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Abstract
This paper presents results of extensive analysis of mode excitation observed during the
operation of the Alfvén Eigenmode Active Diagnostic (AEAD) in the JET tokamak during the
2019-2020 deuterium campaign. Six of eight toroidally spaced antennas, each with independent
power and phasing, were successful in actively exciting stableMHD modes in 479 plasmas. In
total, magnetic resonances were detected with up to fourteen fast magnetic probes. In this work,
we present the calculations of resonant frequencies f 0, damping rates γ < 0, and toroidal mode
numbers n, spanning the parameter ranges f 0≈ 30–250 kHz, −γ≈ 0–13 kHz, and |n| ≤ 30. In
general, good agreement is seen between the resonant and the calculated toroidal Alfvén
Eigenmode frequencies, and between the toroidal mode numbers applied by the AEAD and
estimated of the excited resonances. We note several trends in the database: the probability of
resonance detection decreases with plasma current and external heating power; the normalized
damping rate increases with edge safety factor but decreases with external heating. These results
provide key information to prepare future experimental campaigns and to better understand the
physics of excitation and damping of Alfvén Eigenmodes in the presence of alpha particles
during the upcoming DT campaign, thereby extrapolating with confidence to future tokamaks.

Keywords: Alfvén eigenmodes, stability, damping rate, toroidal mode number, fast magnetics

(Some figures may appear in colour only in the online journal)

1. Introduction

In tokamaks, an energetic particle (EP) population, such as
radio frequency (RF) heated ions or DT alphas, can destabilize
Alfvén Eigenmodes (AEs). In turn, these AEs can lead to an
increase in EP transport and decrease in fusion performance.
Understanding AE stability, i.e. driving and damping mech-
anisms, is therefore essential to the operation and success of
future tokamaks with significant alpha particle populations,
such as ITER [1], SPARC [2], and other devices.

In the JET tokamak, fast ion populations, such as those res-
ulting from ion cyclotron resonance heating, can destabilize
Toroidal Alfvén Eigenmodes (TAEs). These unstable modes
are typically easily identifiable as coherent structures, with
well-defined frequencies and toroidal mode numbers, in the
Fourier spectra of fast magnetic probe data. For unstable
AEs, their total growth rate is positive, γ > 0, as the fast
ion drive overcomes various damping mechanisms, e.g. con-
tinuum, radiative, and electron/ion Landau damping. How-
ever, in the case of overwhelming damping, AEs cannot be
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seen in the magnetic spectra without external excitation; this
scenario may even occur in upcoming JET DT experiments if
the alpha particle population is insufficient to destabilize the
modes. Thus, in order to better study and understand AE sta-
bility, the Alfvén Eigenmode Active Diagnostic (AEAD, or
AE antenna) [3, 4] is used in JET to actively excite, or probe,
stable AEs and measure their resonant frequencies ω0 = 2πf0,
toroidal mode numbers n, and total damping rates γ < 0.

In this paper, we provide an overview of the operation
and measurements of the AE antenna during the 2019-2020
JET deuterium campaign. We note that many past works
have analyzed or reported data from previous campaigns;
these include studies with the original, low-n saddle coils
[1, 3, 5–23], the intermediate-to-high-n, eight antenna sys-
tem [24–32], and the most recent upgrade [4, 33, 34], among
others. Novel to this work are the following: (i) The recently
upgraded independent phasing of the eight AE antennas allows
probing of high toroidal mode numbers |n| ≤ 20. (ii) An
updatedmagnetics system, with fourteen fast magnetic probes,
allows confident measurements of f 0, γ, and |n| ≤ 30. (iii) A
database of ∼5000 resonances are detected in ∼500 plas-
mas spanning a wide parameter space; important trends are
observed in the bulk data, and identification of individual
pulses opens opportunities for further study and comparison
with simulation. These analyses are necessary for assess-
ing AE drive and damping mechanisms, validating model-
ing efforts, and extrapolating the impact of AEs in future
tokamaks.

The outline of the rest of the paper is as follows: In
section 2, we briefly review active excitation of Alfvén modes
with the AE antenna . Section 3 describes resonance detection
with the fast magnetics system and details the calculations of
f 0, γ/ω0, and n. In section 4, we further explore operational
and parameter spaces, noting trends in the data and suggest-
ing opportunities for further analysis. Finally, a summary is
provided in section 5.

2. Active antenna excitation

The original AE antenna system consisted of saddle coils
capable of exciting AEs with low toroidal mode numbers
|n| ≤ 2 [3, 6]. From 2007-2008, an upgrade [24, 35, 36]
involved the installation of eight in-vessel, toroidally spaced
antennas - two sets of four - situated below the mid-
plane at R≈ 3.68 m, Z≈−0.65 m and with toroidal pos-
itions ϕ ≈ 0, 4.7, 9.4, 14.1, 180, 184.7, 189.4, 194.1degrees.
Each antenna comprises 18 turns and has poloidal and tor-
oidal dimensions ∼20 cm × 20 cm. The antennas can be
operated in three frequency ranges f= 25− 50 kHz,75−
150 kHz, and 125–250 kHz, with each frequency filter allow-
ing antenna currents up to Iant ≈ 10A,7A, and 4A, respect-
ively, at the maximum frequencies. A synchronous detection
system is used to identify [5] and track [7] resonances in real
time.

