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Abstract

This thesis investigates microturbulence in three-dimensional magnetised
plasma geometries, with a specific focus on the impact of turbulence to
plasma stability. Microturbulence is the small-scale turbulent fluctua-
tions in a plasma caused by instabilities at or near the ion and electron
gyroradius scales. Microturbulence remains a critical challenge within the
field of plasma physics, and in order to control the effects of turbulence,
we first need to accurately model it. This task is particularly complex
in non-axisymmetric geometries, where mode-coupling occurs across non-
identical field lines, leading to potential inconsistencies in the common
representation of zonal flows.

The first part of the thesis focuses on the development and validation of a
novel δf -gyrokinetic code, designed to model microturbulence across a full
flux-annulus in non-axisymmetric magnetic configurations. This is espe-
cially important when considering turbulent dynamics in stellarators and
tokamaks with 3D magnetic perturbations, as capturing the coupling of
modes across different field lines is necessary to accurately resolve ‘zonal’
modes, that are constant across a flux surface. The code is benchmarked
against the current flux-tube implementation of the stella code, along
with other existing gyrokinetic codes. Novel results incorporating kinetic
electrons are also presented.

The second part of the thesis addresses microstability, which poses unique
optimisation challenges due to the large number of tunable parameters
in magnetic confinement devices. To tackle this problem, an efficient
method for calculating the derivative of the linear growth rate with respect
to multiple externally-controllable parameters, has been developed using
an adjoint method. The theoretical framework is derived in the limit
of no field-line coupling, including electromagnetic effects and collisions.
Numerical simulations then demonstrate the efficacy of the approach in
the electrostatic, collisionless regime.
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Chapter 1

Introduction

You can’t spell confusion without fusion.

Lucas McConnell

Among various world energy alternatives, thermonuclear fusion—the process that
powers the Sun—presents a promising solution to provide clean, safe, and efficient
energy. For this process, hydrogen is heated until it ionises, turning into a plasma
composed of ions and electrons. These charged particles can be influenced by electric
and magnetic fields, motivating the concept of magnetic confinement fusion (MCF),
which uses a magnetic cage to confine the plasma, allowing it to be heated to suffi-
ciently high temperatures for fusion to occur. However, to achieve fusion, we require
temperatures in excess of one hundred million degrees Celsius due to the Coulomb
repulsion between ions. To design a viable device, we must reach these high temper-
atures in the core while ensuring that the temperature at the edges of our plasma is
low enough for the materials in the walls of the device to withstand. This necessitates
a temperature gradient between the centre and edges of the device and requires one
to set up a profile of the parameters across the plasma. Since the inception of MCF
research in the 1940s, substantial progress has been made, primarily focused on the
tokamak, which is the most advanced MCF design to date. These toroidally axisym-
metric devices rely on a substantial plasma current to produce the poloidal magnetic
field required for confinement, making them vulnerable to current-driven instabilities,
that can impede plasma performance, or even terminate the discharge.

As research and computational tools have advanced, geometric considerations are
being used to constrain the plasma in ways that promote stability. This has ap-
plication in resonant magnetic perturbations (RMPs) to tokamaks [100], and even
the deliberate breaking of axisymmetry when constructing the initial plasma equi-
librium. Stellarators are a class of devices designed for the magnetic confinement of
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plasmas without a toroidally symmetric equilibrium, and have become a competitive
alternative to tokamaks. Rather than relying on a large plasma current, the poloidal
magnetic field in a stellarator is generated by external current-carrying coils, which
are often complicated and highly shaped [16]. Unlike tokamaks, which rely on induc-
tive currents that require pulsed operation and can lead to disruptions, stellarators do
not rely on any internal current for confinement, making them inherently less suscep-
tible to current-driven instabilities and disruptions. Experimental evidence suggests
that stellarator configurations may operate above the linear MHD stability pressure
threshold expected for tokamaks, and achieve higher densities than those set by the
Greenwald limit for equivalent tokamaks [49, 124, 42]. This capability could allow
stellarators to function within parameter regimes that are most favourable to fusion.

In contrast to tokamaks, the lack of axisymmetry in stellarators means that they
typically exhibit high levels of neoclassical transport at low collisionality [63]. This en-
hanced transport arises because particle orbits no longer average out to produce zero
net radial motion. One can insist on a magnetic geometry such that drift of particles
when averaged over time vanishes, a condition known as omnigeneity. This equates to
eliminating the net radial drift of collisionless particle trajectories [23, 52], to ensure
single-particle confinement. Near-omnigeneous stellarators have been one successful
example of plasma shaping in stellarators, enforced through geometric considerations
alone. Targeting omnigeneity in non-axisymmetric configurations has been shown
to significantly enhance plasma confinement [54]. Recognising the importance of
omnigeneity in such configurations has led to substantial progress in both theoretical
understanding, and in the optimisation of magnetic fields for improved omnigeneity in
experimental designs [55]. Particular subsets of omnigeneity, such as quasi-symmetric
configurations, have been demonstrated to offer guiding-centre confinement and neo-
classical transport properties comparable to those of equivalent tokamaks [15]. Con-
sequently, there have been considerable advancements in the design and construction
of these optimised stellarator devices [64, 59, 6, 77, 101, 46]. Additional advances
in coil design has made it easier to build these designs with higher error tolerances
[82, 94, 79].

