric [54]. In general, for a regres-
sion problem, the MSE (Eq. 5) is used as a loss metric.

(3)

z(2) = w(1)X,

a(2) = 𝜎
(
z(2)

)
,

z(3) = w(2)a(2),

a(3) = 𝜎
(
z(3)

)
,

ŷ = w(3)a(3).

(4)ŷ = w(3)𝜎
(
w(2)𝜎

(
w(1)X

))
.

Now, the loss J is sent to the optimisers. Optimisers are
algorithms that minimise the loss by updating the weights
or parameters of the NN. There are many optimisers that
are available in open-source libraries such as PyTorch and
TensorFlow [55]. On the basis of order of the derivatives of
the loss with respect to the weights, the optimisers can be
divided mainly into two categories: first order and second
order optimisers [56].

The first-order optimisers utilise the gradient of the loss
with respect to weights of the NN. Similarly, second-order
optimisers utilise the gradient as well as the Hessian of the
loss with respect to the weights of the NN. Gradient-descent
[57] and Adam [58] are the most popular first-order optimis-
ers. Whereas, L-BFGS [35] is the only second-order opti-
miser that is still actively used in machine learning.

Now that the optimisers require derivatives, we need to
compute the derivatives efficiently and accurately. There are
three main techniques that have been successfully used in
machine learning: numerical [59], symbolic [60] and auto-
matic differentiations [8]. After the release of TensorFlow
1.0 in 2015, static computational graphs was the standard
data structure for representing NNs, which was later sub-
stituted with dynamic computational graphs in PyTorch
[61, 62]. These libraries use forward-mode or reverse-mode
automatic differentiation to compute the derivatives within
a computational graph [63]. The automatic differentiation
computes the derivative of the loss with respect to weights
using the chain rule [64] in differential calculus with a hard-
coded expression for the derivative of simple functions [65].

Let us say that we are using the gradient-descent method
(Eq. 6) for optimising the weight/parameters.

where k is the kth layer and � is a constant often referred to
as the learning rate, a hyperparameter. It tells the optimiser
the amount of perturbation the weights should attain in each
epoch [66]. An epoch is a complete cycle of forward pass
and backpropagation on the whole dataset.

The gradient of the loss J with respect to the weights in
each layer can be computed using the chain rule as follows:

(5)J =
1

2n

n∑

i=1

||yi − ŷi
||
2
.

(6)w(k) ∶= w(k) − �
�J

�w(k)
,

(7)

𝜕J

𝜕w(3)
=

𝜕J

𝜕ŷ

𝜕ŷ

𝜕w(3)
,

𝜕J

𝜕w(2)
=

𝜕J

𝜕ŷ

𝜕ŷ

𝜕a(3)
𝜕a(3)

𝜕z(3)
𝜕z(3)

𝜕w(2)
,

𝜕J

𝜕w(1)
=

𝜕J

𝜕ŷ

𝜕ŷ

𝜕a(3)
𝜕a(3)

𝜕z(3)
𝜕z(3)

𝜕a(2)
𝜕a(2)

𝜕z(2)
𝜕z(2)

𝜕w(1)
.

Fig. 2   Schematic diagram of a fully connected neural network
(FCNN) with two hidden layers. Here, X =

{
1, x1, x2,… , x

m

}
 is

the input dataset,
{
w(1), w(2), w(3)

}
 is the vector of trainable weights/

parameters for each layer,
{
a(2), a(3)

}
 is the vector of activated layers

and ŷ is the predicted output

2933Stiff‑PDEs and Physics‑Informed Neural Networks﻿	

1 3

The analytical expression of the basic differential terms
are hard-coded in machine learning libraries. The deriva-
tive of loss with respect to the weights is decomposed into
these hard-coded basic differential terms using the chain
rule. Once, these derivatives are calculated we plug them
into Eq. 6 to update the weights/parameters. The process is
repeated for a number of epochs until the loss J goes below
some predefined tolerance.

2.2 � Building a PINN

PINNs are supervised machine learning models that obey
the prescribed BCs and the governing PDE. In PINNs, the
inputs are the independent variables and the outputs are the
dependent variables or the solution of the governing PDE.

As an example, for a 3D time-dependent heat conduction
PDE, the number of inputs would be four, i.e., the x, y and z
coordinates and the time t. Similarly, the number of outputs
would be one, i.e. the temperature u.

2.2.1 � Defining a Well‑Posed PDE

Consider a well-posed PDE problem as follows:

where Nx[u] is a differential operator, x and t are the inde-
pendent variables of the PDE, � and �� denotes the spatial
domain and the boundary of the problem, h(x) denotes the
prescribed BC which is the solution to the PDE at all spatial
points (�) at the initial time (t = 0) , g(x, t) is the prescribed
BC at the boundary of the domain (��).

(8)
ut +Nx[u] = 0, x ∈ �, t ∈ [0, T],

u(x, 0) = h(x), x ∈ �,

u(x, t) = g(x, t), x ∈ ��, t ∈ [0, T],

2.2.2 � Discrete Loss Function

PINNs have a multitask loss function with at least two com-
ponents, the BC and the PDE losses (Eq. 9). The multitask
loss function ensures that the inputs to the PINN satisfy a
well-posed PDE problem.

The IC and BC losses are simply the MSE and the PDE
loss is the residual of the governing PDE at randomly
chosen collocation points. The total loss (Eq. 9) and the
individual loss terms (Eq. 10) are as follows:

where Nr , Nb and N0 are the number of data points that are
sampled to satisfy the PDE loss, the BC loss and the IC loss.
The coefficients �PDE , �BC and �IC in Eq. 9, help in achieving
convergence and better accuracy, and are an active field of
research. These weight coefficients can be scalar quantities
[29] as well as vectors to apply weights to every single sam-
ple in the training dataset based on the pointwise error [27].

We can calculate the residual of the governing equation
using automatic differentiation similar to Eq. 4. Figure 3,
shows a schematic diagram of a baseline PINN with two
hidden layers for a 2D spatio-temporal domain.

A PINN framework, referred to as sparse-regulated
PINNs, uses the experimental or the simulation data to
provide ground truth at sparse locations in the spatio-
temporal domain [67, 68]. The addition of sparse ground
truth helps the NN to accurately predict complex local

(9)L = �PDELPDE + �BCLBC + �ICLIC,

(10)

LPDE =
1

Nr

Nr∑

i=1

|||ût
(
xi, ti

)
+Nx

[
û
(
xi, ti

)]|||
2

,

LBC =
1

Nb

Nb∑

i=1

|||û
(
xi, ti

)
− g

(
xi, ti

)|||
2

,

LIC =
1

N0

N0∑

i=1

|||û
(
xi, 0

)
− h

(
xi, 0

)|||
2

,

Fig. 3   Schematic diagram of
a physics-informed neural net-
work (PINN) with two hidden
layers for a 2D spatio-temporal
domain. Here, the inputs are
{x, y, t} ,

{
w(1), w(2), w(3)

}
 is

the vector of trainable weights/
parameters for each layer, {
a(2), a(3)

}
 is the vector of acti-

vated neurons for each layers
and ŷ is the predicted output

2934	 P. Sharma et al.

1 3

variations in the solution. This introduces one more loss
term called the reconstruction loss (Eq. 11), because it
points the optimiser towards the true solution.

where Nd is the number of true solutions being provided.
Bajaj et al. [69] showed that the reconstruction loss is not
very helpful in preventing overfitting. Instead, NVIDIA
Modulus uses the Adam optimiser with exponential decay
of the learning rate � , so that as we go closer to the minima
of the loss, the weights do not attain large perturbations [58].

2.2.3 � Integral Formulation of Loss

NVIDIA Modulus uses a slightly different version of the loss
function [27, 70]. They define continuous/integral losses for
the BC and PDE loss as follows:

Instead of approximating these integrals using deterministic
numerical integration techniques, NVIDIA Modulus uses
the Monte Carlo integration, a non-deterministic integration
technique [71, 72], resulting in Eq. 13. This helps in keeping
a specific loss term proportional to its length/area/volume.
For example, it doesn’t allow a specific BC applied over a
relatively larger area to dominate other BCs.

2.2.4 � Exact BC Imposition

The output of the PINN can be hard constrained to exactly
satisfy the BCs [73]. A function is manually constructed to
transform the network outputs to exactly satisfy the BCs.
Generally, hard constrained BCs work with simple geometry,
constant individual Dirichlet BCs without conflicting each
other. This approach does not work well with stiff-PDEs
[74]. In Sect. 4.4, we have discusssed the difficulties with
exact imposition of BCs in stiff-PDEs with a discontinuous
solution.

(11)Lreconstruct =
1

Nd

Nd∑

i=1

|||û
(
xi, ti

)
− utrue

i

|||
2

,

(12)
LPDE = ∫�

(
ût
(
xi, ti

)
+Nx

[
û
(
xi, ti

)])2
d�,

LBC = ∫
𝜕�

(
û
(
xi, ti

)
− g

(
xi, ti

))2
d(𝜕�).

(13)

LPDE =
1

Nr

Nr∑

i=1

|||ût
(
xi, ti

)
+Nx

[
û
(
xi, ti

)]|||
2

∫�

d�,

LBC =
1

Nb

Nb∑

i=1

|||û
(
xi, ti

)
− g

(
xi, ti

)|||
2

∫
𝜕�

d(𝜕�).

2.2.5 � Overfitted vs. Generalised Solution

The baseline PINN gained its popularity due to the notion
that it can solve PDEs with sparse sampling in the spatio-
temporal domain. Later on it was realised that, in the case
of stiff-PDEs one must sample enough data points to capture
the local variations in the solution.

Theoretically, one can obtain an overfitted model as well
as a generalised model depending on the number of data
points in the training dataset. An overfitted model exhibits
low training loss but high validation and testing loss whereas
a generalised model exhibits low training, validation and
testing error. Thus overfitted model can only be used for
inferring the solution from the training dataset, i.e., any data
point of interest should be included in the training dataset.
On the other hand, a generalised model can be obtained by
sampling a significantly greater number of data points in the
spatio-temporal domain. The solution can be predicted at
new spatio-temporal locations within the domain.

The overfitted or generalised model is a qualitative aspect
that depends on human judgement. In the case of stiff-PDEs,
the overfitted model may converge with a considerable
amount of pointwise error. Thus, it is important to sample
more points around the boundary or the problematic region.
In this paper, to be on the safer side, we have aimed for
a generalised solution, i.e., we sampled a large number of
points. Specific details can be found in Sect. 4.5.

2.2.6 � Parametric PINNs

PINNs can predict the variation in the solution for a range
of parameters such as density, geometry, conductivity etc.
by introducing them as features in the training data set, com-
pared to conventional numerical solvers where each param-
eter needs a separate simulation and may require complex
algorithms. The idea is to add the parameter as another fea-
ture into the training data set such that each parameter has its
own set of sampled points in the spatio-temporal domain. In
other words, if there are n parameters for a 2D steady-state
problem, than the training data set contains n + 2 features.

2.3 � Additional Tools

In this section, we have discussed tools that enhance the
accuracy and efficiency of PINNs. Outside the scope of this
paper are tools such as gradient enhanced training [75],
learning rate annealing [18], neural tangent kernel [32], inte-
gral continuity planes [27]. The gradient enhanced training
does not always improve the results compared to the baseline
PINN. They may even adversely affect the training conver-
gence and accuracy [76]. The learning rate annealing and
neural tangent kernel deals with imbalanced losses where
there is a significant difference between the magnitude of

2935Stiff‑PDEs and Physics‑Informed Neural Networks﻿	

1 3

individual losses, which is not applicable to our test cases.
The integral continuity planes are only applicable to prob-
lems involving fluid flow, where the mass flow rate or the
volumetric flow rate is applied as an additional constraint,
if known. This is particularly useful in the case of channel
flow.

2.3.1 � Adaptive Activation

An activation function transforms a feature space into a more
complex feature space with the help of nonlinear functions.
Without the activation function, the NN is just a sophisti-
cated linear model with no performance improvement over
linear regression. Jagtap et al. [77] proposed a DNN frame-
work with trainable nonlinear transformations to improve
the convergence as well as the accuracy of the NNs. They
introduced an additional hyperparameter A in the nonlinear
transformation of the hidden layers as follows:

where a(k) is the nonlinear transformation at layer k, which is
a function of a(k−1) , the output of the hidden layer (k − 1) , the
weights and biases is denoted by � , A is a trainable param-
eter and z(k) is the linear transformation at layer k. As A is a
trainable parameter, it gets updated in each epoch based on
the total loss L . Thus the activation function a adapts itself
to minimise the total loss L.

