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Abstract
The verification and calibration of a new quasi-linear transport model with a large database of
gyrokinetic turbulence simulations is presented in this paper. In a previous paper (Staebler
et al 2020 Plasma Phys. Control. Fusion 63 015013), a model for the saturated spectrum of
electric potential fluctuations was developed based on the properties of the non-linear 3D
spectrum. In this paper, a modification to the overall multiplicative factor in this model is
found to be necessary to improve the fit to scans of the temperature and density gradients. The
error in the fit of the quasi-linear fluxes of electron and ion energy fluxes is significantly better
than for previous saturation models. The spectral shift model for the impact of equilibrium
E × B velocity shear (Staebler et al 2013 Phys. Rev. Lett. 110 055003) and the zonal flow
mixing model for electron-scale turbulence (Staebler et al 2016 Phys. Plasmas 23 062518) are
both revised to be compatible with this new model. The models for the loss of bounce
averaging and electron collisions in the TGLF reduced linear equations (Staebler et al 2005
Phys. Plasmas 12 102508) are also changed to improve the linear eigenmodes.

Keywords: tokamak transport, quasi-linear model, turbulence, gyrokinetic

1. Introduction

The quasi-linear approximation assumes the phase shifts that
drive transport fluxes are determined by the most unstable
linear eigenmodes [5]. This is generally found to be accu-
rate for flux tube gyrokinetic turbulence simulations that
saturate by mode coupling [6–8] and has been confirmed
in experiments [9]. The quasi-linear approximation will be
shown to be valid to high accuracy for a large database of
gyrokinetic simulations in this paper. The saturated ampli-
tude of the fluctuations of the fields and distribution func-
tion are small compared to their equilibrium by the same
ordering parameter (frequency/ion gyrofrequency≈ ion gyro-
radius/equilibrium gradient length) that was employed in
the expansion of the Fokker–Plank equation to derive the
gyrokinetic equation [10]. This small amplitude delta-f

∗ Author to whom any correspondence should be addressed.

approximation [11] follows from the balance of the non-linear
mode coupling rate and the linear growth rate. A model of
the saturated electric potential fluctuations, that multiply the
quasi-linear weights (phase shifts), is sufficient to compute
the transport fluxes driven by the turbulence in the quasi-
linear approximation. The first mode-coupling saturation mod-
els were 0D using only a single poloidal wavenumber mode to
compute the flux [12]. This was extended to 1D in the gyro-
fluid models GLF23 [13] and TGLF-SAT0 [14]. These models
have each poloidal wavenumber eigenmode given a saturated
intensity that is independent of the others in the 1D spectrum.
They were the first models to be calibrated with non-linear tur-
bulence simulations. A model that includes coupling between
poloidal wavenumbers, mediated by zonal flow mixing, fits
the 2D spectrum (radial and poloidal wavenumber) of the flux
surface average saturated potential fluctuations including elec-
tron scale modes [3] (TGLF-SAT1). In this paper a new model
(TGLF-SAT2), that includes the full 3D dependence (poloidal
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angle, radial and poloidal wavenumber) of the saturated inten-
sity [1], will be verified with a large database of gyrokinetic
simulations.

The motivation for examining the poloidal angle depen-
dence of the saturated intensity was the recent discovery that
the periodic flux tube radial wavenumber (kx) spectral code
CGYRO [15] does not give the same dependence of the fluxes
on flux surface elongation, and Shafranov shift, as the global
radial grid code GYRO [16]. This difference was traced to the
approximation for the gyro-average operator (Bessel function
in kx-space) mapping to the radial grid. This approximation
is in common use for global gyrokinetic codes with radial
grids. A complete Fourier transform of the radial grid in GYRO
recovers the CGYRO results but this is expensive computation-
ally. The approximate mapping was employed in the database
of GYRO runs used to fit all previous saturation models for
TGLF [17]. The new saturation model (SAT2) in this paper has
geometric factors to match the results of the CGYRO simula-
tions. The details of how these geometric factors were deter-
mined are given in a previous paper [1] where a new model
for the saturated 3D spectrum of electric potential fluctua-
tions from gyrokinetic turbulence simulations was presented.
This model was built, for the first time, using the linear eigen-
modes computed with the same gyrokinetic code (CGYRO
[15]) as the non-linear simulations. This eliminates the uncer-
tainty of the accuracy of the linear eigenmodes computed with
a reduced model like TGLF [4]. The 3D potential fluctuation
spectrum was examined, including the poloidal (ky), and radial
(kx) wavenumbers, and the dependence on the poloidal angle
(θ). The Miller geometry formalism for shaped toroidal mag-
netic flux surfaces [18, 19] was used. It was found that the geo-
metric metrics of the perpendicular wave vector, normalized
to the ion gyroradius at the local magnetic field strength, pro-
vided the functions needed to fit the poloidal angle dependence
of the non-linear fluctuation intensity. These functions capture
the flux surface shape dependence well. It will be shown in
this paper, that this same model, with some re-calibration, fits
a much larger set of gyrokinetic simulations.

The database of gyrokinetic simulations is described in
section 2. Fundamental tests of the quasi-linear approximation
are presented in section 3. The model for the saturation of the
zonal (axisymmetric, ky = 0) potential fluctuations is tested
in section 4 and found to agree very well with the CGYRO
cases. The details of the new model for the finite poloidal
wavenumbers (ky > 0) are presented in section 5. The verifi-
cation and calibration of the saturation model to the CGYRO
simulation database is presented in section 6. In section 7,
improvements to the TGLF linear fluid equation models for
electron collisions [20] and loss of bounce averaging [4] are
presented. The implementation of the new (SAT2) saturation
model in the quasi-linear TGLF transport flux calculation is
verified with the CGYRO database in section 8. The spectral
shift model [2] for equilibrium E × B velocity shear suppres-
sion of the turbulence is reformulated and simplified for the
SAT2 model in TGLF in section 9. The zonal flow mixing
model for electron scale turbulence [3] is also simplified and
calibrated for TGLF-SAT2 in section 10. A summary is given
in section 11 followed by an appendix A. The appendix A

discusses the transformation properties of quasi-linear fluxes
and the summation measure for the fluxes.

2. Gyrokinetic turbulence simulation database

In order to verify and calibrate the saturation model, a set of 64
CGYRO turbulence simulations, composed of 13 scans about
the GA standard (GASTD) case, were collected. The plasma
parameters of the GASTD case are derived from tokamak L-
mode conditions at mid-radius [13]. The scans cover most
of the typical range of parameters found in the core region
(inside the 80% flux surface) of L-modes and H-modes away
for the kinetic ballooning mode threshold (i.e. low β). The
GASTD case is well above the critical gradient for ion temper-
ature gradient (ITG) modes and none of the scans, even at the
lowest temperature gradient, enter into the non-linear Dimits
shift regime [21] where the fluxes collapse for some param-
eter regimes. The quasi-linear approximation will be verified
for all of the CGYRO simulations in this database. The param-
eters of the GASTD are: a/Lne = 1.0, a/Lni = 1.0, a/LTe

= 3.0, a/LTi = 3.0, ŝ = 1.0, q = 2.0, κ = 1.0, r/a = 0.5,
R/a = 3.0, δ = 0.0, Δ = dR/dr = 0.0, aνee/cs = 0.1, Ti/Te

= 1.0, βe = 0.0005. Note that finite electron collisions are
included in this base case. There are 64 cases in this database
but only 52 are unique. Most scans are for a single parame-
ter but scans 12 and 13 vary magnetic shear and safety factor
together such that ŝ = q/2. All are pure deuterium plasma with
equal density, density gradients and temperature gradients for
electrons and ions. Note that scan 7 is physical because the
length ‘a’ is arbitrary and r/R � 1.5/3.0. The first two scans
were used to determine the geometry dependence of the 3D
saturation model [1]. Many of the rest of the scans were part
of a study published by Belli et al [22]. The isotope depen-
dence explored in this study will be addressed in a separate
publication. The typical resolution used in these CGYRO tur-
bulence simulations [22] is as follows: 16 toroidal modes,
128 radial modes, 8 energy nodes, 16 pitch angle nodes, 28
poloidal angles. The intervals between wavenumbers are dky

= 0.067, dkx = 2πŝ dky/BOX_SIZE, BOX_SIZE = 6. The
BOX_SIZE determines the number of independent extended
ballooning modes in the simulation. The maximum ranges are
ky = 1.005 and kx = 10.67 for most cases. The multi-species
Sugama collision model [23] was used. Departures from the
GASTD parameters held fixed for the scan are indicated in the
last column of table 1. All of the CGYRO simulations were run
long enough to fully saturate (at least 1200 a/cs time units). The
runs were inspected to make sure there were no slow secular
trends in the fluxes over the time averaging window. The Miller
flux surface geometry model is used [18]. Miller geometry is
up/down symmetric so it does not exactly map to single null
flux surface geometries. The new saturation model will need
to be verified for general geometry in the future.

