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Abstract
In recent years, physics-informed neural networks (PINN) have been used to solve stiff-PDEs mostly in the 1D and 2D spatial 
domain. PINNs still experience issues solving 3D problems, especially, problems with conflicting boundary conditions at 
adjacent edges and corners. These problems have discontinuous solutions at edges and corners that are difficult to learn for 
neural networks with a continuous activation function. In this review paper, we have investigated various PINN frameworks 
that are designed to solve stiff-PDEs. We took two heat conduction problems (2D and 3D) with a discontinuous solution 
at corners as test cases. We investigated these problems with a number of PINN frameworks, discussed and analysed the 
results against the FEM solution. It appears that PINNs provide a more general platform for parameterisation compared to 
conventional solvers. Thus, we have investigated the 2D heat conduction problem with parametric conductivity and geometry 
separately. We also discuss the challenges associated with PINNs and identify areas for further investigation.

Acronyms
PINN	� Physics-informed neural network
PDE	� Partial differential equation
IC	� Initial condition
BC	� Boundary condition
NN	� Neural network
ODE	� Ordinary differential equation
DGM	� Deep Galerkin method
LSTM	� Long short-term memory

DNN	� Deep neural network
FCNN	� Fully connected neural network
SiReNs	� Sinusoidal Representation Network
L-BFGS	� Limited-memory 

Broyden–Fletcher–Goldfarb–Shanno
MSE	� Mean squared error
SDF	� Signed distance function
FEM	� Finite element method
FDM	� Finite difference method

1  Introduction

For a variety of problems, conventional numerical tech-
niques for solving partial differential equations (PDEs) 
remain difficult. The mesh generation is complicated, noisy 
experimental data can’t be integrated with the existing 
algorithms and high-dimensional parametric PDEs often 
can’t be solved. Ill-posed inverse problems are prohibitively 
expensive and require complicated algorithms. In an effort to 
address these issues, the development of powerful computers 
and machine learning libraries has taken research in physics-
informed machine learning to new heights.

Recently, physics-informed neural networks (PINNs) 
have gained popularity due to the novel approach for solving 
forward [1–4] and inverse problems [5–7] involving PDEs 
using neural networks (NNs). Unlike conventional numeri-
cal techniques for solving PDEs, PINNs are non-data-driven 
meshless models that satisfy the prescribed initial (IC) and 
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boundary conditions (BC) as well as the governing PDE. 
The differential terms in the PDE are approximated using 
automatic differentiation.

Although, NNs have been present in literature for a long 
time, it was only in the last decade that they started gain-
ing immense popularity due to the recent advancement in 
automatic differentiation and the availability of open-source 
machine learning libraries such as PyTorch and TensorFlow. 
It is automatic differentiation [8] producing highly accurate 
derivatives that enhances the accuracy of PINNs even with 
sparse data points in the spatio-temporal domain.

The numerical solution of ordinary differential equations 
(ODEs) and PDEs using NNs [9–15] has been a key area of 
interest for researchers. This is because the NNs behave like 
meshless solvers and can be scaled to higher dimensions 
without the need of additional algorithms.

In this review, we have investigated stiff-PDEs [16], spe-
cifically those with a discontinuous solution, such as con-
flicting BCs at adjacent edges or faces. The reason for this 
focus is due to the significant challenge posed by solving 
such problems with PINNs because it is not possible to fit a 
smooth curve such as a NN on these discontinuities.

The baseline PINN, a generalised NN framework, was 
proposed by Raissi et al. [17] for solving forward and inverse 
problems involving PDEs. The baseline PINN takes in the 
independent variables as the input and gives out the depend-
ent variables as the output, and, depending on the type of 
problem we construct, the loss function. The baseline PINN 
accurately predicted the solution of forward problems such 
as the 1D Burgers equation, 1D Schrodinger equation, 1D 
Allen–Cahn equation and inverse problems such as recover-
ing the 2D Navier–Stokes equation from the finite element 
generated flow past a cylinder simulation.

The baseline PINN has several limitations such as scal-
ability to higher dimensions, imbalanced magnitude of indi-
vidual loss terms in the multiple task loss function, gradient 
explosion etc. A brief description of these issues has been 
given in this section and are explored further in the subse-
quent section.

The baseline PINN can be scaled to higher dimensions by 
modifying the architecture of the NN. A general approach 
is to deploy more activated neurons ( ∼ 500 ) with very few 
hidden layers ( ∼ 4 ). This approach helps in fitting complex 
local variations in the solution. Wang et al. [18] proposed 
a fully connected NN (FCNN) with two transformer net-
works [19–21], which projects the input variables to a high-
dimensional feature space. Sirignano and Spiliopoulos [22] 
proposed a deep Galerkin method (DGM) architecture influ-
enced by the LSTM architecture [23]. Both these architec-
tures attempt to encapsulate the complex local variations in 
the solution by using more complex NN architectures.

Spectral bias [24] is a learning bias of deep NNs (DNNs) 
towards low-frequency functions, which causes convergence 

issues during training. Novel architectures such as Fourier 
networks [25], Modified Fourier networks [26, 27], Sinusoi-
dal Representation networks, SiReNs [28] were proposed to 
remove the spectral bias from computer vision problems.

Imbalanced loss terms appear when the magnitude of a 
loss term is significantly larger than other loss terms, result-
ing in early convergence of other loss terms in the multi-
task loss function. A predominant approach is to multiply a 
parameter � to each loss term to balance out the contribution 
of each term to the overall loss [29]. Several frameworks 
such as self-adaptive PINNs [30] and the self-adaptive 
weight PINN [31]; algorithms such as learning rate anneal-
ing [18] and neural tangent kernel [32] were proposed to 
balance out the contribution of each term to the overall loss 
by introducing adaptive coefficients for each loss term.

Gradient explosion [33, 34] is a known issue while train-
ing NNs. The baseline PINN uses L-BFGS [35], a second 
order optimiser, which exhibits exploding gradients when it 
encounters sharp gradients [36].

Most of the PINN frameworks are readily available as 
open-source libraries. Libraries such as DeepXDE [37], 
SciANN [38], TensorDiffEq [39] and NeuralPDE [40] are 
easy to implement and can be used to solve simple problems 
in the 1D and 2D spatial domain. NVIDIA Modulus (for-
merly NVIDIA SimNet) [26, 27] is an advanced open-source 
library providing access to different PINN frameworks. 
NVIDIA Modulus has successfully simulated physical sys-
tems such as laminar flow over a field programmable gate 
arrays (FPGA) heatsink, turbulent flow over a simple 3D 
heatsink with parameterised fin dimensions, conjugate heat 
transfer over NVIDIA’s NVSwitch heat sink using transfer 
learning.

This review paper has been divided into five major 
sections. Section 1 comprises a comprehensive literature 
review of PINNs. Section 2 discusses the functioning of a 
baseline PINN [17] and some advanced tools that enhance 
the performance of PINNs. Section 3 discusses different 
PINN frameworks that are available in DeepXDE [37] and 
NVIDIA Modulus [26]. Sections 4 and 5 discuss the solution 
of 2D and 3D heat conduction test case using various PINN 
frameworks. Section 6 discusses the results of a series of 
parametric PDEs. In Sect. 7, we discuss challenges related 
to implementing PINNs for stiff-PDEs.

We took two heat conduction problems (2D and 3D) with 
a discontinuous solution at corner points as test cases. In 
Sects. 4 and 5, we investigated these problems with a num-
ber of PINN frameworks from Table 1 and compared the 
results with the FEM solution. PINNs are also known for 
solving parametric PDEs [41–44]. In Sect. 6, we investi-
gated the 2D test case with parameterised conductivity and 
geometry.

For the forward problems, we used the baseline PINN, 
DeepXDE’s baseline PINN, NVIDIA Modulus’s baseline 
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PINN, Fourier network, Modified Fourier network, SiReNs 
and DGM architecture. Whereas for the parametric PDE, 
we have only used the DeepXDE’s baseline PINN, Modified 
Fourier network and DGM architecture.

2 � How PINNs Work

PINNs are DNNs that obey the physical constraints, such as, 
the BCs, the ICs and the governing PDE.

PINNs are fundamentally different from conventional 
PDE solvers such as finite difference or finite elements, in 
terms of the how the system of equations are represented. 
In the case of PINNs, the number of equations or the data 
points are more than the number of unknowns or the network 
parameters, resulting in a regression problem. On the other 
hand, the conventional PDE solvers, such as FEM, often 
solves the system of equations with the number of equations 
and unknowns being equal.