To find stable AEs, the antennas’ frequencies are simultan-
eously scanned within a given filter’s range at rates |df/dt| ≤
50 kHz s−1, 100 kHz s−1, and 200 kHz s−1, respectively, for

the filters above. The operational space of the AE antenna
during the 2019 JET deuterium campaign is visualized in
figure 1(a); the histogram (black) shows the number of data
points Nbin collected within each frequency bin, normalized to
the total number of data points Ntot. (Throughout the paper,
Ntot will be noted for each histogram or distribution.) Error
bars - though impossible to see in the black histogram - are
included to indicate the uncertainty from counting statistics,
calculated here as

√
Nbin/Ntot. As can be seen, the system

was operated more frequently with the high frequency filters,
and no data exist in the inaccessible range f = 50–75 kHz. In
total, the AE antenna was operated during 676 plasma dis-
charges during the 2019-2020 deuterium campaign, spanning
JPN 93063− 96855.

Following a recent system upgrade [4], six new ampli-
fiers allow antennas 1–5 and 7 to be powered and phased
independently. This marks a significant improvement over
the previous AE antenna feed system, which had only 0 or
π phasing. Now, antenna phases can be carefully chosen
so that the injected power spectrum is maximal at toroidal
mode numbers as high as |n| ≈ 20. The operational space
for the dominant applied toroidal mode number is shown in
the normalized histogram (black) of figure 2(a). The antenna
was operated most frequently with phases n= 0,−1,−4 and
−10, with positive n defined in the direction of the plasma
current Ip. These were effectively randomly chosen by the
operators in order to probe even vs odd and low vs high
toroidal mode numbers. The predominance of negative n
values in the applied mode number was an operational over-
sight as Ip is typically directed in the −ϕ direction in JET.
The calculation of n will be discussed in the following
section.

3. Resonance detection and parameter estimation

As the antenna frequency passes through the AE resonant fre-
quency, the plasma responds like a driven, damped harmonic
oscillator. The resulting magnetic response is measured by
a set of fourteen toroidally distributed fast magnetic probes,
listed in table 1. This marks an improvement over past ana-
lyses for which only ten probes - or fewer - were available
[32]. The magnetic signals are synchronously detected at the
antenna frequency with an effective band-pass filter of width
∆f ≈ 0.1 kHz [7]. This gives a time-evolving amplitude and
phase for each probe; for example, see those in figure 3(b).
The data from all probes are then used to calculate the AE
resonant frequency f 0, damping rate γ, and toroidal mode
number n.

3.1. Resonant frequency and damping rate

For an driven, weakly damped harmonic oscillator, i.e.
|γ/ω0| ≪ 1, the system response to a driving frequency ω is
well-approximated by the transfer function [3, 5, 38]

H(ω) =
1
2

(
r

i(ω−ω0)− γ
+

r∗

i(ω+ω0)− γ

)
+ offset, (1)
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(a) (b)

Figure 1. Histograms normalized to their total number of data points Ntot: (a) The antenna operational space (Ntot ≈ 5× 106) and resonance
detection space (Ntot = 4768) versus frequency. (Note the logarithmic scale of the vertical axis.) (b) Ratios comparing resonant, estimated
TAE, and MISHKA-evaluated [37] frequencies (Ntot = 3780). Uncertainties are shown as error bars.

(a) (b)

Figure 2. Histograms (normalized) of (a) toroidal mode numbers applied by the antenna (Ntot = 17103) and estimated of the resonances
using SparSpec (see section 3.3.2, Ntot = 3549), and (b) the absolute difference between the applied antenna toroidal mode number and that
estimated of each resonance using the chi-square (see section 3.3.1, Ntot = 2328) and SparSpec (Ntot = 3505) methods. All data are
restricted to |n| ≤ 10, and estimations require a ‘confidence factor’ X≥ 2 or A≥ 2 (see text for details). Uncertainties are shown as error bars.

Table 1. Fast magnetic probes and their toroidal positions rounded to the nearest degree. Those with names beginning with H or T are used
to calculate the toroidal mode number.

Probe H301 H302 H303 H304 H305 T001 T002 T006 T007 T008 T009 I801 I802 I803

Angle 77 93 103 108 110 3 42 183 222 257 290 317 317 318

with r a complex residue and
∗
denoting the complex con-

jugate. The resulting pole in the complex plane can be seen
in figure 3(b) for ten probes (see caption for details). A fit of
equation (1) gives values ω0 = 2πf0 and γ/ω0 for each probe,
along with associated uncertainties ∆f 0 and ∆(γ/ω0). In this
work, the final fitted values of f 0 and γ/ω0 are calculated as the
mean of all probes’ fits with inverse variance weighting; here,
the variance is taken to be the square of the uncertainty. The
total uncertainty is then calculated as the standard error of the
weighted mean in a way similar to [39], except that the inverse

variance is (again) used for weighting5, which actually makes
this estimation more conservative.