3. Fundamental tests of quasi-linear theory

The turbulent energy flux (Qa) and particle flux (Γa) through
a radial flux tube for the gyrokinetic simulation are computed
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Table 1. CGYRO gyrokinetic turbulence simulation database.

Scan Parameter Range Cases Fixed

1 κ 1.0, 2.0 1–5 νeea/cs = 0.05
2 Δ 0.0, −0.5 6–10 νeea/cs = 0.05
3 νee 0.05, 1.0 11–17
4 a/LT 1.25, 3.5 18–23
5 a/Ln 0.0, 3.0 24–30
6 νee 0.5, 1.0 31–37 a/Ln = 3.0
7 r/a 0.25, 1.5 38–43
8 R/a 2.0, 3.0 44–46
9 Ti/Te 0.5, 1.5 47–49
10 ŝ 0.166, 1.5 50–54
11 q 1.5, 3.0 55–57
12 q 1.6, 4.0 58–61 ŝ = q/2
13 q 1.6, 3.0 62–64 ŝ = q/2, a/Ln = 3.0

for each species (subscript a) by the formulas

Qa =
∑

ky

∑
kx

3
2

〈
Re

[
iky

aeφ̃∗
kx ,ky

ρsTe

ap̃a,kx ,ky

ρsneTe

]〉
t,θ

=
∑

ky

Qaky

(1)

Γa =
∑

ky

∑
kx

〈
Re

[
iky

aeφ̃∗
kx ,ky

ρsTe

aña,kx ,ky

ρsne

]〉
t,θ

=
∑

ky

Γaky .

(2)
Here the gyro-Bohm normalizations of the CGYRO code
were used [15]: cs =

√
Te/mD, a = minor radius at separatrix,

ρs = cs/Ωs, Ωs = eBunit/(mDc), Bunit =
q dψ
r dr [19] for poloidal

magnetic flux ψ, and mD = deuterium mass. The gyro-Bohm
normalization for energy flux in these units is neTecs(ρs/a)2.
The energy flux (equation (1) is produced by a radial E × B
drift driven by electric potential fluctuations φ̃kx ,ky that is aver-
aged with the fluctuations of the pressure moment of the
species distribution function ( p̃a,kx ,ky ). The angle bracket rep-
resents a time average (t) and a flux surface average over the
poloidal angle (θ). There is also a sum over the normalized
radial wavenumber (kx) which is equivalent to a radial average
over the periodic flux tube box.

The quasi-linear approximation to the turbulent flux evalu-
ates the non-linear flux formula with the most unstable eigen-
mode at each poloidal wavenumber δφky . Typically the most
unstable eigenmode is for kx = 0. The quasi-linear weights of
a linear eigenmode are defined by

WQQL
aky

=
3
2

〈
Re

[
iky

aeδφ̃∗ky
ρsTe

aδ p̃a,ky
ρsneTe

]〉
t,θ〈∣∣∣∣ aeδφ̃ky

ρsTe

∣∣∣∣
2
〉

t,θ

(3)

WΓQL
aky

=

〈
Re

[
iky

aeδφ̃∗ky
ρsTe

aδña,ky
ρsne

]〉
t,θ〈∣∣∣∣ aeδφ̃ky

ρsTe

∣∣∣∣
2
〉

t,θ

. (4)

The quasi-linear approximation is valid if the phase angle
between potential and velocity moments of the distribution

function in the non-linear turbulence preserves the linear
eigenmode phase angles contained in the quasi-linear weights.
This manifests itself as a preservation of the cross-phase
between different velocity moments of the distribution func-
tion, like electron density and electron temperature, that have
been measured in experiments [9, 24] and found to agree with
non-linear and quasi-linear calculations. The phase preserva-
tion can also be tested in gyrokinetic turbulence simulations
[6–8, 25]. In this paper the quasi-linear intensity spectrum
needed to exactly match the electron energy flux will be com-
puted. This will then be used to compute the ion energy and
particle fluxes from their respective quasi-linear weights mul-
tiplying this intensity spectrum. The difference between these
quasi-linear fluxes and the non-linear fluxes is a measure of
the error in the quasilinear approximation originating from the
quasi-linear weight. This test will be quantitatively verified for
the cases in the database. Note that the small contribution due
to the magnetic field fluctuations is not included in the CGYRO
fluxes.

Because the non-linear flux contribution for each ky are
summed over kx and flux surface averaged, it is not possible to
directly compute the contribution to the electric potential fluc-
tuation intensity from a single linear eigenmode. Instead, the
quasi-linear intensity IQL

ky
required to make the quasi-linear flux

exactly equal to the non-linear flux will be used. It is computed
from the electron energy flux by the formula:

IQL
ky

=
Qeky

ΔKiyWQQL
eky

. (5)

The poloidal wavenumber summation measureΔKiy is needed
in equation (5) to make the intensity independent of the ky

grid. Note that an improved form of the interval was used
in this paper which required some adjustments to the fitting
parameters found in reference [1]. The summation measure
is discussed in appendix A. If the quasi-linear approximation
is valid, it should not matter which plasma species (subscript
label a = e, i), or transport channel, is used to compute this
intensity since the species dependence is accounted for in the
quasi-linear weight. This is illustrated in figure 1 where the
flux contribution to each poloidal wavenumber ky is plotted
for CGYRO (black) and the quasi-linear weight multiplied
by ΔKiyI

QL
ky

(gray) for ion energy flux (left) and particle flux
(right). The electron energy flux match is exact by construc-
tion. For the GASTD case (top) the match for ion energy flux is
good but the particle flux peak is lower for the quasi-linear flux
indicating that the non-linear particle flux departs somewhat
from the phase of the quasi-linear particle flux weight for this
case. For a higher density gradient (bottom) the match is very
good for both ion energy (left) and particle flux (right) in figure
1. Note that the particle flux is much higher for higher density
gradient (lower right) than the lower density gradient (upper
right). It is consistently found for the CGYRO database that
the quasi-linear weight for particle flux is not as well preserved
for low particle flux cases.

In order to be able to compare the error due to the quasi-
linear weights with the errors reported below for the full
quasi-linear flux model, the fractional error from using the
quasi-linear intensity computed from the electron energy flux

3
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Figure 1. The ion energy flux (left) and particle flux (right) contributions for each ky from the non-linear CGYRO runs (black) and
computed from the quasi-linear weights (gray) times the intensity from the electron energy flux (equation (5)) for the GASTD case with
density gradient a/Lne = a/Lni = 1 (upper) and 3 (lower).

(equation (5)) to compute the ion energy flux and particle
fluxes for the database cases is computed in the following way:

σWQi =

√√√√∑
m

(
Qi −

∑
ky
ΔKiyIQL

ky
WQQL

iky

)2

∑
m Q2

i

(6)

σWΓe =

√√√√∑
m

(
Γe −

∑
ky
ΔKiyIQL

ky
WΓQL

eky

)2

∑
m Γ2

e

. (7)

The summation index ‘m’ labels the members of each scan in
the database (column 3 of table 1).

In figure 2 are shown the errors for the ion energy flux (left)
and particle flux (right) for scans in the database. The root
mean squared average error for the whole database is 5.4% for
the ion energy flux and 19.8% for the particle flux. The high
density gradient scans (6 and 13) have the lowest particle flux
errors. These errors from the quasi-linear weights set a floor
for the quasi-linear flux model since the model for the satu-
rated intensity will have its own errors added in. The degree of
error from non-linear departures from the quasi-linear weights
is quite low for energy fluxes and particle fluxes of sufficient
size.