This section discusses the theoretical aspects of PINNs. 
Section 2.1 discusses the functioning of NNs. Section 2.2 
discusses how the physics knowledge is embedded into the 
NN. Section 3 discusses the various PINN frameworks, that 
can solve stiff-PDEs. Finally, Sect. 2.3 discuss various tools 
that can help in speeding the convergence and improving the 
accuracy of PINNs.

2.1 � Neural Networks for Regression

NNs are nonlinear and non-convex regression frameworks 
with exceptional predictive capability, widely known as uni-
versal approximators of continuous functions [45, 46]. They 
are known for their ability to learn and generalise very com-
plicated information [47]. This section discusses the evolu-
tion of NNs.

One of the simplest regression models is the linear regres-
sion. In the case of linear regression, the hypothesis or the 
trial function is the linear combination of weights and fea-
tures. Let us assume a dataset with n samples consisting of 
m features with a bias term X =

{
1, x1, x2, x3,… , xm

}
 and 

one label y . The linear regression hypothesis for the dataset 
can be written as follows

where the trainable weights W =
{
w0, w1, w2,… ,wm

}
 are 

tweaked such that the mean squared error (MSE) or any loss 
metric of the ground truth y against the predicted output ŷ 
is minimised.

In principle, we can introduce a hypothesis with a linear 
combination of weights with nonlinear features too. The 

(1)ŷ = w0 + w1x1 + w2x2 +⋯ + wmxm = WTX,

main drawback of linear regression is underfitting because it 
essentially fits a linear equation onto the data points [48, 49].

A simple technique to prevent underfitting is to pass the 
output of linear regression hypothesis (Eq. 1) to specifically 
chosen nonlinear function, often referred to as the activation 
function (�) [50]. These activation functions, for example, 
sigmoid, hyperbolic tangent, softmax are continuous and 
sometimes are infinitely differentiable in the domain of real 
numbers. The resulting hypothesis (Eq. 2) is referred to as an 
artificial neuron (Fig. 1) [51]. It transforms the linear regres-
sion hypothesis into a nonlinear feature space.

The artificial neuron is the building block of a NN. DNNs 
have multiple hidden-layers, each hidden-layer consisting 
of multiple artificial neurons thus increasing the predictive 
capability even further. Each hidden layer transforms the 
feature space into a more complex feature space [52]. It is an 
open question in interpretable machine learning to explain 
mathematically, how these nonlinear transformations influ-
ence the output [53]. Figure 2 shows the schematic diagram 
of a FCNN with two hidden layers.

In Fig. 2, there are four layers, one input layer, two hidden 
layers and one output layer. Both the hidden layers consist of 
three artificial neurons, also known as the activated neurons 
or simply the nodes. In a FCNN, each node has its own set 
of weights or parameters.

Let us define some notation, a(k)
i

 is the ith activated neu-
ron in the kth layer. wk is the weight matrix controlling the 
nonlinear mapping between kth layer and (k + 1) th layer. If 
the network has sk activated neurons in kth layer and s(k+1) 

(2)ŷ = 𝜎
(
w0 + w1x1 + w2x2 +⋯

)
= 𝜎

(
WTX

)
.

Fig. 1   Schematic diagram of an artificial neu-
ron. Here, X =

{
1, x1, x2,… , x

m

}
 is the input dataset, 

W =

{
w0, w1, w2,… ,w

m

}
 is the vector of trainable weights/param-

eters, � is the activation function and ŷ is the predicted output
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activated neurons in (k + 1) th layer then wk will be of dimen-
sion s(k+1) × sk.

2.1.1 � Forward Pass

The first step in training of a NN is to forward pass the inputs 
X to obtain the predicted output ŷ . Let a(k)

i
= �

(
z
(k)

i

)
 such 

that z is the term without the activation. Now, the forward 
pass for the FCNN in Fig. 2 can be written as follows:

In regression problems, the last layer is not activated because 
we want unbounded values. The hypothesis of a FCNN with 
two hidden layers can be written as follows:

2.1.2 � Backpropagation and Automatic Gradient

Once we have obtained the predicted output ŷ from the for-
ward pass, we can calculate the difference from the ground 
truth y using some loss metric [54]. In general, for a regres-
sion problem, the MSE (Eq. 5) is used as a loss metric.

(3)

z(2) = w(1)X,

a(2) = 𝜎
(
z(2)

)
,

z(3) = w(2)a(2),

a(3) = 𝜎
(
z(3)

)
,

ŷ = w(3)a(3).

(4)ŷ = w(3)𝜎
(
w(2)𝜎

(
w(1)X

))
.

Now, the loss J is sent to the optimisers. Optimisers are 
algorithms that minimise the loss by updating the weights 
or parameters of the NN. There are many optimisers that 
are available in open-source libraries such as PyTorch and 
TensorFlow [55]. On the basis of order of the derivatives of 
the loss with respect to the weights, the optimisers can be 
divided mainly into two categories: first order and second 
order optimisers [56].

The first-order optimisers utilise the gradient of the loss 
with respect to weights of the NN. Similarly, second-order 
optimisers utilise the gradient as well as the Hessian of the 
loss with respect to the weights of the NN. Gradient-descent 
[57] and Adam [58] are the most popular first-order optimis-
ers. Whereas, L-BFGS [35] is the only second-order opti-
miser that is still actively used in machine learning.

Now that the optimisers require derivatives, we need to 
compute the derivatives efficiently and accurately. There are 
three main techniques that have been successfully used in 
machine learning: numerical [59], symbolic [60] and auto-
matic differentiations [8]. After the release of TensorFlow 
1.0 in 2015, static computational graphs was the standard 
data structure for representing NNs, which was later sub-
stituted with dynamic computational graphs in PyTorch 
[61, 62]. These libraries use forward-mode or reverse-mode 
automatic differentiation to compute the derivatives within 
a computational graph [63]. The automatic differentiation 
computes the derivative of the loss with respect to weights 
using the chain rule [64] in differential calculus with a hard-
coded expression for the derivative of simple functions [65].

Let us say that we are using the gradient-descent method 
(Eq. 6) for optimising the weight/parameters.

where k is the kth layer and � is a constant often referred to 
as the learning rate, a hyperparameter. It tells the optimiser 
the amount of perturbation the weights should attain in each 
epoch [66]. An epoch is a complete cycle of forward pass 
and backpropagation on the whole dataset.

The gradient of the loss J with respect to the weights in 
each layer can be computed using the chain rule as follows:

(5)J =
1

2n

n∑

i=1

||yi − ŷi
||
2
.

(6)w(k) ∶= w(k) − �
�J

�w(k)
,

(7)

𝜕J

𝜕w(3)
=

𝜕J

𝜕ŷ

𝜕ŷ

𝜕w(3)
,

𝜕J

𝜕w(2)
=

𝜕J

𝜕ŷ

𝜕ŷ

𝜕a(3)
𝜕a(3)

𝜕z(3)
𝜕z(3)

𝜕w(2)
,

𝜕J

𝜕w(1)
=

𝜕J

𝜕ŷ

𝜕ŷ

𝜕a(3)
𝜕a(3)

𝜕z(3)
𝜕z(3)

𝜕a(2)
𝜕a(2)

𝜕z(2)
𝜕z(2)

𝜕w(1)
.

Fig. 2   Schematic diagram of a fully connected neural network 
(FCNN) with two hidden layers. Here, X =

{
1, x1, x2,… , x

m

}
 is 

the input dataset, 
{
w(1), w(2), w(3)

}
 is the vector of trainable weights/

parameters for each layer, 
{
a(2), a(3)

}
 is the vector of activated layers 

and ŷ is the predicted output
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The analytical expression of the basic differential terms 
are hard-coded in machine learning libraries. The deriva-
tive of loss with respect to the weights is decomposed into 
these hard-coded basic differential terms using the chain 
rule. Once, these derivatives are calculated we plug them 
into Eq. 6 to update the weights/parameters. The process is 
repeated for a number of epochs until the loss J goes below 
some predefined tolerance.

2.2 � Building a PINN

PINNs are supervised machine learning models that obey 
the prescribed BCs and the governing PDE. In PINNs, the 
inputs are the independent variables and the outputs are the 
dependent variables or the solution of the governing PDE.

As an example, for a 3D time-dependent heat conduction 
PDE, the number of inputs would be four, i.e., the x, y and z 
coordinates and the time t. Similarly, the number of outputs 
would be one, i.e. the temperature u.

2.2.1 � Defining a Well‑Posed PDE

Consider a well-posed PDE problem as follows:

where Nx[u] is a differential operator, x and t are the inde-
pendent variables of the PDE, � and �� denotes the spatial 
domain and the boundary of the problem, h(x) denotes the 
prescribed BC which is the solution to the PDE at all spatial 
points (�) at the initial time (t = 0) , g(x, t) is the prescribed 
BC at the boundary of the domain (��).