2.3.2 � Signed Distance Function

While there have been several efforts to solve stiff-PDEs
with discontinuity inside the spatial domain, so far, there is
only one viable technique to solve stiff-PDEs with conflict-
ing BCs at the adjacent edges and corners. The difficulty lies
in the fact that the activation functions are smooth, i.e., they
are differentiable and can’t capture discontinuous BCs. Thus,
currently the only way to alleviate the issue is to exclude the
points with a discontinuity from the training data set.

In DeepXDE, these corner points are excluded by default,
as the normal vector at those corners are not defined, or in
other words the derivative at those points are not defined, so
any BC that includes a derivative for example, a Neumann
BC is not defined at the corners.

NVIDIA Modulus and several other literature takes this
one step further by using signed distance function (SDF)
weights [74, 78, 79]. SDF weights are used to assign minus-
cule weights around the region with conflicting BCs. This
way a region with a discontinuous solution gets a lower pri-
ority compared to the regions where the solution is smooth.
The application of SDF weights on complex geometry is an
active field of research.

(14)a(k)
(
a(k−1);�,A

)
= �

(
Az(k)

(
a(k−1)

))
,

2.3.3 � Importance Sampling

Nabian et al. [70] proposed a sampling strategy for efficient
training of PINNs based on an approximation method called
importance sampling [80], which is often used in reinforce-
ment learning for approximating the expected reward based
on the older policy [81, 82]. In optimisation, the optimal
parameters �∗ is defined such that

where �f [L(�)] is the expected value of the total loss L ,
when the collocation points are sampled from f the sampling
distribution in the physical domain �j ∈ �.

Typically, we use a uniform distribution for sampling the
collocation points. In importance sampling, the collocation
points are drawn from an alternative sampling distribution
q(x) , and the NN parameters are approximated as per Eq. 16
instead of Eqs. 5 and 6.

Sampling the collocation points in each epoch according to
q(x) (Eq. 17), i.e. a distribution proportional to the loss func-
tion L improves the efficiency of PINNs without introducing
a hyperparameter.

where L(i)

j
 is the total loss of the jth sample in the training

dataset in ith epoch. Areas with higher q(i) are sampled more
frequently in the ith epoch.

2.3.4 � Low‑Discrepancy Spatio‑temporal Sampling

The collocation points may be sampled according to a
uniform distribution, or using the Latin hypercube sam-
pling [83] approach. Alternatively, one can choose low-
discrepancy sequence generators such as the quasi-random
sampling [84, 85], the Halton sequence [86, 87] the Sobol
sequence [88, 89] which is used by DeepXDE’s baseline
PINN and Hammersley sets [90, 91].

(15)

�
∗ = argmin

�

�f [L(�)]

≈ argmin
�

1

N

N∑

j=1

L(�;�j), �j ∼ f (�),

(16)�
∗ ≈ argmin

�

1

N

N∑

j=1

f (�j)

q(�j)
L(�;�j), �j ∼ q(�).

(17)q
(i)

j
≈

L
(i)

j

∑N

j=1
L
(i)

j

, ∀j ∈ 1,… ,N,

2936	 P. Sharma et al.

1 3

3 � Modified Baseline PINNs

Numerous modified frameworks of the baseline PINN have
been proposed so far. We have specifically chosen PINN
frameworks that not only scale to higher dimensions but can
also deal with discontinuous BCs.

3.1 � DeepXDE

DeepXDE [37] is a popular Python based physics-
informed machine learning library for solving forward
and inverse problems involving PDEs. DeepXDE fea-
tures its own version of the baseline PINN, that not only
improves the accuracy, but helps in faster convergence as
discussed in Sect. 2.3.2.

Other than baseline PINNs, DeepXDE can also solve
forward and inverse integro-differential equations, (IDEs)
[92], fractional PDEs, (fPDEs) [92], stochastic PDEs,
(sPDEs) [93], topology optimization with hard constraints,
(hPINN) [7], PINN with multi-scale Fourier features [94]
and multifidelity NN, (MFNN) [95, 96].

DeepXDE also features NNs for nonlinear operator
learning such as DeepONet [97], POD-DeepONet [98],
MIONet [99], DeepM&Mnet [100, 101] and multifidelity
DeepONet [102].

It supports tensor libraries such as TensorFlow,
PyTorch, JAX, and PaddlePaddle. There are two notable
features in DeepXDE. The first one is that it chooses the
model with least training loss. The second one is that it
does not include those corner points no matter what the
problem is, with the justification that normal vectors are
not defined at those corners to be able to apply the Neu-
mann BCs.

3.2 � NVIDIA Modulus

NVIDIA Modulus 22.03, formerly NVIDIA SimNet, is
an advanced physics-informed machine learning pack-
age. It redefines the loss function (Sect. 2.2.3), it also
uses SDF weights to avoid problematic edges and corners
(Sect. 2.3.2). The SDF weights result in increased conver-
gence speed and improved accuracy.

NVIDIA Modulus employs the SDF weights on the
collocation points (they refer to these as interior points)
and the boundary points separately. We have discussed the
variation of SDF weights in the spatial domain in Sects.
4 and 5.

NVIDIA Modulus features forward models such as Fou-
rier networks [25], Modified Fourier networks [26, 27],
Sinusoidal Representation networks, SiReNs [28], High-
way Fourier network [103], multi-scale Fourier feature

network [94], spatial–temporal Fourier Feature network
[97], DGM architecture [22] and multiplicative filter net-
work [27].

NVIDIA Modulus also features NNs for nonlinear opera-
tor learning such as Fourier neural operator, (FNO) [103],
adaptive FNO, (AFNO) [104], physics-informed neural
operator, (PINO) [105], DeepONet [97], Pix2Pix net [106,
107] and super-resolution net [108].

3.2.1 � Fourier Network

Spectral bias is a learning bias of DNNs towards low-fre-
quency functions, i.e., functions that vary globally rather
than locally. It ignores the high-frequency functions, such
as sharp variation in the solution of the PDE. This can
adversely affect the training convergence as well as the
accuracy.

One approach to alleviate this issue is to perform input
encoding, for example, a transformer [109], to transform
the inputs to a higher-dimensional feature space with the
help of high-frequency functions. In the Fourier network,
the input features are encoded into Fourier space using
sinusoidal activation functions (Eq. 18).

The trainable input encoding layer is as follows:

where � ∈ ℝ
nf×d0 is the trainable frequency matrix, d0 is the

number of features and nf is the number of frequency sets
which we can choose and � is the input dataset. These fre-
quencies, similar to network weights, can be sampled from
a Gaussian distribution or from a spectral space created
from combinations of all entries from a user-defined list of
frequencies.

Finally, the encoded inputs are �Ex , which results in
a training data with nf number of features, thus, trans-
forming the input features to a higher dimensional feature
space. NVIDIA Modulus recommends nf = 10 , however,
for our test cases we used nf = 35 , which is computation-
ally expensive, but is reasonable for PDEs with a discon-
tinuous solution.

3.2.2 � Modified Fourier Network

In a Fourier network (Sect. 3.2.1), a FCNN is used as the
nonlinear mapping between the Fourier features and the
model output. The modified Fourier network uses a modi-
fied version of the fully-connected network, similar to the
one proposed in [18]. The authors were inspired by the
neural attention mechanism, which is employed in natu-
ral language processing to enhance the hidden states with
transformer networks [109].

(18)�E =
[
sin (2�� × �); cos (2�� × �)

]T
,

2937Stiff‑PDEs and Physics‑Informed Neural Networks﻿	

1 3

In Eq. 19, � and � are two transformer layers that help
in projecting the Fourier features �E to another feature
space, and forward passed through the hidden layers (H)
using the Hadamard product, similar to its standard fully
connected counterpart. The Modified Fourier network
takes the following forward propagation rule:

where �1 , �2 , �z,k and � are four different sets of
weight matrices associated with � , � , �(k) and �(L+1) with
k = 1,… , L , where L is the number of hidden layers. Fig-
ure 4 shows the structure of a modified Fourier network.

3.2.3 � Sinusoidal Representation Networks (SiReNs)

Sitzmann et al. [28] proposed a FCNN which uses the sine
trigonometric function as the activation function. This net-
work has some similarities to Fourier networks (Sect. 3.2.1)
as both uses a sine activation function, manifesting the same
effect as the input encoding for the first layer of the network.

A key component of this network architecture is the
weight initialisation scheme. The weights of the NN are
sampled from a uniform distribution W ∼ U

(
−

√
6

fin
,
√

6

fin

)

where fin is the input size to that layer.
The input of each Sine activation has a Gauss-Normal

distribution and the output of each Sine activation, a Sine
inverse distribution. This preserves the distribution of acti-
vations allowing deep architectures to be constructed and
trained effectively.

3.2.4 � DGM Architecture

The DGM architecture [22] (Eq. 20), consists of several hid-
den layers, which are referred to as DGM layers, similar to
LSTM gates [23], where each layer produces weights based
on the last layer, determining how much of the information
gets passed to the next layer.

(19)

� = 𝜎
(
�1𝜙E

)
, � = 𝜎

(
�2𝜙E

)
,

�(1) = 𝜎
(
�z,1�

)
,

�(k) = 𝜎
(
�z,k�z,1

)
, k = 1,… , L,

�(k+1) = 𝜎
(
1 − �(k)

)
⊙ � + �(k) ⊙ �, k = 1,… , L,

�̂ = ��(L+1),
The DGM architecture consists of multiple nonlinear trans-
formations of the input: � , � , � and � , that helps with
learning complicated functions such as discontinuous func-
tions. Figure 5 shows the structure of DGM architecture and
the DGM layers.

A DGM layer includes � , � , � and � with their sets
of weights � and � . Thus, a DGM layer consists of eight
weight matrices. Additionally, the DGM architecture con-
sists of two more weight matrices: �1 and �.

4 � Problem 1: 2D Steady‑State Heat
Conduction

For Problem 1, we chose a 2D heat conduction problem with
conflicting BCs at the corners. We solved the problem with
different PINN frameworks and compared with the FEM
solution. The 2D heat conduction problem can be stated as
follows:

We used MATLAB Partial Differential Equation Toolbox
[110] to solve the 2D steady-state heat conduction problem
(Eq. 21) with quadratic triangles (Fig. 6).

We assigned a model number to each of the PINN frame-
works (see Table 1). Table 2 summarises the network param-
eters and relative L2 error for various PINN frameworks.
Figures 9 and 7 show the solution of 2D steady-state heat
conduction problem for different PINN frameworks.

We have not completed a full exploration of the best
parameters for each PINN such as the number of hidden

(20)

�(1) = 𝜎(�1�),

�(k) = 𝜎
(
�(k)

z
� +�(k)

z
�(k)

)
, k = 1,… , L,

�(k) = 𝜎

(
�(k)

g
� +�(k)

g
�(k)

)
, k = 1,… , L,

�(k) = 𝜎
(
�(k)

r
� +�(k)

r
�(k)

)
, k = 1,… , L,

�(k) = 𝜎

(
�

(k)

h
� +�

(k)

h
(�(k) ⊙ �(k))

)
, k = 1,… , L,

�(k+1) = (1 −�(k))⊙�(k) + �(k) ⊙ �(k), k = 1,… , L,

�̂ = ��(L+1).

(21)
uxx + uyy = 0, x ∈ [−0.5, 0.5], y ∈ [0, 1],

u(x, 0) = u(x, 1) = 0, u(−0.5, y) = u(0.5, y) = 1.

Fig. 4   Structure of modified
Fourier network as per Eq. 19

2938	 P. Sharma et al.

1 3

layers, the number of neurons in each layers, number of
boundary and collocation points to be sampled etc. to use
in these models. We started with the default values and
retained the results if they were acceptable. We observed
early convergence in several models, so we stopped training
those models. Unless otherwise specified, the same applies
to other upcoming problems. As the PINN reaches maturity
we will hopefully come up with the best practices to bench-
mark different PINN frameworks.