4. Saturation of the zonal potential fluctuations

The time dependent zonal (ky = 0) electric potential fluc-
tuations play a strong role in the saturation of the gyroki-
netic turbulence. Study of multi-scale (electron + ion gyrora-
dius scales) turbulence simulations [26, 27] demonstrated that
E × B flow shear due to the zonal potential could not com-
pete with the linear growth rate at electron scales (ky > 1).
A new paradigm for saturation through zonal flow mixing [3]
was proposed. The physical picture of the zonal flow mixing
is like a washing machine agitator. The poloidal velocity of
the fluctuating zonal E × B flow (VZF) cuts across the radial
E × B velocity of the most unstable modes (finite ky, kx = 0)
at a zonal flow mixing rate VZFky. Note that the zonal veloc-
ity couples modes with the same poloidal wavenumber ky to
modes with different radial wavenumbers kx . This mixing can
compete with the linear growth rate at all scales since the zonal
flow mixing rate VZFky scales with the poloidal wavenumber of
the mixed mode. A simple detailed balance between the linear
growth rate and the zonal flow mixing rate provides an estimate
of the saturated amplitude of the RMS zonal flow velocity

VZF = max[γky/ky]. (8)

4
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Figure 2. The error in the QL weight computed from the ion energy flux (left) and particle flux (right) for the 13 scans of the database
table 1.

Figure 3. The RMS zonal velocity computed from the CGYRO
simulations vs the maximum of the linear growth rate divided by the
poloidal wavenumber.

Here, the linear growth rate γky (normalized by cs/a) is for
the most unstable mode at each ky. The poloidal wavenumber
(kymax) and growthrate (γmax) where the maximum drive for
the zonal flows occurs (equation (8)) play an important role
in the saturation model. The RMS zonal flow velocity can be
computed directly from the non-linear saturated spectrum for
ky = 0

VZF = 0.5

√√√√∑
kx

k2
x

∣∣∣∣∣aeφ̃kx ,ky=0

ρsTe

∣∣∣∣∣
2

. (9)

The RMS zonal flow velocity VZF is independent of ky so its
saturated magnitude is set by the maximum drive in equation
(8). This saturation rule for VZF (equation (8)) is shown to be
well satisfied for the database in figure 3. The line in figure 3
is a fit to the data giving a linear coefficient of 1.12. Hence, the
coefficient of 0.5 in equation (9) would be a better fit with 0.45.
The saturation model, in the next section, for the finite ky spec-
trum, does not depend on this coefficient. The lowest values of
VZF are for the temperature gradient scan 4. The highest values
are for scan 7 (r/a). A failure of the zonal flow saturation rule

(equation (8,9)), for a particular gyrokinetic simulation, would
be an indication that zonal flow mixing is not the dominant sat-
uration mechanism or that the simulation has not yet reached
saturation. The scatter in figure 3 is lower using the CGYRO
linear eigenvalues than it was in previous tests [3] where TGLF
linear eigenvalues were used.

The RMS zonal flow velocity (equation (9)) is computed
from the full zonal potential. However, there are typically static
(zero frequency)zonal flows embedded in this spectrum. These
can be extracted by time averaging the complex zonal poten-
tial. Transforming this static zonal potential to the radial coor-
dinate used in CGYRO [15] (0 � x � 2π) gives the profiles
illustrated in figure 4. There is typically a component to the
static zonal potential from the longest wavelength radial mode
(box mode) and a shorter wavelength corrugation. These cor-
rugations are the distinctive static zonal flows observed in real
space visualizations of gyrokinetic turbulence. As shown in
figure 4, these corrugations can vary with plasma parameters
significantly. The four cases shown are the GASTD case 1
(top left), the strong Shafranov shift (Δ = −0.5) case 10 (top
right) the weakest temperature gradient (a/LT = 1.25) case
18 (bottom left) and the weakest magnetic shear (̂s = 0.167)
case 50 (bottom right) illustrate the variability in the simula-
tions. The weak magnetic shear makes the corrugations longer
wavelength and the Shafranov shift makes the corrugation very
short wavelength.

The corrugation spectrum of the static zonal poten-
tial has isolated spikes only at the images of the most
unstable extended ballooning mode (i.e. kx/(2πŝ dky) is an
integer). This is the type of spectrum expected from the ‘self-
interaction’ mechanism for driving static zonal flows [28]. All
of the cases in the database appear to have this type of spectrum
that has been shown to be typical for kinetic electrons. Static
corrugations have been observed in experiments [29] which
is evidence that these corrugations are physical, rather than
numerical artifacts. The RMS zonal flow velocities (equation
(9)) computed from just the fluctuating part VZF−fluc (squares),
the static corrugation part VZF−corr (triangles) and the static
box mode part VZF−box (diamonds) of the zonal potential are

5
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Figure 4. The time average zonal potential transformed to radial x-space (black) and the lowest kx box mode (gray) for four cases: GASTD
case 1 (top left), Delta = −0.5 case 10 (top right), a/LT = 1.25 case 18 (bottom left) and ŝ = 0.167 case 50 (bottom right).

Figure 5. The RMS zonal velocity computed from the fluctuating (squares), static corrugations (triangles) and static box mode (diamonds)
compared to the maximum of the linear growth rate divided by the poloidal wavenumber (circles) for all cases.

shown in figure 5. The fluctuating part tracks with the zonal
flow saturation rule (equation (8)) very well and is usually the
dominant contribution to the total RMS velocity. The contri-
bution from the box mode is negligible. For case 18 (lowest
temperature gradient) and case 50 (lowest magnetic shear) the
static corrugation is making a significant contribution.

The static corrugation may play a role in the Dimits shift
regime and deserves further investigation. The impact of the
static zonal potential is usually assumed to be similar to an
equilibrium sheared E × B velocity. Indeed, the novel new
periodic method for including equilibrium E × B velocity
shear in CGYRO [30] supports this viewpoint. The shear in

6
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Figure 6. The static zonal flow shear (black) ZFshear = γZF and the linear growthrate (gray) gmax = γkymax for all cases.

the static zonal flow can be computed from the formula

γZF = 0.5

√√√√∑
kx

k4
x

∣∣∣∣∣
〈

aeφ̃kx ,ky=0

ρsTe

〉
t

∣∣∣∣∣
2

. (10)

Where the time average is indicated by 〈〉t. This has the
same units as the normalized equilibrium shear γExB =
(a/cs)(r/q)c dφ0/dψ [31]. The time average zonal potential
falls off strongly enough at high kx that the summation in
equation (10) converges. This summation diverges for the fluc-
tuating zonal potential, making the definition of a shearing
rate for the fluctuating zonal potential ambiguous. The static
zonal flow shearing rate is compared to the linear growthrate
at the maximum zonal flow drive gmax = γmax in figure 6.
Although the static zonal flow shear is often larger than the
linear growthrate, there is little correlation between them to
indicate they are coupled. Hence, the role of the static zonal
flow is not illuminated by this analysis. The zonal potential
corrugation is known to be balanced by zonal pressure corru-
gations that can reduce the net impact [32] on local linear sta-
bility. Further study is required. The physical picture of zonal
flow mixing, that the advection due to the fluctuating zonal
potential balances the maximum linear drive (equation (8)) is
supported by this analysis.

In the previous study of the 3D spectrum [1] it was observed
that the RMS width of the radial wavenumber spectrum for
finite ky was limited to be larger than the width of the zonal
potential spectrum. An accurate method for fitting the radial
wavenumber spectrum with a Lorentzian model was employed
to determine this width. The error in this fit tends to be larger
for the zonal potential than the rest of the spectrum because the
zonal potential spectrum sometimes narrows at low kx [1]. For
the first two scans, that were previously studied, the width of
the zonal potential spectrum tracked the poloidal wavenumber
at the maximum zonal flow drive kxZF ≈ kymax/|∇r|0 where the
geometric factor is evaluated at the outboard midplane. For the
wider database of this paper, it is found that this approximate

model needs to be generalized to:

kmodel
xZF = 0.22

√
R/Lpkymax/|∇r|0. (11)

Here R is the major radius at the center of the flux sur-
face, R/Lp = −(R/P)dP/dr where P is the total pressure. This
model is shown for all of the cases along with the spectral
width kxZF−fluc computed from the fluctuating part of the sat-
urated zonal potential spectrum in figure 7. The lowest width
kxZF−fluc is for the temperature gradient scan 4 (cases 18–23).
The highest widths are for high density gradient and high colli-
sion frequency (cases 36–37). The fit of the model is not tight
but it is shown here because it motivates the pressure gradi-
ent factor needed to calibrate the overall fluxes to the CGYRO
database that will be presented in the next section.