However, despite recent advances and their appealing prospects, the parameter
space of devices without exact axisymmetry is vast, and hence numerical optimisa-
tion becomes necessary as it is often impractical to explore all alternative possibil-
ities. Additionally, the modelling of core turbulence–which is required to optimise
confinement–for non-axisymmetric geometries is significantly more challenging. This
is true for both stellarators and tokamaks with magnetic perturbations. Therefore
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the ability to accurately model turbulence in generic magnetic field configurations is
of broad relevance to the MCF community. The motivation for this thesis centres on
accurately modelling the plasma turbulence, and numerically optimising for turbu-
lent energy confinement in configurations with a large parameter space. The aim with
both of these endeavors is to improve confinement and overall fusion performance.

1.1 Motivation

To properly predict plasma profiles, one should solve the transport equations in
which nonlinear, turbulent fluxes determine profile evolution in the presence of given
sources and the boundary conditions. The turbulent fluxes are driven by gradi-
ents of temperature and density, which act as sources of free energy that are ca-
pable of driving microscale instabilities, should they exceed critical values (see e.g.
[105, 98, 37, 114, 103, 50, 28] for ion temperature gradient (ITG) driven instabilities,
[36, 37] for microtearing modes (MTMs), [5, 114] for kinetic ballooning mode (KBM)
descriptions, and [34, 69] for electron temperature gradient (ETG) driven instabilities
respectively). The threshold values of the plasma profile parameters for the onset of
linear instabilities are known as the ‘linear critical gradients’; a comprehensive anal-
ysis of ITG critical gradients and their onset can be found in Zocco (2018) [125].
Beyond these critical gradients, the linear modes can lead to strong, nonlinear turbu-
lence, with the fluxes rapidly increasing with increasing temperature gradient. This
would in turn require a large additional power input to maintain the temperature gra-
dient, and is described as a regime of ‘stiff’ transport [32]. These large fluxes result in
the increased transport of particles, momentum, and energy out of the device. Due to
this stiff transport, the critical gradients predicted by linear instability analysis often
serve as a reasonable first approximation to experimental results [35], since increased
heating power tends to have little effect on the plasma profile parameters, which re-
main pinned near these values. It is important to note that, unlike in neutral fluids,
linear instabilities in plasmas often act as the primary drivers of nonlinear turbulence,
making them essential to understanding the full nonlinear plasma dynamics.

However, although linear calculations are often good predictors, this picture can be
modified in various ways by the nonlinear physics. First, stiffness is not absolute and
is not always present, so an understanding of nonlinear saturation may be required
to determine achievable gradients for a given input power, particle source and torque.
Second, when the fluctuation amplitudes associated with the linear instabilities grow
large enough, they trigger ‘secondary’ instabilities that cause ‘zonal’ modes to grow.
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The energy injection into the zonal modes, and their associated zonal shear flows can
suppress turbulence completely in a region near the linear critical gradients. This
shift to the onset of stiff transport, known as the ‘Dimits shift’ (see e.g., [32, 102]),
leads to a ‘nonlinear critical gradient’ that exceeds the linear value. This defines
the onset of stiff transport in a fully developed nonlinear system, and is often up-
shifted from the linear gradient. Finally, sub-critical turbulence, in which linearly
stable systems lead to a finite amplitude turbulent steady-state, also exist1 [87, 56].
Hence, to reliably predict even the critical gradients for turbulent onset, nonlinear
simulations are required. Thus, while linear analysis has its merits, the ability to
accurately model nonlinear turbulence and its interactions with zonal flow is crucial
for making better predictions about plasma evolution within MCF devices.

