Downloaded 10/24/22 to 137.205.57.19 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

SIAM J. Sc1. COMPUT. © 2022 Kamran Pentland
Vol. 0, No. 0, pp. S82-S102

STOCHASTIC PARAREAL: AN APPLICATION OF PROBABILISTIC
METHODS TO TIME-PARALLELIZATION*

KAMRAN PENTLAND', MASSIMILIANO TAMBORRINOf, DEBASMITA SAMADDARS,
AND LYNTON C. APPELS

Abstract. Parareal is a well-studied algorithm for numerically integrating systems of time-
dependent differential equations by parallelizing the temporal domain. Given approximate initial
values at each temporal subinterval, the algorithm locates a solution in a fixed number of iterations
using a predictor-corrector, stopping once a tolerance is met. This iterative process combines solu-
tions located by inexpensive (coarse resolution) and expensive (fine resolution) numerical integrators.
In this paper, we introduce a stochastic parareal algorithm aimed at accelerating the convergence of
the deterministic parareal algorithm. Instead of providing the predictor-corrector with a determinis-
tically located set of initial values, the stochastic algorithm samples initial values from dynamically
varying probability distributions in each temporal subinterval. All samples are then propagated in
parallel using the expensive integrator. The set of sampled initial values yielding the most continuous
(smoothest) trajectory across consecutive subintervals are fed into the predictor-corrector, converg-
ing in fewer iterations than the deterministic algorithm with a given probability. The performance
of the stochastic algorithm, implemented using various probability distributions, is illustrated on
low-dimensional systems of ordinary differential equations (ODEs). We provide numerical evidence
that when the number of sampled initial values is large enough, stochastic parareal converges al-
most certainly in fewer iterations than the deterministic algorithm, maintaining solution accuracy.
Given its stochastic nature, we also highlight that multiple simulations of stochastic parareal return
a distribution of solutions that can represent a measure of uncertainty over the ODE solution.

Key words. parareal, time-parallel integration, probabilistic numerics, sampling-based solver,
multivariate copulas

AMS subject classifications. 65L05, 65Y05, 65C99

DOI. 10.1137/21M1414231

1. Introduction. In its most basic form, parallel computing is the process by
which an algorithm is partitioned into a number of subproblems that can be solved
simultaneously without prior knowledge of each other. More widespread parallelism is
becoming increasingly necessary in many different fields to reduce the computational
burden and thus overcome the physical limitations (i.e., space, power usage, clock
speeds, cooling, and financial costs) arising on machine hardware. Complex models in
science often involve solving large systems of ordinary or partial differential equations
(ODEs or PDESs) which, in the case of spatio-temporal PDEs, can be parallelized using
existing domain decomposition methods. We refer to [31] for an overview. Although

*Received by the editors April 21, 2021; accepted for publication (in revised form) March 30,
2022; published electronically July 7, 2022.
https://doi.org/10.1137/21M1414231
Funding: This work was partially supported by the EUROfusion Consortium and has received
funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant
agreement 633053. The views and opinions expressed herein do not necessarily reflect those of the
European Commission. The work of the first author was supported by the Engineering and Physical
Sciences Research Council through the MathSys IT CDT (grant EP/S022244/1) as well as the Culham
Centre for Fusion Energy.
fMathematics Institute, University of Warwick, Coventry, CV4 7AL, United Kingdom
(kamran.pentland@warwick.ac.uk).
fDepartment of Statistics, University of Warwick, Coventry, CV4 7AL, United Kingdom
(massimiliano.tamborrino@warwick.ac.uk).
§Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxfordshire, 0X14 3DB,
United Kingdom (Debasmita.Samaddar@ukaea.uk, Lynton.Appel@ukaea.uk).

582

© 2022 Kamran Pentland

https://doi.org/10.1137/21M1414231
mailto:kamran.pentland@warwick.ac.uk
mailto:massimiliano.tamborrino@warwick.ac.uk
mailto:Debasmita.Samaddar@ukaea.uk
mailto:Lynton.Appel@ukaea.uk

Downloaded 10/24/22 to 137.205.57.19 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

STOCHASTIC PARAREAL S83

very efficient for high-dimensional systems, these methods are reaching scale-up limits,
and wallclock speeds often bottleneck due to the temporal integration. For instance,
modern algorithms used to simulate edge localized modes in turbulent fusion plasmas
can take anywhere between 100 and 200 days to integrate over a time interval of just
one second [28].

These sequential bottlenecks in time have motivated the research and develop-
ment of time-parallel integration methods for systems of ODEs and PDEs over the
last 55 years or so (see [5, 10, 25] for reviews). These methods provide a way to
integrate initial value problems (IVPs) over long time intervals where solutions would
be unobtainable using existing sequential algorithms. One approach to integrate in
a nonsequential manner, similar to spatial parallelization, is to discretize the time
interval into IV subintervals upon which N subproblems are solved in parallel using
existing numerical methods. The solution at a given time step, however, depends
upon the solution at the previous step(s). This creates a problem prior to the parallel
integration as N — 1 of the N initial values (from which to begin integration in each
subinterval) are unknown a priori. Existing algorithms that attempt to locate these
N — 1 initial values by direct or iterative means have been collectively referred to as
multiple shooting methods [4, 6, 17, 23, 27].

Our focus is on one multiple shooting method in particular: parareal [17]. This al-
gorithm uses a combination of coarse and fine grained (in time) numerical integrators
to provide parallel speedup and has been tested successfully on problems spanning
molecular [1] and fluid dynamics [9, 13, 33] to stochastic differential equations [8, 16]
and fusion plasma simulations [28, 29]. The popularity of parareal is due to its rela-
tively straightforward implementation and demonstrable effectiveness in speeding up
the integration of IVPs. The algorithm iteratively locates a numerical solution at each
subinterval using a predictor-corrector scheme, derived by discretizing the Newton—
Raphson method. The algorithm stops once a tolerance is met with convergence
guaranteed under certain mathematical conditions—more detail on the algorithm is
provided in section 2. Much work has gone into analyzing the numerical convergence
of this method [2, 3, 12, 20], combining it with spatial decomposition techniques [21],
and developing variants that utilize idle processors [7] and adaptive time-stepping
[19]. However, given fixed fine and coarse integrators, the method itself is strictly
deterministic and little work has gone into trying to reduce the number of iterations
kq € {1,..., N} that parareal takes to solve a particular IVP. Our primary focus is
on reducing k; and henceforth we refer to it as the “convergence rate.” In scenarios
where parareal struggles to converge in kg < N iterations, reducing k4 by even a
few iterations, say, to ks < k4, can lead to significant parallel gains (roughly a factor
kq/ks), enabling faster numerical integration.

The purpose of this work is to extend the parareal algorithm using probabilistic
methods to converge in fewer than kg iterations for a given system of ODEs. To achieve
this, we introduce a stochastic parareal algorithm. Instead of integrating forward in
time from a single initial value (given by the predictor-corrector) in each subinterval,
a prespecified probability distribution (see sampling rules in subsection 3.2) is used
to generate M candidate initial values that are simultaneously integrated forward in
time in parallel. At each subinterval, one optimal initial value (from the M samples)
is selected sequentially such that the most continuous trajectory is chosen across
consecutive subintervals. These initial values are then fed directly into the predictor-
corrector—the idea being that this stochastically generated set of values provides a
better guess to the solution than those found purely deterministically. For example,
suppose running the predictor-corrector with initial values (9 yields convergence in

© 2022 Kamran Pentland

Downloaded 10/24/22 to 137.205.57.19 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

S84 PENTLAND ET AL.

kg iterations, generating the sequence of solutions {x(®, () ... (¥4} Instead of
starting with (©), suppose we sample initial values from a probability distribution
and choose some “better” starting point which is close to, say, (*) for some i €
{1,...,kqg—1}. Then the sequence generated by the predictor-corrector would instead
be approximately {x®, £tV . x(Fad} converging in kg — i iterations. Therefore,
given a fixed number of samples M, the stochastic parareal algorithm will converge
in fewer than kg iterations with some nonzero probability.

This idea of propagating multiple initial values in each subinterval in parallel is
not new. In the first major work proposing the time-parallel integration of IVPs,
Nievergelt [23] discussed choosing M initial values deterministically. The method for
determining the solution from this ensemble of trajectories was to combine two of the
M samples in each subinterval using an interpolation coefficient determined from the
preceding subinterval. While an excellent first incursion into the field, for nonlinear
problems this direct method suffered from interpolation errors and questions remained
on how to efficiently scale this up to systems of ODEs. We generalize the original idea
of Nievergelt by combining it with the parareal algorithm, generating the M initial
values at each subinterval using probability distributions based on information known
about the solutions at the current iteration.