4.1 � Model 1: Baseline PINN (See Also Table 1)

Firstly, we trained a baseline PINN with 8 hidden layers and
20 neurons in each layer using the L-BFGS optimiser with
hyperbolic tangent activation. We used the nodal coordinates
from the mesh of FEM solution consisting of 612 boundary
points and 5800 collocation points. We observed that the
gradient explodes while training with L-BFGS. That is why
we switched to the Adam optimiser with default parameters,
unless otherwise stated.

Figure 7 shows the predicted temperature distribution and
pointwise absolute error at 5k, 10k and 30k epochs. Initially,
i.e., around 5k epochs, the pointwise absolute error around
the corners is much higher compared to the interior points.
If we continue the training past 5k epochs, the optimiser
tries to reduce the loss around the corners at the cost of high
errors at the interior points, which can be clearly seen in the
pointwise absolute error plot at 30k epochs. This is a result
of the fact that we did not use a learning rate scheduler [111].
A learning rate scheduler adjusts the learning rate � between
epochs during the training which helps convergence.

Figure 8 shows the training and validation losses. We pur-
posely used the predicted temperature distribution from the
training dataset against the FEM solution to calculate the
validation loss. In the validation loss plot, we can clearly
see that the least validation error occurs somewhere between
15k and 20k. However, the total training loss continues to

Fig. 5   Structure of structure
of DGM architecture and the
DGM layers as per Eq. 20

Fig. 6   FEM solution of 2D steady-state heat conduction problem
(Eq. 21) using MATLAB Partial Differential Equation Toolbox

2939Stiff‑PDEs and Physics‑Informed Neural Networks﻿	

1 3

decrease even after 20k epochs resulting in increased valida-
tion loss in the interior points as discussed earlier.

The FCNNs are continuous and differentiable functions
and can’t predict discontinuities such as the corners with
conflicting BCs. Also, it is very challenging to obtain a
trained PINN model with minimum validation error because
we are not using the ground truth to calculate the training
loss.

4.2 � Model 2: DeepXDE’s Baseline PINN

We trained a FCNN with 8 hidden layers and 20 neurons
in each layer using the Adam optimiser with hyperbolic
tangent activation and exponential decay of the learning
rate. We used DeepXDE’s default sampling method, i.e.,
the Sobol sequence to sample 800 boundary points and

2500 collocation points, i.e. only about half the collocation
points compared to Model 1.

Although the training loss converged in 5k epochs, we
continued to train the model until 30k epochs to demon-
strate the benefits of exponential decay of the learning
rate. As the training progresses, the amount of perturba-
tion in the weights (as per Eq. 6) decreases. Thus, we don’t
see much difference in the predicted temperature distribu-
tion after 5k epochs, which was not possible with Model 1.

As discussed in Sect. 2.3.2, DeepXDE does not sam-
ple the corner points, so we ignored these points from
the FEM solution to compute the relative L2 error. Thus
we obtain very low relative L2 error as most of the error
occurs around the corners.

Table 1   Models considered in the numerical study

*Sampling drawn from a Halton sequence

Model number Model name

Model 1 Baseline PINN
Model 2 DeepXDE’s baseline PINN
Model 3 NVIDIA Modulus’s baseline PINN (no SDF weights)
Model 4 NVIDIA Modulus’s baseline PINN (Interior SDF weights)
Model 5 NVIDIA Modulus’s baseline PINN (Full SDF weights)
Model 6 NVIDIA Modulus’s baseline PINN (Full SDF weights with importance sampling)
Model 7 NVIDIA Modulus’s baseline PINN (Full SDF weights with adaptive activation, importance sampling and quasi-random

sampling*)
Model 8 Fourier network (Full SDF weights with adaptive activation, importance sampling and quasi-random sampling*)
Model 9 SiReNs network (Full SDF weights with importance sampling and quasi-random sampling*)
Model 10 Modified Fourier network (Full SDF weights with adaptive activation, importance sampling and quasi-random sampling*)
Model 11 DGM architecture (Full SDF weights with adaptive activation, importance sampling and quasi-random sampling*)

Table 2   Problem 1: summary of
training parameters and relative
L
2 error for different PINN

frameworks

*Model 1 uses the nodal coordinates from the FEM mesh
**Model 2 uses the Sobol sequence
#Relative L2 error not calculated at corner points

Layers Nodes Boundary
points

Collocation
points

� Epochs Relative L2 error

Model 1 8 20 612 5800* 1e−3 30k 0.13599
Model 2 8 20 800 2500** 1e−3 30k 0.05285#

Model 3 6 512 4000 4000 1e−3 20k 0.08931
Model 4 6 512 4000 4000 1e−3 10k 0.10124
Model 5 6 512 4000 4000 1e−3 10k 0.09557
Model 6 6 512 4000 4000 1e−3 20k 0.06448
Model 7 6 512 4000 4000 1e−3 20k 0.06433
Model 8 6 512 4000 4000 1e−3 20k 0.18741
Model 9 6 512 4000 4000 2e−5 11k 0.12640
Model 10 6 512 4000 4000 1e−3 20k 0.17577
Model 11 6 512 4000 4000 1e−3 30k 0.08229

2940	 P. Sharma et al.

1 3

Figure 9a shows the predicted temperature distribution
and the pointwise absolute error for the 2D steady-state heat
conduction problem.

4.3 � Models 3–11: NVIDIA Modulus

We used NVIDIA Modulus to train PINN frameworks
from Models 3 to 11. We started with NVIDIA Modulus’s
baseline PINN with the integral form of the loss function
(Model 3). Then we applied the SDF weights on interior
points (Model 4) and on both interior and boundary points
(Model 5). We used additional tools such as importance
sampling (Model 6) and combined the importance sampling
with adaptive activation and quasi-random sampling (Model
7). We also used the Fourier network (Model 8), SiReNs
network (Model 9), Modified-Fourier network (Model 10)
and DGM architectures (Model 11) with adaptive activation,
importance sampling, quasi-random sampling and full SDF

weights, i.e., SDF weights on both interior and boundary
points with an exception for SiReNs network which does
not has an adaptive activation implemented in NVIDIA
Modulus 22.03. Furthermore, NVIDIA Modulus 22.03 only
implements the Halton sequence to generate a quasi-random
sample.

The SDF weights are manually adjusted depending on the
problem and is an active field of research. We formulated
the SDF weights on boundary points such that the weights
on the corner points is zero and increased as we move away
from the corner (see Eq. 22). The SDF weights on the inte-
rior points depends on the shape of the spatial domain. We
used the default SDF weights on collocation/interior points.
Figure 10 shows the magnitude of the SDF weights on the
boundary and interior points of the square domain for Prob-
lem 1. In the case of a full set of SDF weights, it is worth
noting that the maximum magnitude of the SDF weights
on the interior points is 0.5. So, We are giving 50% less

Fig. 7   Solution of 2D steady-
state heat conduction problem
using Model 1. The predicted
temperature distribution (on the
top) and the absolute pointwise
error (on the bottom) is shown
at 5k, 10k and 30k epochs
respectively. Temperature
predicted outside the expected
bound, i.e., when u ∉ [0, 1] , is
shown using the white and grey
colour

Fig. 8   The training loss (top)
and the validation loss (bot-
tom) for the 2D steady-state
heat conduction problem. The
training loss plot shows the
BC loss (BC loss), the residual
loss (PDE loss) and the sum
of both, i.e., the total loss. The
validation loss plot shows the
mean squared error between the
temperature predicted from the
training dataset and the FEM
solution. The black dot denotes
the least validation loss

2941Stiff‑PDEs and Physics‑Informed Neural Networks﻿	

1 3

Fig. 9   PINN predicted solution
of 2D steady-state heat conduc-
tion problem is shown on the
left side. The absolute pointwise
error between the FEM solution
and PINN predicted solution
is shown on the right side.
Temperature predicted outside
the expected bound (if any), i.e.,
when u ∉ [0, 1] is shown using
the white and grey colour

(d) Model 4

(c) Model 3

(a) Model 1

(b) Model 2

2942	 P. Sharma et al.

1 3

(e) Model 5

(f) Model 6

(g) Model 7

(h) Model 8

Fig. 9   (continued)

2943Stiff‑PDEs and Physics‑Informed Neural Networks﻿	

1 3

importance to the interior points compared to the boundary
points, because we want the optimiser to obtain more infor-
mation from the BC loss, as it does not converge in the case
of Model 1 (as shown in Fig. 8).

In Models 3, 4 and 5, we trained NVIDIA Modulus’s
baseline PINN with default values, i.e., with 6 hidden

(22)
Top and bottom boundary: y = 1.0 − 2|x|,
Left and right boundary: x = 1.0 − 2|y − 0.5|.

layers and 512 neurons in each layer using the Adam opti-
miser with exponential decay in the learning rate and SiLU
activation (Sigmoid Linear Unit) [112] for 20k epochs.
We used 4000 boundary points and 4000 collocation
points sampled from a uniform distribution. We used the
same number of boundary points and collocation points
in models from Models 3 to 11. We obtained a relative L2
error of 0.08931, 0.10124, 0.09557 for Models 3, 4 and
5, respectively.

In Model 6, we replaced the uniform sampling with
importance sampling to resample the interior points in

(i) Model 9

(j) Model 10

(k) Model 11

Fig. 9   (continued)

2944	 P. Sharma et al.

1 3

Model 5. We observed a significant improvement around
the corners, resulting in a relative L2 error of 0.06448. In
the case of Model 7, we used adaptive activation with quasi-
random sampling for the initial sampling in each batch and
importance sampling for resampling of the interior points.
We obtained a relative L2 error of 0.06433, not a significant
improvement over Model 6.

In Model 8, we trained a Fourier network with 10 Fou-
rier features (see Sect. 3.2.1) using 6 hidden layers and 512
neurons in each layer using the Adam optimiser with SiLU
adaptive activation for 20k epochs, with full SDF weights,
quasi-random sampling and importance sampling. We used
10, 15, 25 and 35 Fourier features for the input encoding.
We observed that the Fourier network is only working for 10
Fourier features and the absolute pointwise error is 0.18741,
which is even higher than Model 1. For 15, 25 and 35 Fou-
rier features the predicted temperature distribution were
close to 0.5 over the entire domain, i.e., the average of upper
and lower bound temperature in the domain.

In Model 9, we trained a SiReNs network (Sect. 3.2.3)
with 6 hidden layers and 512 neurons in each layer using
the Adam optimiser with Sine activation for 20k epochs,
with full SDF weights, quasi-random sampling and impor-
tance sampling. The network was continuously experienc-
ing exploding gradients until we reduced the learning rate
to (2e−5). Still after 12k epochs the training loss would
abruptly increase, leading to prohibitively large absolute
pointwise error. Hence, we forced the training to stop
around 11k epochs and the relative L2 error was found to
be 0.12640.

In Model 10, we trained a modified Fourier network
(Sect. 3.2.2) with 6 hidden layers and 512 neurons in each
layer using the Adam optimiser with SiLU activation for
20k epochs, with full SDF weights, quasi-random sampling
and importance sampling. Similar to Model 10, we used
10 Fourier features for the input encoding. The predicted

temperature distribution looks similar to Model 8 and the
relative L2 error was found to be 0.17577.

In Model 11, we trained a DGM architecture (see
Sect. 3.2.4), with 6 hidden layers and 512 neurons in each
layer using the Adam optimiser with SiLU activation for
20k epochs, with full SDF weights, quasi-random sampling
and importance sampling. We obtained a relative L2 error
of 0.08229.

In Fig. 9, Models 6, 7 and 11 resulted in less than 1%
absolute pointwise error at most of the points in the domain.
This indicates that the SDF weights and the importance sam-
pling plays an important role in solving stiff-PDEs with a
discontinuous solution. In Table 2, Models 3, 5, 6, 7 and 11
resulted in less than 10% relative L2 error. Further investiga-
tion is required to determine whether the DGM architecture
is advantageous compared to the baseline PINNs in higher
dimensions.

4.4 � Hard Constrained BCs

In this section, we discuss the exact imposition of BCs in
PINNs. Hard constrained BCs involves the construction of
a continuous and differentiable function through which we
pass the output of the NN. Problem 1, involves discontinu-
ous BCs which can’t be exactly satisfied with a continuous
and differentiable function. However, it is possible to satisfy
the BCs on two opposite walls, here we chose to exactly
satisfy the top and bottom walls using the following output
transform function.