5. The new saturation model

The 3D model [1] for the saturated electric potential fluctua-
tion amplitude (Φ(θ)kx ,ky = ae|φ̃(θ)kx ,ky |/Teρs

√
ΔKiy) has the

functional form

Φ(θ)kx ,ky = G(θ)
Φ(0)0,ky

(1 + (kx/kRMS
x )2)

. (12)

This form approximates the observed CGYRO spectrum. Here
it is assumed that the peak of the spectrum Φ(0)0,ky is at
kx = 0, θ = 0, which is true for the cases in this database. Note
that the normalization of the fluctuation of the electric potential
divides by the gyrokinetic expansion parameter ρs/a because
the fluctuations are first order in this parameter (delta-f order-
ing). The RMS width of the radial mode number spectrum
(kRMS

x is computed at the outboard midplane (θ = 0) by fitting
the Lorentzian model distribution (equation (12)) to the non-
linear spectrum. A model of the RMS width is given below
(kmodel

x ≈ kRMS
x ). The effective non-linear mixing rate defined

by
γeff

ky
= kRMS

x kyΦ(0)0,ky (13)

7
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Figure 7. The RMS width of the zonal potential spectrum and the model equation (11).

is also computed directly from the non-linear spectrum. This
has the dimensions of the non-linear E × B advection rate due
to the finite ky modes. A model for the effective mixing rate
is given below (γmodel

ky
≈ γeff

ky
). All of the poloidal angle (θ)

dependence is absorbed into the factor G(θ) that is fit to the
amplitude of the peak potential fluctuation spectrum at kx = 0
(G(θ) ≈ Φ(θ)0,ky/Φ(0)0,ky).

The procedure used in reference [1] was to first construct
the model of the 3D saturated electric potential intensity
(equation (12)) and then reduce it to the quasi-linear intensity
(equation (5)). The reduction takes a flux surface average of the
3D model and evaluates the 3D model at the peak (kx = 0).
This is consistent with the quasi-linear flux evaluation using
a delta function distribution at the most unstable mode elim-
inating the sum over kx. The final model for the saturated
quasi-linear intensity spectrum is

Imodel
ky

=
〈
G2(θ)

〉
θ

(
γmodel

ky

kmodel
x ky

)2

. (14)

This model transforms under a change in the external normal-
izations like the square of the normalized electric potential.
This is an essential dimensional constraint on the allowed form
of the model. The saturation model for the zonal flow veloc-
ity (equation (8)) determines the poloidal wavenumber kymax

and linear growthrate γmax at the peak of the zonal flow drive.
These two quantities provide a natural reference wavenum-
ber and growth rate that can be used to normalize the linear
spectrum and recast the intensity spectrum in the form

Imodel
ky

=

(
Bnormγmax

Bunitk2
ymax

)2〈
G2(θ)

〉
θ
Î

(
ky

kymax
,
γky

γmax

)
. (15)

The dependence on the external system of units is carried by
the leading factor including an arbitrary choice of reference
magnetic field Bnorm. The other two factors are dimensionless
in any system of units as is required for fitting by polynomials
or a neural network. In general, it is desirable to not intro-
duce any explicit dependence on the plasma parameters in the

model. The geometry factor and an overall pressure gradient
factor introduced below are exceptions to this goal. In general,
there can be more than one peak in the spectrum of γky/ky.
The dominant peak at ion scales is chosen for the model con-
struction. The way the turbulence resolves the rare occurrence
of multiple peak in the ion scale range is an open research
question. There are known examples of gyrokinetic turbulence
simulations where the electron scale peak drives the zonal flow
velocity producing an electron scale kymax and very low ion-
scale transport [33]. This possibility is currently excluded in
the algorithm for selecting the ion scale peak to compute VZF

from equation (8) pending further research.
Simple piece wise linear models were able to give a good fit

for the 3 functions of ky in this paper: G(θ), γmodel
ky

, kmodel
x . The

fitting coefficients are dimensionless constants independent of
the system of external units.

The model for the shape function is

G2(θ) = d1G1(θ) for ky < kycut

=
(
d1G1(θ)kycut + b3d2G2(θ)(ky − kycut)

)
/ky

for ky � kycut

(16)

where b3 = 1.0 and the coefficients d1, d2 are

d1 =

(
BT0

B(0)

)4 1
|∇r|0

(17)

d2 = 1/Gq(0)2 (18)

here B(0)|r=0 = BT0 is the toroidal magnetic field at the flux
surface center and Gq(θ) = |∇r|Bunit/B(θ). Two geometric
shape functions are:

G1 =

(
B(0)
B(θ)

)4

(19)

G2 =

(
Gq(0)
Gq(θ)

)4

. (20)

8
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The cutoff is modeled by kycut = b0kymax where kymax is the
value of ky where γky/ky is maximum and the best fit parameter
was determined to be b0 = 0.76.

The model (kmodel
x ) for the width of the potential radial

wavenumber spectrum at finite ky was fit to the RMS kx width
of the turbulence spectrum at the outboard midplane θ = 0.
The model is given by:

kmodel
x =

Bunit

Bnorm
kycut/|∇r|0 for ky < kycut

=
Bunit

Bnorm

(
kycut/|∇r|0 + b1(ky − kycut)Gq(0)

)
for ky � kycut.

(21)

Here Bnorm is the arbitrary external magnetic field normaliza-
tion which is chosen to be Bunit for CGYRO. The best fitting
coefficient was determined to be b1 = 1.22. This model differs
from the previous saturation model (SAT1) [3] in that the kx

width does not continue to scale with ky below kycut but rather
flattens out. This is conjectured to be the effect of the finite
width of the zonal potential spectrum. There can be more com-
plex structure to the kx width in the region ky � kymax that is
not captured completely by this model. The dependence of the
slope of kmodel

x for ky � kycut on the geometric factor Gq was
shown to be needed in reference [1].

The model for the effective non-linear mixing rate γmodel
ky

in
equation (14) is given by

γmodel
ky

= b2γky for ky < kymax

= b2γmax for ky � kymax

. (22)

Here γmax is the value of the linear growth rate at kymax where
the peak in γky/ky occurs. This model differs from the SAT1
model [3] in that it is simply b2 times the linear growth rate for
ky � kymax. The flattening of the kx width model suppresses the
intensity at low ky making the zonal flow mixing subtraction
included in SAT1 for ky � kymax unnecessary. The observed
flatness of the non-linear mixing rate above kymax is consistent
with strong mixing between different poloidal wavenumbers in
this range distributing the fluctuation intensity. In the electron
range of ky an explicit poloidal wavenumber mixing is needed
in order to match the intensity spectrum as shown in section
10.

The reader is referred to reference [1] for the procedure used
to determine this model from the 3D potential spectrum prop-
erties. The four fitting coefficients (b0, b1, b2, b3) were adjusted
to minimize the absolute RMS difference between the CGYRO
and the quasi-linear model energy flux contributions at each
ky for the first two scans in the database. The coefficients
b0 and b3 have been adjusted due to an improvement made to
the summation measure as discussed in appendix A. In order
to fit the wider database of this paper, it was found that the
overall coefficient needed to be modified to

b2
2 → 3.74

(
12Lp

R

)
. (23)

The value 3.74 is determined by forcing the offset from
CGYRO in the sum of electron and ion energy fluxes to be zero

for the whole database. This modification may be related to the
trend for the width of the zonal potential spectrum found in
equation (11) since

√
R/Lp ≈ kxZF|∇r|0/kymax. Note that the

GASTD case (R/Lp = 12) is taken as a reference point. Alter-
natives to the pressure gradient factor were tried as discussed
in the next section.