The paper is organized as follows. In section 2, we recall the parareal algorithm
and its properties from a multiple shooting viewpoint, including a known modification
that will enable us to extend the algorithm to incorporate stochastic sampling. In
section 3, we introduce the stochastic parareal algorithm. Following an explanation of
its key features, we elucidate how a variety of different sampling rules can be flexibly
interchanged in order to carry out the sampling. In section 4, we conduct numerical
experiments to illustrate the performance of stochastic parareal against its determin-
istic counterpart using the different sampling rules. Findings are presented for three
ODE systems of increasing complexity, with two additional examples given in the
supplementary materials (M141423SupMat.pdf [local/web 1.21MB]). Results indi-
cate that for sufficiently many samples, stochastic parareal almost certainly beats the
convergence rate of the deterministic algorithm and generates (stochastic) solutions of
comparable numerical accuracy. For the multivariate ODEs, results show that perfor-
mance is improved by generating correlated, as opposed to uncorrelated, random sam-
ples. In section 5, conclusions are drawn and avenues for future research are discussed.

2. The parareal algorithm. Following previously outlined descriptions of the
parareal algorithm [12, 17], henceforth referred to as “parareal” or P, consider a
system of d € N ODEs

du
dt
where f : R? x [Ty, Tv] — R is a smooth multivariate (possibly nonlinear) function,
u: [Ty, T] — R? the time-dependent vector solution, and u® € R? the initial values
at Tp. Decompose the time domain into N subintervals such that [Ty, Tn] = [To, T1]U
-+ U [Tn-1,Tn], with each subinterval taking fixed length AT := T,, — T;,_1 for
n=1,...,N (see Figure 1 for a schematic).
Having partitioned the time domain /N smaller subproblems

(2.1) f(u(t),t) on te [Ty, Ty], with u(Tp)=u’,

du .
(2.2) d—t” =f(u,(t|Uy),t) on te[T,,Thya], with u,(T,) =U,,
forn =0,..., N —1 can theoretically be solved in parallel on N processors, henceforth

denoted P, ..., Py. Each solution u, (¢|U,,) is defined over [T},, T}, 1] given the initial

© 2022 Kamran Pentland

https://epubs.siam.org/doi/suppl/10.1137/21M1414231/suppl_file/M141423SupMat.pdf

Downloaded 10/24/22 to 137.205.57.19 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

STOCHASTIC PARAREAL S85

To Ty T Tn_2 Tn_1 Tn

Fic. 1. Schematic of the time domain decomposition. Three levels of temporal discretisation
are shown: subintervals (size AT), coarse intervals (size 6T), and fine intervals (size 6t). Note how
the discretizations align with one another and that 6t < 8T < AT in our implementation.

values U,, € R? at t = T},. Note, however, that only the initial value Uy = ug(Tp) =
u' is known, whereas the rest (U,, for n > 1) need to be determined before (2.2) can
be solved in parallel. These initial values must satisfy the continuity conditions

(2.3) Uy=u’ and U, =u, (T,|U, ;) for n=1,...,N,

which form a (nonlinear) system of N + 1 equations that ensure solutions match at
each T,, Vn > 1. System (2.3) is solved for U, using the Newton—Raphson method
to form the iterative system

(2.4a) Uit =u°,

ou,,_
(2.4b) UL = w,a (1US) + Gt (U5) [USH - UL
form=1,...,N, where £k =0,1,2,... is the iteration number. This system contains

the unknown solutions u, and their partial derivatives, which even if known would
be computationally expensive to calculate.

To solve (2.4) and evaluate u,, at discrete times, P utilizes two numerical integra-
tors. The first is a numerically fast coarse integrator G that integrates over [T, Tj,+1]
using initial values U,,. The second is a fine integrator F that runs much slower com-
pared to G but has much greater numerical accuracy, chosen such that it integrates
over the same interval [T},, T}, 1] with initial values U,. In our implementation, the
difference between fast and slow integration is guaranteed by setting the time steps
for G and F as 0T and 0t, respectively, with ¢t < §T (recall Figure 1). The key
principle is that if used to integrate (2.1) over [Ty, Tn]| serially, F would take an in-
feasible amount of computational time, hence the need to use P in the first place.
Therefore G is permitted to run serially across multiple subintervals rapidly, whereas
the slower solver F is only permitted to run in parallel on subintervals. This is a
strict requirement for running P, else numerical speedup will not be achieved.

Given that (2.4a) is known a priori V k, Lions, Maday, and Turinici [17] approx-
imate the first term in (2.4b) using the fine solver F(U%_,) and the second term
by a coarse finite difference of the derivative using G(U**1) — G(U%_,). One could
instead approximate the derivative using a fine finite difference F(U*1) — F(UF_,);
however, (2.4b) then becomes a sequential calculation using just F—exactly what we
wish to avoid. Assuming G meets the conditions required for (2.4b) to converge (see
subsection 2.1), using the coarse approximation becomes reasonable and enables the
parallel computation of (2.4b) [12]. The result is that an initial guess for the initial
values UY (found using G) is improved at successive parareal iterations k using the
predictor-corrector update rule
(2.5) Ukt = g(Ukt) + F(UX_)) - G(UE_)) for n=1,...,N.

n—1

© 2022 Kamran Pentland

Downloaded 10/24/22 to 137.205.57.19 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

S86 PENTLAND ET AL.

Algorithm 1 Parareal (P)

1: Set counters k = I = 0 and define U¥, U’ﬁ, and fjﬁ as the predictor-corrector,
coarse, and fine solutions at the nth time step and kth iteration, respectively (note
that Uk = Uk = Uk = u° Vk).

2: // Calculate initial values at the start of each subinterval T,, by running G serially
on processor P;.

for k=1to N do
// Propagate the predictor-corrector solutions (from iteration k — 1) on each
subinterval by running F in parallel on processors Pri1,..., Py.
9. forn=I+1to N do
10: Ukl = F(uk-1)
11: end for
12: // Propagate the predictor-corrector solution (at iteration k) with G on any
available processor. Then correct this value using coarse and fine solutions
obtained during iteration k — 1 (this step cannot be carried out in parallel).
13: forn=7I+1to N do
14: Uk =g(Us_))
15: Uk =0k 4 Uk - Ukt
16: end for
17: // Check whether the stopping criterion is met, saving all solutions up to time
step T7 before the next iteration. If tolerance is met for all time steps, the
algorithm stops.

180 I= max |UF — U <eVi<n
ne{l+1,..,.N}
19: if I == N then

3: forn=1to N do
4 UY=6(05)
5: U?L = fj%

6: end for

T

8:

20: return k, U*
21: end if
22: end for

Pseudocode for an implementation of P is given in Algorithm 1 alongside a graph-
ical description of the first iteration in Figure 2. During the “zeroth” iteration, G is
applied to u®, generating initial values ﬂ% Vn € {1,...,N} sequentially (lines 1-
6). Immediately following, F is run in parallel from these initial values to generate
a more accurate set of fine solution states UY (lines 8-11). Next, G is run in the
first time subinterval, from the known initial value, to “predict” the solution fj% at
T;. It is subsequently “corrected” using rule (2.5), and the predictor-corrector solu-
tion Ut is found at Tj. This prediction and correction process (lines 12-16) repeats
sequentially until U} is found Vn € {1,...,N}. After checking if the stopping cri-
teria has been met (lines 17-21), the algorithm either starts the next iteration or
stops.

2.1. Stopping criteria and other properties. The algorithm is said to have
converged up to time 77y if

(2.6) U —UrF Yo <e Wn<T

© 2022 Kamran Pentland

Downloaded 10/24/22 to 137.205.57.19 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

STOCHASTIC PARAREAL S87

F(u®) F(U)
6(U,)

Ty Ty T T Ty Ts Ts t

FiG. 2. First iteration of the parareal algorithm to numerically evaluate the solution of a scalar
ODE, either available or obtained via the fine solver (black line). The first runs of G and F are
given in yellow and blue, respectively, and the second run of G in red. The red dots represent the
solution after applying the predictor-corrector (2.5).

for some small fixed tolerance e—noting that ||-|| . denotes the usual infinity norm [20,
29]. Taking the relative, instead of absolute, errors in (2.6) would also be appropriate;
however, in our numerical experiments the results (not reported) did not change.
Once I = N, we say P has taken kq = k iterations to converge, yielding a solution
with numerical accuracy of the order of the F solver. In its original formulation,
P iteratively improves the solution across all time steps, regardless of whether they
have converged or not, up until the tolerance has been met V7,. The modified
formulation presented here, however, only iterates on the solutions for the unconverged
subintervals [7, 29]. This has no effect on the convergence rate k; and becomes
especially important once we introduce the stochastic modifications in section 3.