We trained the Model 2 (see Table 1) with 3500 collocation
points and 400 boundary points with Adam for 30k epochs.
Figure 11 shows the DeepXDE predicted solution to Prob-
lem 1 with the hard constrained BCs at the top and bottom
walls. Due to hard constrained BCs at the top and bottom

(23)u ∶= y(y − 1)u.

Fig. 10   The magnitude of SDF
weights on interior and bound-
ary points of a square domain.
The SDF weights for Model 4,
i.e., with only interior points is
shown on the left side. Whereas,
the SDF weights with interior
and boundary points is shown
on the right side (for Models 5
to 11)

2945Stiff‑PDEs and Physics‑Informed Neural Networks﻿	

1 3

walls, we observe significant errors around the left and right
walls resulting in a relative L2 error of 0.183119. Thus, it is
not recommended to apply hard constraints to the BCs in
stiff-PDEs.

4.5 � Overfitted Solution

In this section, we discuss the behaviour of an overfitted
PINN model while predicting the solution of the PDE at
new spatio-temporal locations in the domain. We trained the
Model 2 (see Table 1) with 2500 collocation points and 200
boundary points with Adam for 30k epochs. Figure 12 shows
the DeepXDE predicted solution to Problem 1 from both
the training dataset and on new spatio-temporal locations
within the domain. Given that the trained model’s accuracy
during the validation is low, we will categorise the model
as an overfitted model. The validation loss can be decreased
by adding more points in the training data set, for instance,
NVIDIA Modulus samples different points for the training
in each epoch. Intuitively, the overfitted model is computa-
tionally cheaper than a generalised model as it requires very
few collocation points, which is evident with this example.

5 � Problem 2: 3D Steady‑State Heat
Conduction

The next problem we address is a 3D steady-state heat con-
duction problem with conflicting BCs at the edges and the
corners. We solved the problem with different PINN frame-
works and compared the results to the FEM solution. The 3D
heat conduction problem is described as follows:

We used MATLAB Partial Differential Equation Toolbox
[110] to solve the 3D steady-state heat conduction problem
(Eq. 24) with quadratic triangles (Fig. 13).

We again used the same PINN models (see Table 1) to
solve the 3D steady-state heat conduction problem. We did
not use the full SDF weights because the boundary walls are
planes instead of lines in 2D. This is where we potentially
require an algorithm, instead of manually constructing the
SDF weights for the boundary points. Therefore, for this
problem, we refer to the SDF weights on interior points
as the full SDF weights and we exclude Model 4. Table 3

(24)

uxx + uyy + uzz = 0, x ∈ [−0.5, 0.5], y ∈ [−0.5, 0.5], z ∈ [0, 1],

u(x, y, 0) = u(x, y, 1) = u(0.5, y, z) = 0,

u(−0.5, y, z) = u(x,−0.5, z) = u(x, 0.5, z) = 1.

Fig. 11   DeepXDE predicted
solution of 2D steady-state heat
conduction problem (Eq. 21)
with hard constrained BCs at
the top and bottom walls on the
left and the absolute point-
wise error between the FEM
and PINN predicted solutions
is shown on the right side.
Temperature predicted outside
the expected bound (if any), i.e.,
when u ∉ [0, 1] is shown using
the white and grey colour

Fig. 12   Comparison of PINN predicted solution from the training
dataset and at new data-points. a The FEM solution of Problem 1
(Eq. 21), b the DeepXDE predicted solution of the same problem
from the training dataset, and c the DeepXDE predicted solution of

the same problem at new spatio-temporal locations in the domain.
Temperature predicted outside the expected bound (if any), i.e., when
u ∉ [0, 1] is shown using the white and grey colour

2946	 P. Sharma et al.

1 3

summarises the network parameters and relative L2 error for
various PINN frameworks. Figure 14 shows the solution of
the 3D steady-state heat conduction problem for different
PINN frameworks.

In Problem 1 (Sect. 4), the discontinuities occurred at
the corners of the square domain, which affected only a few
training points. Whereas, in Problem 2, the discontinuities
affected not only the vertices but also the edges. We can
sample a large number of points along these edges. Thus,
Problem 2 is more suitable for testing the robustness of dif-
ferent PINN frameworks.

In Problem 2, all the models had the same number of lay-
ers, nodes per layer and the learning rate as in Problem 1.
However, we increased the number of boundary points and
collocation/ interior points in Models 1 and 2.

In Model 1, we observed that the interior points had sig-
nificant absolute pointwise error, meaning the PDE loss
didn’t converge. We obtained a relative L2 error of 0.23778.
In Model 2, the DeepXDE network didn’t sample the points

at the edges and vertices (see Sect. 2.3.2). We obtained a
relative L2 error of 3.15547.

In the case of models trained within NVIDIA Modulus,
the SDF weights on the interior nodes from Problem 1 was
extended to three dimension such that interior points close
to the boundary were assigned negligible weights. As we
move away from the boundary, the SDF weights on the inte-
rior points increases until it reaches close to 0.5 around the
centroid of the cubical domain (see Fig. 15).

NVIDIA Modulus’s baseline PINN (Model 3) predicts
better temperature distribution compared to Models 1
and 2 with a relative L2 error of 0.12031. The addition of
SDF weights on the interior points (Model 5) dramatically
reduces the relative L2 error to 0.07455.

To obtain accurate results, the nodal coordinates or the
training data needs special treatment either by transforming
the coordinates to higher dimensions using the Fourier net-
work or by adding more transformer layers using the DGM
architecture or both using the modified Fourier network.
From Table 3, it is clear that the baseline PINN without
SDF weights is not suitable for solving stiff-PDEs with dis-
continuities in 3D.

In summary, Models 5, 6, 7, 8, 10 and 11 resulted in less
than 10% relative L2 error and less than 5% absolute point-
wise error at most of the points in the domain. It is worth
mentioning that the SiReNs network (Model 9) experiences
difficulty while minimising the loss, resulting in a constant
temperature over the entire domain with a relative L2 error
of 0.56448 (see Fig. 14).

A summary of the total training time (s) and training time
(s) per epoch in Problems 1 and 2 for each model is pre-
sented in Table 4. The training time does not include the
time taken in pre-processing of the data and initialisation of
the NN. In Models 1 and 2, the number of data points were
different in Problems 1 and 2, which influences the train-
ing time. Thus, we could not draw a concrete conclusion.

Fig. 13   FEM solution for the 3D steady-state heat conduction prob-
lem (Eq. 24) using MATLAB Partial Differential Equation Toolbox

Table 3   Problem 2: summary of
training parameters and relative
L
2 error for different PINN

frameworks

*Model 1 uses the nodal coordinates from the FEM mesh
**Model 2 uses the Sobol sequence

Layers Nodes Boundary
points

Collocation
points

� Epochs Relative L2 error

Model 1 8 150 5814 34,071* 1e−3 20k 0.23778
Model 2 10 150 5000 15,000** 1e−3 15k 3.15547
Model 3 6 512 4000 4000 1e−3 20k 0.12031
Model 5 6 512 4000 4000 1e−3 10k 0.07455
Model 6 6 512 4000 4000 1e−3 20k 0.07163
Model 7 6 512 4000 4000 1e−3 20k 0.08557
Model 8 6 512 4000 4000 1e−3 20k 0.07302
Model 9 6 512 4000 4000 2e−5 20k 0.56448
Model 10 6 512 4000 4000 1e−3 20k 0.09498
Model 11 6 512 4000 4000 1e−3 30k 0.07213

2947Stiff‑PDEs and Physics‑Informed Neural Networks﻿	

1 3

Fig. 14   PINN predicted solution
of 3D steady-state heat conduc-
tion problem is shown on the
left side. The absolute pointwise
error between the FEM solution
and PINN predicted solution
is shown on the right side.
Temperature predicted outside
the expected bound (if any), i.e.,
when u ∉ [0, 1] is shown using
the white and grey colour

(a) Model 1

(b) Model 2

(c) Model 3

(d) Model 5

2948	 P. Sharma et al.

1 3

(e) Model 6

(f) Model 7

(g) Model 8

(h) Model 9

Fig. 14   (continued)

2949Stiff‑PDEs and Physics‑Informed Neural Networks﻿	

1 3

In Models 3–10, even though the number of data points
were same there was no noticeable increase in the training
time per epoch. However, in Model 11, the training time
per epoch was almost 3 times for Problem 2, a 3D problem,
compared to Problem 1, a 2D problem. This is because one
DGM layers contains eight weight matrices and introduc-
ing one more feature into the training dataset increases the
number of operations exponentially.

6 � Parametric Heat Conduction Problem

As discussed in Sect. 2.2.6, PINNs can be parameterised
by adding the parameter of interest as another feature in
the training dataset. We solved two parametric 2D steady-
state heat conduction problems with parameterised con-
ductivity and parameterised geometry (see Table 5).

6.1 � Problem 3: Parameterised Conductivity

We formulated the 2D steady-state heat conduction prob-
lem such that the conductivity � is varying from 0 to 1 in
Eq. 25.

We trained Problem 3, with various models from Table 1
and observed that the predicted temperature distribution
was fairly accurate except for Model 1 because we did not
use a learning rate scheduler (see Sect. 4.1). The absolute
pointwise error is less than 5% on the interior points with
some errors around the corners, similar to Problems 1 and
2. Figure 16 shows the solution to Problem 3 using Model
2. Model 2 predicted a reasonably accurate temperature

(25)

uxx + � uyy = 0, x ∈ [−0.5, 0.5], y ∈ [0, 1], � ∈ [0, 1],

u(x, 0) = u(x, 1) = 0, u(−0.5, y) = u(0.5, y) = 1.

(i) Model 10

(j) Model 11

Fig. 14   (continued)

Fig. 15   The magnitude of SDF weights on interior points of the cubi-
cal domain of Problem 2

2950	 P. Sharma et al.

1 3

distribution in just 523 s. Model 3 to 11 took 2–3 times the
time to train the model with very little improvement.

6.2 � Problem 4: Parameterised Geometry

Similar to conductivity the geometry can also be parameter-
ised. We used the y-dimension of the 2D steady-state heat
conduction problem as the parameter (Eq. 26).

Implementing the parametric geometry is not straightfor-
ward, care should be taken that for each geometry parameter
the sampled points along the geometry parameter is within
the spatio-temporal domain. For example, as per Eq. 26,

(26)

uxx + uyy = 0, x ∈ [−0.5, 0.5], y ∈ [0, L], L ∈ [1, 10],

u(x, 0) = u(x, L) = 0, u(−0.5, y) = u(0.5, y) = 1.

Table 4   Summary of the total
training time (s) and training
time (s) per epoch in Problems
1 and 2 for each model

Problem 1 Problem 2

Training time (s) Training time/epoch
( 10−3 s)

Training time (s) Training time/
epoch ( 10−3 s)

Model 1 455 15.61 2259 112.95
Model 2 482 16.06 845 56.33
Model 3 632 31.60 592 29.6
Model 4 527 52.71 – –
Model 5 530 53.00 585 58.5
Model 6 2759 137.95 1931 96.55
Model 7 1843 92.15 2193 109.65
Model 8 2031 101.55 2416 120.80
Model 9 769 69.91 1144 57.2
Model 10 2792 139.60 3481 174.05
Model 11 2670 89.00 8174 272.46

Table 5   Summary of parametric heat conduction problems

Parametric
conductivity

Parametric geometry

PINN framework Model 2 Models 7, 10, 11
Layers 8 6
Nodes per layer 20 512
Boundary points 10,000 4000
Collocation points 25,000 4000
� 1e−3 1e−3
Epochs 30k 20k
Average relative L2 error 0.10305 0.05460, 0.10407, 0.08192

Fig. 16   Solution to Problem 3
using Model 2. The predicted
temperature distribution (on the
top) and the absolute pointwise
error (on the bottom) for dif-
ferent values of � (see Eq. 25).
Temperature predicted outside
the expected bound, i.e., when
u ∉ [0, 1] , is shown in white and
grey colour

2951Stiff‑PDEs and Physics‑Informed Neural Networks﻿	

1 3

y ∈ [0, L] and L ∈ [1, 10] , i.e., y ≤ L for each sample in the
training dataset.