(8)
ut +Nx[u] = 0, x ∈ �, t ∈ [0, T],

u(x, 0) = h(x), x ∈ �,

u(x, t) = g(x, t), x ∈ ��, t ∈ [0, T],

2.2.2 � Discrete Loss Function

PINNs have a multitask loss function with at least two com-
ponents, the BC and the PDE losses (Eq. 9). The multitask 
loss function ensures that the inputs to the PINN satisfy a 
well-posed PDE problem.

The IC and BC losses are simply the MSE and the PDE 
loss is the residual of the governing PDE at randomly 
chosen collocation points. The total loss (Eq. 9) and the 
individual loss terms (Eq. 10) are as follows:

where Nr , Nb and N0 are the number of data points that are 
sampled to satisfy the PDE loss, the BC loss and the IC loss. 
The coefficients �PDE , �BC and �IC in Eq. 9, help in achieving 
convergence and better accuracy, and are an active field of 
research. These weight coefficients can be scalar quantities 
[29] as well as vectors to apply weights to every single sam-
ple in the training dataset based on the pointwise error [27].

We can calculate the residual of the governing equation 
using automatic differentiation similar to Eq. 4. Figure 3, 
shows a schematic diagram of a baseline PINN with two 
hidden layers for a 2D spatio-temporal domain.

A PINN framework, referred to as sparse-regulated 
PINNs, uses the experimental or the simulation data to 
provide ground truth at sparse locations in the spatio-
temporal domain [67, 68]. The addition of sparse ground 
truth helps the NN to accurately predict complex local 

(9)L = �PDELPDE + �BCLBC + �ICLIC,

(10)

LPDE =
1

Nr

Nr∑

i=1

|||ût
(
xi, ti

)
+Nx

[
û
(
xi, ti

)]|||
2

,

LBC =
1

Nb

Nb∑

i=1

|||û
(
xi, ti

)
− g

(
xi, ti

)|||
2

,

LIC =
1

N0

N0∑

i=1

|||û
(
xi, 0

)
− h

(
xi, 0

)|||
2

,

Fig. 3   Schematic diagram of 
a physics-informed neural net-
work (PINN) with two hidden 
layers for a 2D spatio-temporal 
domain. Here, the inputs are 
{x, y, t} , 

{
w(1), w(2), w(3)

}
 is 

the vector of trainable weights/
parameters for each layer, {
a(2), a(3)

}
 is the vector of acti-

vated neurons for each layers 
and ŷ is the predicted output
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variations in the solution. This introduces one more loss 
term called the reconstruction loss (Eq. 11), because it 
points the optimiser towards the true solution.

where Nd is the number of true solutions being provided. 
Bajaj et al. [69] showed that the reconstruction loss is not 
very helpful in preventing overfitting. Instead, NVIDIA 
Modulus uses the Adam optimiser with exponential decay 
of the learning rate � , so that as we go closer to the minima 
of the loss, the weights do not attain large perturbations [58].

2.2.3 � Integral Formulation of Loss

NVIDIA Modulus uses a slightly different version of the loss 
function [27, 70]. They define continuous/integral losses for 
the BC and PDE loss as follows:

Instead of approximating these integrals using deterministic 
numerical integration techniques, NVIDIA Modulus uses 
the Monte Carlo integration, a non-deterministic integration 
technique [71, 72], resulting in Eq. 13. This helps in keeping 
a specific loss term proportional to its length/area/volume. 
For example, it doesn’t allow a specific BC applied over a 
relatively larger area to dominate other BCs.

2.2.4 � Exact BC Imposition

The output of the PINN can be hard constrained to exactly 
satisfy the BCs [73]. A function is manually constructed to 
transform the network outputs to exactly satisfy the BCs. 
Generally, hard constrained BCs work with simple geometry, 
constant individual Dirichlet BCs without conflicting each 
other. This approach does not work well with stiff-PDEs 
[74]. In Sect. 4.4, we have discusssed the difficulties with 
exact imposition of BCs in stiff-PDEs with a discontinuous 
solution.

(11)Lreconstruct =
1

Nd

Nd∑

i=1

|||û
(
xi, ti

)
− utrue

i

|||
2

,

(12)
LPDE = ∫�

(
ût
(
xi, ti

)
+Nx

[
û
(
xi, ti

)])2
d�,

LBC = ∫
𝜕�

(
û
(
xi, ti

)
− g

(
xi, ti

))2
d(𝜕�).

(13)

LPDE =
1

Nr

Nr∑

i=1

|||ût
(
xi, ti

)
+Nx

[
û
(
xi, ti

)]|||
2

∫�

d�,

LBC =
1

Nb

Nb∑

i=1

|||û
(
xi, ti

)
− g

(
xi, ti

)|||
2

∫
𝜕�

d(𝜕�).

2.2.5 � Overfitted vs. Generalised Solution

The baseline PINN gained its popularity due to the notion 
that it can solve PDEs with sparse sampling in the spatio-
temporal domain. Later on it was realised that, in the case 
of stiff-PDEs one must sample enough data points to capture 
the local variations in the solution.

Theoretically, one can obtain an overfitted model as well 
as a generalised model depending on the number of data 
points in the training dataset. An overfitted model exhibits 
low training loss but high validation and testing loss whereas 
a generalised model exhibits low training, validation and 
testing error. Thus overfitted model can only be used for 
inferring the solution from the training dataset, i.e., any data 
point of interest should be included in the training dataset. 
On the other hand, a generalised model can be obtained by 
sampling a significantly greater number of data points in the 
spatio-temporal domain. The solution can be predicted at 
new spatio-temporal locations within the domain.

The overfitted or generalised model is a qualitative aspect 
that depends on human judgement. In the case of stiff-PDEs, 
the overfitted model may converge with a considerable 
amount of pointwise error. Thus, it is important to sample 
more points around the boundary or the problematic region. 
In this paper, to be on the safer side, we have aimed for 
a generalised solution, i.e., we sampled a large number of 
points. Specific details can be found in Sect. 4.5.

2.2.6 � Parametric PINNs

PINNs can predict the variation in the solution for a range 
of parameters such as density, geometry, conductivity etc. 
by introducing them as features in the training data set, com-
pared to conventional numerical solvers where each param-
eter needs a separate simulation and may require complex 
algorithms. The idea is to add the parameter as another fea-
ture into the training data set such that each parameter has its 
own set of sampled points in the spatio-temporal domain. In 
other words, if there are n parameters for a 2D steady-state 
problem, than the training data set contains n + 2 features.

2.3 � Additional Tools

In this section, we have discussed tools that enhance the 
accuracy and efficiency of PINNs. Outside the scope of this 
paper are tools such as gradient enhanced training [75], 
learning rate annealing [18], neural tangent kernel [32], inte-
gral continuity planes [27]. The gradient enhanced training 
does not always improve the results compared to the baseline 
PINN. They may even adversely affect the training conver-
gence and accuracy [76]. The learning rate annealing and 
neural tangent kernel deals with imbalanced losses where 
there is a significant difference between the magnitude of 
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individual losses, which is not applicable to our test cases. 
The integral continuity planes are only applicable to prob-
lems involving fluid flow, where the mass flow rate or the 
volumetric flow rate is applied as an additional constraint, 
if known. This is particularly useful in the case of channel 
flow.

2.3.1 � Adaptive Activation

An activation function transforms a feature space into a more 
complex feature space with the help of nonlinear functions. 
Without the activation function, the NN is just a sophisti-
cated linear model with no performance improvement over 
linear regression. Jagtap et al. [77] proposed a DNN frame-
work with trainable nonlinear transformations to improve 
the convergence as well as the accuracy of the NNs. They 
introduced an additional hyperparameter A in the nonlinear 
transformation of the hidden layers as follows:

where a(k) is the nonlinear transformation at layer k, which is 
a function of a(k−1) , the output of the hidden layer (k − 1) , the 
weights and biases is denoted by � , A is a trainable param-
eter and z(k) is the linear transformation at layer k. As A is a 
trainable parameter, it gets updated in each epoch based on 
the total loss L . Thus the activation function a adapts itself 
to minimise the total loss L.

2.3.2 � Signed Distance Function

While there have been several efforts to solve stiff-PDEs 
with discontinuity inside the spatial domain, so far, there is 
only one viable technique to solve stiff-PDEs with conflict-
ing BCs at the adjacent edges and corners. The difficulty lies 
in the fact that the activation functions are smooth, i.e., they 
are differentiable and can’t capture discontinuous BCs. Thus, 
currently the only way to alleviate the issue is to exclude the 
points with a discontinuity from the training data set.

In DeepXDE, these corner points are excluded by default, 
as the normal vector at those corners are not defined, or in 
other words the derivative at those points are not defined, so 
any BC that includes a derivative for example, a Neumann 
BC is not defined at the corners.