6. Verification and calibration of the quasi-linear
fluxes

The quasi-linear model fluxes are computed from the formulas:

QQL
a =

∑
ky

ΔKiyImodel
ky

WQQL
aky

(24)

ΓQL
a =

∑
ky

ΔKiyImodel
ky

WΓQL
aky

. (25)

The linear growth rate and quasi-linear weight spectrum are
computed using CGYRO. The fractional error for these quasi-
linear fluxes compared to the CGYRO fluxes is computed for
each scan by the formula:

σ
QQL

a
=

√√√√∑
m

(
Qa − QQL

a

)2

∑
m Q2

a
(26)

σ
ΓQL

a
=

√∑
m

(
Γa − ΓQL

a

)2∑
m Γ2

a

. (27)

The fractional errors for all of the database scans are given
in figure 8. The RMS average of these errors is 10.5% for
Qi, 10.9% for Qe and 18.9% for Γe. These are almost a fac-
tor of 2 lower errors than previous saturation models and may
be within the uncertainty of the gyrokinetic simulations due to
finite time averaging and grid resolution. The particle flux error
due to the quasilinear weights (19.8%) is the primary contri-
bution for this channel. The quasi-linear weight error is about
half of the total error for energy fluxes.

In figure 9 are plotted the ion energy flux (top) electron
energy flux (middle) and particle flux (bottom) for CGYRO
(black) and the QL model (gray) for all of the 64 cases in
the database. The cases are numbered sequentially in the order
they appear in the database table 1.

The modification of the overall fluxes with pressure gradi-
ent was needed for the scans in temperature gradient (4) and
density gradient (5). These scans could also be fit by modify-
ing the overall coefficient to vary with the ratio of γmax to a
proxy for the geodesic acoustic mode frequency vthi/R such
that the quasi-linear intensity scaled like the first power of
γmax instead of the second power. However, this choice spoils
the good agreement with other scans (e.g. collisions, magnetic
shear). The pressure gradient factor can also be replaced by
a factor involving the convection fraction of the total energy
flux. This works well for all cases except the major radius
scan 8. The pressure gradient factor essentially changes the
flux surface label from ‘r’ to ‘P’ in the linear gradient drift
terms. Since the total pressure gradient is fundamental to the
radial force balance of the plasma, it defines a spacing between
flux surfaces that perhaps has an impact on the turbulence. It

9
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Figure 8. The fractional error equations (26) and (27) for the 13 scans in the CGYRO database table 1. Ion energy flux (top), electron
energy flux (middle) and particle flux (bottom).

is the unique gradient scale length for the force balance equi-
librium. If this is an equilibrium effect, then the total pressure

including fast ions should be used. This needs to be verified.
The pressure gradient factor is introduced to improve the fit for

10
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Figure 9. The fluxes for CGYRO (black) and the QLSAT2 model (gray) for all of the cases. Ion energy flux (top), electron energy flux
(middle) and particle flux (bottom).
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Figure 10. The CGYRO (black) and TGLF for the X2 (dashed) and X3 (gray) collision models linear growth rate/ky (left) and frequency/ky

(right) for the GASTD case with a/Lne = a/Lni = 3.0.

these 54 cases but a larger database could invalidate it. A finer
fit to the shape of the intensity spectrum could also make this
overall pressure factor unnecessary.

7. Improvements to the TGLF linear eigensolver

The use of the linear eigenmodes from CGYRO allowed the
fitting of a saturation model to the non-linear CGYRO simu-
lations without concern for the accuracy of the linear eigen-
modes. The problem with this approach is that the calculation
of the linear CGYRO eigenmodes is 18 000 times slower com-
pared to the reduced gyro-fluid model TGLF [4]. The CGYRO
linear calculation is also an initial value run so it only finds
the most unstable mode, whereas TGLF is a matrix eigen-
solver that finds all of the unstable branches of its equations.
Including subdominant modes is essential for helping the flux
smoothly cross branch jumps. Initial value runs have conver-
gence difficulty near the linear stability threshold or when there
are two modes with similar growth rates but different frequen-
cies. These issues make it impractical to use CGYRO (or any
initial value gyrokinetic code) as the linear eigenmode solver
in a transport code.

The linear eigenmodes of TGLF were found to lack accu-
racy for the high density gradient cases in the database. For
example, the spectrum of the growth rate (left) and frequency
(right), divided by the poloidal wavenumber ky for the GASTD
case parameters but with higher density gradients (a/Lne =
a/Lni = 3.0) is shown in figure 10. The black curves are the
calculation using CGYRO with the Sugama multi-species col-
lision operator. The dashed curves are for TGLF with the col-
lision model of reference [20] (denoted X2 here for option
XNU_MODEL = 2). The TGLF equations have bounce aver-
aged trapped particles for all species. The TGLF collision
model has only pitch angle scattering of electrons. The dom-
inant term in the TGLF collision model is from the gradient
of the distribution function at the trapped-passing boundary
which is modeled by (ξ = v‖/v)

νee
d f̃ e

dξ

∣∣∣∣∣
ξ=ξt

= cbν
(1−σb)
ee (vthek‖)

σb f̃e. (28)

Where ξt =
√

1 − Bmin/Bmax is the trapped-passing boundary
value. For the X2 model cb = 0.114 and σb = 0.5. The lin-
ear growth rate in figure 10 for the X2 model (dashed) is too
large across most of the spectrum. This 21% larger peak in
γky/ky translates to about 47% larger fluxes for TGLF with the
X2 model compared to CGYRO using the saturation model of
this paper. Increasing the coefficient cb of the trapped-passing
boundary collision term lowers the linear growth rate at low ky

but this shifts the peak to higher ky and does not help lower the
higher ky growth rates.

The TGLF equations have a model for the loss of bounce
averaging of the Landau resonance by trapped particles [4].
The model attempts to estimate how far into the trapped region
of velocity space the particles can experience Landau damp-
ing and hence should be part of the circulating particle fluid.
Assuming that the Landau resonance condition determines the
frequency gives the relation

ω = k‖v‖ = k‖Rq dθ/dt. (29)

Integrating this equation in time gives ωΔt = k‖RqΔθ. A
trapped particle keeps the same sign of its velocity while trav-
eling between bounce angles θB. A minimum requirement for
a trapped particle to be able to average the Landau resonance
is that it can change the sign of its velocity before the parallel
electric field of the wave changes sign. Hence it must travel
more than half an orbit (2θB) in half a wave period (ωΔt = π).
This gives the condition for a trapped particle to be able to
Landau average

Δθ =
π

Rqk‖
> 2θB. (30)

This gives a condition for the maximum bounce angle for
trapped particles that can average the Landau resonance θLA

[4]

θLA = min

(
π

2Rqk‖
, π

)
. (31)

The effective boundary for trapped particles that
can bounce average the Landau resonance is thus
ξLA =

√
1 − Bmin/B(θLA). In practice this condition is

used in TGLF to reduce the trapped fraction using an estimate
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of the parallel wavenumber k‖. The eigenvalue solution
procedure for TGLF adjust the parallel wavenumber with just
a Gaussian wavefunction with the first 2 Hermite polynomials
to find the maximum linear growth rate. The wavefunction
is then refined with more Hermite polynomials (typically 4).
For high magnetic shear, the parallel wavenumber found is
larger and the effective trapped particle boundary is reduced.
This tracks the linear growth rate for trapped electron modes
well [4]. The TGLF problem of too high a linear growth rate
at high density gradient is conjectured to be due to the higher
density gradient drift frequency (kya/Lne) causing a loss of
bounce averaging. In order to include this effect, the above
model is modified in the following way

θaLA = min

(
π

2Rqkeff
a‖

, π

)
(32)

keff
a‖ = |k‖|+ 3.0

Bmin

Bmax

∣∣∣∣ aky

vthaLna

∣∣∣∣ . (33)

The coefficient 3.0 in equation (33) was determined by fitting
to the CGYRO linear growth rate spectrum at higher den-
sity gradient. The new model for the loss of Landau aver-
aging (equation (33)) is species dependent, since the dia-
magnetic drift frequency kya/lna , and the thermal velocity
vtha =

√
Ta/ma, are species dependent. The trapped ions lose

bounce averaging at a lower ky than the electrons in this model,
which makes a difference at the lowest ky range. The trapped-
passing boundary collision model (equation (28)) was adjusted
to cb = 0.315, σb = 0.34 in order to match the decay of the
CGYRO growth rate spectrum with collisions. This change in
the electron collisions and the model for the loss of bounce
averaging is the X3 model (option XNU_MODEL = 3). The
gray curves in figure 10 show the improvement in the TGLF
fit for the X3 model. It was found that this model was good up
to about νeea/cs = 1.0. Above this value for the electron col-
lision frequency, the low ky modes are over-stabilized. A new
eigensolver for TGLF that does not employ the bounce averag-
ing approximation is under development. This will eliminate
the need for these ad hoc adjustments to bounce averaging.