Figure 17 shows the boundary points sampling of Prob-
lem 4 to illustrate the implementation of parametric geom-
etry. Here, x and y axes shows the 2D spatial domain for each
geometry parameter along the L axis. As discussed earlier,
for y ≤ L , this results in moving the upper boundary on the
y axis as L increases.

We observed that none of the models could predict a tem-
perature distribution that visually looks similar to the FEM
solution. Some of the models such as Models 1, 3, 4, 5, 6
and 7 could not converge the loss. Whereas, Models 10 and
11 resulted in gradient explosion. We think that none of the
PINN frameworks in Table 1 does have enough features and
parameters to predict multiple discontinuous temperature
distribution around the moving upper boundary. We need
more sophisticated PINN frameworks to solve these types
of problems.

Thus, we decreased the range of the parameter L until we
could predict a temperature distribution that visually resem-
bles the FEM solution. The parameter’s range was eventually
narrowed to 1.05, i.e. L ∈ [1, 1.05].

We trained Models 7, 10 and 11 with the redefined L
parameter. For Models 10 and 11, we have also shown the
predicted temperature distribution without the SDF weights
to highlight how important they are while solving problems
with discontinuities. Figure 18 shows the predicted tempera-
ture distribution for the redefined problem with Models 7,
10 and 11 with and without the SDF weights.

In Model 7, the predicted temperature distribution around
the left and right boundary does not change with the moving
upper boundary, especially, around the upper-left and upper-
right corners of the square domain. In Model 10 without the
SDF weights, the predicted temperature distribution does
not visually resemble the FEM solution. Whereas, when we

use the SDF weights, the predicted temperature distribution
improves dramatically.

In Model 11, the predicted temperature distribution with-
out the SDF weights was much better than any other Model
without the SDF weights. Also, Model 11 with SDF weights
predicts better temperature distribution compared to Models
7 and 10 with SDF weights.

7 � Conclusion

In this paper, we have reviewed application of PINNs to stiff-
PDEs, specifically for simple steady-state heat conduction
problems with discontinuous BCs at the corners. We defined
a list of PINN frameworks in Table 1 which included the
baseline PINN and models from open-source libraries such
as DeepXDE and NVIDIA Modulus.

We started with a 2D steady-state heat conduction prob-
lem (Problem 1). We observed that both the baseline PINN
and DGM architecture predicted temperature distribution
with 5–10% absolute pointwise error in the corner regions
for most models. The results are summarised in Table 2.

Next, we solved Problem 1 with hard constrained BCs.
We showed that we can’t satisfy all the BCs exactly when
they conflict with each other. Problem 1 contains discontinu-
ous BCs, which can’t be satisfied exactly with a differenti-
able function such as a NN. Thus, we do not recommend
applying hard constrained BCs on a stiff-PDE.

We also demonstrated the inability of an overfitted PINN
to predict the temperature distribution at new spatio-tem-
poral locations. However, an overfitted PINN proves to be
computationally cheap when the solution is to be inferred
on the training dataset only.

We then solved a 3D steady-state heat conduction prob-
lem (Problem 2), an equivalent of Problem 1 in 3D space.
This is where modified PINN frameworks such as Fourier
network, Modified Fourier network, DGM architecture
proves to be more accurate than the baseline PINN frame-
works (Models 1–7) in terms of the relative L2 error. Further-
more, the SDF weights significantly improved the accuracy.
This is primarily because the modified PINN frameworks are
inherently evolutional over the baseline PINN. The Fourier
network addresses the spectral bias in the baseline PINNs,
the DGM architecture is useful for solving problems in
higher dimensions and the Modified Fourier network is a
combination of both.

Then we solved Problem 1 with parametric conductivity
(Problem 3) using DeepXDE’s baseline PINN. DeepXDE’s
baseline PINN accurately predicted the temperature distribu-
tion while using fewer resources compared to Models 3–11.

We also solved Problem 1 with parametric geometry by
extending the y-dimension (Problem 4). We observed that
solving stiff-PDEs with parametric geometry can be very

Fig. 17   The boundary points sampling of the parameterised geometry
in Problem 4

2952	 P. Sharma et al.

1 3

challenging for PINNs. Even robust PINN frameworks such
as the Modified Fourier Network resulted in exploding gra-
dients. In Problem 4, we also showed that the predicted tem-
perature distribution with SDF weights significantly outper-
forms those without the SDF weights. Table 5 summarises
the network parameters and the accuracy (relative L2 error)
of various models for Problems 3 and 4.

Among the PINN frameworks (see Sect. 1), baseline
PINNs are not useful in the case of 3D problems. On the
other hand, PINN frameworks such as Modified Fourier

network and DGM architecture are robust even on 3D prob-
lems. The SiReNs network is very unstable and often results
in exploding gradients even with exponential decay of the
learning rate. The SiReNs network fails to predict the tem-
perature distribution in Problem 2 even with a reduced learn-
ing rate. A summary of the best models for each problem is
shown in Table 6.

In Table 6, Models 7 and 11 can be categorised as the
best performing models in general for the four problems we
considered. Model 10 also works in most of the cases. Model

Fig. 18   Solution of 2D steady-
state heat conduction problem
with parameterised upper
boundary. Each plot shows the
predicted temperature dis-
tribution for a specific value
of parameter L ∈ [1, 1.05] .
Temperature predicted outside
the expected bound, i.e., when
u ∉ [0, 1] , is shown using white
and grey colour

(a) Model 7

(b) Model 10 without SDF weights

2953Stiff‑PDEs and Physics‑Informed Neural Networks﻿	

1 3

7 is computationally cheaper than Model 11 (see Table 4).
However, Model 11 seems to work without SDF weights in
Problem 4 which is an advantage for solving more compli-
cated problems.

Among the additional tools (see Sect. 2.3), the SDF
weights are an important asset for solving problems with dis-
continuous BCs. The importance sampling is a loss depend-
ent resampling strategy of the collocation points. It samples
points proportional to the absolute pointwise error, which is
particularly useful in stiff-PDEs where we need more points
to capture the sharp gradients. The adaptive activation and

quasi-random sampling improves the convergence and the
accuracy respectively.

We also tried to solve 2D steady-state heat conduction
problem with a temperature dependent conductivity along
the y-direction. However, we could not converge the train-
ing loss with any of the models in Table 1. We were also
interested in solving Problem 1 with parametric prescribed
BCs, but it seems, currently, this is not possible with any
PINN framework.

The development of FEM took us almost five decades.
In contrast, PINNs are evolving rather quickly. As of now,

(c) Model 10

(d) Model 11 without SDF weights

Fig. 18   (continued)

2954	 P. Sharma et al.

1 3

PINNs are able to solve simple discontinuous problems in
2D and 3D without any problem-specific tuning and trans-
fer learning. The same framework can be used to solve the
parametric PDEs which is difficult to achieve with conven-
tional PDE solvers. We believe that in 2–3 years, we will
see PINNs solving complex benchmark problems.

There is a need to automate the SDF for problems with
discontinuous solutions. Also, there is a lack of bench-
marking in PINNs. We can not use the same parameters
for all the Models in Table 1. To compare different PINN
frameworks, an improvement to this field would be for the
research community to collectively agree upon a standard
set of benchmarks.

Acknowledgements  This work is funded by the United Kingdom
Atomic Energy Authority (UKAEA) and the Engineering and Physi-
cal Sciences Research Council (EPSRC) under the Grant Agreement
Numbers EP/T517987/1 and EP/R012091/1. We acknowledge the sup-
port of Supercomputing Wales and AccelerateAI projects, which is
part-funded by the European Regional Development Fund (ERDF) via
the Welsh Government for giving us access to NVIDIA A100 40 GB
GPUs for batch training. We also acknowledge the support of NVIDIA
for donating us a NVIDIA RTX A5000 24 GB for local testing.

Declarations 

Conflict of interest  On behalf of all authors, the corresponding author
states that there is no conflict of interest. The code we used to train
and evaluate our models is available at https://​doi.​org/​10.​5281/​zenodo.​
73618​56.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 De Florio M, Schiassi E, Ganapol BD, Furfaro R (2022a)
Physics-Informed Neural Networks for rarefied-gas dynam-
ics: Poiseuille flow in the BGK approximation. Z angew Math
Phys 73(3):126. ISSN 1420-9039. https://​doi.​org/​10.​1007/​
s00033-​022-​01767-z

	 2.	 De Florio M, Schiassi E, Furfaro R (2022b) Physics-informed
neural networks and functional interpolation for stiff chemical
kinetics. Chaos Interdiscip J Nonlinear Sci 32(6):063107. ISSN
1054-1500. https://​doi.​org/​10.​1063/5.​00866​49

	 3.	 Aliakbari M, Mahmoudi M, Vadasz P, Arzani A (2022) Predict-
ing high-fidelity multiphysics data from low-fidelity fluid flow
and transport solvers using physics-informed neural networks.

(e) Model 11

Fig. 18   (continued)

Table 6   Summary of models
with least relative L2 error

Models

Problem 1 3, 5, 6, 7 and 11
Problem 2 5, 6, 7, 8, 10 and 11
Problem 3 All except Model 1
Problem 4 7, 10 and 11

https://doi.org/10.5281/zenodo.7361856
https://doi.org/10.5281/zenodo.7361856
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s00033-022-01767-z
https://doi.org/10.1007/s00033-022-01767-z
https://doi.org/10.1063/5.0086649

2955Stiff‑PDEs and Physics‑Informed Neural Networks﻿	

1 3

Int J Heat Fluid Flow 96:109002. ISSN 0142-727X. https://​doi.​
org/​10.​1016/j.​ijhea​tflui​dflow.​2022.​109002

	 4.	 Abueidda DW, Koric S, Guleryuz E, Sobh NA (2022) Enhanced
physics-informed neural networks for hyperelasticity. Technical
Report. arXiv:​2205.​14148

	 5.	 Xu C, Cao TB, Yuan Y, Meschke G (2022) Transfer learning
based physics-informed neural networks for solving inverse prob-
lems in tunneling. Technical Report. arXiv arXiv:​2205.​07731

	 6.	 Zapf B, Haubner J, Kuchta M, Ringstad G, Eide PK, Mardal K-A
(2022) Investigating molecular transport in the human brain from
MRI with physics-informed neural networks. Technical Report.
arXiv arXiv:​2205.​02592

	 7.	 Lu L, Pestourie R, Yao W, Wang Z, Verdugo F, Johnson SG
(2021a) Physics-informed neural networks with hard constraints
for inverse design. SIAM J Sci Comput 43(6):B1105–B1132.
ISSN 1064-8275. https://​doi.​org/​10.​1137/​21M13​97908

	 8.	 Margossian CC (2019) A review of automatic differentiation and
its efficient implementation. WIREs Data Min Knowl Discov
9(4):e1305. ISSN 1942-4795. https://​doi.​org/​10.​1002/​widm.​1305

	 9.	 Lee H, Kang IS (1990) Neural algorithm for solving differen-
tial equations. J Comput Phys 91(1):110–131. ISSN 0021-9991.
https://​doi.​org/​10.​1016/​0021-​9991(90)​90007-N

	 10.	 Lagaris IE, Likas A, Fotiadis DI (1998) Artificial neural networks
for solving ordinary and partial differential equations. IEEE
Trans Neural Netw 9(5): 987–1000. ISSN 1941-0093. https://​
doi.​org/​10.​1109/​72.​712178

	 11.	 Lagaris IE, Likas AC, Papageorgiou DG (2000) Neural-network
methods for boundary value problems with irregular boundaries.
IEEE Trans Neural Netw 11(5):1041–1049. ISSN 1941-0093.
https://​doi.​org/​10.​1109/​72.​870037

	 12.	 Malek A, Shekari Beidokhti R (2006) Numerical solution for
high order differential equations using a hybrid neural network-
optimization method. Appl Math Comput 183(1):260–271. ISSN
0096-3003. https://​doi.​org/​10.​1016/j.​amc.​2006.​05.​068

	 13.	 Rudd K, Ferrari S (2015) A constrained integration (CINT)
approach to solving partial differential equations using artificial
neural networks. Neurocomputing 155:277–285. ISSN 0925-
2312. https://​doi.​org/​10.​1016/j.​neucom.​2014.​11.​058