NVIDIA Modulus and several other literature takes this 
one step further by using signed distance function (SDF) 
weights [74, 78, 79]. SDF weights are used to assign minus-
cule weights around the region with conflicting BCs. This 
way a region with a discontinuous solution gets a lower pri-
ority compared to the regions where the solution is smooth. 
The application of SDF weights on complex geometry is an 
active field of research.

(14)a(k)
(
a(k−1);�,A

)
= �

(
Az(k)

(
a(k−1)

))
,

2.3.3 � Importance Sampling

Nabian et al. [70] proposed a sampling strategy for efficient 
training of PINNs based on an approximation method called 
importance sampling [80], which is often used in reinforce-
ment learning for approximating the expected reward based 
on the older policy [81, 82]. In optimisation, the optimal 
parameters �∗ is defined such that

where �f [L(�)] is the expected value of the total loss L , 
when the collocation points are sampled from f the sampling 
distribution in the physical domain �j ∈ �.

Typically, we use a uniform distribution for sampling the 
collocation points. In importance sampling, the collocation 
points are drawn from an alternative sampling distribution 
q(x) , and the NN parameters are approximated as per Eq. 16 
instead of Eqs. 5 and 6.

Sampling the collocation points in each epoch according to 
q(x) (Eq. 17), i.e. a distribution proportional to the loss func-
tion L improves the efficiency of PINNs without introducing 
a hyperparameter.

where L(i)

j
 is the total loss of the jth sample in the training 

dataset in ith epoch. Areas with higher q(i) are sampled more 
frequently in the ith epoch.

2.3.4 � Low‑Discrepancy Spatio‑temporal Sampling

The collocation points may be sampled according to a 
uniform distribution, or using the Latin hypercube sam-
pling [83] approach. Alternatively, one can choose low-
discrepancy sequence generators such as the quasi-random 
sampling [84, 85], the Halton sequence [86, 87] the Sobol 
sequence [88, 89] which is used by DeepXDE’s baseline 
PINN and Hammersley sets [90, 91].

(15)

�
∗ = argmin

�

�f [L(�)]

≈ argmin
�

1

N

N∑

j=1

L(�;�j), �j ∼ f (�),

(16)�
∗ ≈ argmin

�

1

N

N∑

j=1

f (�j)

q(�j)
L(�;�j), �j ∼ q(�).

(17)q
(i)

j
≈

L
(i)

j

∑N

j=1
L
(i)

j

, ∀j ∈ 1,… ,N,
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3 � Modified Baseline PINNs

Numerous modified frameworks of the baseline PINN have 
been proposed so far. We have specifically chosen PINN 
frameworks that not only scale to higher dimensions but can 
also deal with discontinuous BCs.

3.1 � DeepXDE

DeepXDE [37] is a popular Python based physics-
informed machine learning library for solving forward 
and inverse problems involving PDEs. DeepXDE fea-
tures its own version of the baseline PINN, that not only 
improves the accuracy, but helps in faster convergence as 
discussed in Sect. 2.3.2.

Other than baseline PINNs, DeepXDE can also solve 
forward and inverse integro-differential equations, (IDEs) 
[92], fractional PDEs, (fPDEs) [92], stochastic PDEs, 
(sPDEs) [93], topology optimization with hard constraints, 
(hPINN) [7], PINN with multi-scale Fourier features [94] 
and multifidelity NN, (MFNN) [95, 96].

DeepXDE also features NNs for nonlinear operator 
learning such as DeepONet [97], POD-DeepONet [98], 
MIONet [99], DeepM&Mnet [100, 101] and multifidelity 
DeepONet [102].

It supports tensor libraries such as TensorFlow, 
PyTorch, JAX, and PaddlePaddle. There are two notable 
features in DeepXDE. The first one is that it chooses the 
model with least training loss. The second one is that it 
does not include those corner points no matter what the 
problem is, with the justification that normal vectors are 
not defined at those corners to be able to apply the Neu-
mann BCs.

3.2 � NVIDIA Modulus

NVIDIA Modulus 22.03, formerly NVIDIA SimNet, is 
an advanced physics-informed machine learning pack-
age. It redefines the loss function (Sect. 2.2.3), it also 
uses SDF weights to avoid problematic edges and corners 
(Sect. 2.3.2). The SDF weights result in increased conver-
gence speed and improved accuracy.

NVIDIA Modulus employs the SDF weights on the 
collocation points (they refer to these as interior points) 
and the boundary points separately. We have discussed the 
variation of SDF weights in the spatial domain in Sects. 
4 and 5.

NVIDIA Modulus features forward models such as Fou-
rier networks [25], Modified Fourier networks [26, 27], 
Sinusoidal Representation networks, SiReNs [28], High-
way Fourier network [103], multi-scale Fourier feature 

network [94], spatial–temporal Fourier Feature network 
[97], DGM architecture [22] and multiplicative filter net-
work [27].

NVIDIA Modulus also features NNs for nonlinear opera-
tor learning such as Fourier neural operator, (FNO) [103], 
adaptive FNO, (AFNO) [104], physics-informed neural 
operator, (PINO) [105], DeepONet [97], Pix2Pix net [106, 
107] and super-resolution net [108].

3.2.1 � Fourier Network

Spectral bias is a learning bias of DNNs towards low-fre-
quency functions, i.e., functions that vary globally rather 
than locally. It ignores the high-frequency functions, such 
as sharp variation in the solution of the PDE. This can 
adversely affect the training convergence as well as the 
accuracy.

One approach to alleviate this issue is to perform input 
encoding, for example, a transformer [109], to transform 
the inputs to a higher-dimensional feature space with the 
help of high-frequency functions. In the Fourier network, 
the input features are encoded into Fourier space using 
sinusoidal activation functions (Eq. 18).

The trainable input encoding layer is as follows:

where � ∈ ℝ
nf×d0 is the trainable frequency matrix, d0 is the 

number of features and nf  is the number of frequency sets 
which we can choose and � is the input dataset. These fre-
quencies, similar to network weights, can be sampled from 
a Gaussian distribution or from a spectral space created 
from combinations of all entries from a user-defined list of 
frequencies.

Finally, the encoded inputs are �Ex , which results in 
a training data with nf  number of features, thus, trans-
forming the input features to a higher dimensional feature 
space. NVIDIA Modulus recommends nf = 10 , however, 
for our test cases we used nf = 35 , which is computation-
ally expensive, but is reasonable for PDEs with a discon-
tinuous solution.

3.2.2 � Modified Fourier Network

In a Fourier network (Sect. 3.2.1), a FCNN is used as the 
nonlinear mapping between the Fourier features and the 
model output. The modified Fourier network uses a modi-
fied version of the fully-connected network, similar to the 
one proposed in [18]. The authors were inspired by the 
neural attention mechanism, which is employed in natu-
ral language processing to enhance the hidden states with 
transformer networks [109].

(18)�E =
[
sin (2�� × �); cos (2�� × �)

]T
,
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In Eq. 19, � and � are two transformer layers that help 
in projecting the Fourier features �E to another feature 
space, and forward passed through the hidden layers (H) 
using the Hadamard product, similar to its standard fully 
connected counterpart. The Modified Fourier network 
takes the following forward propagation rule:

where �1 , �2 , �z,k and � are four different sets of 
weight matrices associated with � , � , �(k) and �(L+1) with 
k = 1,… , L , where L is the number of hidden layers. Fig-
ure 4 shows the structure of a modified Fourier network.

3.2.3 � Sinusoidal Representation Networks (SiReNs)

Sitzmann et al. [28] proposed a FCNN which uses the sine 
trigonometric function as the activation function. This net-
work has some similarities to Fourier networks (Sect. 3.2.1) 
as both uses a sine activation function, manifesting the same 
effect as the input encoding for the first layer of the network.

A key component of this network architecture is the 
weight initialisation scheme. The weights of the NN are 
sampled from a uniform distribution W ∼ U

(
−

√
6

fin
,
√

6

fin

)
 

where fin is the input size to that layer.
The input of each Sine activation has a Gauss-Normal 

distribution and the output of each Sine activation, a Sine 
inverse distribution. This preserves the distribution of acti-
vations allowing deep architectures to be constructed and 
trained effectively.

3.2.4 � DGM Architecture

The DGM architecture [22] (Eq. 20), consists of several hid-
den layers, which are referred to as DGM layers, similar to 
LSTM gates [23], where each layer produces weights based 
on the last layer, determining how much of the information 
gets passed to the next layer.