It should be clear that at least one subinterval will converge during each iteration
k, as F will be run directly from a converged initial value. Therefore it will take
at most kg = N iterations for P to converge, equivalent to running F over the N
subintervals serially (yielding zero parallel speedup). To achieve significant parallel
speedup, multiple subintervals need to converge during an iteration so that k; <
N. Assuming G takes a negligible amount of time to run compared to the parallel
components (along with any other serial computations), an approximate upper bound
on the speedup achieved by P is N/kg.

One challenge in attempting to minimize kg, hence the overall runtime of P, is
to identify optimal solvers F and G for implementation. Whereas F is assumed to
have high accuracy and be computationally expensive to run, G must be chosen such
that it runs significantly faster (usually orders of magnitude) than F while being
sufficiently numerically accurate to converge in as few iterations as possible. Usually
G is chosen such that its solutions have lower numerical accuracy, coarser temporal
resolution, and/or reduced physics/coarser spatial resolution (when solving PDEs).
There is currently no rigorous method for choosing the two solvers; however, they
should be chosen such that the ratio between the time taken to run F over [T}, Ty 41]
and the time taken to run G over the same interval is large.

In this paper, we fix both F and G as explicit! fourth-order Runge-Kutta meth-
ods (henceforth RK4) for ease of implementation. More detailed analysis on the

1When solving the stiff ODE systems in section 4, the initial values at ¢t = 0 are chosen such that
explicit methods work. For greater numerical stability, one could alternatively use implicit solvers
at extra computational cost.

© 2022 Kamran Pentland

Downloaded 10/24/22 to 137.205.57.19 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

S88 PENTLAND ET AL.

TABLE 1
Additional notation used to describe the stochastic parareal algorithm.

Notation | Description

n Index of the time subinterval Ty, n =0,..., N.
k Iteration number of P and Ps, k=1,...,N.
ks Total iterations taken for stochastic parareal to stop and return a solution, ks €
{1,...,N}.
Number of random samples taken at each T,.
<I>Iffl The d-dimensional probability distribution used to sample initial values at time
Ty and iteration k.
aﬁf,ﬁ The mth d-dimensional sample from distribution <I>ffl at time T}, and iteration
kkm=1,...,M.
dﬁ_l The selected d-dimensional sample from afﬁl, RN afb_wll at time T), and itera-
tion k. ’
p,lffl The d-dimensional vector of marginal means at time T3, and iteration k.
o'ﬁ_l The d-dimensional vector of marginal standard deviations at time T3, and itera-
tion k.
plf;j Pairwise correlations coefficients between ith and jth components of the M fine
resolution propagated samples at time 7}, and iteration k.
Rffl The symmetric positive semidefinite d X d correlation matrix with elements pﬁ?]l
at time T}, and iteration k.
I The d x d identity matrix.
Effl The symmetric positive semidefinite d x d covariance matrix at time 7, and

iteration k.

mathematical conditions required for P to converge, i.e., for the numerical solution
U, to approach the fine solution, can be found in [11, 12, 17, 21].

3. A stochastic parareal algorithm. In this section, we introduce the sto-
chastic parareal algorithm, an extension of parareal that incorporates randomness
and utilizes its well-studied deterministic convergence properties to locate a solution
in ks < kg iterations. A summary of additional notation required to describe the
algorithm, henceforth referred to as Ps, is provided in Table 1.

The idea behind P is to sample M vectors of initial values o |, ..., aﬁ,M, at each
unconverged subinterval T},, in the neighborhood of the current predictor-corrector
solution U from a given probability distribution (with sufficiently broad support) and
propagate them all in parallel using F. Given a sufficient number of samples is taken,
one will be closer (in the Euclidean sense) to the true root that (2.5) is converging
toward. Among them, we select an optimal & by identifying which samples generate
the most continuous trajectory, at the fine resolution, in phase space across [Ty, Tn].
Therefore, at each iteration, we stochastically “jump” toward more accurate initial
values and then feed them into the predictor-corrector (2.5). For increasing values of
M, the convergence rate ks will decrease, satisfying ks < k4 with probability one—
shown numerically in section 4.

3.1. The algorithm. Suppose again we aim to solve system (2.1), adopting the
same conditions, properties, and notation as discussed in section 2. Py follows the
first iteration (k = 1) of P identically—see line 1 of Algorithm 2. This is because
information about initial values at the different temporal resolutions (i.e., results
from F and G) are required to construct the appropriate probability distributions for
sampling. Following the convergence check, we assume (for the purposes of explain-
ing the stochastic iterations) that only the first subinterval [Ty, T3] converged during

© 2022 Kamran Pentland

Downloaded 10/24/22 to 137.205.57.19 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

STOCHASTIC PARAREAL S89

Algorithm 2 Stochastic parareal (Ps)

1: Run P (Algorithm 1) until the end of iteration k = 1.
2: for k=2to N do

3: // Calculate correlation matrices (only if d > 1).

4 REl=Ivn

5. if k> 3 then

6: forn=7I4+1to N —-1do

7: Calculate R¥~! using f(aﬁj)l), . ,f(aﬁ:iM) (recall (3.1)).

8: end for

9: end if

10: // Initial value sampling and propagation. Both line 11 and the nested for loop
below (lines 12-22) run in parallel on Py, ..., Pyyv—1-1)41, i-e., all runs of F

must be in parallel.
11: U’;H = F(U%=1) // propagate converged initial value at 77 on P;
122 forn=I+1toN—1do

13: for m =1to M do

14: if m ==1 then

15: af;fll = Uk~ // first “sample” is fixed to the predictor-corrector
16: Up1 = f(a:;l) // temporarily store propagated values

17: else

18: ak" 1~ ®F~1 // sample initial value randomly, see subsection 3.2
19: Upiim = Floh b

20: end if

21: end for

22: end for
23: // Select the most continuous fine trajectory from the ensemble sequentially.
24: forn=71+4+1to N —1do

25: J = argmin Haﬁ;l — Uk,
je{l,....M}
26: ak=1 = aF~! // store optimal initial value
27: fjﬁﬁ = U,11.7 // store most optimal fine trajectories

28: end for

29: // Run G from the optimal samples (can run in parallel).
30 forn=I+1toN —1do

s 0h = Glak)

32: end for

33: // Predict and correct the initial values.

34¢: forn=1I1+1to N do

35: Uk =g(us_))

36: Uk = Uk 4 U - Tk!

37: end for

38: // Check whether the stopping criterion is met.

39: = max |UF —UF Y <eVi<n
ne{l+1,...,N}

40: if I == N then

41: return k, U

42: end if

43: end for

© 2022 Kamran Pentland

Downloaded 10/24/22 to 137.205.57.19 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

S90 PENTLAND ET AL.

k =1, leaving N — 1 unconverged subintervals. At this point we know the most up-to-
date predictor-corrector solutions UL Vn € {1,..., N} and the stochastic iterations
can begin (henceforth k = 2).

At any unconverged T, (n > 1), we sample M vectors of initial values, denoted
aﬁ_n% for m =1,..., M. The first sample is fixed as the predictor-corrector U1 to
ensure that Py, = P when M = 1. The other M — 1 initial values are sampled from a
prespecified d-dimensional probability distribution ®*~! with finite marginal means
prmt = (pit, o k)T, marginal standard deviations o~ = (ok 7t o ok)T
and correlation structure given by the matrix R¥~!. These quantities depend upon
the information available at iteration k — 1, i.e., a combination of UK~1 F(Uk-1)
G(UF~1), and G(UL~2); see, subsection 3.2. The correlation matrix RE~! is intro-
duced to take into account the dependence between components of the ODE system
(lines 3-9). The elements of RE=1, for k > 3, are defined using the Pearson correlation
coeflicient

Y

M (@) _ =)\ (.U _ =@)
_ m=1\Tm X Tm X ..
(3.1) pﬁiyjl = 2= (T (@) , 1,7 €{1,...,d},

\/fo=1(5? - a‘c@))?\/zf‘,{:l(xﬁ,{) _z0)2

where
. N TR
(3.2)) = Flai 3,060, 29 = el
m=1
and]-'(aﬁ:im)(i) denotes the ith element of F(aﬁ:im). The coefficients pﬁ:jl

in (3.1) are essentially the estimated pairwise correlation coefficients of the M d-
dimensional fine resolution propagations of the sampled initial values at T;, from the
previous iteration, i.e.,]-"(a’;:il), . ,]-'(ozf;iM). Note that other types of linear
correlation coefficient could also be chosen. Since each F (af;im) is not available
at iteration k = 2, we set RE™1 =T for k = 2, i.e., we sample from a multivariate
distribution with uncorrelated components.