8. TGLF implementation of the QL model

With the X3 collision model, and the new SAT2 saturation
model presented in this paper, TGLF provides a good quasi-
linear model of the CGYRO non-linear fluxes in the database.
The error between the TGLF fluxes and CGYRO for the scans
are shown in figure 11. The RMS average error over all of the
scans is: Qi 16.2%, Qe 16.6%, and Γe 33.5%. This is not as
good as found using the CGYRO eigenvalues but is signif-
icantly better than previous saturation models. For example,
the SAT1 model [3] (with X2) run on this CGYRO database
gives errors: Qi 53.4%, Qe 56.7%, and Γe 74.5%. The number
of Hermite polynomials for the ballooning mode wavefunc-
tion in TGLF was increased from 4 to 6 for the four cases with
q � 3 (cases 57, 60, 61, 64). This reduced the overshoot of
the growth rates for these cases. In figure 12 is shown the ion
energy (top), electron energy (middle) and particle (bottom)
fluxes for all of the cases. Compared to the QL fluxes computed

with CGYRO eigenmodes in figure 9 the TGLF particle flux is
reduced, especially for the scan 7 (cases 38–43) that scans the
local radius r/a and hence scans the trapped fraction. This sug-
gest a deficit in the trapped electron contribution to the particle
flux for TGLF. These fluxes were computed including only the
most unstable mode. In transport codes, TGLF includes sub-
dominant eigenmodes so that branch jumps will be smoother.
Including up to 4 subdominant modes, with mode intensities
reduced by the square of the ratio of the linear growthrate to the
most unstable mode at the same ky, increases the TGLF-SAT2
errors somewhat to: Qi 16.9%, Qe 17.6%, and Γe 34.1%. The
overall coefficient needs to be reduced by a factor of 0.95 to
zero the offset over the whole database.

9. Calibration of the spectral shift model for E × B
velocity shear

The spectral shift model for the effect of equilibrium E × B
velocity shear (γE×B) [19] on gyrokinetic turbulence [2] cap-
tures the shift in the peak of the 2D flux surface averaged
potential spectrum away from kx = 0 to a finite value kx0. The
direction and size of this shift is determined by the E × B
velocity shear. This spectral shift produces an ion stress con-
tribution to momentum transport by breaking the parity of the
eigenmode [34]. However, this shift in the eigenmode does not
reduce the linear growth rate enough to account for the reduc-
tion in the fluxes. The peak of the potential spectrum is reduced
by two effects. One is the change in the radial correlation
length that was previously identified as a suppression mech-
anism [35, 36]. This is manifest in the spectral shift model
as a change in the width of the radial wavenumber spectrum
and a tilt in the radial orientation of the turbulent eddies [34].
This effect alone is too weak to account for the reduction in
fluxes with E × B velocity shear in the turbulence simulations
[31]. The second effect is a temporal reduction in the effec-
tive mixing rate γeff

ky
. Both of these reductions in the peak of

the potential were shown [2] to be directly related to the shift
kx0. The generalization of the spectral shift model to the 3D
spectrum (equation (12)) is given by the formula:

Φ(θ)kx ,ky = G(θ)
Φ(0)0,ky(

1 +
(

kx0
kmodel

x

)2
+

(
(kx−kx0)

kmodel
x

)2
)(

1 +
(
αx

kx0
kmodel

x

)σx) .

(34)
Here Φ(0)0,ky is the peak of the potential in the absence of

equilibrium E × B velocity shear (same as equation (12)). The
left hand factor in the denominator in equation (34) accounts
for the broadening of the radial wavenumber spectral width by
the spectral shift kx0

knet
x =

√∑
kx

(kx − kx0)2Φ2∑
kx
Φ2 = kmodel

x

√
1 +

(
kx0

kmodel
x

)2

.

(35)
The radial wavenumber spectral width in the absence of equi-
librium E × B velocity shear is given by the model kmodel

x in
equation (21). The additional temporal reduction in the peak
amplitude is given by the right hand factor in the denominator
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Figure 11. The error between the TGLF fluxes and CGYRO for each scan. Ion energy flux (top), electron energy flux (middle) and particle
flux (bottom).
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Figure 12. The fluxes for CGYRO (black) and the TGLF model (gray) for all of the cases. Ion energy flux (top), electron energy flux
(middle) and particle flux (bottom).
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Figure 13. Spectrum of the radial wavenumber shift kx0, computed from CGYRO simulations equation (38) (black), and the model equation
(37) (gray), for a range of values of the equilibrium E × B velocity shear γE×B, for the GASTD case.

of equation (34)

γnet
ky

=
γky(

1 +
(
αx

kx0
kmodel

x

)σx
) . (36)

In the original spectral shift model, the formula for the spec-
tral shift kx0 that was determined to fit GYRO simulations has
a non-linear dependence on the E × B velocity shear that also
depends on the flux surface shape [34]. Fitting to CGYRO sim-
ulations with different flux surface shape was carried out and
a linear relation was found to be sufficient. This difference is
thought to be due to the fact that CGYRO is spectral in kx so
it has higher accuracy for the gyro-averaging operator (Bessel
functions) than GYRO which uses a radial grid. It is possible
to use a full Fourier transform to obtain spectral accuracy in
GYRO but this was not done in the original simulations used
to calibrate the spectral shift model due to the computational
expense.

Implementing the spectral shift model in TGLF requires
two passes. The first pass computes the linear eigenvalue spec-
tra without E × B velocity shear. The second pass uses these
bare linear growth rates to compute the spectral shift kmodel

x0
(equation (37)). This spectral shift is then used to recompute
the linear shifted ballooning eigenmodes to obtain the quasi-
linear weights. The shifted ballooning modes produce a small
change in the energy and particle weights but produce all of the
phase shift required for the ion stress. In the original spectral
shift model, the bare linear growth rate at each ky was used in
the formula for the spectral shift at each ky. This implementa-
tion is still used for the older saturation models (SAT_RULE
= 0 or 1).

For the new saturation model of this paper (SAT_RULE
= 2) the bare growth rates are used to compute the bare values
of kymax and γmax. The spectral shift spectrum is then computed
from the formula:

kmodel
x0 = 0.32ky

(
kymax

ky

)0.7 (
γE×B

γmax

)
. (37)

Figure 14. The RMS zonal velocity vs max
[
γnet

ky
/ky

]
(equation

(36)) for cases: (1) GASTD γE×B = 0, 0.1, 0.2, 0.3, 0.4, 0.5, (2)
κ = 1.25, γE×B = 0, 0.1, 0.2, 0.3, (3) κ = 1.5,
γE×B = 0, 0.1, 0.2, 0.3, (4) κ = 1.75, γE×B = 0, 0.1, 0.2, 0.3, (5)
Δ = −0.1, γE×B = 0, 0.1, 0.2, 0.3, (6) Δ = −0.2,
γE×B = 0, 0.1, 0.2, 0.3, (7) Δ = −0.4, γE×B = 0, 0.1, 0.2, 0.3.

This is a reasonable fit to the spectral shift kx0 computed
directly from the CGYRO spectra

kx0 =

∑
kx
|φ̃ky ,kx |2kx∑

kx
|φ̃ky ,kx |2

(38)

as shown in figure 13 for the GASTD case.
The model equation (37) is able to fit the spectral shift for a

scan in elongation and Shafranov shift without explicit geom-
etry factors. This is a simplification compared to the original
model that used the linear bare growth rate to normalize the
E × B velocity shear and required a geometric correction.
Next, the bare linear growth rate without E × B shear is modi-
fied by the temporal reduction factor (equation (36)) including
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Figure 15. Scan in the equilibrium E × B velocity shear for the GASTD case. The fluxes for CGYRO (black) and the TGLF model (gray).
Ion energy flux (top left), electron energy flux (top right), particle flux (bottom left) and ion toroidal stress (bottom right).