(19)

� = 𝜎
(
�1𝜙E

)
, � = 𝜎

(
�2𝜙E

)
,

�(1) = 𝜎
(
�z,1�

)
,

�(k) = 𝜎
(
�z,k�z,1

)
, k = 1,… , L,

�(k+1) = 𝜎
(
1 − �(k)

)
⊙ � + �(k) ⊙ �, k = 1,… , L,

�̂ = ��(L+1),
The DGM architecture consists of multiple nonlinear trans-
formations of the input: � , � , � and � , that helps with 
learning complicated functions such as discontinuous func-
tions. Figure 5 shows the structure of DGM architecture and 
the DGM layers.

A DGM layer includes � , � , � and � with their sets 
of weights � and � . Thus, a DGM layer consists of eight 
weight matrices. Additionally, the DGM architecture con-
sists of two more weight matrices: �1 and �.

4 � Problem 1: 2D Steady‑State Heat 
Conduction

For Problem 1, we chose a 2D heat conduction problem with 
conflicting BCs at the corners. We solved the problem with 
different PINN frameworks and compared with the FEM 
solution. The 2D heat conduction problem can be stated as 
follows:

We used MATLAB Partial Differential Equation Toolbox 
[110] to solve the 2D steady-state heat conduction problem 
(Eq. 21) with quadratic triangles (Fig. 6).

We assigned a model number to each of the PINN frame-
works (see Table 1). Table 2 summarises the network param-
eters and relative L2 error for various PINN frameworks. 
Figures 9 and 7 show the solution of 2D steady-state heat 
conduction problem for different PINN frameworks.

We have not completed a full exploration of the best 
parameters for each PINN such as the number of hidden 

(20)

�(1) = 𝜎(�1�),

�(k) = 𝜎
(
�(k)

z
� +�(k)

z
�(k)

)
, k = 1,… , L,

�(k) = 𝜎

(
�(k)

g
� +�(k)

g
�(k)

)
, k = 1,… , L,

�(k) = 𝜎
(
�(k)

r
� +�(k)

r
�(k)

)
, k = 1,… , L,

�(k) = 𝜎

(
�

(k)

h
� +�

(k)

h
(�(k) ⊙ �(k))

)
, k = 1,… , L,

�(k+1) = (1 −�(k))⊙�(k) + �(k) ⊙ �(k), k = 1,… , L,

�̂ = ��(L+1).

(21)
uxx + uyy = 0, x ∈ [−0.5, 0.5], y ∈ [0, 1],

u(x, 0) = u(x, 1) = 0, u(−0.5, y) = u(0.5, y) = 1.

Fig. 4   Structure of modified 
Fourier network as per Eq. 19
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layers, the number of neurons in each layers, number of 
boundary and collocation points to be sampled etc. to use 
in these models. We started with the default values and 
retained the results if they were acceptable. We observed 
early convergence in several models, so we stopped training 
those models. Unless otherwise specified, the same applies 
to other upcoming problems. As the PINN reaches maturity 
we will hopefully come up with the best practices to bench-
mark different PINN frameworks.

4.1 � Model 1: Baseline PINN (See Also Table 1)

Firstly, we trained a baseline PINN with 8 hidden layers and 
20 neurons in each layer using the L-BFGS optimiser with 
hyperbolic tangent activation. We used the nodal coordinates 
from the mesh of FEM solution consisting of 612 boundary 
points and 5800 collocation points. We observed that the 
gradient explodes while training with L-BFGS. That is why 
we switched to the Adam optimiser with default parameters, 
unless otherwise stated.

Figure 7 shows the predicted temperature distribution and 
pointwise absolute error at 5k, 10k and 30k epochs. Initially, 
i.e., around 5k epochs, the pointwise absolute error around 
the corners is much higher compared to the interior points. 
If we continue the training past 5k epochs, the optimiser 
tries to reduce the loss around the corners at the cost of high 
errors at the interior points, which can be clearly seen in the 
pointwise absolute error plot at 30k epochs. This is a result 
of the fact that we did not use a learning rate scheduler [111]. 
A learning rate scheduler adjusts the learning rate � between 
epochs during the training which helps convergence.

Figure 8 shows the training and validation losses. We pur-
posely used the predicted temperature distribution from the 
training dataset against the FEM solution to calculate the 
validation loss. In the validation loss plot, we can clearly 
see that the least validation error occurs somewhere between 
15k and 20k. However, the total training loss continues to 

Fig. 5   Structure of structure 
of DGM architecture and the 
DGM layers as per Eq. 20

Fig. 6   FEM solution of 2D steady-state heat conduction problem 
(Eq. 21) using MATLAB Partial Differential Equation Toolbox
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decrease even after 20k epochs resulting in increased valida-
tion loss in the interior points as discussed earlier.

The FCNNs are continuous and differentiable functions 
and can’t predict discontinuities such as the corners with 
conflicting BCs. Also, it is very challenging to obtain a 
trained PINN model with minimum validation error because 
we are not using the ground truth to calculate the training 
loss.

4.2 � Model 2: DeepXDE’s Baseline PINN

We trained a FCNN with 8 hidden layers and 20 neurons 
in each layer using the Adam optimiser with hyperbolic 
tangent activation and exponential decay of the learning 
rate. We used DeepXDE’s default sampling method, i.e., 
the Sobol sequence to sample 800 boundary points and 

2500 collocation points, i.e. only about half the collocation 
points compared to Model 1.

Although the training loss converged in 5k epochs, we 
continued to train the model until 30k epochs to demon-
strate the benefits of exponential decay of the learning 
rate. As the training progresses, the amount of perturba-
tion in the weights (as per Eq. 6) decreases. Thus, we don’t 
see much difference in the predicted temperature distribu-
tion after 5k epochs, which was not possible with Model 1.

As discussed in Sect. 2.3.2, DeepXDE does not sam-
ple the corner points, so we ignored these points from 
the FEM solution to compute the relative L2 error. Thus 
we obtain very low relative L2 error as most of the error 
occurs around the corners.

Table 1   Models considered in the numerical study

*Sampling drawn from a Halton sequence

Model number Model name

Model 1 Baseline PINN
Model 2 DeepXDE’s baseline PINN
Model 3 NVIDIA Modulus’s baseline PINN (no SDF weights)
Model 4 NVIDIA Modulus’s baseline PINN (Interior SDF weights)
Model 5 NVIDIA Modulus’s baseline PINN (Full SDF weights)
Model 6 NVIDIA Modulus’s baseline PINN (Full SDF weights with importance sampling)
Model 7 NVIDIA Modulus’s baseline PINN (Full SDF weights with adaptive activation, importance sampling and quasi-random 

sampling*)
Model 8 Fourier network (Full SDF weights with adaptive activation, importance sampling and quasi-random sampling*)
Model 9 SiReNs network (Full SDF weights with importance sampling and quasi-random sampling*)
Model 10 Modified Fourier network (Full SDF weights with adaptive activation, importance sampling and quasi-random sampling*)
Model 11 DGM architecture (Full SDF weights with adaptive activation, importance sampling and quasi-random sampling*)

Table 2   Problem 1: summary of 
training parameters and relative 
L
2 error for different PINN 

frameworks

*Model 1 uses the nodal coordinates from the FEM mesh
**Model 2 uses the Sobol sequence
#Relative L2 error not calculated at corner points

Layers Nodes Boundary
points

Collocation
points

� Epochs Relative L2 error

Model 1 8 20 612 5800* 1e−3 30k 0.13599
Model 2 8 20 800 2500** 1e−3 30k 0.05285#

Model 3 6 512 4000 4000 1e−3 20k 0.08931
Model 4 6 512 4000 4000 1e−3 10k 0.10124
Model 5 6 512 4000 4000 1e−3 10k 0.09557
Model 6 6 512 4000 4000 1e−3 20k 0.06448
Model 7 6 512 4000 4000 1e−3 20k 0.06433
Model 8 6 512 4000 4000 1e−3 20k 0.18741
Model 9 6 512 4000 4000 2e−5 11k 0.12640
Model 10 6 512 4000 4000 1e−3 20k 0.17577
Model 11 6 512 4000 4000 1e−3 30k 0.08229
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Figure 9a shows the predicted temperature distribution 
and the pointwise absolute error for the 2D steady-state heat 
conduction problem.

4.3 � Models 3–11: NVIDIA Modulus

We used NVIDIA Modulus to train PINN frameworks 
from Models 3 to 11. We started with NVIDIA Modulus’s 
baseline PINN with the integral form of the loss function 
(Model 3). Then we applied the SDF weights on interior 
points (Model 4) and on both interior and boundary points 
(Model 5). We used additional tools such as importance 
sampling (Model 6) and combined the importance sampling 
with adaptive activation and quasi-random sampling (Model 
7). We also used the Fourier network (Model 8), SiReNs 
network (Model 9), Modified-Fourier network (Model 10) 
and DGM architectures (Model 11) with adaptive activation, 
importance sampling, quasi-random sampling and full SDF 

weights, i.e., SDF weights on both interior and boundary 
points with an exception for SiReNs network which does 
not has an adaptive activation implemented in NVIDIA 
Modulus 22.03. Furthermore, NVIDIA Modulus 22.03 only 
implements the Halton sequence to generate a quasi-random 
sample.