Following this, the sampling and subsequent propagation using F can begin in
parallel (lines 10-22). Given the solution between [1,77] has converged, F will run
from the converged initial value at T}, with sampling starting from T» onward (see
Figure 3). All sampled initial values are then propagated forward in parallel using
F, requiring at least M (N — 2) + 1 processors (M samples times N — 2 unconverged
subintervals plus running F once in [T7, T5]).

Of the M sampled initial values at each T, (n > 1), only one is retained, denoted
by &F~1, chosen such that it minimizes the Euclidean distance between the fine solu-
tion and the sampled values (lines 23-28). To do this, start from the converged initial
values at T, given by the fine solver: F (U’f_l). Calculate the Euclidean distance

between]-"(U’f_l) and each of the M samples a;—ll, e 0/2“_1\/} The sample minimiz-
Ak—1

ing this distance is chosen as &5 . Repeat for later 7}, minimizing the distance
between]—'(dﬁ:ll) and one of the samples af;ll, ey af;]\}[. This process must be run

sequentially and relies on the modification to P made in section 2—that solutions are
not altered once converged. Referring again to Figure 3, the corresponding coarse
trajectories of these optimally chosen samples &*~! must also be calculated to carry
out the predictor-corrector step (lines 29-32).

At this point, the set of initial values {d’;_l, ceey d’fv__ll} has been selected from

the ensemble of random samples, effectively replacing the previously found UX=1. The

© 2022 Kamran Pentland

Downloaded 10/24/22 to 137.205.57.19 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

STOCHASTIC PARAREAL S91

u(t
(*) e F() FU©)
' G(Uy) o Ul : : :
° al . Flal) i i Sampling rule:
B : ol ~ Bl (ud.o})
L}
L

I o———
1 .
1
0 Zoom T3

TO Tl T2 T3 T4 t

F1a. 3. An illustration of the sampling and propagation process within Ps following iteration
k = 1. The fine solution is given in black, the k = 0 fine solutions in blue, the k = 1 coarse solutions
in red, and the k = 1 predictor-corrector solutions as red dots. With M =5, four samples a,lz,m
(green dots) are taken at T> and T3 from distributions with means U21 and U;, and some finite
standard deviations, respectively. These values, along with U21 and Ué themselves, are propagated
in parallel forward in time using F (green lines). The optimally chosen samples &L (refer to the
text for how these are chosen) are then propagated forward in time using G (yellow lines).

coarse and fine propagations of these values are now used in the predictor-corrector
(lines 33-37) such that
k G(UE_)+ F(ULZD) —g(UrZl) for n=2,
(3.3) U, = k ~ k1 Akl
GU:_)+F(&,.—)—G(&;—7) for n=3,...,N.

Using the same stopping criteria (2.6) from P (lines 38-42), the algorithm either stops
or runs another stochastic parareal iteration.

As a final remark, instead of minimizing the distance between F(&"~1) and one of
the samples af;ll, e af;]\}[, one could think about doing some sort of interpolation
to choose a more optimal point than the M samples. In this setting, however, this is
not possible because we require not just the exact starting condition, which would be
the optimally chosen sample, but also its value having been propagated by F (which

we only have for the M samples).

3.2. Sampling rules. The probability distributions ®*~1 incorporate different
combinations of available information about the initial values at different tempo-
ral resolutions, i.e., the coarse, fine, and predictor-corrector initial values G (Uf;i),
G(U%E=2), F(UF~?), and UL, respectively. This information is used to define the
marginal means and standard deviations in the “sampling rules” outlined in the fol-
lowing subsections. Note how the distributions vary with time 7, and k, so that
the accuracy of the distributions increase as the initial values in P, are iteratively
improved. Using Gaussian and copula distributions, we analyze the performance of
different sampling rules within Py in section 4. This will give us a more comprehensive
understanding on whether the choice of distribution family ®*~! or the parameters
pE=1 k=1 and R¥~! have the greatest impact on the convergence rate ky. In all
tested cases, we observe that taking correlated samples significantly improves the
performance of P, compared to the independent setting.

© 2022 Kamran Pentland

Downloaded 10/24/22 to 137.205.57.19 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

S92 PENTLAND ET AL.

3.2.1. Multivariate Gaussian. First, we consider perturbing the initial values
using stochastic “noise,” i.e., considering errors compared to the true initial values
to be normally distributed, a standard method for modeling uncertainty. The initial
values afl_,,{ are sampled from a multivariate Gaussian distribution A(pf=1 2k=1)
where (2’C g = p’fh]1 fL ! k s the d x d positive semidefinite covariance matrix.

As marginal means pf~1 we choose cither the fine resolution values F(U¥~2) (prior

to correction) or the predlctor corrector values UX~1. For the marginal standard
deviations, we choose o¥~! = |G(U*~1) — g(U*= 2)| as they are of the order of the
corrections made by the predlctor corrector and each marginal decreases toward zero
as the algorithm converges (as expected). For the correlation coefficients, pf“_jl, we
calculate the linear correlation between the F propagated samples using Pearson’s
method—recall (3.1). Note that || denotes the componentwise absolute value. Testing

revealed that alternative marginal standard deviations [U5~1 —U¥k~=2| and | F(U*=2)—

n—1
k=1'in order for sampling

k—1 _

g (U)| did not span sufficiently large distances around g
to be efficient, i.e. they required much higher sampling to perform as well as o
IG(Uk-1) - Q(Un_)| (results not shown). The samples a1 ~ N (pk—1 3k= 1) are
taken according to the following sampling rules:

Rule 1: pf~! = F(U*72) and o~ = |G(UF~1) — g(UF2)).
Rule 2: pf~! = U1 and o~ = |G(URZY) — g(UF=2)).

Note that a linear combination of the rules or taking half the samples from each
appears to work well, with performance similar to the individual rules themselves
(results not shown).

3.2.2. Multivariate copula. Alternatively, we consider errors that may have a
different (possibly non-Gaussian) dependency structure. We consider another multi-
variate distribution, known as a copula, with uniformly distributed marginals scaled
such that they have the same value as the marginal means and standard deviations
in subsection 3.2.1.

A copula C : [0,1]¢ — [0,1] is a joint cumulative distribution function, of a d-
dimensional random vector, with uniform marginal distributions [22]. Sklar’s theorem
[30] states that any multivariate cumulative distribution function with continuous
marginal distributions can be written in terms of d uniform marginal distributions
and a copula that describes the correlation structure between them. While there
are numerous families of copulas, we consider the symmetric t-copula, C?, the copula
underlying the multivariate ¢-distribution, which depends on the parameter v and the
correlation matrix R¥~!. We fix v = 1 so that samples have a higher probability of
being drawn toward the edges of the [0,1]¢ hypercube; see [22]. Note that v — oo
can be thought of as sampling from the Gaussian copula.

Correlated samples x = (x1,---,xd)" ~ C! that are generated in [0,1]¢ then
need to be rescaled such that each marginal is uniformly distributed in an interval
[z, y;] C R, with mean p; and standard deviation o; for ¢ € {1,...,d}. By defini-
tion, a marginal uniform distribution on [, y;] has mean (x; + y;)/2 and variance
(yi — 2;)%/12 which we set to u; and o2, respectively. Solving these equations, we
find that the desired marginals are umform distributions on [p; — V30, wi + \/goi].
Thus, setting 2v/30;x; + i — V/30; guarantees that the generated samples x ~ C*
have the same marginal means p; and standard deviations o; as the Gaussian dis-
tributions. This allows us to compare performance results in section 4. The t-
copula sampling rules (Rule 3 and Rule 4) are therefore defined componentwise as

© 2022 Kamran Pentland

Downloaded 10/24/22 to 137.205.57.19 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

STOCHASTIC PARAREAL S93

ak 1 (i) = 2v/Boixi 4+ i — V3oy, for i € {1,...,d}, with x ~ C' and parameters j;
and o; chosen to be identical to Rule 1 and Rule 2, respectively.