	 14.	 Raissi M, Perdikaris P, Karniadakis GE (2018) Numerical Gauss-
ian processes for time-dependent and nonlinear partial differ-
ential equations. SIAM J Sci Comput. https://​doi.​org/​10.​1137/​
17M11​20762

	 15.	 Raissi M, Wang Z, Triantafyllou MS, Karniadakis GE (2019a)
Deep learning of vortex-induced vibrations. J Fluid Mech
861:119–137. ISSN 0022-1120, 1469-7645. https://​doi.​org/​10.​
1017/​jfm.​2018.​872

	 16.	 Stiff differential equations. https://​uk.​mathw​orks.​com/​compa​ny/​
newsl​etters/​artic​les/​stiff-​diffe​renti​al-​equat​ions.​html

	 17.	 Raissi M, Perdikaris P, Karniadakis GE (2019b) Physics-
informed neural networks: a deep learning framework for solving
forward and inverse problems involving nonlinear partial differ-
ential equations. J Comput Phys 378:686–707. ISSN 0021-9991.
https://​doi.​org/​10.​1016/j.​jcp.​2018.​10.​045

	 18.	 Wang S, Teng Y, Perdikaris P (2021a) Understanding and miti-
gating gradient flow pathologies in physics-informed neural net-
works. SIAM J Sci Comput 43(5):A3055–A3081. ISSN 1064-
8275. https://​doi.​org/​10.​1137/​20M13​18043

	 19.	 Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez
AN, Kaiser Ł, Polosukhin I (2017a) Attention is all you need. In:
Advances in neural information processing systems, 2017, vol 30

	 20.	 Cao S (2021) Choose a transformer: Fourier or Galerkin. In:
Advances in neural information processing systems, 2021, vol
34. Curran Associates, Inc., pp 24924–24940. https://​proce​
edings.​neuri​ps.​cc/​paper/​2021/​hash/​d0921​d442e​e91b8​96ad9​
5059d​13df6​18-​Abstr​act.​html

	 21.	 Gao H, Zahr MJ, Wang J-X (2022) Physics-informed graph neu-
ral Galerkin networks: a unified framework for solving PDE-
governed forward and inverse problems. Comput Methods Appl
Mech Eng 390:114502. ISSN 0045-7825. https://​doi.​org/​10.​
1016/j.​cma.​2021.​114502

	 22.	 Sirignano J, Spiliopoulos K (2018) DGM: a deep learning algo-
rithm for solving partial differential equations. J Comput Phys
375:1339–1364. ISSN 0021-9991. https://​doi.​org/​10.​1016/j.​jcp.​
2018.​08.​029

	 23.	 Yu Y, Si X, Hu C, Zhang J (2019) A review of recurrent neural
networks: LSTM cells and network architectures. Neural Com-
put 31(7):1235–1270. ISSN 0899-7667. https://​doi.​org/​10.​1162/​
neco_a_​{0}1199

	 24.	 Rahaman N, Baratin A, Arpit D, Draxler F, Lin M, Hamprecht
F, Bengio Y, Courville A (2019) On the spectral bias of neural
networks. In: Proceedings of the 36th international conference
on machine learning, 2019. PMLR, pp 5301–5310. ISSN 2640-
3498. https://​proce​edings.​mlr.​press/​v97/​raham​an19a.​html

	 25.	 Tancik M, Srinivasan P, Mildenhall B, Fridovich-Keil S,
Raghavan N, Singhal U, Ramamoorthi R, Barron J, Ng R (2020)
Fourier features let networks learn high frequency functions in
low dimensional domains. In: Advances in neural information
processing systems, 2020, vol 33. Curran Associates, Inc., pp
7537–7547. https://​proce​edings.​neuri​ps.​cc/​paper/​2020/​hash/​
55053​68326​89576​97aa3​9fba6​f231c​68-​Abstr​act.​html

	 26.	 Modulus user guide, release v21.06 (2021). https://​devel​oper.​
nvidia.​com/​modul​us-​user-​guide-​v2106

	 27.	 Hennigh O, Narasimhan S, Nabian MA, Subramaniam A, Tang-
sali K, Fang Z, Rietmann M, Byeon W, Choudhry S (2021)
NVIDIA SimNetTM : an AI-accelerated multi-physics simulation
framework. In: Paszynski M, Kranzlmüller D, Krzhizhanovskaya
VV, Dongarra JJ, Sloot PMA (eds) Computational science—
ICCS 2021, Lecture notes in computer science, 2021. Springer,
Cham, pp 447–461. ISBN 978-3-030-77977-1. https://​doi.​org/​
10.​1007/​978-3-​030-​77977-1_​36

	 28.	 Sitzmann V, Martel J, Bergman A, Lindell D, Wetzstein G (2020)
Implicit neural representations with periodic activation functions.
In: Advances in neural information processing systems, 2020, vol
33. Curran Associates, Inc., pp 7462–7473. https://​proce​edings.​
neuri​ps.​cc/​paper/​2020/​hash/​53c04​118df​112c1​3a8c3​4b383​43b9c​
10-​Abstr​act.​html

	 29.	 Zhao CL (2020) Solving Allen–Cahn and Cahn–Hilliard equa-
tions using the adaptive physics informed neural networks.
Commun Comput Phys 29(3). https://​doi.​org/​10.​4208/​cicp.​
OA-​2020-​0086

	 30.	 McClenny L, Braga-Neto U (2019) Self-adaptive physics-
informed neural networks using a soft attention mechanism.
Technical Report 68. http://​ceur-​ws.​org/​Vol-​2964/​artic​le_​68.​pdf

	 31.	 Shi S, Liu D, Zhao Z (2021) Non-Fourier heat conduction based
on self-adaptive weight physics-informed neural networks. In:
2021 40th Chinese control conference (CCC), pp 8451–8456.
ISSN 1934-1768. https://​doi.​org/​10.​23919/​CCC52​363.​2021.​
95504​87

	 32.	 Wang S, Yu X, Perdikaris P (2022a) When and why PINNs fail
to train: a neural tangent kernel perspective. J Comput Phys
449:110768. ISSN 0021-9991. https://​doi.​org/​10.​1016/j.​jcp.​
2021.​110768

	 33.	 Sun R-Y (2020) Optimization for deep learning: an overview. J
Oper Res Soc China 8(2):249–294. ISSN 2194-6698. https://​doi.​
org/​10.​1007/​s40305-​020-​00309-6

	 34.	 Pascanu R, Mikolov T, Bengio Y (2013) On the difficulty of
training recurrent neural networks. In: Proceedings of the 30th
international conference on machine learning. PMLR, pp 1310–
1318. ISSN 1938-7228. https://​proce​edings.​mlr.​press/​v28/​pasca​
nu13.​html

https://doi.org/10.1016/j.ijheatfluidflow.2022.109002
https://doi.org/10.1016/j.ijheatfluidflow.2022.109002
http://arxiv.org/abs/2205.14148
http://arxiv.org/abs/2205.07731
http://arxiv.org/abs/2205.02592
https://doi.org/10.1137/21M1397908
https://doi.org/10.1002/widm.1305
https://doi.org/10.1016/0021-9991(90)90007-N
https://doi.org/10.1109/72.712178
https://doi.org/10.1109/72.712178
https://doi.org/10.1109/72.870037
https://doi.org/10.1016/j.amc.2006.05.068
https://doi.org/10.1016/j.neucom.2014.11.058
https://doi.org/10.1137/17M1120762
https://doi.org/10.1137/17M1120762
https://doi.org/10.1017/jfm.2018.872
https://doi.org/10.1017/jfm.2018.872
https://uk.mathworks.com/company/newsletters/articles/stiff-differential-equations.html
https://uk.mathworks.com/company/newsletters/articles/stiff-differential-equations.html
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1137/20M1318043
https://proceedings.neurips.cc/paper/2021/hash/d0921d442ee91b896ad95059d13df618-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/d0921d442ee91b896ad95059d13df618-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/d0921d442ee91b896ad95059d13df618-Abstract.html
https://doi.org/10.1016/j.cma.2021.114502
https://doi.org/10.1016/j.cma.2021.114502
https://doi.org/10.1016/j.jcp.2018.08.029
https://doi.org/10.1016/j.jcp.2018.08.029
https://doi.org/10.1162/neco_a_{0}1199
https://doi.org/10.1162/neco_a_{0}1199
https://proceedings.mlr.press/v97/rahaman19a.html
https://proceedings.neurips.cc/paper/2020/hash/55053683268957697aa39fba6f231c68-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/55053683268957697aa39fba6f231c68-Abstract.html
https://developer.nvidia.com/modulus-user-guide-v2106
https://developer.nvidia.com/modulus-user-guide-v2106
https://doi.org/10.1007/978-3-030-77977-1_36
https://doi.org/10.1007/978-3-030-77977-1_36
https://proceedings.neurips.cc/paper/2020/hash/53c04118df112c13a8c34b38343b9c10-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/53c04118df112c13a8c34b38343b9c10-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/53c04118df112c13a8c34b38343b9c10-Abstract.html
https://doi.org/10.4208/cicp.OA-2020-0086
https://doi.org/10.4208/cicp.OA-2020-0086
http://ceur-ws.org/Vol-2964/article_68.pdf
https://doi.org/10.23919/CCC52363.2021.9550487
https://doi.org/10.23919/CCC52363.2021.9550487
https://doi.org/10.1016/j.jcp.2021.110768
https://doi.org/10.1016/j.jcp.2021.110768
https://doi.org/10.1007/s40305-020-00309-6
https://doi.org/10.1007/s40305-020-00309-6
https://proceedings.mlr.press/v28/pascanu13.html
https://proceedings.mlr.press/v28/pascanu13.html

2956	 P. Sharma et al.

1 3

	 35.	 Fletcher R (1994) An overview of unconstrained optimization.
In: Spedicato E (ed) Algorithms for continuous optimization:
the state of the art, NATO ASI series. Springer, Dordrecht, pp
109–143. ISBN 978-94-009-0369-2. https://​doi.​org/​10.​1007/​
978-​94-​009-​0369-2_5

	 36.	 Tan HH, Lim KH (2019) Review of second-order optimization
techniques in artificial neural networks backpropagation. IOP
Conf Ser Mater Sci Eng 495:012003. ISSN 1757-899X. https://​
doi.​org/​10.​1088/​1757-​899X/​495/1/​012003

	 37.	 Lu L, Meng X, Mao Z, Karniadakis GE (2021b) DeepXDE: a
deep learning library for solving differential equations. SIAM
Rev 63(1):208–228. ISSN 0036-1445. https://​doi.​org/​10.​1137/​
19M12​74067

	 38.	 Haghighat E, Juanes R (2021) SciANN: a Keras/TensorFlow
wrapper for scientific computations and physics-informed
deep learning using artificial neural networks. Comput Meth-
ods Appl Mech Eng 373:113552. ISSN 0045-7825. https://​doi.​
org/​10.​1016/j.​cma.​2020.​113552

	 39.	 McClenny LD, Haile MA, Braga-Neto UM (2021) TensorDif-
fEq: scalable multi-GPU forward and inverse solvers for phys-
ics informed neural networks. Technical Report. arXiv arXiv:​
2103.​16034

	 40.	 Zubov K, McCarthy Z, Ma Y, Calisto F, Pagliarino V, Azeglio
S, Bottero L, Luján E, Sulzer V, Bharambe A, Vinchhi N, Bal-
akrishnan K, Upadhyay D, Rackauckas C (2021) NeuralPDE:
automating physics-informed neural networks (PINNs) with
error approximations. Technical Report. arXiv arXiv:​2107.​
09443

	 41.	 Schiassi E, Leake C, De Florio M, Johnston H, Furfaro R,
Mortari D (2020) Extreme theory of functional connections: a
physics-informed neural network method for solving parametric
differential equations. Technical Report. arXiv arXiv:​2005.​10632

	 42.	 Demo N, Strazzullo M, Rozza G (2021) An extended physics
informed neural network for preliminary analysis of parametric
optimal control problems. Technical Report. arXiv arXiv:​2110.​
13530

	 43.	 Raj M, Kumbhar P, Annabattula RK (2022) Physics-informed
neural networks for solving thermo-mechanics problems of func-
tionally graded material. Technical Report. arXiv arXiv:​2111.​
10751