γmax. This is then used in the saturation model (equation (34)).
The net spectral width (equation (35)) is also used in place of
the bare spectral width in the saturation formula.

The zonal potential spectrum does not shift but remains
symmetric about kx = 0 as it must due to the reality condition
on the Fourier amplitudes. The RMS average zonal velocity
(equation (9)) is observed to be reduced by the equilibrium
E × B velocity shear. The zonal flow saturation rule remains
(equation (8)) approximately true if the temporal reduction
factor is applied as shown in figure 14 for the set of 30 cases.
The temporal reduction factor was computed using the value
of the spectral shift spectrum kx0 (equation (38)) computed
from the non-linear spectrum and the model equation (21) for
the width of the spectrum. This gives about the right level of
reduction in zonal flow velocity even though the coefficients
αx = 1.21 and σx = 2 were fit to the fluxes not the zonal
velocity. This demonstrates that the saturated zonal mixing
rate remains in balance with the net effective linear drive as
the turbulence is suppressed by the equilibrium E × B velocity
shear.

A novel method for including equilibrium E × B velocity
shear in a periodic flux tube was used for these simulations
[30]. The equilibrium E × B velocity is introduced as a
sawtooth waveform over the radial periodic box. The magni-
tude of the flow shear is the same everywhere but the sign flips
at the peaks of the sawtooth pattern. This sign flip has no effect
on the energy and particle fluxes but reverses the sign of the
toroidal stress. The toroidal stress is computed in the central
zone of the flux tube where the E × B velocity shear has one
sign. The shift in the radial wavenumber spectrum is also
computed in this same zone. A good agreement between the
kx spectral code CGYRO using this method and GYRO using
a radial grid was shown in reference [30] for the GASTD case
with adiabatic electrons. The CGYRO results in figure 15 are
in good agreement with the GYRO results of reference [2]
for the GASTD case with kinetic electrons but the reduction
in the energy fluxes is greater at higher shear for GYRO than
CGYRO.

Using the model for the spectral shift (equation (37)) a good
fit to the energy and particle fluxes is obtained for parame-
ters αx = 1.21, σx = 2. Note that this is significantly different
than the fit to GYRO simulations [2] with αx = 1.15, σx = 4.
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Figure 16. Scan in the equilibrium E × B velocity shear for Elongation (KAPPA) 1.5. The fluxes for CGYRO (black) and the TGLF model
(gray) for the GASTD case. Ion energy flux (top left), electron energy flux (top right), particle flux (bottom left) and ion toroidal stress
(bottom right).

This new CGYRO fit is only used for the new saturation model
(SAT_RULE = 2) in TGLF.

The shift in the ballooning mode radial wavenumber,
that produces the stress, was found to require a multiplier
Gx = − sign(BT)0.7/|∇r|20 times kmodel

x0 in order to better track
the Shafranov shift dependence of the toroidal stress. Note that
TGLF and CGYRO have opposite conventions for the direc-
tion of the toroidal angle. The CGYRO (black) and TGLF
(gray) ion energy flux (top left), electron energy flux (top
right), particle flux (bottom left) and ion toroidal stress (bot-
tom right) scans in the equilibrium E × B velocity shear are
shown for the GASTD case in figure 15, and cases with elon-
gation κ = 1.5 in figure 16 or with Shafranov shift Δ = −0.2
in figure 17.

The impact of the shear in the E × B Doppler shift has been
treated separate from the parallel velocity shear that enters the
gyrokinetic equation as another instability drive. The paral-
lel velocity and parallel velocity shear also cause symmetry
breaking phase shifts that interacts with the E × B Doppler
shift shear. There is no tuning of the TGLF linear equations
required for these parallel flow terms.

10. Calibration of the multi-scale model for
electron scale energy transport

The final step in the calibration of TGLF with the new sat-
uration model is to extend the model to electron scales.
The multi-scale simulations of an Alcator C-MOD L-
mode plasma by Howard [26] with the GYRO code were
used to formulate the first multi-scale saturation model [3]
(SAT_RULE = 1). The ion-scale sector of this model is
replaced by the new model of this paper. The electron scale
modes were found to be suppressed by the zonal flow mixing
limiting the effective non-linear mixing rate to the ion scale
γmax for ky � kymax as in equation (22). However, if the elec-
tron scale peak of γky/ky is larger than the ion scale peak,
the electron scale contribution to the potential can increase
yielding a larger contribution to the electron energy flux for
ky � 1. This effect is visible in figure 18 where the GYRO
(black) and TGLF-SAT2 (gray) electron energy flux (squares),
ion energy flux (circles) and the contribution to the electron
energy flux from electron scales (ky � 1) (triangles) are shown
for scans in the ITG (left) and electron temperature gradient
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Figure 17. Scan in the equilibrium E × B velocity shear for Shafranov shift (SHIFT) −0.2. The fluxes for CGYRO (black) and the TGLF
model (gray) for the GASTD case. Ion energy flux (top left), electron energy flux (top right), particle flux (bottom left) and ion toroidal
stress (bottom right).

Figure 18. Scan in the equilibrium ion (left) and electron (right) temperature gradients for multi-scale GYRO simulations of a C-MOD
L-mode [26]. The energy fluxes for GYRO (black) and the TGLF model (gray). Ion energy flux (circle), electron energy flux (square) and
electron-scale electron energy flux (triangles).
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(right) about an L-mode discharge on the C-MOD tokamak
[26]. The increase in the electron scale energy flux as the ion
temperature gradient is lowered (left panel) is due to the zonal
flow mixing rate (VZFky) lowering below the linear growth rate
at electron scales. This effect is built into the saturation model
for ky � kymax by changing the formula equation (22) to:

γmodel
ky

= b2(γmax + max[γky − αZFkyVZF, 0.0]). (39)

The TGLF fluxes with the new saturation model use this
formula with αZF = 1.05. The electron-scale saturation model
includes a Lorentz distribution weighted average over ky of
γmodel

ky
[3]. This represents the effect of the non-linear mixing

between modes with different ky. In the original SAT1 model,
a change in the scaling of the width of the radial wavenumber
spectrum for ky � 1.0 was included. The new model accounts
for this anisotropy of the spectral width through the geomet-
ric factors in equations (16) and (21). The original multi-scale
GYRO runs output flux surface averaged potential fluctuation
spectra so the poloidal angle dependence is unknown. New
multi-scale simulations are needed to verify that the poloidal
angle dependence of the new model is correct at electron
scales. The agreement of the TGLF fluxes with GYRO in figure
18 is very good. These C-MOD simulations include an impu-
rity ion, shaped flux surfaces, and a low amount of equilibrium
E × B velocity shear [26, 27].

11. Summary

A new, more accurate, quasi-linear saturation model (SAT2)
has been verified and calibrated to a database of CGYRO
turbulence simulations in this paper. The model began with
exploring the 3D structure of the saturated potential fluctuation
spectrum in a previous paper [1]. The SAT2 model was con-
structed using the linear growth rate and quasi-linear weights
from the spectrum of the most unstable modes computed with
the same code as the non-linear turbulence simulations. The
saturation model is fit to the poloidal wavenumber spectrum of
the intensity required to make the quasi-linear approximation
to the electron energy flux exact (QL intensity). It was demon-
strated that the quasi-linear weights accurately predict the ratio
of the ion energy and particle fluxes to the electron energy
flux. This quantitative test showed that quasi-linear weights
contribute 5.4% of the error in the quasi-linear ion energy
fluxes averaged over the whole database of 13 CGYRO scans.
The quasi-linear weights contribute 19.8% error to the parti-
cle flux due to lower quasi-linear fluxes at low density gradient
than from the turbulence. The SAT2 model for the quasi-linear
intensity introduces additional error to the quasi-linear fluxes.
The fractional error in the quasi-linear fluxes for the 13 scans is
10.5% for ion energy,10.9% for electron energy, and 18.9% for
particle flux. These errors are lower than previous saturation
models fit to gyrokinetic simulations [3, 14].