Note that this copula construction can be extended to other families of copulas
(e.g., the Gaussian copula) and to copulas with different marginal distributions (e.g.,
Gaussian, t, or logistic marginals). Therefore, sampling from the Gaussian multivari-
ate distributions in subsection 3.2.1 can be considered a special case of these more

general copulas.

3.3. Convergence. Independent simulations of Py will return a numerical so-
lution U¥ which, along with k,, vary stochastically—since the optimal initial values
chosen will vary between simulations. Given the randomness in these quantities, we
can discuss the convergence of P, in two ways.

First, consider convergence in terms of minimizing the random variable ks by
studying P(ks < kgq). Given there are no analytical results for P guaranteeing
that k; < N for any given problem, proving that P(ks < k4) = 1, or at least
E(ks) = 25:1 kP(ks = k) < kq, seems to be analytically intractable. However,
we can qualitatively discuss P(ks < kq) and E(ks) with respect to the number of
samples M. Consider the following cases:

o M =1.
Running Py is equivalent to running P, hence the convergence of P follows
from that of P and therefore E(k;) = ks = kq.
o 1 <M< oo
For finitely many samples, we estimate the discrete probability distributions
P(ks = k) and observe, in all numerical experiments (see section 4), that
P(ks < kq) — 1 for M =~ 10. Moreover, we observe that P(ks < kq) increases
and E(k;) decreases for increasing M — with E(ks) < kg for all values of M
tested.
o M — oo.
If we were able to take infinitely many samples, P, effectively samples every
possible value in the support of ®, i.e., every initial value that has a nonzero
probability of being sampled from ®. Therefore, if ® has infinite support,
e.g., the Gaussian distribution, all possible initial values in R¢ are sampled
and propagated, hence the fine solution will be recovered almost surely in
E(ks) = ks = 2 iterations. Note this is the smallest value ks can take to
converge assuming convergence does not occur following the first iteration—
although the algorithm could be modified such that convergence occurs almost
surely in ks = 1 iterations as M — oo. In subsection 4.1, we illustrate
this property numerically by taking a large number of samples for a single
realization of Ps.
In the scenario that P, converges in ks = N iterations (irrespective of the value of
M), it will return the fine solution just as P does when k; = N (having propagated
the exact initial value at Ty sequentially N times using F).

Second, consider convergence in terms of the stochastic solution U¥ (3.3) ap-
proaching (in the mean-square sense) the fine solution U, as k increases. In the nu-
merical experiments in section 4, we did not observe a case where P, fails to converge
to the fine solution. In fact, we observe tight confidence intervals on the numerical
errors between UF and U,, upon multiple realizations of Py (see Figures 7 and 9).
We may expect P, to fail to converge (i.e., solutions blow up) in cases in which P
also fails—typically this means that a more accurate coarse solver is required for both
algorithms. It should be noted, however, that because Ps; samples M initial values,

© 2022 Kamran Pentland

Downloaded 10/24/22 to 137.205.57.19 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

S94 PENTLAND ET AL.

Tteration k = 2 Iteration k = 3

C,1 M M M M, M, C C C, 1 M 2M M
I T T T T T T — & 0 T T T T

|
T
h T T3 Tw Tz T Tn i Ty T T T3 T T Ty T

F1a. 4. Illustration of a possible processor configuration if two subintervals were to converge
between iterations two and three of Ps. The letter C' denotes a converged subinterval, the number 1
denotes a subinterval where we propagate the converged initial value from the preceding subinterval
using F, and the letter M denotes the number of samples taken in an unconverged subinterval.

only M’ out of the M propagated solutions may blow up in each time subinterval,
due to the poor coarse solver, and so P, could in fact locate a solution in cases where
‘P cannot—although this is not tested here.

3.4. Computational complexity. At each iteration, P, runs the fine solver
more frequently than P, albeit still in parallel, and therefore requires a larger number
of processors. The first iteration of P, requires N processors; however, once sampling
begins in k > 2, it requires at most M(N — I — 1) + 1 processors — assuming I sub-
intervals converge during £ = 1. While we assume processors are in abundance, this
number scales directly with M and so it is important to keep M to a minimum if
limited processing power is available in practice.

As the stochastic iterations progress, the number of processors required, i.e.,
M(N — I —1)+ 1, decreases as the number of converged subintervals, I, increases—
leaving a growing number of processors idle. Each additional subinterval that con-
verges leaves M idle processors that we can reassign to do additional sampling and
propagation. We assign each set of M idle processors to the earliest unconverged
subinterval with the least number of samples, ensuring all processors are working at
all times to explore the solution space for the true initial values (see Figure 4 for
an illustration). We do not explicitly write the pseudocode for reassigning the idle
processors in Algorithm 2 (lines 10-22) to avoid additional complexity—the process
is, however, implemented in the numerical experiments in section 4.2

In terms of timings, an iteration of P, takes approximately the same wallclock
time as one of P. In this regard, we assume that the extra serial costs in Py, e.g.,
correlation estimation, selecting optimal samples, and the extra G runs, take negligible
wallclock time when compared to a single run of F. Therefore, the wallclock time for
P, will be lower than for P if ks < kq. This comes at a cost of requiring O(MN)
processors rather than N to solve the problem. However, it should be highlighted
that if Ps converges in even one less iteration than P, we avoid an extra run of F
which may save a large amount of wallclock time.

4. Numerical results. In this section, we compare the numerical performance
of P and P, on systems of one, two, and three ODEs of varying complexity.®> Both
algorithms use RK4 methods to carry out integration, with G using time step 67 and
F using time step ¢, the latter at least 75 times smaller than the former. We quantify
the performance of Py by estimating the distributions of k4 for each sampling rule and

2T increase efficiency further we also attempted to store previously sampled and propagated fine
trajectories to use in future iterations of the algorithm; however, they did not improve performance.
This was because only the most recent samples were ever chosen in each iteration (results not shown).

3All algorithms were coded in MATLAB and simulations were run using HPC facilities at the
University of Warwick. Samples code for both P and Ps can be found in the public repository at
https://github.com/kpentland/StochasticParareal.

© 2022 Kamran Pentland

https://github.com/kpentland/StochasticParareal

Downloaded 10/24/22 to 137.205.57.19 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

STOCHASTIC PARAREAL S95

by measuring the accuracy of the stochastic solutions against those obtained serially
with F. Since a limited number of processors were available for these experiments,
the results are based not on calculating wallclock runtimes but on comparing the
convergence rates kg and ks—which are independent of the number of processors
used. Additional results for these test cases, as well as two further test problems, are
given in the supplementary materials (M141423SupMat.pdf [local/web 1.21MB]).

4.1. Scalar nonlinear equation. First, we consider the nonlinear ODE

(4.1) % = sin(uy) cos(uy) — 2uy + e /10 sin(5¢t) + In(1 + t) cos(t),

with initial value uq(0) = 1 [6]. Discretize the time interval ¢ € [0,100] using N = 40
subintervals, coarse time steps §7 = 100/80, and fine time steps 6t = 100/8000. Nu-
merical solutions to (4.1) are shown on the interval [0, 18] in Figure 5(a). Determinis-
tically, P locates a solution in kg = 25 iterations using error tolerance ¢ = 10719, P,
converges in a varying number of iterations ks with P(ks < kq) = 1—see Figure 5(b)
for convergence of 10 independent simulations using M = 3. From this plot, we see
that by taking just three samples, P, reduces the number of iterations by almost a
factor of two—from 25 to approximately 14 (on average).

When M is increased above one, Ps begins generating stochastic solutions that
converge in a varying number of iterations ks. In order to accurately compare kg with
the discrete random variable kg, we run 2000 independent simulations of Py to esti-
mate the distribution of kg for a given M. Upon estimating these distributions, it was
found that P(ks; < 25) = 1 for each of the four sampling rules (V M > 1), meaning that
by doubling the number of processors we can beat parareal with probability one. The
estimated distributions of ks, using sampling rule 1 (the other rules perform similarly),
as a function of M are given in Figure 6(a). The stacked bars represent the estimated
discrete probability of a simulation converging in a given number of iterations. The
results show P, converging in just five iterations in the best case—demonstrating P;
has the potential to yield significant parallel speedup, given sufficiently many samples
are drawn. Figure 6(b) emphasizes the power of the stochastic method, showing that

2 T

F solution
F| o Ps solution
A

uy (t)

[UF - U

0 3 6 9 12 15 18 0 5 10 15 20 25
¢ Iteration (k)

(a) (b)

Fic. 5. (a) Numerical solution of (4.1) over [0,18] using F serially and a single realization of
Ps. Note that only a subset of the fine times steps of the Ps solution are shown for clarity. (b)
Errors at successive iterations of P (black line) and 10 independent realizations of Ps (blue lines).
Horizontal dashed red line represents the stopping tolerance € = 10710, Note that both panels use
Ps with sampling rule 1 and M = 3.