	 44.	 Heger P, Full M, Hilger D, Hosters N (2022) Investigation of
physics-informed deep learning for the prediction of paramet-
ric, three-dimensional flow based on boundary data. Technical
Report. arXiv arXiv:​2203.​09204

	 45.	 Wu Y, Feng J (2018) Development and application of artificial
neural network. Wirel Pers Commun 102(2):1645–1656. ISSN
1572-834X. https://​doi.​org/​10.​1007/​s11277-​017-​5224-x

	 46.	 Trehan D (2020) Non-convex optimization: a review. In: 2020
4th International conference on intelligent computing and control
systems (ICICCS), pp 418–423. https://​doi.​org/​10.​1109/​ICICC​
S48265.​2020.​91208​74

	 47.	 Chen T, Chen H (1995) Universal approximation to nonlinear
operators by neural networks with arbitrary activation functions
and its application to dynamical systems. IEEE Trans Neural
Netw 6(4):911–917. ISSN 1941-0093. https://​doi.​org/​10.​1109/​
72.​392253

	 48.	 Freedman D (2009) Statistical models: theory and practice.
Cambridge University Press. ISBN 978-0-521-11243-7. Google-
Books-ID 4N3KOEitRe8C

	 49.	 Thacker WC (1989) The role of the Hessian matrix in fitting
models to measurements. J Geophys Res Oceans 94(C5):6177–
6196. ISSN 2156-2202. https://​doi.​org/​10.​1029/​JC094​iC05p​
06177

	 50.	 Diaconis P, Shahshahani M (1984) On nonlinear functions of lin-
ear combinations. SIAM J Sci Stat Comput 5(1):175–191. ISSN
0196-5204. https://​doi.​org/​10.​1137/​09050​13

	 51.	 Werbos P (1974) Beyond regression: new tools for prediction and
analysis in the behavior science. Doctoral Dissertation, Harvard
University. https://​ci.​nii.​ac.​jp/​naid/​10012​540025/

	 52.	 Minsky M, Papert SA (2017) Perceptrons: an introduction to
computational geometry. The MIT Press. ISBN 978-0-262-
34393-0. https://​doi.​org/​10.​7551/​mitpr​ess/​11301.​001.​0001

	 53.	 Molnar C (2020) Interpretable machine learning. Lulu.com.
ISBN 0-244-76852-8

	 54.	 Wang Q, Ma Y, Zhao K, Tian Y (2022b) A comprehensive
survey of loss functions in machine learning. Ann Data Sci
9(2):187–212. ISSN 2198-5812. https://​doi.​org/​10.​1007/​
s40745-​020-​00253-5

	 55.	 Elshawi R, Wahab A, Barnawi A, Sakr S (2021) DLBench: a
comprehensive experimental evaluation of deep learning frame-
works. Clust Comput 24(3):2017–2038. ISSN 1573-7543. https://​
doi.​org/​10.​1007/​s10586-​021-​03240-4

	 56.	 Ghojogh B, Ghodsi A, Karray F, Crowley M (2021) KKT con-
ditions, first-order and second-order optimization, and distrib-
uted optimization: tutorial and survey. arXiv:​2110.​01858 [cs,
math]

	 57.	 Ketkar N (2017) Stochastic gradient descent. In: Ketkar N (ed)
Deep learning with Python: a hands-on introduction. Apress,
Berkeley, pp 113–132. ISBN 978-1-4842-2766-4. https://​doi.​
org/​10.​1007/​978-1-​4842-​2766-4_8

	 58.	 Kingma DP, Ba J (2017) Adam: a method for stochastic opti-
mization. Technical Report. arXiv arXiv:​1412.​6980

	 59.	 Ramm A, Smirnova A (2001) On stable numerical differen-
tiation. Math Comput 70(235):1131–1153. ISSN 0025-5718,
1088-6842. https://​doi.​org/​10.​1090/​S0025-​5718-​01-​01307-2

	 60.	 Davenport JH, Siret Y, Tournier É (1993) Computer algebra
systems and algorithms for algebraic computation. Academic
Press Professional, Inc. ISBN 0-12-204232-8

	 61.	 Barros CDT, Mendonça MRF, Vieira AB, Ziviani A (2021)
A survey on embedding dynamic graphs. ACM Comput Surv
55(1):1–37. ISSN: 0360-0300

	 62.	 Fang B, Yang E, Xie F (2020) Symbolic techniques for deep
learning: challenges and opportunities. arXiv preprint arXiv:​
2010.​02727

	 63.	 Giles M (2008) An extended collection of matrix derivative
results for forward and reverse mode automatic differentiation.
Report

	 64.	 Mathias R (1996) A chain rule for matrix functions and appli-
cations. SIAM J Matrix Anal Appl 17(3):610–620. ISBN:
0895-4798

	 65.	 Raschka S, Patterson J, Nolet C (2020) Machine learning in
Python: main developments and technology trends in data sci-
ence, machine learning, and artificial intelligence. Informa-
tion 11(4):193. ISSN 2078-2489. https://​doi.​org/​10.​3390/​info1​
10401​93

	 66.	 Andonie R (2019) Hyperparameter optimization in learning
systems. J Membr Comput 1(4):279–291. ISSN 2523-8914.
https://​doi.​org/​10.​1007/​s41965-​019-​00023-0

	 67.	 Gopakumar V, Pamela S, Samaddar D (2022) Loss landscape
engineering via data regulation on PINNs. Technical Report.
arXiv arXiv:​2205.​07843

	 68.	 Arzani A, Wang J-X, D’Souza RM (2021) Uncovering near-
wall blood flow from sparse data with physics-informed neural
networks. Phys Fluids 33(7):071905. ISSN 1070-6631. https://​
doi.​org/​10.​1063/5.​00556​00

	 69.	 Bajaj C, McLennan L, Andeen T, Roy A (2021) Robust learn-
ing of physics informed neural networks. Technical Report.
arXiv arXiv:​2110.​13330

	 70.	 Nabian MA, Gladstone RJ, Meidani H (2021) Efficient training
of physics-informed neural networks via importance sampling.
Comput Aided Civ Infrastruct Eng 36(8):962–977. ISSN 1467-
8667. https://​doi.​org/​10.​1111/​mice.​12685

https://doi.org/10.1007/978-94-009-0369-2_5
https://doi.org/10.1007/978-94-009-0369-2_5
https://doi.org/10.1088/1757-899X/495/1/012003
https://doi.org/10.1088/1757-899X/495/1/012003
https://doi.org/10.1137/19M1274067
https://doi.org/10.1137/19M1274067
https://doi.org/10.1016/j.cma.2020.113552
https://doi.org/10.1016/j.cma.2020.113552
http://arxiv.org/abs/arXiv:2103.16034
http://arxiv.org/abs/arXiv:2103.16034
http://arxiv.org/abs/2107.09443
http://arxiv.org/abs/2107.09443
http://arxiv.org/abs/2005.10632
http://arxiv.org/abs/2110.13530
http://arxiv.org/abs/2110.13530
http://arxiv.org/abs/2111.10751
http://arxiv.org/abs/2111.10751
http://arxiv.org/abs/2203.09204
https://doi.org/10.1007/s11277-017-5224-x
https://doi.org/10.1109/ICICCS48265.2020.9120874
https://doi.org/10.1109/ICICCS48265.2020.9120874
https://doi.org/10.1109/72.392253
https://doi.org/10.1109/72.392253
https://doi.org/10.1029/JC094iC05p06177
https://doi.org/10.1029/JC094iC05p06177
https://doi.org/10.1137/0905013
https://ci.nii.ac.jp/naid/10012540025/
https://doi.org/10.7551/mitpress/11301.001.0001
https://doi.org/10.1007/s40745-020-00253-5
https://doi.org/10.1007/s40745-020-00253-5
https://doi.org/10.1007/s10586-021-03240-4
https://doi.org/10.1007/s10586-021-03240-4
http://arxiv.org/abs/2110.01858
https://doi.org/10.1007/978-1-4842-2766-4_8
https://doi.org/10.1007/978-1-4842-2766-4_8
http://arxiv.org/abs/1412.6980
https://doi.org/10.1090/S0025-5718-01-01307-2
http://arxiv.org/abs/2010.02727
http://arxiv.org/abs/2010.02727
https://doi.org/10.3390/info11040193
https://doi.org/10.3390/info11040193
https://doi.org/10.1007/s41965-019-00023-0
http://arxiv.org/abs/2205.07843
https://doi.org/10.1063/5.0055600
https://doi.org/10.1063/5.0055600
http://arxiv.org/abs/2110.13330
https://doi.org/10.1111/mice.12685

2957Stiff‑PDEs and Physics‑Informed Neural Networks﻿	

1 3

	 71.	 Robert CP, Casella G (1999) Monte Carlo integration. In:
Robert CP, Casella G (eds) Monte Carlo statistical meth-
ods, Springer texts in statistics. Springer, New York, pp
71–138. ISBN 978-1-4757-3071-5. https://​doi.​org/​10.​1007/​
978-1-​4757-​3071-5_3

	 72.	 Morokoff WJ, Caflisch RE (1995) Quasi-Monte Carlo integra-
tion. J Comput Phys 122(2):218–230. ISSN 0021-9991. https://​
doi.​org/​10.​1006/​jcph.​1995.​1209

	 73.	 Berrada I, Ferland JA, Michelon P (1996) A multi-objective
approach to nurse scheduling with both hard and soft constraints.
Socio-Econ Plan Sci 30(3):183–193. ISSN 0038-0121. https://​
doi.​org/​10.​1016/​0038-​0121(96)​00010-9

	 74.	 Sukumar N, Srivastava A (2022) Exact imposition of bound-
ary conditions with distance functions in physics-informed deep
neural networks. Comput Methods Appl Mech Eng 389:114333.
ISSN 0045-7825. https://​doi.​org/​10.​1016/j.​cma.​2021.​114333

	 75.	 Son H, Jang JW, Han WJ, Hwang HJ (2021) Sobolev training
for physics informed neural networks. Technical Report. arXiv
arXiv:​2101.​08932

	 76.	 Yu J, Lu L, Meng X, Karniadakis GE (2022) Gradient-
enhanced physics-informed neural networks for forward and
inverse PDE problems. Comput Methods Appl Mech Eng
393:114823. ISSN 0045-7825. https://​doi.​org/​10.​1016/j.​cma.​
2022.​114823

	 77.	 Jagtap AD, Kawaguchi K, Karniadakis GE (2020) Adaptive acti-
vation functions accelerate convergence in deep and physics-
informed neural networks. J Comput Phys 404:109136. ISSN
0021-9991. https://​doi.​org/​10.​1016/j.​jcp.​2019.​109136

	 78.	 Chan T, Zhu W (2005) Level set based shape prior segmentation.
In: 2005 IEEE Computer Society conference on computer vision
and pattern recognition (CVPR’05), vol 2, pp 1164–1170. ISSN
1063-6919. https://​doi.​org/​10.​1109/​CVPR.​2005.​212

	 79.	 Xiang Z, Peng W, Zhou W, Yao W (2022) Hybrid finite differ-
ence with the physics-informed neural network for solving PDE
in complex geometries. arXiv:​2202.​07926 [physics]

	 80.	 Martino L, Elvira V, Louzada F (2017) Effective sample size for
importance sampling based on discrepancy measures. Signal Pro-
cess 131:386–401. ISSN 0165-1684. https://​doi.​org/​10.​1016/j.​
sigpro.​2016.​08.​025

	 81.	 Samsami MR, Alimadad H (2020) Distributed deep reinforce-
ment learning: an overview. Technical Report. arXiv arXiv:​2011.​
11012

	 82.	 Arulkumaran K, Deisenroth MP, Brundage M, Bharath AA
(2017) Deep reinforcement learning: a brief survey. IEEE Signal
Process Mag 34(6):26–38. ISSN 1558-0792. https://​doi.​org/​10.​
1109/​MSP.​2017.​27432​40

	 83.	 Viana FAC (2016) A tutorial on Latin hypercube design of exper-
iments. Qual Reliab Eng Int 32(5):1975–1985. ISSN 1099-1638.
https://​doi.​org/​10.​1002/​qre.​1924

	 84.	 Shaw JEH (1988) A quasirandom approach to integration in
Bayesian statistics. Ann Stat 16(2):895–914. ISSN 0090-5364.
https://​www.​jstor.​org/​stable/​22417​63