An automatic resonance detection algorithm was run on all
676 plasma pulses with AE antenna operation. Each probe was
calibrated for its frequency-dependent response. The sum of
all magnetic probes’ amplitudes was used to identify peaks in
signal - i.e. possible resonances - in an unbiased way. Selection

5 As opposed to the square of the inverse variance.
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(a) (b)

Figure 3. (a) The toroidal magnetic field and central electron density; estimated TAE, antenna, and resonant frequencies; uncorrected and
corrected damping rates; and toroidal mode numbers calculated by both SparSpec and chi-square methods, with ‘confidence factors’ X≥ 2
and A≥ 2 (see text for details), for JPN 94654. (b) For one resonance, data from ten fast magnetics probes: amplitudes normalized to their
maxima, phases (only those used for the toroidal mode number calculation), complex representations, and resulting chi-square and
SparSpec amplitude spectra limited to |n| ≤ 7. From table 1, probes used are H301-5, T006/7, and I801-3.

Table 2. Minimum constraints on data in this paper.

Parameter Upper bound

Uncertainty in resonant frequency ∆f 0≤ 1 kHz
Normalized damping rate −γ/ω0≤ 6%
Uncertainty in damping rate ∆(γ/ω0)≤ 1%
NBI power PNBI ≤ 7 MW

criteria for the data to be fit with equation (1) include the
following: The maximum amplitude of each peak must be at
least 20% higher than its neighboring minima. The time dur-
ation of each peak must be in the range ∆t= 10–200 ms, and
a phase change of ∆θ= 55–180 degrees must occur6. Any
fits with uncertainties ∆f 0 > 10 kHz or ∆(γ/ω0) > 10%, or R-
squared ‘goodness of fit’ R2 < 0.8 are discarded outright. Of
those remaining, data from at least three probes are needed
to compute the weighted average. After this initial filter, data
presented in this paper are also subject to the constraints of
table 2: The first three constraints increase our confidence in
the probes’ collective measurement. The last constraint fil-
ters out noise due to high neutral beam injection (NBI) power
and associated edge localized modes (ELMs), as done in [23].
However, note that there are novel measurements of stable
TAEs at high external heating powers (NBI + RF) ∼25 MW,
which will be explored in future work.

6 During real-time resonance tracking, the transitions between positive and
negative antenna scan rates, i.e. df/dt→−df/dt, can occur so quickly that
only a small phase change, e.g. ∆θ≈ 1 rad≈ 57 degrees, is observed.

In total, there were Ntot = 4768 resonances detected in
479 pulses which satisfied the above criteria. The frequencies
of these resonances are shown in the histogram (purple) of
figure 1(a). We see that the number of observations increases
with frequency, with most having f 0≥ 200 kHz, a typical
range for TAE frequencies in JET. An estimate of the TAE fre-
quency, calculated as fTAE ≈ B0/4πq0R0

√
µ0meffne0, is shown

for pulse JPN 94654 in figure 3(a). Here, on-axis parameters
are the toroidalmagnetic fieldB0, safety factor q0, major radius
R0, and electron density ne0; the vacuum permeability is µ0,
and effective mass is meff ≈ mH(2− nH/ne − nHe3/ne), with
mH the mass of hydrogen. The estimated frequency fTAE and
resonant frequency f 0 agree well for JPN 94654, and the real-
time resonance tracking system is also successfully demon-
strated in this pulse.

The ratio of fitted resonant frequencies to their corres-
ponding estimated TAE frequencies is shown in the histo-
gram (black) of figure 1(b). The histogram peaks at a ratio of
f0/fTAE = 1.2 and skews toward values f0/fTAE > 1, which has
been observed for AE antenna data previously [6, 19]. This
can be compared with the ratio of resonant frequencies to the
TAE frequencies calculated by the MHD code MISHKA [37],
also shown in figure 1(b) (purple). To calculate fMISHKA, the
codeHELENA [40] was first used to convert themagnetic geo-
metry fromEFIT [41] into the format required by codeCSCAS
[42], which calculates the Alfvén continuum. Then MISHKA
was used to calculate mode structures and final TAE frequency
estimates for n= 0–7. The histogram of f0/fMISHKA uses the
value of fMISHKA with the same estimated |n| as the resonance.

As expected, f 0 agrees better with fMISHKA than fTAE,
although the histogram is still skewed toward f0/fMISHKA > 1.

4
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One likely cause for this discrepancy is the uncertainty in the
safety factor profile calculated by standard EFIT; this can be
better constrained with Motional Stark Effect or Faraday rota-
tion data, but such data were not available for every pulse.
Plasma rotation will also shift themode frequencywith respect
to the lab frame; however, because rotation was not regularly
diagnosed, it has not been included in this analysis.

3.2. Damping rate correction

The transfer function of equation (1) is technically only valid
for weakly damped harmonic oscillators with constant res-
onant and driving frequencies. This is not the case in these
experiments as both the antenna and resonant frequencies are
changing in time. For most cases, |df0/dt| ≪ |df/dt|, so this is
no issue. However, when |df0/dt| ∼ |df/dt|, the resonant peak
can appear much sharper or broader than the true damping
rate would allow. Modifying equation (1) presents a challenge
as the true differential equation representing the physical sys-
tem now involves additional time dependencies ω(t) and ω0(t).
Even linear approximations, e.g.ω(t)≈ω+αt, introduce non-
linearities which have no analytical solution.