© 2022 Kamran Pentland

https://epubs.siam.org/doi/suppl/10.1137/21M1414231/suppl_file/M141423SupMat.pdf

Downloaded 10/24/22 to 137.205.57.19 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

S96 PENTLAND ET AL.

25 ; ;
—&—Rule 1]
L —&—Rule 2| |
[\ —&—Rule 3| |
20 \ —& Rule 4/
=) — [\\ i
2 Tl N i
& H=T]
< i
3] 4
P10 < k, < 15) [1
[P(15 < k, < 25) 10 f]
P (k, = 25) [:
—e—P(k, < 25) [i]
r b
55U X000 OO OO 5 : .
ISR IO AR S SR SR SR S
AR 100 10t 102 103
Number of samples (M) Number of samples (M)
(a) (b)

Fic. 6. (a) Estimated discrete distributions of ks as a function of M for sampling rule 1. (b)
Estimated expectation of ks as a function of M, calculated using estimated distributions of ks for
each sampling rule with error bars representing £+ two standard deviations sd(ks). Distributions in
both panels are estimated by simulating 2000 independent realisations of Ps for each M.

x107H

Error
-
5
—
ﬁ
3
|

P error
s Mean P; error |
Mean P; error £ two std. devs.
5 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Fi1c. 7. Errors of P (red) and mean Ps (black) solutions against the serial F solution over time.
The mean error is obtained by running 2000 independent realizations of Ps with sampling rule 2
and M = 4—the confidence interval representing the mean + two standard deviations is shown in
light blue.

the estimated expected value E(k;) decreases as M increases, with the estimated stan-

dard deviation sd(ks) = \/Zszl(k — E(ks))?P(ks = k) decreasing too. The improved
performance of Py as M increases reflects what was discussed in subsection 3.3. In
particular, we ran a single realization of P, with M = 10%, observing that P, con-
verged in four iterations (result not shown), confirming that k4 continues to decrease
for increasing M. By looking at Figure 6(b), we see that sampling rule 1 yields the
lowest expected values of kg for small values of M, with all sampling rules performing
similarly for large M.

To verify accuracy of the stochastic solutions, we plot the difference between the
mean of 2000 independent realizations of P, and the serially calculated F solution
in Figure 7. Also shown is the confidence interval given by two standard deviations
of the stochastic solutions (which is at most O(10711)) and the error generated by

© 2022 Kamran Pentland

Downloaded 10/24/22 to 137.205.57.19 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

STOCHASTIC PARAREAL S97

P. Accuracy is maintained with respect to the fine solution across time, even more
so than the P solution. See SM1 for numerical results of P, applied to a stiff scalar
nonlinear ODE. In this case, the stiffness of the equation demands a higher value of
M to improve ks—something we also observe for the Brusselator in subsection 4.2.

4.2. The Brusselator system. Next, consider the Brusselator system

d
(4.22) % — A+ wPus — (B+Dus,
d

(42b) % = BU1 — U%IUQ,

a pair of stiff nonlinear ODEs that model an autocatalytic chemical reaction [15]. Us-
ing parameters (A, B) = (1, 3), trajectories of the system exhibit oscillatory behaviour
in phase space, approaching a limit cycle (as ¢ — oco) that contains the unstable fixed
point (1,3)T. Now that d > 1, we use bivariate distributions to sample the initial
values—meaning we can compare the effects of including or excluding the correlations
between variables. System (4.2) is solved using initial values u(0) = (1,3.07)T over
time interval ¢t € [0,15.3] with N = 25, §T = 15.3/25, and §t = 15.3/2500 [32]. The
numerical solution to (4.2) in phase space and convergence of the successive errors are
reported in SM2. With these parameters and a tolerance of € = 1076, P takes kq = 7
iterations to stop and return a numerical solution.

The estimated distributions of ks for sampling rule 1 are given in Figure 8(a).
Even though P takes just k; = 7 iterations to stop, we observe that P, can still reach
the desired tolerance in 5 or 6 iterations—albeit requiring larger values of M. We
believe this is due to the stiffness of the system and poor accuracy of the explicit
G solver—results presented for the stiff ODE in SM1 appear to confirm this. Using
adaptive time-stepping methods could be a way to reduce the value of M needed to
converge in fewer ks [19]. The solid lines in Figure 8(b) show that, using sampling rules
1 or 3, P, only requires M ~ 10 to beat parareal almost certainly, i.e., to guarantee
that P(ks < 7) — 1. Sampling rules 1 and 3 outperform 2 and 4 in this particular
system. Note, however, the stark decrease in performance if instead uncorrelated

1 — o0 0 0 0 0 0 0 0 @ 9 —0—08 ——8—
i - o <]
09 o o
0.8 [
0.7
206
205
S —e—Rule 1
A 04 —e—Rule 2
0.3 1 —e—Rule 3
’ Pk =5) —e—Rule 4 B
0.2 I:lp(k; =6) — o —Rule 1 (uncorrelated)
— — & —Rule 2 (uncorrelated) |
o1 L |[EEP(k =7)
: —e—P(k, <7) — o —Rule 3 (uncorrelated) | |
o Ugl ermr == — & —Rule 4 (uncorrelated)
ST RSP R SRS R o 5
10 10
Number of samples (M Number of samples (M)

(a) (b)

Fic. 8. (a) Estimated discrete probabilities of ks as a function of M for sampling rule 1. (b)
Estimated probability that the convergence rate ks is smaller than kg = 7 as a function of M for
the sampling rules with (solid lines) and without (dashed lines) correlations. Distributions were
estimated by simulating 2000 independent realisations of Ps for each M.

© 2022 Kamran Pentland

Downloaded 10/24/22 to 137.205.57.19 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

S98 PENTLAND ET AL.

7 -7

5 x10 ‘ ‘ ‘ 5 x10

—— P error —— P error

4 Mean P; error i 4 Mean Py error

3l Mean P, error + two std. devs. | 3l Mean Py error £ two std. devs.

2 2

1 1 1 1
= $-<
20 L 2o ¢
= = ‘\

s 1 1

2 2

_3 - ,3 |-

4 -4 -

-5 -5

0 5 10 15 0 5 10 15

t t

(a) (b)

F1G. 9. Errors of P (red) and mean Ps (black) solutions against the F solution. The mean error
is obtained by running 2000 independent realisations of Ps with sampling rule 4 with M = 200—the
confidence interval representing the mean + two standard deviations is shown in light blue. Panel
(a) displays errors for the ui component of the solution while (b) displays the ua component.

samples are generated within P, (dashed lines). This demonstrates the importance of
accounting for the dependence between variables in nonlinear systems such as (4.2).
Observe again, in Figure 9, how the mean Py solutions attain accuracy equivalent to,
or better than, the P solutions, with standard deviations at most O(107°).

Further results of P, applied to (4.2) and an additional two-dimensional nonlinear
system are presented in SM2 and SM3, respectively. Observe again that for the
less stiff system in SM3, we require less sampling to improve ks compared to the
Brusselator—further highlighting the demand for higher M in stiff systems to improve
the convergence rate.

4.3. The Lorenz system. Finally, we consider the Lorenz system

du

(4.3a) dftl = 71(u2 — u1),
du

(4.3b) 7; = YUl — U1U3 — U2,
du:

(4.3c) 7; = Uruz — Y3U3,

a simplified model for weather prediction [18]. With the parameters (v1,72,73) =
(10,28,8/3), (4.3) exhibits chaotic behavior where trajectories with initial values close
to one another diverge exponentially. This will test the robustness of P, as small
numerical differences between initial values will mean that errors can grow rapidly as
time progresses. We solve (4.3) using initial values u(0) = (=15, —15,20)T over the
interval [0, 18], discretized using N = 50 subintervals and time steps 67 = 18/250 and
§t = 18/18750. With a tolerance of e = 1078, P takes kg = 20 iterations to converge.