	 85.	 Lemieux C (2006) Chapter 12: quasi-random number techniques.
In: Henderson SG, Nelson BL (eds) Handbooks in operations
research and management science. Simulation, vol 13. Elsevier,
pp 351–379. https://​doi.​org/​10.​1016/​S0927-​0507(06)​13012-1

	 86.	 Halton JH (1960) On the efficiency of certain quasi-random
sequences of points in evaluating multi-dimensional integrals.
Numer Math 2(1):84–90. ISSN 0945-3245. https://​doi.​org/​10.​
1007/​BF013​86213

	 87.	 Faure H, Lemieux C (2009) Generalized Halton sequences in
2008: a comparative study. ACM Trans Model Comput Simul
19(4):15:1–15:31. ISSN 1049-3301. https://​doi.​org/​10.​1145/​
15965​19.​15965​20

	 88.	 Sobol’ IM (1967) On the distribution of points in a cube and the
approximate evaluation of integrals. USSR Comput Math Math

Phys 7(4):86–112. ISSN 00415553. https://​doi.​org/​10.​1016/​
0041-​5553(67)​90144-9

	 89.	 Joe S, Kuo FY (2008) Constructing Sobol sequences with better
two-dimensional projections. SIAM J Sci Comput 30(5):2635–
2654. ISSN 1064-8275. https://​doi.​org/​10.​1137/​07070​9359

	 90.	 Hammersley JM (1960) Monte Carlo methods for solving mul-
tivariable problems. Ann NY Acad Sci 86(3):844–874. ISSN
1749-6632. https://​doi.​org/​10.​1111/j.​1749-​6632.​1960.​tb428​46.x

	 91.	 Hammersley J (2013) Monte Carlo methods. Springer, Singapore
	 92.	 Pang G, Lu L, Karniadakis GE (2019) fPINNs: fractional phys-

ics-informed neural networks. SIAM J Sci Comput 41(4):A2603–
A2626. ISSN 1064-8275. https://​doi.​org/​10.​1137/​18M12​29845

	 93.	 Zhang D, Guo L, Karniadakis GE (2020) Learning in modal
space: solving time-dependent stochastic PDEs using physics-
informed neural networks. SIAM J Sci Comput 42(2):A639–
A665. ISSN 1064-8275. https://​doi.​org/​10.​1137/​19M12​60141

	 94.	 Wang S, Wang H, Perdikaris P (2021) Learning the solution
operator of parametric partial differential equations with physics-
informed DeepONets. Sci Adv 7(40):eabi8605. https://​doi.​org/​
10.​1126/​sciadv.​abi86​05

	 95.	 Meng X, Karniadakis GE (2020) A composite neural net-
work that learns from multi-fidelity data: application to func-
tion approximation and inverse PDE problems. J Comput Phys
401:109020. ISSN 0021-9991. https://​doi.​org/​10.​1016/j.​jcp.​
2019.​109020

	 96.	 Lu L, Dao M, Kumar P, Ramamurty U, Karniadakis GE, Suresh S
(2020) Extraction of mechanical properties of materials through
deep learning from instrumented indentation. Proc Natl Acad Sci
USA 117(13):7052–7062. https://​doi.​org/​10.​1073/​pnas.​19222​
10117

	 97.	 Wang S, Wang H, Perdikaris P (2021c) On the eigenvector bias of
Fourier feature networks: From regression to solving multi-scale
PDEs with physics-informed neural networks. Comput Methods
Appl Mech Eng 384:113938. ISSN 0045-7825. https://​doi.​org/​
10.​1016/j.​cma.​2021.​113938

	 98.	 Lu L, Jin P, Pang G, Zhang Z, Karniadakis GE (2021c) Learning
nonlinear operators via DeepONet based on the universal approx-
imation theorem of operators. Nat Mach Intell 3(3):218–229.
ISSN 2522-5839. https://​doi.​org/​10.​1038/​s42256-​021-​00302-5

	 99.	 Jin P, Meng S, Lu L (2022) MIONet: learning multiple-input
operators via tensor product. Technical Report. arXiv:​2202.​
06137

	100.	 Cai S, Wang Z, Lu L, Zaki TA, Karniadakis GE (2021)
DeepM&Mnet: inferring the electroconvection multiphysics
fields based on operator approximation by neural networks. J
Comput Phys 436:110296. ISSN 0021-9991. https://​doi.​org/​10.​
1016/j.​jcp.​2021.​110296

	101.	 Mao Z, Lu L, Marxen O, Zaki TA, Karniadakis GE (2021)
DeepM&Mnet for hypersonics: predicting the coupled flow and
finite-rate chemistry behind a normal shock using neural-network
approximation of operators. J Comput Phys 447:110698. ISSN
0021-9991. https://​doi.​org/​10.​1016/j.​jcp.​2021.​110698

	102.	 Lu L, Pestourie R, Johnson SG, Romano G (2022) Multifidelity
deep neural operators for efficient learning of partial differential
equations with application to fast inverse design of nanoscale
heat transport. Technical Report arXiv:​2204.​06684

	103.	 Srivastava RK, Greff K, Schmidhuber J (2015) Training very
deep networks. In: Advances in neural information processing
systems, vol 8. Curran Associates, Inc. https://​proce​edings.​neuri​
ps.​cc/​paper/​2015/​hash/​215a7​1a127​69b05​6c3c3​2e729​9f1c5​ed-​
Abstr​act.​html

	104.	 Guibas J, Mardani M, Li Z, Tao A, Anandkumar A, Catanzaro B
(2022) Adaptive Fourier neural operators: efficient token mixers
for transformers. Technical Report. arXiv:​2111.​13587

	105.	 Li Z, Zheng H, Kovachki N, Jin D, Chen H, Liu B, Azizzade-
nesheli K, Anandkumar A (2021) Physics-informed neural

https://doi.org/10.1007/978-1-4757-3071-5_3
https://doi.org/10.1007/978-1-4757-3071-5_3
https://doi.org/10.1006/jcph.1995.1209
https://doi.org/10.1006/jcph.1995.1209
https://doi.org/10.1016/0038-0121(96)00010-9
https://doi.org/10.1016/0038-0121(96)00010-9
https://doi.org/10.1016/j.cma.2021.114333
http://arxiv.org/abs/2101.08932
https://doi.org/10.1016/j.cma.2022.114823
https://doi.org/10.1016/j.cma.2022.114823
https://doi.org/10.1016/j.jcp.2019.109136
https://doi.org/10.1109/CVPR.2005.212
http://arxiv.org/abs/2202.07926
https://doi.org/10.1016/j.sigpro.2016.08.025
https://doi.org/10.1016/j.sigpro.2016.08.025
http://arxiv.org/abs/2011.11012
http://arxiv.org/abs/2011.11012
https://doi.org/10.1109/MSP.2017.2743240
https://doi.org/10.1109/MSP.2017.2743240
https://doi.org/10.1002/qre.1924
https://www.jstor.org/stable/2241763
https://doi.org/10.1016/S0927-0507(06)13012-1
https://doi.org/10.1007/BF01386213
https://doi.org/10.1007/BF01386213
https://doi.org/10.1145/1596519.1596520
https://doi.org/10.1145/1596519.1596520
https://doi.org/10.1016/0041-5553(67)90144-9
https://doi.org/10.1016/0041-5553(67)90144-9
https://doi.org/10.1137/070709359
https://doi.org/10.1111/j.1749-6632.1960.tb42846.x
https://doi.org/10.1137/18M1229845
https://doi.org/10.1137/19M1260141
https://doi.org/10.1126/sciadv.abi8605
https://doi.org/10.1126/sciadv.abi8605
https://doi.org/10.1016/j.jcp.2019.109020
https://doi.org/10.1016/j.jcp.2019.109020
https://doi.org/10.1073/pnas.1922210117
https://doi.org/10.1073/pnas.1922210117
https://doi.org/10.1016/j.cma.2021.113938
https://doi.org/10.1016/j.cma.2021.113938
https://doi.org/10.1038/s42256-021-00302-5
http://arxiv.org/abs/2202.06137
http://arxiv.org/abs/2202.06137
https://doi.org/10.1016/j.jcp.2021.110296
https://doi.org/10.1016/j.jcp.2021.110296
https://doi.org/10.1016/j.jcp.2021.110698
http://arxiv.org/abs/2204.06684
https://proceedings.neurips.cc/paper/2015/hash/215a71a12769b056c3c32e7299f1c5ed-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/215a71a12769b056c3c32e7299f1c5ed-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/215a71a12769b056c3c32e7299f1c5ed-Abstract.html
http://arxiv.org/abs/2111.13587

2958	 P. Sharma et al.

1 3

operator for learning partial differential equations. arXiv preprint
arXiv:​2111.​03794

	106.	 Isola P, Zhu J-Y, Zhou T, Efros AA (2017) Image-to-image trans-
lation with conditional adversarial networks. In: Proceedings of
the IEEE conference on computer vision and pattern recognition,
2017, pp 1125–1134

	107.	 Wang T-C, Liu M-Y, Zhu J-Y, Tao A, Kautz J, Catanzaro B
(2018) High-resolution image synthesis and semantic manipu-
lation with conditional GANs. In: Proceedings of the IEEE con-
ference on computer vision and pattern recognition, 2018, pp
8798–8807

	108.	 Ledig C, Theis L, Huszár F, Caballero J, Cunningham A, Acosta
A, Aitken A, Tejani A, Totz J, Wang Z, Shi W (2017) Photo-real-
istic single image super-resolution using a generative adversarial
network. In: Proceedings of the IEEE conference on computer
vision and pattern recognition, 2017, pp 4681–4690

	109.	 Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez
AN, Kaiser Ł, Polosukhin I (2017b) Attention is all you need. In:
Advances in neural information processing systems, vol 30. Cur-
ran Associates, Inc. https://​proce​edings.​neuri​ps.​cc/​paper/​2017/​
hash/​3f5ee​24354​7dee9​1fbd0​53c1c​4a845​aa-​Abstr​act.​html

	110.	 Partial differential equation toolbox (R2022a). https://​uk.​mathw​
orks.​com/​produ​cts/​pde.​html

	111.	 Lewkowycz A (2021) How to decay your learning rate. arXiv:​
2103.​12682 [cs]

	112.	 Elfwing S, Uchibe E, Doya K (2017) Sigmoid-weighted linear
units for neural network function approximation in reinforcement
learning. Technical Report. arXiv arXiv:​1702.​03118

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/2111.03794
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://uk.mathworks.com/products/pde.html
https://uk.mathworks.com/products/pde.html
http://arxiv.org/abs/2103.12682
http://arxiv.org/abs/2103.12682
http://arxiv.org/abs/1702.03118

	Stiff-PDEs and Physics-Informed Neural Networks
	Abstract
	1 Introduction
	2 How PINNs Work
	2.1 Neural Networks for Regression
	2.1.1 Forward Pass
	2.1.2 Backpropagation and Automatic Gradient

	2.2 Building a PINN
	2.2.1 Defining a Well-Posed PDE
	2.2.2 Discrete Loss Function
	2.2.3 Integral Formulation of Loss
	2.2.4 Exact BC Imposition
	2.2.5 Overfitted vs. Generalised Solution
	2.2.6 Parametric PINNs

	2.3 Additional Tools
	2.3.1 Adaptive Activation
	2.3.2 Signed Distance Function
	2.3.3 Importance Sampling
	2.3.4 Low-Discrepancy Spatio-temporal Sampling

	3 Modified Baseline PINNs
	3.1 DeepXDE
	3.2 NVIDIA Modulus
	3.2.1 Fourier Network
	3.2.2 Modified Fourier Network
	3.2.3 Sinusoidal Representation Networks (SiReNs)
	3.2.4 DGM Architecture

	4 Problem 1: 2D Steady-State Heat Conduction
	4.1 Model 1: Baseline PINN (See Also Table 1)
	4.2 Model 2: DeepXDE’s Baseline PINN
	4.3 Models 3–11: NVIDIA Modulus
	4.4 Hard Constrained BCs
	4.5 Overfitted Solution

	5 Problem 2: 3D Steady-State Heat Conduction
	6 Parametric Heat Conduction Problem
	6.1 Problem 3: Parameterised Conductivity
	6.2 Problem 4: Parameterised Geometry

	7 Conclusion
	Acknowledgements
	References