The SDF weights are manually adjusted depending on the 
problem and is an active field of research. We formulated 
the SDF weights on boundary points such that the weights 
on the corner points is zero and increased as we move away 
from the corner (see Eq. 22). The SDF weights on the inte-
rior points depends on the shape of the spatial domain. We 
used the default SDF weights on collocation/interior points. 
Figure 10 shows the magnitude of the SDF weights on the 
boundary and interior points of the square domain for Prob-
lem 1. In the case of a full set of SDF weights, it is worth 
noting that the maximum magnitude of the SDF weights 
on the interior points is 0.5. So, We are giving 50% less 

Fig. 7   Solution of 2D steady-
state heat conduction problem 
using Model 1. The predicted 
temperature distribution (on the 
top) and the absolute pointwise 
error (on the bottom) is shown 
at 5k, 10k and 30k epochs 
respectively. Temperature 
predicted outside the expected 
bound, i.e., when u ∉ [0, 1] , is 
shown using the white and grey 
colour

Fig. 8   The training loss (top) 
and the validation loss (bot-
tom) for the 2D steady-state 
heat conduction problem. The 
training loss plot shows the 
BC loss (BC loss), the residual 
loss (PDE loss) and the sum 
of both, i.e., the total loss. The 
validation loss plot shows the 
mean squared error between the 
temperature predicted from the 
training dataset and the FEM 
solution. The black dot denotes 
the least validation loss
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Fig. 9   PINN predicted solution 
of 2D steady-state heat conduc-
tion problem is shown on the 
left side. The absolute pointwise 
error between the FEM solution 
and PINN predicted solution 
is shown on the right side. 
Temperature predicted outside 
the expected bound (if any), i.e., 
when u ∉ [0, 1] is shown using 
the white and grey colour

(d) Model 4

(c) Model 3

(a) Model 1

(b) Model 2
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(e) Model 5

(f) Model 6

(g) Model 7

(h) Model 8

Fig. 9   (continued)
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importance to the interior points compared to the boundary 
points, because we want the optimiser to obtain more infor-
mation from the BC loss, as it does not converge in the case 
of Model 1 (as shown in Fig. 8).

In Models 3, 4 and 5, we trained NVIDIA Modulus’s 
baseline PINN with default values, i.e., with 6 hidden 

(22)
Top and bottom boundary: y = 1.0 − 2|x|,
Left and right boundary: x = 1.0 − 2|y − 0.5|.

layers and 512 neurons in each layer using the Adam opti-
miser with exponential decay in the learning rate and SiLU 
activation (Sigmoid Linear Unit) [112] for 20k epochs. 
We used 4000 boundary points and 4000 collocation 
points sampled from a uniform distribution. We used the 
same number of boundary points and collocation points 
in models from Models 3 to 11. We obtained a relative L2 
error of 0.08931, 0.10124, 0.09557 for Models 3, 4 and 
5, respectively.

In Model 6, we replaced the uniform sampling with 
importance sampling to resample the interior points in 

(i) Model 9

(j) Model 10

(k) Model 11

Fig. 9   (continued)
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Model 5. We observed a significant improvement around 
the corners, resulting in a relative L2 error of 0.06448. In 
the case of Model 7, we used adaptive activation with quasi-
random sampling for the initial sampling in each batch and 
importance sampling for resampling of the interior points. 
We obtained a relative L2 error of 0.06433, not a significant 
improvement over Model 6.

In Model 8, we trained a Fourier network with 10 Fou-
rier features (see Sect. 3.2.1) using 6 hidden layers and 512 
neurons in each layer using the Adam optimiser with SiLU 
adaptive activation for 20k epochs, with full SDF weights, 
quasi-random sampling and importance sampling. We used 
10, 15, 25 and 35 Fourier features for the input encoding. 
We observed that the Fourier network is only working for 10 
Fourier features and the absolute pointwise error is 0.18741, 
which is even higher than Model 1. For 15, 25 and 35 Fou-
rier features the predicted temperature distribution were 
close to 0.5 over the entire domain, i.e., the average of upper 
and lower bound temperature in the domain.

In Model 9, we trained a SiReNs network (Sect. 3.2.3) 
with 6 hidden layers and 512 neurons in each layer using 
the Adam optimiser with Sine activation for 20k epochs, 
with full SDF weights, quasi-random sampling and impor-
tance sampling. The network was continuously experienc-
ing exploding gradients until we reduced the learning rate 
to (2e−5). Still after 12k epochs the training loss would 
abruptly increase, leading to prohibitively large absolute 
pointwise error. Hence, we forced the training to stop 
around 11k epochs and the relative L2 error was found to 
be 0.12640.

In Model 10, we trained a modified Fourier network 
(Sect. 3.2.2) with 6 hidden layers and 512 neurons in each 
layer using the Adam optimiser with SiLU activation for 
20k epochs, with full SDF weights, quasi-random sampling 
and importance sampling. Similar to Model 10, we used 
10 Fourier features for the input encoding. The predicted 

temperature distribution looks similar to Model 8 and the 
relative L2 error was found to be 0.17577.

In Model 11, we trained a DGM architecture (see 
Sect. 3.2.4), with 6 hidden layers and 512 neurons in each 
layer using the Adam optimiser with SiLU activation for 
20k epochs, with full SDF weights, quasi-random sampling 
and importance sampling. We obtained a relative L2 error 
of 0.08229.

In Fig. 9, Models 6, 7 and 11 resulted in less than 1% 
absolute pointwise error at most of the points in the domain. 
This indicates that the SDF weights and the importance sam-
pling plays an important role in solving stiff-PDEs with a 
discontinuous solution. In Table 2, Models 3, 5, 6, 7 and 11 
resulted in less than 10% relative L2 error. Further investiga-
tion is required to determine whether the DGM architecture 
is advantageous compared to the baseline PINNs in higher 
dimensions.

4.4 � Hard Constrained BCs

In this section, we discuss the exact imposition of BCs in 
PINNs. Hard constrained BCs involves the construction of 
a continuous and differentiable function through which we 
pass the output of the NN. Problem 1, involves discontinu-
ous BCs which can’t be exactly satisfied with a continuous 
and differentiable function. However, it is possible to satisfy 
the BCs on two opposite walls, here we chose to exactly 
satisfy the top and bottom walls using the following output 
transform function.

We trained the Model 2 (see Table 1) with 3500 collocation 
points and 400 boundary points with Adam for 30k epochs. 
Figure 11 shows the DeepXDE predicted solution to Prob-
lem 1 with the hard constrained BCs at the top and bottom 
walls. Due to hard constrained BCs at the top and bottom 

(23)u ∶= y(y − 1)u.

Fig. 10   The magnitude of SDF 
weights on interior and bound-
ary points of a square domain. 
The SDF weights for Model 4, 
i.e., with only interior points is 
shown on the left side. Whereas, 
the SDF weights with interior 
and boundary points is shown 
on the right side (for Models 5 
to 11)
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walls, we observe significant errors around the left and right 
walls resulting in a relative L2 error of 0.183119. Thus, it is 
not recommended to apply hard constraints to the BCs in 
stiff-PDEs.

4.5 � Overfitted Solution

In this section, we discuss the behaviour of an overfitted 
PINN model while predicting the solution of the PDE at 
new spatio-temporal locations in the domain. We trained the 
Model 2 (see Table 1) with 2500 collocation points and 200 
boundary points with Adam for 30k epochs. Figure 12 shows 
the DeepXDE predicted solution to Problem 1 from both 
the training dataset and on new spatio-temporal locations 
within the domain. Given that the trained model’s accuracy 
during the validation is low, we will categorise the model 
as an overfitted model. The validation loss can be decreased 
by adding more points in the training data set, for instance, 
NVIDIA Modulus samples different points for the training 
in each epoch. Intuitively, the overfitted model is computa-
tionally cheaper than a generalised model as it requires very 
few collocation points, which is evident with this example.

5 � Problem 2: 3D Steady‑State Heat 
Conduction

The next problem we address is a 3D steady-state heat con-
duction problem with conflicting BCs at the edges and the 
corners. We solved the problem with different PINN frame-
works and compared the results to the FEM solution. The 3D 
heat conduction problem is described as follows:

We used MATLAB Partial Differential Equation Toolbox 
[110] to solve the 3D steady-state heat conduction problem 
(Eq. 24) with quadratic triangles (Fig. 13).