Running P; to compare the performance of the sampling rules, we see again
in Figure 10(a) that taking correlated samples is much more efficient than not and
that only M ~ 10 samples are required to beat parareal with probability one. For
the chaotic trajectories generated by (4.3), sampling close to the predictor-corrector,
rules 2 and 4, yields superior performance compared to rules 1 and 3 for small values

© 2022 Kamran Pentland

Downloaded 10/24/22 to 137.205.57.19 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

STOCHASTIC PARAREAL S99

1

5 = d ol il
@] 0.9
At 0.8 -
J 1 EEP(- 16)
/ 10Ty P (k. = 17)
7 206l P = 15)
& | 2 P (k. = 19)
/ % 05 P (k, = 20)
/ —e—Rule 1 1z —e—P(k, <20)
—e—Rule 2 1 & 041
—e—Rule 3 0.3 F
—e—Rule 4 1
— o —Rule 1 (uncorrelated) 0.2
— & —Rule 2 (uncorrelated) | | 01 j
— & —Rule 3 (uncorrelated) | | :
— & —Rule 4 (uncorrelated) 0 Ue
: AL I S N S,

10t 10?
Number of samples (M)

(a) (b)

Number of samples

M)

FiGc. 10. (a) Estimated probability that the convergence rate ks is smaller than kg = 20 as
a function of M for the sampling rules with (solid lines) and without (dashed lines) correlations.
Distributions were estimated by simulating 2000 independent realizations of Ps for each M. (b)
Estimated discrete probabilities of ks as a function of M for sampling rule 2.

of M. Figure 10(b) displays estimated distributions for varying M using sampling
rule 2—yielding a best convergence rate k, = 16 for approximately 25% of runs with
M = 1000. These results demonstrate the robustness of Py and that the sampling
and propagation process is not impeded by the exponential divergence of trajectories.
Additional results of Py applied to (4.3) are given in SM4.

5. Conclusions. In this paper, we have extended the parareal algorithm using
probabilistic methods to develop a stochastic parareal algorithm for solving systems
of ODEs in a time-parallel manner. Instead of passing deterministically calculated
initial values into parareal’s predictor-corrector, stochastic parareal selects more ac-
curate values from a randomly sampled set, at each temporal subinterval, to converge
in fewer iterations. In section 4, we compared performance against the deterministic
parareal algorithm on several low-dimensional ODE systems of increasing complexity
by calculating the estimated convergence rate distributions (upon multiple indepen-
dent realization of stochastic parareal) with increasing numbers of random samples
M. By taking just M ~ 10 (correlated) samples, the estimated probability of con-
verging sooner than parareal approached one in all test cases. Similarly, we observed
numerical convergence toward the fine (exact) solution with accuracy of similar order
to parareal and, in the spirit of probabilistic numerics [14, 24|, obtained a measure of
uncertainty over the ODE solution upon multiple realizations of the algorithm.

The probability that stochastic parareal converges faster than standard parareal
depends on a number of factors: the complexity of the problem being solved, the
number of time subintervals (), the accuracy of the coarse integrator (G), the number
of random samples (M), and the type of sampling rule in use. Sampling rules 1 and 3
(sampling close to the fine solutions) outperformed rules 2 and 4 (sampling close to the
predictor-corrector solutions) for the ODE systems in subsection 4.1, subsection 4.2,
and SM1. The reverse was true, however, for the systems in subsection 4.3 and
SM3, making it difficult to determine an optimal rule for a general ODE system.
To overcome having to choose a particular sampling rule, one could linearly combine
different rules or even sample from multiple rules simultaneously. We would suggest
sampling from probability distributions with infinite support, i.e., the Gaussians (rules

© 2022 Kamran Pentland

Downloaded 10/24/22 to 137.205.57.19 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

S100 PENTLAND ET AL.

1 and 2), so that samples can be taken anywhere in R? with nonzero probability.
Having finite support may have created difficulty for the uniform marginal ¢-copulas
(rules 3 and 4) because samples could only be taken in a finite hyperrectangle in
R —problematic if the exact solution were to lay outside of this space.

When solving stiff ODEs (see subsection 4.2 and SM1), results indicated that
stochastic parareal demanded increasingly high sampling to converge sooner than
parareal than for nonstiff systems. For example, we observe that when taking M =
100 samples in the nonstiff scalar ODE in Figure 6, the expected convergence rate
decreases from 25 to 7, whereas for the stiff scalar ODE in SM1, the rate only drops
from 8 to 6. A similar observation can be made in the two-dimensional test cases in
subsection 4.2 (stiff) and SM3 (nonstiff). These results exemplify the role that system
complexity, e.g., stiffness or chaos, plays in the performance of both algorithms. In
SM1, stochastic parareal was also shown to perform more efficiently for problems
that deterministic parareal itself struggles with, i.e., cases in which the accuracy of
the coarse integrator G is poor. In SM3 it was also observed that, for low sample
numbers (M = 2), stochastic parareal actually converged in one more iteration than
parareal in less than 2.5% of cases. This suggests there may be a minimum number of
samples required to beat parareal in some situations—something to be investigated
with further experimentation.

In summary, we have demonstrated that probabilistic methods and additional
processors can, for low-dimensional ODEs, be used to increase the parallel scalability
of existing time-parallel algorithms. Next we need to investigate possible improve-
ments and generalizations, for example, determining whether the algorithm scales for
larger systems of equations—essential if it is to be used for solving PDE problems.
Moreover, we need to determine whether we can design adaptive sampling rules that
do not need to be specified a priori to simulation. Finally, we would aim to make use
of the whole ensemble of fine propagated trajectories rather than using only one—
avoiding the waste of valuable information about the solution at the coarse and fine
resolutions. An approach in this direction has recently been proposed [26], making use
of ideas from the field of probabilistic numerics to adopt a more Bayesian approach
to this problem.

Acknowledgments. The authors would like to acknowledge the University of
Warwick Scientific Computing Research Technology Platform for assistance in the
research described in this paper and the anonymous reviewers for their insightful
comments on improving this manuscript.

REFERENCES

[1] L. BaAFFIcO, S. BERNARD, Y. MaDpAy, G. TURINICI, AND G. ZERAH, Parallel-in-time
molecular-dynamics simulations, Phys. Rev. E, 66 (2002), 057701, https://doi.org/10.
1103/PhysRevE.66.057701.

[2] G. BAL, On the convergence and the stability of the parareal algorithm to solve partial dif-
ferential equations, in Domain Decomposition Methods in Science and Engineering, Lect.
Notes Comput. Sci. Eng. 40, Springer, New York, 2005, pp. 425-432, https://doi.org/10.
1007/3-540-26825-1_43.

[3] G. BAL AND Y. MADAY, A “Parareal” Time Discretization for non-linear PDE’s with ap-
plication to the pricing of an American put, in Recent Developments in Domain De-
composition Methods, Springer, Berlin, 2002, pp. 189-202, https://doi.org/10.1007/
978-3-642-56118-4_12.

[4] A. BELLEN AND M. ZENNARO, Parallel algorithms for initial-value problems for difference and
differential equations, J. Comput. Appl. Math., 25 (1989), pp. 341-350, https://doi.org/
10.1016,/0377-0427(89)90037-X.

© 2022 Kamran Pentland

https://doi.org/10.1103/PhysRevE.66.057701
https://doi.org/10.1103/PhysRevE.66.057701
https://doi.org/10.1007/3-540-26825-1_43
https://doi.org/10.1007/3-540-26825-1_43
https://doi.org/10.1007/978-3-642-56118-4_12
https://doi.org/10.1007/978-3-642-56118-4_12
https://doi.org/10.1016/0377-0427(89)90037-X
https://doi.org/10.1016/0377-0427(89)90037-X

Downloaded 10/24/22 to 137.205.57.19 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

(5]
[6]

[7]

[10]

(11]

(12]

(13]

STOCHASTIC PARAREAL S101

K. BURRAGE, Parallel and Sequential Methods for Ordinary Differential Equations, Clarendon
Press, Burlington, MA, 1995.

P. CHARTIER AND B. PHILIPPE, A parallel shooting technique for solving dissipative ODE’s,
Computing, 51 (1993), pp. 209-236, https://doi.org/10.1007/BF02238534.

W. R. ELwasir, S. S. FOLEY, D. E. BERNHOLDT, L. A. BERRY, D. SAMADDAR, D. E. NEWMAN,
AND R. SANCHEZ, A dependency-driven formulation of parareal: Parallel-in-time solution
of PDEs as a many-task application, in Proceedings of the 2011 ACM International Work-
shop on Many Task Computing on Grids and Supercomputers, New York, 2011, ACM
Press, pp. 15-24, https://doi.org/10.1145/2132876.2132883.