Therefore, equation (1) was used for the calculation of
all damping rates, and a correction was applied in post-
processing, as has been done previously [7]. This corrective
‘lookup table’ was assembled in the following way: The amp-
litude and phase of a driven, damped harmonic oscillator were
simulated for a range of ‘true’ damping rates and linearly
varying driving and resonant frequencies, spanning all values
in our database:−γ/ω0 ∈ [0.1%,6%],(df0/dt)/f0 ∈ [0,1] s−1,
and (df/dt)/f0 ∈ [−1.7,1.7] s−1.7 The resulting synthetic data
were fit with 1 to create a map from ‘true’ to ‘erroneous,’
or corrected to uncorrected, damping rates. Finally, the total
uncertainty was taken as the sum of corrected and uncorrected
uncertainties in quadrature.

An example of the difference between corrected and uncor-
rected damping rates can be seen in figure 3(a). In JPN 94654,
the AE antenna scan rate was |df/dt|= 150 kHz s−1, and
the resonant frequency changed at a rate −df0/dt≈ 20−
40 kHz s−1 as determined from real-time tracking of the
mode8. The uncorrected damping rate is observed to altern-
ate between lower and higher values depending on the sign of
df/dt. For most resonances, the corrected damping rate falls
in between the two extremes and varies more smoothly in
time. Unless otherwise noted, all damping rates reported in
this paper are the corrected values, e.g. in figure 4.

3.3. Toroidal mode number

The toroidal mode number of the detected resonance is estim-
ated using only those probes located on the outer wall at
approximately the same radial and poloidal positions; these
probes’ names begin with H or T in table 1. Of the eleven avail-
able probes, at least three must have had ‘good’ resonance fits,

7 For (df0/dt)/f0 < 0, the signs of df0/dt and df/dt can be flipped.
8 For isolated resonances, i.e. no real-time tracking, df0/dt is calculated from
the estimated fTAE.

as described above, to be added to the database; thus, there are
instances of resonances for which we are confident in the fitted
values of f 0 and γ/ω0, but have no estimate of n.

Following the standard convention [43], positive n are
measured in the co-current, i.e. co-Ip, direction. In JET, the
normal operating scenario is Ip < 0 and B0 < 0, meaning both
are directed clockwise (ϕ< 0) when viewing the tokamak from
above; this is the case for all pulses in our database. Thus, pos-
itive (negative) n are oriented clockwise (counter-clockwise).
As mentioned, this also explains the operational preference for
negative phasing (see figure 2(a)) which is in the ϕ> 0 direc-
tion.

The toroidal mode number is perhaps the most difficult
parameter to assess of a resonance due to the reliance on
multiple probes, possible superposition of modes, and ali-
asing effects. Yet knowing the toroidal mode number is crit-
ical to studying n-dependent AE stability. Past analyses of AE
antenna data have used several different methods to calculate
n, including linear fitting [18] and sparse spectral decomposi-
tion [22–32]. In the following sections, we pursue two comple-
mentary methods of n evaluation: The first is a weighted chi-
square calculation using only phase information; the second
utilizes the SparSpec algorithm [22] to decompose both probe
amplitude and phase information. Agreement between the
methods gives us reassurance that the result is correct; dis-
agreement provides motivation for further investigation. In the
latter case, SparSpec can help identify sub-dominant modes
which may also have good - though not the best - chi-square
fits.

3.3.1. Chi-square evaluation. For the first method, we
minimize a weighted, reduced chi-square spectrum within
the range of resolvable toroidal mode numbers. For N
‘good’ probes and a range of toroidal mode numbers n ∈
[−nmax,nmax], the reduced chi-square spectrum is computed as

χ2(n) =
1
N2

N∑
i=1

 N∑
j=1

min{[n(ϕj−ϕi)− θj]
2}

σ2
j

/
N∑
j=1

1
σ2
j

 .

(2)

Here, ϕj is the toroidal position of each probe j (see table 1),
θj is the corresponding phase angle of the probe signal at the
resonant frequency f = f 0, and the inverse variance weighting
uses the uncertainty of the normalized damping rate measure-
ment σj =∆(γ/ω0). The inner sum over all probes j is the
typical chi-square calculation, while the outer sum over all
probes i allows each probe to be considered the reference at the
origin ϕ= 0. Note that minimum difference between angles is
used in the actual computation, since ϕ and θ are periodic in
2π.

The range of resolvable toroidal mode numbers, |n| ≤ nmax,
depends on the probes used in each evaluation of equation (2).
As shown in appendix A, the theoretical nmax is equal to the
least common denominator of all probe positions ϕi/π, assum-
ing that these are rational numbers and that one probe is at the
origin ϕ1 = 0. In practice, nmax can be computed through brute
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force by comparing each n of interest. In this work, we allow
a generous uncertainty in the phase, ∆θ= 30 degrees, which
makes our estimate more conservative. Sometimes, nmax and
−nmax are indistinguishable; in this case, the range defaults to
n ∈ [−nmax + 1, . . . ,nmax]. For this analysis, we cap the value
at nmax ≤ 10, although the true value is often nmax ∼ 20 or
greater. We have chosen this upper bound based on the tor-
oidal mode numbers of destabilized TAEs observed in JET;
for example, see those in figure 12 of [44].

The final estimate of the toroidal mode number n0 is
taken as the value which minimizes the chi-square spec-
trum, min [χ2(n)] = χ2(n0), within a given range |n| ≤ nmax.
To quantify our confidence in this estimate, we define a ‘con-
fidence factor’ X as

X=
min

[
χ2(n ̸= n0)

]
χ2(n= n0)

≥ 1. (3)

In other words, theminimumχ2 value is smaller than all others
in the spectrum by a factor X, and our confidence increases as
X increases.