A central part of the SAT2 model (equation (14)) spec-
tral shape and peak intensity is the zonal flow mixing rule
(equation (8)) for the saturation of the zonal potential fluctua-
tions. It was shown to be quite accurate for the whole database
in figure 3. It was also shown that the static zero frequency

component of the zonal potential is a small contributor to the
RMS zonal velocity for most cases. The zonal flow mixing
rule was shown to work for cases with an equilibrium E × B
velocity shear if γmax is modified by the spectral shift model
(equation (36)). The other central element of the SAT2 model
is the width of the radial wavenumber spectrum. It is conjec-
tured that the spectral width is determined by the zonal poten-
tial mediated coupling of different radial wavenumbers for the
same poloidal wavenumber. It was found in this larger database
that the width of the zonal potential spectrum (equation (11)) is
more variable than previously observed in reference [1]. This
deserves further study to understand the physical mechanisms
at work. The observed broadening of the radial wavenumber
spectral width at low ky causes a reduction in the intensity of
the turbulence. Including this effect in the SAT2 model allowed
for a simplification of the model compared to its predecessor
SAT1 [3] while giving a better fit to the quasi-linear intensity
at low poloidal wavenumber.

The saturation model is an independent component of a
quasi-linear approximation to transport fluxes that can be used
with any model for gyrokinetic linear stability to compute
quasi-linear fluxes. In this paper, the SAT2 model was imple-
mented in the TGLF quasi-linear model after improvements to
the linear eigenmode accuracy were made. The average frac-
tional error for the 13 scans is 16.2% for ion energy, 16.6% for
electron energy, and 33.5% for particle fluxes for TGLF with
the SAT2 model and the improved linear eigenmodes.

The spectral shift model for the impact of equilibrium
E × B velocity shear on transport [2] was recalibrated for the
SAT2 model. Additional CGYRO scans of the E × B veloc-
ity shear for seven starting cases with different geometry were
used for this calibration (30 cases, 23 not in table 1). It was
found that the original model could be simplified to a lin-
ear relation between the shift in the radial wavenumber spec-
trum (eddy tilt) and the E × B velocity shear. This linear
model equation (37) fits the CGYRO spectrum of the radial
wavenumber shift more accurately than the original non-linear
SAT1 model.

The model for the suppression of electron scale turbulence
by zonal flow mixing [3] was also recalibrated to the original
multi-scale GYRO simulations [26]. The anisotropy between
the radial and poloidal wavenumbers (ETG streamers) due to
geometric effects in the SAT2 model was found to be sufficient
to enhance the electron scale fluxes without the need for mod-
ification. The coefficient αZF = 1.05 of the zonal flow mixing
term (equation (39)) was hardly changed from unity.

With the recalibration of TGLF, the SAT2 model is
now a public option in the TGLF quasi-linear code
(SAT_RULE = 2). This option automatically includes the
geometry modifications and the changes to the electron col-
lision and bounce averaging model.
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Appendix A. Transformation properties of the quasi-
linear fluxes

The transformation properties of quasi-linear models have a
subtlety that has not previously been discussed in the literature.
The gyrokinetic codes typically evolve the Fourier transform
of the fields and distribution function. This necessitates the
introduction of the interval ΔKiy in the quasi-linear model for
the intensity (equation (5)). It will be shown in this appendix
that this factor needs to be defined in a particular way in order
for the quasi-linear fluxes to transform in the same way as
the non-linear gyrokinetic fluxes for any arbitrary system of
normalizations.

For simplicity, consider only the Fourier transform
of the angle α defined such that B · ∇α = 0 [15] and
(∇α · ∇r)θ=0 = 0:

φ̃(α) =
Nα∑

n=−Nα

φ̃n e−inα (A.1)

φ̃n =

∫ 2π

0

dα
2π

φ̃ einα. (A.2)

The gyro-kinetic equation does not have an explicit depen-
dence on the mode number ‘n’. The perpendicular wavenum-
ber normalized to the full magnetic field strength in the
gyro-average operator (Bessel function) is the physical nor-
malized wavenumber of the turbulence. For a pure ion
plasma, with adiabatic electrons, the physical units are the
ion temperature, mass and charge, and the magnetic field
strength: Ti, mi, Zi, B. From these are derived the ion ther-
mal velocity vthi =

√
2Ti/mi, the ion gyro-frequency, Ωi =

ZieB/(mic), and the ion gyro-radius ρi = vthi/Ωi. The nor-
malized poloidal wavenumber that is the argument of the

Bessel functions at the outboard midplane for kx = 0 is
given by

Kiy = nρi|∇α|θ=0 =

(
nρiB
RBp

)
θ=0

. (A.3)

The square amplitude of the Fourier coefficients of the poten-
tial fluctuations scales with the interval between ion poloidal
wavenumbers (ΔKiy). This property follows from Parseval’s
theorem ∫ 2π

0

dα
2π

|φ̃|2 =

Nα∑
n=−Nα

|φ̃n|2. (A.4)

A change in the number of mode numbers Nα for a fixed

range of poloidal wavenumber Kiymax = Kiy

∣∣∣
n=Nα

requires the

Fourier square amplitude to scale like 1/Nα to maintain the
same sum. This scaling is made explicit by defining an inten-
sity function I by the formula:

|φ̃n|2 = ΔKiyI(Kiy). (A.5)

In the continuum limit we have∫ 2π

0

dα
2π

|φ̃|2 =

Nα∑
n=−Nα

ΔKiyI(Kiy) ≈
∫ Kiymax

−Kiymax

dKiyI(Kiy).

(A.6)
The intensity function I(Kiy) is a function of the ion poloidal
wavenumber and so are the linear eigenvalues and quasilinear
weights. The ion units are the physical system of units set by
the gyro-averaging.Transforming to a new poloidal wavenum-
ber k0y for an arbitrary system of units: T0, m0, Z0, B0 with
ρ0 = c

√
m0T0/(Z0eB0) and

k0y =
nqρ0B0

rBunit
(A.7)

gives the transformation

Kiy = αi
k0y

|∇r|0
= βik0y, (A.8)

where

αi =

√
2miTiZ2

0

m0T0Z2
i

. (A.9)

In these new units Parseval’s theorem becomes∫ 2π

0

dα
2π

|φ̃|2 =

∫ k0ymax

−k0ymax

βi dk0yI(βik0y). (A.10)

This shows that the correct interval to use in the definition of
the quasi-linear intensity equation (5) is

ΔKiy =
αi

|∇r|0
Δk0y (A.11)

for any system of units. The CGYRO system of units is
given by: T0 = Te, m0 = mD, Z0 = 1, B0 = Bunit. Thus for the
CGYRO units αi =

√
2Timi/(TemDZ2

i ). This factor is con-
firmed to be correct by the agreement of the quasilinear fluxes
with CGYRO for the scan in Ti/Te (scan 9).

It can be shown that the product Imodel
ky WQky scales in the

expected gyro-Bohm way for the energy flux in changing
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from one system of units to another. The summation measure
equation (A.11) does not alter the overall scaling of the fluxes
since it is the same for any system of units. This summa-
tion measure (equation (A.11)) was used in the fitting of the
geometry factors [1].

In a mixed ion plasma it is not clear what ‘main ion’ should
be used. A more general summation measure is

ΔKiy =
Δky

kymax
. (A.12)

This measure is independent of the system of units and is
equivalent to equation (A.11) for a single ion plasma because
the value of kymax where the maximum of γky/ky occurs has
the property that kymaxαi/|∇r|0 is invariant under a change of
external units. Using this more general summation measure
(equation (A.12)) improves the fit of the model by tracking the
magnetic shear and safety factor better due to shifts in kymax.
Using this new measure requires some adjustments to the
fitting parameters: b0 changed from 0.72 to 0.76, b3 changed
from 2.4 to 1.0, and the parameter d1 is now divided by a factor
of |∇r|0. The fit to the elongation and Shafranov shift scans
(1 and 2) is about the same as before with these
adjustments.
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