S. ENGBLOM, Parallel in time simulation of multiscale stochastic chemical kinetics, Multiscale
Model. Simul., 8 (2009), pp. 4668, https://doi.org/10.1137/080733723.

P. F. FISCHER, F. HECHT, AND Y. MADAY, A parareal in time semi-implicit approximation
of the Navier-Stokes equations, in Domain Decomposition Methods in Science and En-
gineering, Lect. Notes Comput. Sci. Eng. 40, Springer, New York, 2005, pp. 433-440,
https://doi.org/10.1007/3-540-26825-1_44.

M. J. GANDER, 50 years of time parallel time integration, in Multiple Shooting and Time
Domain Decomposition Methods, Springer, New York, 2015, pp. 69-113, https://doi.org/
10.1007/978-3-319-23321-5_3.

M. J. GANDER AND E. HAIRER, Nonlinear convergence analysis for the parareal algorithm, in
Domain Decomposition Methods in Science and Engineering, Lect. Notes Comput. Sci. Eng.
60, Springer, New York, 2008, pp. 45-56, https://doi.org/10.1007/978-3-540-75199-1_4.

M. J. GANDER AND S. VANDEWALLE, Analysis of the parareal time-parallel time-integration
method, SIAM J. Sci. Comput., 29 (2007), pp. 556-578, https://doi.org/10.1137/
05064607X.

I. GARRIDO, M. S. ESPEDAL, AND G. E. FLADMARK, A convergent algorithm for time paral-
lelization applied to reservoir simulation, in Domain Decomposition Methods in Science
and Engineering, Lect. Notes Comput. Sci. Eng. 40, Springer, New York, 2005, pp. 469-476,
https://doi.org/10.1007/3-540-26825-1_48.

P. HENNIG, M. A. OSBORNE, AND M. GIROLAMI, Probabilistic numerics and uncertainty in
computations, Proc. A 471 (2015), 20150142, https://doi.org/10.1098 /rspa.2015.0142.

R. LEFEVER AND G. NicoLris, Chemical instabilities and sustained oscillations, J. Theoret.
Biol., 30 (1971), pp. 267-284, https://doi.org/10.1016/0022-5193(71)90054-3.

F. LEcorLL, T. LELIEVRE, K. MYERSCOUGH, AND G. SAMAEY, Parareal computation of sto-
chastic differential equations with time-scale separation: A numerical convergence study,
Comput. Vis. Sci., 23 (2020), pp. 1-18, https://doi.org/10.1007/s00791-020-00329-y.

J. L. Lions, Y. MADAY, AND G. TURINICI, Résolution d’EDP par un schéma en temps pararéel,
C. R. Math. Acad. Sci. Paris Ser. I Math., 332 (2001), pp. 661-668, https://doi.org/10.
1016/S0764-4442(00)01793-6.

E. N. LORENZ, Deterministic Nonperiodic Flow, J. Atmos. Sci., 20 (1963), pp. 130-141, https:
//doi.org/10.1175/1520-0469(1963)020(0130:dnf)2.0.co;2.

Y. MADAY AND O. MULA, An adaptive parareal algorithm, J. Comput. Appl. Math., 377 (2020),
112915, https://doi.org/10.1016/j.cam.2020.112915.

Y. MADAY AND G. TURINICI, A parareal in time procedure for the control of partial differential
equations, C. R. Math. Acad. Sci. Paris, 335 (2002), pp. 387-392, https://doi.org/10.1016/
S1631-073X(02)02467-6.

Y. MADAY AND G. TURINICI, The parareal in time iterative solver: A further direction to
parallel implementation, in Domain Decomposition Methods in Science and Engineering,
Lect. Notes Comput. Sci. Eng. 40, Springer, New York, 2005, pp. 441-448, https://doi.
org/10.1007/3-540-26825-1_45.

. B. NELSEN, An Introduction to Copulas, Springer, New York, 2006.

NIEVERGELT, Parallel methods for integrating ordinary differential equations, Commun.
ACM, 7 (1964), pp. 731-733, https://doi.org/10.1145/355588.365137.

. J. OATES AND T. J. SULLIVAN, A modern retrospective on probabilistic numerics, Statist.
Comput., 29 (2019), pp. 1335-1351, https://doi.org/10.1007/s11222-019-09902-z.

. W. ONG AND J. B. SCHRODER, Applications of time parallelization, Comput. Vis. Sci., 23
(2020), pp. 1-11, https://doi.org/10.1007/s00791-020-00331-4.

. PENTLAND, M. TAMBORRINO, T. J. SULLIVAN, J. BUCHANAN, AND L. C. APPEL, GParareal:
A Time-Parallel ODE Solver Using Gaussian Process Emulation, arXiv:2201.13418, 2022.

P. SAHA, J. STADEL, AND S. TREMAINE, A parallel integration method for solar system dynam-
ics, Astronom. J., 114 (1997), pp. 409-415, https://doi.org/10.1086,/118485.

D. SAMADDAR, D. P. COSTER, X. BONNIN, L. A. BERRY, W. R. ELWASIF, AND D. B. BATCHE-
LOR, Application of the parareal algorithm to simulations of ELMs in ITER plasma, Com-
put. Phys. Commun., 235 (2019), pp. 246-257, https://doi.org/10.1016/j.cpc.2018.08.007.

bal=>

s~ WQ

© 2022 Kamran Pentland

https://doi.org/10.1007/BF02238534
https://doi.org/10.1145/2132876.2132883
https://doi.org/10.1137/080733723
https://doi.org/10.1007/3-540-26825-1_44
https://doi.org/10.1007/978-3-319-23321-5_3
https://doi.org/10.1007/978-3-319-23321-5_3
https://doi.org/10.1007/978-3-540-75199-1_4
https://doi.org/10.1137/05064607X
https://doi.org/10.1137/05064607X
https://doi.org/10.1007/3-540-26825-1_48
https://doi.org/10.1098/rspa.2015.0142
https://doi.org/10.1016/0022-5193(71)90054-3
https://doi.org/10.1007/s00791-020-00329-y
https://doi.org/10.1016/S0764-4442(00)01793-6
https://doi.org/10.1016/S0764-4442(00)01793-6
https://doi.org/10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2
https://doi.org/10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2
https://doi.org/10.1016/j.cam.2020.112915
https://doi.org/10.1016/S1631-073X(02)02467-6
https://doi.org/10.1016/S1631-073X(02)02467-6
https://doi.org/10.1007/3-540-26825-1_45
https://doi.org/10.1007/3-540-26825-1_45
https://doi.org/10.1145/355588.365137
https://doi.org/10.1007/s11222-019-09902-z
https://doi.org/10.1007/s00791-020-00331-4
https://arxiv.org/abs/2201.13418
https://doi.org/10.1086/118485
https://doi.org/10.1016/j.cpc.2018.08.007

Downloaded 10/24/22 to 137.205.57.19 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

S102 PENTLAND ET AL.

[29] D. SAMADDAR, D. E. NEWMAN, AND R. SANCHEZ, Parallelization in time of numerical simula-
tions of fully-developed plasma turbulence using the parareal algorithm, J. Comput. Phys.,
229 (2010), pp. 6558-6573, https://doi.org/10.1016/j.jcp.2010.05.012.

[30] A. SKLAR, Fonctions de Répartition ¢ n Dimensions et Leurs Marges, Publications de L’Institut
de Statistique de L’Université de Paris, 8 (1959), pp. 229-231.

[31] A. ToseLLl AND O. WIDLUND, Domain Decomposition Methods—Algorithms and Theory,
Springer, New York, 2005.

[32] L. TREFETHEN, A. BIRKISSON, AND T. DRISCOLL, Ezploring ODEs, STAM, Philadelphia, 2017.

[33] J. M. TRINDADE AND J. C. PEREIRA, Parallel-in-time simulation of two-dimensional, unsteady,
incompressible laminar flows, Numerical Heat Transfer Part B Fundamentals, 50 (2006),
pp. 25—40, https://doi.org/10.1080/10407790500459379.

© 2022 Kamran Pentland

https://doi.org/10.1016/j.jcp.2010.05.012
https://doi.org/10.1080/10407790500459379

	Introduction
	The parareal algorithm
	Stopping criteria and other properties

	A stochastic parareal algorithm
	The algorithm
	Sampling rules
	Multivariate Gaussian
	Multivariate copula

	Convergence
	Computational complexity

	Numerical results
	Scalar nonlinear equation
	The Brusselator system
	The Lorenz system

	Conclusions
	References