3.3.2. SparSpec evaluation. Borrowing a technique [45]
from the field of astronomy, the SparSpec code [22] utilizes
the ‘sparse’ representation of signals—i.e. data from a limited
set of unevenly spacedmagnetic probes—and performs a spec-
tral decomposition to find a superposition of toroidal modes.
Details of this calculation [22, 45], its real-time implement-
ation on JET [26, 28, 32], and associated analyses [23–25,
27, 29–31] can be found in a variety of references. A brief
overview is given here: For N probes at toroidal positions
ϕ= [ϕ1, . . . ,ϕN], their complex-valued measurements can be
represented as y= [y1, . . . ,yN]. For a range of toroidal mode
numbers nj, a matrix can be created with complex-valued com-
ponents Wjk = exp(injϕk). The aim is then to minimize the
function

J(x) = ||y−Wx||2 +λmax
(
W†y

)∑
j

|xj|, (4)

where λ∈ [0, 1] is a free parameter,W† is the conjugate trans-
pose of W, and xj is the fitted amplitude of mode nj. When
λ= 0, equation (4) is just a linear least-square fit; however,
for λ> 0, the second term of equation (4) is a cost function
penalizing additional non-zero amplitudes xj.

In this work, we evaluated SparSpec over a range of tor-
oidal mode numbers |n| ≤ 30 with a cost function parameter
λ= 0.85, a value found to work well in previous studies
[26, 28]. In theory, this combination should lead to noise in
the signal being ‘filtered out’ as low-level amplitudes at high
mode numbers. Then, just as with the chi-square evaluation
in the previous section, the range of toroidal mode numbers
was limited to those resolvable by the available probes. In past
works, this spectral decomposition was then used to compute
the resonant frequency and damping rate of each individual
mode contributing to the observed resonance. Here, for sim-
plicity, we report the ‘dominant’ mode n0 having the largest
amplitude |x0|=max(|xj|). We compute another ‘confidence

factor’ A similar to 3, but comparing the maximum (absolute)
amplitude to all others in the SparSpec spectrum, i.e.

A=
|xj(nj = n0)|

max |xj(nj ̸= n0)|
≥ 1. (5)

In other words, the absolute amplitude of the dominant mode
is greater than that of each other mode by this factor A, and
our confidence increases as A increases.

3.3.3. Results. Toroidal mode number estimates using both
chi-square and SparSpec calculations, with confidence factors
X≥ 2 and A≥ 2, respectively, are shown in figure 3(a) for
JPN 94654. For this pulse, all estimates are n0 = 0. The chi-
square and SparSpec spectra are also shown for one resonance
in figure 3(b); both show a ‘confident’ prediction of n0 = 0.
Since TAEs cannot have n= 0, this could indicate a measure-
ment of a Global Alfvén Eigenmode (GAE) [46, 47] which
has been observed previously in JET; see [7, 14, 29, 48] and
others.

All resonances’ toroidal mode numbers, evaluated with
SparSpec and a confidence factorA≥ 2, are shown in the histo-
gram (purple) of figure 2(a)9. As with the antenna operational
space, most resonances are estimated to have n= 0, with the
number of observations generally decreasing as |n| increases.
A similar trend was observed in past AE antenna data; see
figure 3 in [29]. The predominance of n= 0 measurements
has a few explanations: First, a subset of these could truly be
GAEs, as mentioned. Additionally, there could be a superpos-
ition of modes dominated by n= 0; identifying subdominant
modes via SparSpec will be explored in future work. Finally,
as the number of magnetic probes with ‘good’ fits decreases,
the range of resolvable n often decreases as well; this biases
measurements toward low n.

The absolute difference between the applied antenna and
estimated resonance mode numbers, |nant − n0|, is shown in
figure 2(b) for both chi-square and SparSpec evaluations
with confidence factors X≥ 2 and A≥ 2, respectively. Import-
antly, figure 2(b) confirms the successful operation of the AE
antenna. Recall that the antenna and resonant toroidal mode
numbers are estimated in the same way, but ultimately come
from two different sources: antenna currents and magnetic
signals. The histogram is peaked at a difference of zero and
decreases exponentially as the separation increases. Note the
‘dips’ at odd differences (i.e. |nant − n0|= 3,5, . . . ) and ‘peaks’
at even differences (i.e. |nant − n0|= 4,6, . . . ). This is caused
by the discrete antenna system injecting power into a spectrum
of toroidal modes, often preserving parity; for example, see
the driven n-spectrum in figure 2 of [29]. Note that the salient
peak at |nant − n0|= 10 is an artifact due to the nearly n= 10
spacing of a subset of probes in table 1 [22, 23].

Finally, note that while we consider toroidal mode number
estimations in range |n| ≤ 10 to be most plausible, observa-
tions of |n|> 10 are still prevalent:∼60 measurements via the

9 Note that a histogram of data from the chi-square evaluation is not shown in
figure 2(a) because it is almost identical to - i.e. agrees well with - that from
SparSpec.
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chi-square method with X≥ 2 and ∼200 measurements from
SparSpec with A≥ 3. These will be investigated more care-
fully in future work.