We again used the same PINN models (see Table 1) to 
solve the 3D steady-state heat conduction problem. We did 
not use the full SDF weights because the boundary walls are 
planes instead of lines in 2D. This is where we potentially 
require an algorithm, instead of manually constructing the 
SDF weights for the boundary points. Therefore, for this 
problem, we refer to the SDF weights on interior points 
as the full SDF weights and we exclude Model 4. Table 3 

(24)

uxx + uyy + uzz = 0, x ∈ [−0.5, 0.5], y ∈ [−0.5, 0.5], z ∈ [0, 1],

u(x, y, 0) = u(x, y, 1) = u(0.5, y, z) = 0,

u(−0.5, y, z) = u(x,−0.5, z) = u(x, 0.5, z) = 1.

Fig. 11   DeepXDE predicted 
solution of 2D steady-state heat 
conduction problem (Eq. 21) 
with hard constrained BCs at 
the top and bottom walls on the 
left and the absolute point-
wise error between the FEM 
and PINN predicted solutions 
is shown on the right side. 
Temperature predicted outside 
the expected bound (if any), i.e., 
when u ∉ [0, 1] is shown using 
the white and grey colour

Fig. 12   Comparison of PINN predicted solution from the training 
dataset and at new data-points. a The FEM solution of Problem  1 
(Eq.  21), b the DeepXDE predicted solution of the same problem 
from the training dataset, and c the DeepXDE predicted solution of 

the same problem at new spatio-temporal locations in the domain. 
Temperature predicted outside the expected bound (if any), i.e., when 
u ∉ [0, 1] is shown using the white and grey colour
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summarises the network parameters and relative L2 error for 
various PINN frameworks. Figure 14 shows the solution of 
the 3D steady-state heat conduction problem for different 
PINN frameworks.

In Problem 1 (Sect. 4), the discontinuities occurred at 
the corners of the square domain, which affected only a few 
training points. Whereas, in Problem 2, the discontinuities 
affected not only the vertices but also the edges. We can 
sample a large number of points along these edges. Thus, 
Problem 2 is more suitable for testing the robustness of dif-
ferent PINN frameworks.

In Problem 2, all the models had the same number of lay-
ers, nodes per layer and the learning rate as in Problem 1. 
However, we increased the number of boundary points and 
collocation/ interior points in Models 1 and 2.

In Model 1, we observed that the interior points had sig-
nificant absolute pointwise error, meaning the PDE loss 
didn’t converge. We obtained a relative L2 error of 0.23778. 
In Model 2, the DeepXDE network didn’t sample the points 

at the edges and vertices (see Sect. 2.3.2). We obtained a 
relative L2 error of 3.15547.

In the case of models trained within NVIDIA Modulus, 
the SDF weights on the interior nodes from Problem 1 was 
extended to three dimension such that interior points close 
to the boundary were assigned negligible weights. As we 
move away from the boundary, the SDF weights on the inte-
rior points increases until it reaches close to 0.5 around the 
centroid of the cubical domain (see Fig. 15).

NVIDIA Modulus’s baseline PINN (Model 3) predicts 
better temperature distribution compared to Models 1 
and 2 with a relative L2 error of 0.12031. The addition of 
SDF weights on the interior points (Model 5) dramatically 
reduces the relative L2 error to 0.07455.

To obtain accurate results, the nodal coordinates or the 
training data needs special treatment either by transforming 
the coordinates to higher dimensions using the Fourier net-
work or by adding more transformer layers using the DGM 
architecture or both using the modified Fourier network. 
From Table 3, it is clear that the baseline PINN without 
SDF weights is not suitable for solving stiff-PDEs with dis-
continuities in 3D.

In summary, Models 5, 6, 7, 8, 10 and 11 resulted in less 
than 10% relative L2 error and less than 5% absolute point-
wise error at most of the points in the domain. It is worth 
mentioning that the SiReNs network (Model 9) experiences 
difficulty while minimising the loss, resulting in a constant 
temperature over the entire domain with a relative L2 error 
of 0.56448 (see Fig. 14).

A summary of the total training time (s) and training time 
(s) per epoch in Problems 1 and 2 for each model is pre-
sented in Table 4. The training time does not include the 
time taken in pre-processing of the data and initialisation of 
the NN. In Models 1 and 2, the number of data points were 
different in Problems 1 and 2, which influences the train-
ing time. Thus, we could not draw a concrete conclusion. 

Fig. 13   FEM solution for the 3D steady-state heat conduction prob-
lem (Eq. 24) using MATLAB Partial Differential Equation Toolbox

Table 3   Problem 2: summary of 
training parameters and relative 
L
2 error for different PINN 

frameworks

*Model 1 uses the nodal coordinates from the FEM mesh
**Model 2 uses the Sobol sequence

Layers Nodes Boundary
points

Collocation
points

� Epochs Relative L2 error

Model 1 8 150 5814 34,071* 1e−3 20k 0.23778
Model 2 10 150 5000 15,000** 1e−3 15k 3.15547
Model 3 6 512 4000 4000 1e−3 20k 0.12031
Model 5 6 512 4000 4000 1e−3 10k 0.07455
Model 6 6 512 4000 4000 1e−3 20k 0.07163
Model 7 6 512 4000 4000 1e−3 20k 0.08557
Model 8 6 512 4000 4000 1e−3 20k 0.07302
Model 9 6 512 4000 4000 2e−5 20k 0.56448
Model 10 6 512 4000 4000 1e−3 20k 0.09498
Model 11 6 512 4000 4000 1e−3 30k 0.07213
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Fig. 14   PINN predicted solution 
of 3D steady-state heat conduc-
tion problem is shown on the 
left side. The absolute pointwise 
error between the FEM solution 
and PINN predicted solution 
is shown on the right side. 
Temperature predicted outside 
the expected bound (if any), i.e., 
when u ∉ [0, 1] is shown using 
the white and grey colour

(a) Model 1

(b) Model 2

(c) Model 3

(d) Model 5
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(e) Model 6

(f) Model 7

(g) Model 8

(h) Model 9

Fig. 14   (continued)
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In Models 3–10, even though the number of data points 
were same there was no noticeable increase in the training 
time per epoch. However, in Model 11, the training time 
per epoch was almost 3 times for Problem 2, a 3D problem, 
compared to Problem 1, a 2D problem. This is because one 
DGM layers contains eight weight matrices and introduc-
ing one more feature into the training dataset increases the 
number of operations exponentially.

6 � Parametric Heat Conduction Problem

As discussed in Sect. 2.2.6, PINNs can be parameterised 
by adding the parameter of interest as another feature in 
the training dataset. We solved two parametric 2D steady-
state heat conduction problems with parameterised con-
ductivity and parameterised geometry (see Table 5).

6.1 � Problem 3: Parameterised Conductivity

We formulated the 2D steady-state heat conduction prob-
lem such that the conductivity � is varying from 0 to 1 in 
Eq. 25.

We trained Problem 3, with various models from Table 1 
and observed that the predicted temperature distribution 
was fairly accurate except for Model 1 because we did not 
use a learning rate scheduler (see Sect. 4.1). The absolute 
pointwise error is less than 5% on the interior points with 
some errors around the corners, similar to Problems 1 and 
2. Figure 16 shows the solution to Problem 3 using Model 
2. Model 2 predicted a reasonably accurate temperature 

(25)

uxx + � uyy = 0, x ∈ [−0.5, 0.5], y ∈ [0, 1], � ∈ [0, 1],

u(x, 0) = u(x, 1) = 0, u(−0.5, y) = u(0.5, y) = 1.

(i) Model 10

(j) Model 11

Fig. 14   (continued)

Fig. 15   The magnitude of SDF weights on interior points of the cubi-
cal domain of Problem 2
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distribution in just 523 s. Model 3 to 11 took 2–3 times the 
time to train the model with very little improvement.

6.2 � Problem 4: Parameterised Geometry

Similar to conductivity the geometry can also be parameter-
ised. We used the y-dimension of the 2D steady-state heat 
conduction problem as the parameter (Eq. 26).

Implementing the parametric geometry is not straightfor-
ward, care should be taken that for each geometry parameter 
the sampled points along the geometry parameter is within 
the spatio-temporal domain. For example, as per Eq. 26, 

(26)

uxx + uyy = 0, x ∈ [−0.5, 0.5], y ∈ [0, L], L ∈ [1, 10],

u(x, 0) = u(x, L) = 0, u(−0.5, y) = u(0.5, y) = 1.

Table 4   Summary of the total 
training time (s) and training 
time (s) per epoch in Problems 
1 and 2 for each model

Problem 1 Problem 2

Training time (s) Training time/epoch 
( 10−3 s)

Training time (s) Training time/
epoch ( 10−3 s)

Model 1 455 15.61 2259 112.95
Model 2 482 16.06 845 56.33
Model 3 632 31.60 592 29.6
Model 4 527 52.71 – –
Model 5 530 53.00 585 58.5
Model 6 2759 137.95 1931 96.55
Model 7 1843 92.15 2193 109.65
Model 8 2031 101.55 2416 120.80
Model 9 769 69.91 1144 57.2
Model 10 2792 139.60 3481 174.05
Model 11 2670 89.00 8174 272.46

Table 5   Summary of parametric heat conduction problems

Parametric 
conductivity

Parametric geometry

PINN framework Model 2 Models 7, 10, 11
Layers 8 6
Nodes per layer 20 512
Boundary points 10,000 4000
Collocation points 25,000 4000
� 1e−3 1e−3
Epochs 30k 20k
Average relative L2 error 0.10305 0.05460, 0.10407, 0.08192

Fig. 16   Solution to Problem 3 
using Model 2. The predicted 
temperature distribution (on the 
top) and the absolute pointwise 
error (on the bottom) for dif-
ferent values of � (see Eq. 25). 
Temperature predicted outside 
the expected bound, i.e., when 
u ∉ [0, 1] , is shown in white and 
grey colour
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y ∈ [0, L] and L ∈ [1, 10] , i.e., y ≤ L for each sample in the 
training dataset.

Figure 17 shows the boundary points sampling of Prob-
lem 4 to illustrate the implementation of parametric geom-
etry. Here, x and y axes shows the 2D spatial domain for each 
geometry parameter along the L axis. As discussed earlier, 
for y ≤ L , this results in moving the upper boundary on the 
y axis as L increases.

We observed that none of the models could predict a tem-
perature distribution that visually looks similar to the FEM 
solution. Some of the models such as Models 1, 3, 4, 5, 6 
and 7 could not converge the loss. Whereas, Models 10 and 
11 resulted in gradient explosion. We think that none of the 
PINN frameworks in Table 1 does have enough features and 
parameters to predict multiple discontinuous temperature 
distribution around the moving upper boundary. We need 
more sophisticated PINN frameworks to solve these types 
of problems.

Thus, we decreased the range of the parameter L until we 
could predict a temperature distribution that visually resem-
bles the FEM solution. The parameter’s range was eventually 
narrowed to 1.05, i.e. L ∈ [1, 1.05].

We trained Models 7, 10 and 11 with the redefined L 
parameter. For Models 10 and 11, we have also shown the 
predicted temperature distribution without the SDF weights 
to highlight how important they are while solving problems 
with discontinuities. Figure 18 shows the predicted tempera-
ture distribution for the redefined problem with Models 7, 
10 and 11 with and without the SDF weights.

In Model 7, the predicted temperature distribution around 
the left and right boundary does not change with the moving 
upper boundary, especially, around the upper-left and upper-
right corners of the square domain. In Model 10 without the 
SDF weights, the predicted temperature distribution does 
not visually resemble the FEM solution. Whereas, when we 

use the SDF weights, the predicted temperature distribution 
improves dramatically.

In Model 11, the predicted temperature distribution with-
out the SDF weights was much better than any other Model 
without the SDF weights. Also, Model 11 with SDF weights 
predicts better temperature distribution compared to Models 
7 and 10 with SDF weights.

7 � Conclusion

In this paper, we have reviewed application of PINNs to stiff-
PDEs, specifically for simple steady-state heat conduction 
problems with discontinuous BCs at the corners. We defined 
a list of PINN frameworks in Table 1 which included the 
baseline PINN and models from open-source libraries such 
as DeepXDE and NVIDIA Modulus.

We started with a 2D steady-state heat conduction prob-
lem (Problem 1). We observed that both the baseline PINN 
and DGM architecture predicted temperature distribution 
with 5–10% absolute pointwise error in the corner regions 
for most models. The results are summarised in Table 2.

Next, we solved Problem 1 with hard constrained BCs. 
We showed that we can’t satisfy all the BCs exactly when 
they conflict with each other. Problem 1 contains discontinu-
ous BCs, which can’t be satisfied exactly with a differenti-
able function such as a NN. Thus, we do not recommend 
applying hard constrained BCs on a stiff-PDE.

We also demonstrated the inability of an overfitted PINN 
to predict the temperature distribution at new spatio-tem-
poral locations. However, an overfitted PINN proves to be 
computationally cheap when the solution is to be inferred 
on the training dataset only.

We then solved a 3D steady-state heat conduction prob-
lem (Problem 2), an equivalent of Problem 1 in 3D space. 
This is where modified PINN frameworks such as Fourier 
network, Modified Fourier network, DGM architecture 
proves to be more accurate than the baseline PINN frame-
works (Models 1–7) in terms of the relative L2 error. Further-
more, the SDF weights significantly improved the accuracy. 
This is primarily because the modified PINN frameworks are 
inherently evolutional over the baseline PINN. The Fourier 
network addresses the spectral bias in the baseline PINNs, 
the DGM architecture is useful for solving problems in 
higher dimensions and the Modified Fourier network is a 
combination of both.

Then we solved Problem 1 with parametric conductivity 
(Problem 3) using DeepXDE’s baseline PINN. DeepXDE’s 
baseline PINN accurately predicted the temperature distribu-
tion while using fewer resources compared to Models 3–11.

We also solved Problem 1 with parametric geometry by 
extending the y-dimension (Problem 4). We observed that 
solving stiff-PDEs with parametric geometry can be very 

Fig. 17   The boundary points sampling of the parameterised geometry 
in Problem 4
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challenging for PINNs. Even robust PINN frameworks such 
as the Modified Fourier Network resulted in exploding gra-
dients. In Problem 4, we also showed that the predicted tem-
perature distribution with SDF weights significantly outper-
forms those without the SDF weights. Table 5 summarises 
the network parameters and the accuracy (relative L2 error) 
of various models for Problems 3 and 4.

Among the PINN frameworks (see Sect. 1), baseline 
PINNs are not useful in the case of 3D problems. On the 
other hand, PINN frameworks such as Modified Fourier 

network and DGM architecture are robust even on 3D prob-
lems. The SiReNs network is very unstable and often results 
in exploding gradients even with exponential decay of the 
learning rate. The SiReNs network fails to predict the tem-
perature distribution in Problem 2 even with a reduced learn-
ing rate. A summary of the best models for each problem is 
shown in Table 6.

In Table 6, Models 7 and 11 can be categorised as the 
best performing models in general for the four problems we 
considered. Model 10 also works in most of the cases. Model 

Fig. 18   Solution of 2D steady-
state heat conduction problem 
with parameterised upper 
boundary. Each plot shows the 
predicted temperature dis-
tribution for a specific value 
of parameter L ∈ [1, 1.05] . 
Temperature predicted outside 
the expected bound, i.e., when 
u ∉ [0, 1] , is shown using white 
and grey colour

(a) Model 7

(b) Model 10 without SDF weights
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7 is computationally cheaper than Model 11 (see Table 4). 
However, Model 11 seems to work without SDF weights in 
Problem 4 which is an advantage for solving more compli-
cated problems.

Among the additional tools (see Sect. 2.3), the SDF 
weights are an important asset for solving problems with dis-
continuous BCs. The importance sampling is a loss depend-
ent resampling strategy of the collocation points. It samples 
points proportional to the absolute pointwise error, which is 
particularly useful in stiff-PDEs where we need more points 
to capture the sharp gradients. The adaptive activation and 

quasi-random sampling improves the convergence and the 
accuracy respectively.

We also tried to solve 2D steady-state heat conduction 
problem with a temperature dependent conductivity along 
the y-direction. However, we could not converge the train-
ing loss with any of the models in Table 1. We were also 
interested in solving Problem 1 with parametric prescribed 
BCs, but it seems, currently, this is not possible with any 
PINN framework.

The development of FEM took us almost five decades. 
In contrast, PINNs are evolving rather quickly. As of now, 

(c) Model 10

(d) Model 11 without SDF weights

Fig. 18   (continued)
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PINNs are able to solve simple discontinuous problems in 
2D and 3D without any problem-specific tuning and trans-
fer learning. The same framework can be used to solve the 
parametric PDEs which is difficult to achieve with conven-
tional PDE solvers. We believe that in 2–3 years, we will 
see PINNs solving complex benchmark problems.

There is a need to automate the SDF for problems with 
discontinuous solutions. Also, there is a lack of bench-
marking in PINNs. We can not use the same parameters 
for all the Models in Table 1. To compare different PINN 
frameworks, an improvement to this field would be for the 
research community to collectively agree upon a standard 
set of benchmarks.
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