4. Observations in plasma parameter space

In the previous section, we compared the operational space of
the AE antenna with the resonances’ parameter space. In this
section, we comment on the plasma parameter space within
which these resonances were observed. It is important to note
that there are several layers to the exploration of this parameter
space: First, there are data associated with only observations
of resonances, such as the histogram of resonant frequencies in
figure 1(a). Then there are observational data normalized to the
antenna operational space. For example, we observed fewer
resonances at low frequencies f = 25–50 kHz, but also oper-
ated the antenna less often in that frequency range. An even
deeper layer could consider the existence of AEs (or other res-
onances) in any frequency range and the required accessibility
of our antenna to probe them. However, to learn this access-
ibility/existence space would require extensive computational
efforts and would be sensitive to many uncertainties, so it is
not pursued in this paper.

Ranges of plasma parameters in our database are given in
table 3. The 5th and 95th percentiles of each parameter distri-
bution are denoted, meaning 5% and 95% of the distribution
are less than these values, respectively. These can be compared
to a similar database in [29]; see table 1 therein. Note that in
[29] only ohmically heated plasmas were used to construct the
database. Of the resonances in our data set, the proportions
measured in limiter and X-point magnetic configurations were
∼17% and ∼83%, respectively. Unless otherwise noted, data
in this paper include both limiter and X-point configurations.
The effects of plasma shaping and plasma-antenna coupling
on AE measurements have been investigated in past works [1,
14, 20, 24, 25, 27, 29, 30, 32] and will be explored for our data-
base in an upcoming study [49]. In this section, we highlight
a few salient observations and trends, but note that extracting
physics from the database will require careful data filtering,
proper statistical analysis, and physics-based guidance.

The probability of resonance detection, normalized to the
antenna operational space, is shown as a function of plasma
current Ip in the histogram of figure 4(a). Each bin accounts
for the number of resonance observations and the number of
times the antenna operated within the bin’s range. The error
bars represent uncertainties from counting statistics of both
values, propagated appropriately. Interestingly, there is a steep
drop-off in the detection probability for plasma currents bey-
ond Ip > 2 MA; that is, we were less likely to measure res-
onances when operating above 2 MA. The detection probab-
ility is actually zero for Ip > 3 MA. One explanation for this
is that the (fixed) antenna currents have a lower perturbative
effect as Ip increases. The driven magnetic perturbation by the
antenna at the plasma edge is of order δB≈ 0.1–1G [4, 24];
therefore, a threefold increase in the poloidal field strength
could reduce the antenna perturbation and/or plasma response

Table 3. Ranges of plasma parameters for the resonance database:
plasma current, on-axis toroidal magnetic field, central electron
density and temperature, NBI and RF heating powers, plasma-
antenna separation, ELM frequency, central and edge safety factors,
edge magnetic shear, elongation, upper and lower triangularities,
normalized beta and internal inductance. Here, 5% of the
distribution falls below the 5th percentile value; 95% falls below the
95th percentile.

Parameter 5th percentile 95th percentile

Ip (MA) 0.74 1.97
B0 (T) 1.74 3.41
ne0 (1019 m−3) 1.52 4.73
Te0 (keV) 1.04 2.50
PNBI (MW) 0.00 2.19
PRF (MW) 0.00 2.86
dsep (cm) 9.98 16.74
fELM (Hz) 0.00 14.30
q0 0.84 2.21
q95 3.21 7.79
s95 3.00 5.81
κ 1.27 1.67
δu 0.00 0.25
δl 0.02 0.35
βN 0.10 0.54
ℓi 1.00 1.70

|δB/B| to below measureable levels. At the same time, there
could be a variety of other conflating factors in these high per-
formance discharges which contribute to this observation.

In figure 4(b), we show the probability of resonance detec-
tion, again normalized to the antenna operational space, as a
function of heating power. We use wide bins, ∆P= 2 MW,
in our histogram for two reasons: (i) to improve statistics
and (ii) because external heating is usually not varied con-
tinuously, but rather operated at fixed levels. For NBI heat-
ing only, the detection probability is relatively uniform for
PNBI ≤ 3.5 MW, but drops sharply for higher powers. This
could be explained by ion Landau damping from an increased
population of NBI ions; such an effect has been noted before
in JET [7, 17, 44]. In fact, the damping rate of n= 1 TAEs was
found to decrease for PNBI = 0− 3 MW but increase beyond
PNBI > 3 MW in [17]. Note that the AE antenna was oper-
ated for heating powers up to PNBI ≈ 30 MW in the 2019-
2020 campaign. However, as discussed previously, noise in
the magnetics signals, such as that due to ELMs, is particu-
larly prevalent for PNBI > 7 MW and can be misidentified as
resonant peaks. Therefore, these data were excluded, as has
been done in previous AE antenna studies [23].

For RF heating only, the probability of resonance detec-
tion decreases sharply beyond PRF > 1.5 MW. This finding is
more difficult to interpret than for only NBI heating because
RF-heated fast ions can both stabilize and destabilize AEs in
JET. For example, in [7], increasing RF power was found to
stabilize n= 0 GAEs (i.e. increase their damping rate), but
destabilize n= 1 TAEs (i.e. decrease their damping rate).What
can be inferred from figure 4(b) is that AE stability is more
difficult to assess in high-power JET plasmas; therefore, AE
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(a) (b)

Figure 4. Histograms of the probability of resonance detection normalized to the operational space versus (a) plasma current (Ntot = 4768)
and (b) NBI (Ntot = 3777) and RF (Ntot = 4392) heating powers. Uncertainties are shown as error bars.

(a) (b)

Figure 5. (a) Normalized damping rate versus q95 for data with |n| ≤ 4 (dark, Ntot = 3150) and |n| ≥ 5 (light, Ntot = 692) in X-point
configuration. Uncertainties are shown as error bars, and data are restricted to∆(γ/ω0)≤ 0.5%. A linear fit to all data is overlaid.
(b) Probability density functions of the normalized damping rate during external heating from NBI only (Ntot = 395), RF only
(Ntot = 1025), or neither (Ntot = 3592). Note the logarithmic horizontal and vertical axes.

antenna operation must be carefully optimized for success in
the upcoming high-performance DT campaign. That said, the
AE antenna should have a higher chance of success during the
‘afterglow’ phase of some DT pulses, during which NBI and
RF will purposefully be zeroed in order to isolate the effect of
alpha drive.

Normalized damping rate measurements are shown as a
function of the edge safety factor q95, as determined by EFIT,
in the scatter plot of figure 5(a). These data come only from
resonances measured during X-point, or diverted, configura-
tion of the magnetic geometry. Each data point is partially
transparent, so that high density regions of parameter space
are darker, e.g. q95∈[3, 6]. Data are also distinguished by
their estimated toroidal mode number: ‘low’ |n| ≤ 4 (light
in color) versus ‘high’ |n| ≥ 5 (dark). Note that damping

rates for data with |n| ≤ 4 tend to be greater than those with
|n| ≥ 5.

While there is significant spread in the data, we observe
a general trend of increasing |γ/ω0| as q95 increases. This is
confirmed by a simple linear fit of all data, although the slope
appears to be greater for data with |n| ≤ 4 compared to |n| ≥ 5.
Increasing q95 - and thus changing the q-profile - can increase
shear and continuum damping, leading to this trend. In previ-
ous studies of AE antenna data, the damping rate was found to
increase with increasing q95/q0 and q95 − q0 for |n|= 3 TAEs
[30], but decrease with increasing q95 for |n|= 7 modes [29].
The latter result is not observed in this work, but may be due
to poor statistics.

Because the uncertainty in the damping rate can be of the
same order as the damping rate itself, i.e. ∆(γ/ω0)∼ |γ/ω0|,
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it is ill-advised to visualize these data in histograms. Instead,
we can construct a smooth probability density function (pdf)
in the following way: For a given data set, each measurement
(data point) is assumed to be a Gaussian pdf g(µi,σi) with
mean µi = γ/ω0 and standard deviation σi =∆(γ/ω0). Then,
all individual pdfs from the data set are summed together, i.e.
G(γ/ω0) =

∑
i g(µi,σi), and the total pdf is normalized so that

the integral is 1. The probability of a measurement within a
given range is therefore just the integral of the pdf over that
range.

Three pdfs of the damping rate are shown in figure 5(b)
for resonances detected during no external heating, only NBI,
and only RF. With no heating, the pdf is peaked around
|γ/ω0| ≈ 0.2% and decreases exponentially as the damping
rate increases. With only NBI heating, there is an increased
probability of damping rate measurements near |γ/ω0| ≈
0.3%− 0.4%, which could be due to NBI ion Landau damp-
ing; damping rates above |γ/ω0|> 0.5% are less likely, how-
ever. A similar trend is seen for RF heating only: an increase in
probability around |γ/ω0| ≈ 0.3%− 0.7%, but a decrease bey-
ond |γ/ω0|> 0.7%. As mentioned previously, this decrease
in high damping rate measurements could be due to AE drive
from RF-heated fast ions.

5. Summary

In this paper, we summarized the operation of the Alfvén
Eigenmode Active Diagnostic, or AE antenna, during the
2019-2020 JET deuterium campaign. Since its recent upgrade,
six of the eight toroidally spaced antennas were independ-
ently powered and phased to excite stable MHD modes with
frequencies spanning f = 25–250 kHz (see figure 1(a)) and
toroidal mode numbers |n| ≤ 30 (see figure 2(a)). Synchron-
ously detected signals from fourteen fast magnetic probes
(see table 1) were used to calculate mode parameters in a
robust way: Resonant frequencies f 0 and damping rates γ were
calculated as weighted means of all (at least three) probes’
individual transfer function fits (see equation (1) and fig-
ure 3(b)). In general, resonant frequencies agree well with
both estimated TAE frequencies and those calculated with
MISHKA, although the match is better with the latter (see
figure 1(b)). The damping rate was also corrected for time-
varying AE antenna and resonant frequencies (see figure 3(a)).

For each resonance, the toroidal mode number was estim-
ated in two ways, via (i) minimization of a weighted, reduced
chi-square spectrum (see equation (2)) and (ii) maximization
of the mode amplitude from sparse spectral decomposition
(SparSpec, see equation (4)). Both methods were evaluated
over the range of resolvable n, which depends on the posi-
tions of (at least three) probes with sufficiently good measure-
ments of that resonance. While the discrete AE antenna sys-
tem injects power into its own n-spectrum, a comparison of the
dominant antenna-applied mode number and that estimated of
the resonance showed good agreement (see figure 2(b)). In
other words, the AE antenna successfully excited modes with
similar mode number, or at least typically preserving parity.
Most common were measurements of n= 0, which could be

true GAEs or caused by a superposition of modes. Observa-
tions of TAEs generally decreased with increasing n in |n| ≤
10 (see figure 2(a)). However, some modes with 10< |n| ≤ 30
were measured with high confidence (X > 3 in equation (3)
and A> 3 in equation (5)); these will be investigated in future
work.

A database was constructed from resonances detected
in 479 pulses spanning a wide range of plasma parameters
(see table 3). Data were also filtered to reduce uncertainties
and remove noise (see table 2). Several initial trends were
observed: The probability of resonance detection decreases
sharply for plasma currents Ip > 2 MA (see figure 4(a)); while
this could simply be due to a decrease in the relative mag-
nitude of the antenna’s perturbation, there are also likely
other conflating factors of high performance discharges. Fur-
thermore, damping rates increase with the edge safety factor
(see figure 5(a)), likely due to increased continuum damp-
ing. Finally, a competition between ion Landau damping and
fast ion drive may be seen in two ways: First, the prob-
ability of resonance detection decreases as external heat-
ing power increases (see figure 4(b)), and damping rates
−γ/ω0 > 1% are less likely when external heating is applied
(see figure 5(b)).

This paper has laid the groundwork for many future stud-
ies utilizing this database, including statistical analyses of the
bulk data as well as pulse identification for detailed analysis
and comparison with modeling. Of particular interest will be
the investigations high-n (|n| ≥ 7) modes and their stability. In
addition, isotope effects and, importantly, alpha drive will be
explored as data is collected in the upcoming JET hydrogen,
tritium, and DT campaigns. These data will be used to valid-
ate and improve the predictive capabilities of various MHD,
kinetic, and gyrokinetic models. This is an important step in
the assessment of energetic-particle-driven AEs and resulting
AE-enhanced transport of energetic particles in future fusion
devices.
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Appendix A. Calculation of the maximum
resolvable toroidal mode number

In this section, we will determine the range of distinguishable,
or resolvable, toroidal mode numbers n for a given set of probe
toroidal locations ϕk. This is related to non-uniform/aperiodic
sampling of the discrete Fourier transform.
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Consider a toroidal array of N fast magnetic probes loc-
ated at different toroidal angles ϕk∈[0, 2π) for k∈ [1,N]. For
simplicity, let all probes have the same radial and poloidal pos-
ition, and let ϕ1 = 0. For a magnetic perturbation with toroidal
mode number n, the phase of the (appropriately-filtered) signal
of probe k is θk = nϕk ∈ [0,2π).

Consider two toroidal mode numbers ni and nj, with ni > nj.
The signals produced by these two modes will be indistin-
guishable if,

mod(niϕk,2π)−mod(njϕk,2π) = 0, ∀ϕk. (A1)

Here mod(·,2π) is the modulo operator on 2π. Another way
to write this operator is

mod(θk,2π) = atan2

(
sinθk
cosθk

)
(A2)

where atan2(·) ∈ [0,2π) is the arctangent function in four
quadrants. One property of this function is

atan2

(
yi
xi

)
± atan2

(
yj
xj

)
= atan2

(
yixj± yjxi
xixj∓ yiyj

)
. (A3)

Let θi = niϕk, xi = cosθi, yi = sinθi, and the same for θj,xj,
and yj (where we have dropped the subscript k). Combining
equations (A1), (A2), and using the angle summation trigono-
metric identities, our indistinguishability condition becomes

atan2

(
sin(θi− θj)

cos(θi− θj)

)
=mod((ni− nj)ϕk,2π) = 0, ∀ϕk.

(A4)
We only need one probe location which does not satisfy equa-
tion (A4) for toroidal mode numbers ni and nj to be distin-
guishable.

Presume that all ϕk are some rational fraction of 2π.10

Then there exists n∗ = ni− nj (alongwith its integermultiples)
which satisfies equation (A4) for all ϕk. For a given n∗, we
want to minimize both |ni| and |nj|; these are then the smal-
lest mode numbers which are indistinguishable. Pairs includ-
ing higher values can also be indistinguishable, but are the res-
ult of aliasing. By inspection, we can minimize both |ni| and
|nj| by setting nj =−ni. Thus, we conclude that the maximum
resolvable toroidal mode number is nmax = ⌊n∗/2⌋, with ⌊·⌋
the floor operator. Note that this satisfies the Nyquist theorem
for probes with uniform separation ∆ϕ= 2π/n∗.

It is not always the case that both ±nmax can be dis-
tinguished. This must be checked separately. Hence, the
range of resolvable toroidal mode number is either n ∈
[−nmax, . . . ,nmax] or [−nmax + 1, . . . ,±nmax], where ±nmax is
treated as ‘one’ toroidal mode number.

To determine nmax from ϕk, we use the above reasoning to
require that each ϕk/2π = mk/2nmax is a rational number, with
mk non-negative integers. (Recall that we set ϕ1 = 0 so that

10 This is not a bad assumption since there will always be some error in our
measurement. Thus, we actually require that equation (A4) be less than some
uncertainty in the phase, instead of exactly zero.

m1 = 0.) Then, nmax can be determined by finding the lowest
common denominator of all ϕk/π, which can be computed by
various algorithms.
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