1.1.1 Linear Instabilities

The archetypal linear microinstability in the core of MCF plasmas is the toroidal ion
temperature gradient (ITG) instability [105, 98, 37, 114, 103, 50, 28]. It has been
identified as one of the most prominent and ubiquitous instabilities, being one of
the main sources of turbulent heat transport in the core of tokamaks [27, 120, 84].
Its basic features are outlined here, to give a flavour of the physics captured and
to use as a case study in stability optimisation. This type of instability occurs on
the ‘bad curvature’ side of MCF devices, where the temperature and magnetic field
strength gradients align. For an axisymmetric device, this is on the outboard side
of the device. A schematic of the instability in the electrostatic limit is shown in
Figure 1.1. It is primarily driven by the free energy stored in the ion temperature
gradient. Fluctuations in temperature that naturally arise in the plasma lead to
density fluctuations, due to the difference in the magnetic drift velocities between
colder and hotter ions. This sets up an electric field perturbation, which applies a
force to the charged ions. When a force is applied to a charged particle in the presence
of a magnetic field, it drifts in a direction that is perpendicular to both the force and
the magnetic field. Hence, the electric field perturbation leads to the so-called ‘E×B

drift’ which acts to enhance the initial perturbation, leading to an instability. On the
‘good curvature side’ of the device–where the temperature and magnetic field strength
gradients are oppositely aligned–this E×B drift acts to reduce the amplitude of the
initial perturbation, stabilising the ITG instability. For an axisymmetric device, this
occurs on the inboard side. A similar analysis applies to the electrons, whose magnetic
drift is in the opposite direction to ions due to their opposite charge.

1For the optimisations performed in this work, sub-critical turbulence will not be considered.

4



x̂

ŷ
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(d) Charge accumulation/depletion.
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(e) Electric field generation.
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(f) E ×B drift produced.

Figure 1.1: Schematic of the toroidal ion temperature gradient (ITG) driven in-
stability. Figure (a) shows the equilibrium plasma, where the gradient of the ion
temperature, Ti, and the gradient of equilibrium magnetic field strength, B0, act in
the same direction. Here the equilibrium magnetic field is directed out of the plane
of the page. Figure (b) shows the initial perturbation introduced into the plasma,
causing hotter regions of plasma to extend into regions of colder background plasma,
and vice versa. In Figure (c) the ions drift with a speed vd,i that depends on their
temperature–hotter ions drift faster compared with colder ones. It can be seen in
(d) that this leads to accumulation (depletion) of positive charge as ions are drifting
into the region faster (slower) than they are drifting out of that region, due to the
difference in drift velocities between hot and cold ions. This separation of charge
generates a perturbed electric field, E, shown in (e). This electric field generates an
E × B drift that acts to reinforce the original perturbation, as shown in (f). This
feedback mechanism leads to instability.
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The linear growth rates of such instabilities can depend on numerous parame-
ters in the system, such as the magnetic geometry of the device. Given the high-
dimensionality of the parameter space involved, optimising a plasma configuration
for microstability can prove computationally prohibitive. As such, it is of impor-
tance to develop efficient methods allowing for the linear growth rate to be minimised
with respect to experimentally-controllable parameters, in order to practically aim
for plasma microstability.

1.1.2 Zonal Flows

The gyrokinetic system captures nonlinear processes that determine the turbulent
saturation levels and transport within MCF devices. One important example of
this is the so-called ‘zonal flow’, which has been shown to significantly impact the
evolution of the turbulence [14, 104, 81, 20, 68, 67, 88]. Zonal flow is defined as
flow that is constant within a magnetic flux surface, but is able to vary across flux
surfaces. It is distinguished from the equilibrium flow in that it is self-organised by
the turbulence over the turbulence time-scale and can have a radial variation over
scales comparable to turbulent eddy sizes, i.e., the Larmor radius [31]. Depending
on the plasma parameters, the zonal flow may be coherent, providing an effective
modification to the equilibrium that can affect instability, or can be fluctuating in
time. In most gyrokinetic simulations the zonal flow plays a crucial role in determining
the amplitudes at which turbulence saturates [111]. A schematic illustration of a
zonal flow in a tokamak is shown in Figure 1.2, where the red and blue shaded
regions represent bulk plasma flows in the clockwise and counterclockwise directions,
respectively.

Figure 1.2: A schematic of the poloidal cross-section of a tokamak illustrating the
zonal flow structure. The red (blue) bands represent bulk plasma flow in the clockwise
(anticlockwise) direction. This flow pattern is consistent across the entire device.

The fact that the zonal flow is constant across all field lines in a flux surface is a
challenge for local simulations of non-axisymmetric plasmas [53, 4, 107]. Many of the
current simulation approaches model the turbulence locally by considering a domain
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that follows the magnetic field line. This domain is elongated in the direction parallel
to the magnetic field, but is thin in the directions perpendicular to the magnetic field,
and is known as a flux-tube. However, modelling the turbulence locally in a flux-tube
may limit the ability to capture the generation, evolution, and effects of zonal flows
in non-axisymmetric devices: in general, the zonal flow determined locally, using a
flux-tube code, for two different field lines on the same flux surface will not agree. If
not properly represented, the dynamics of zonal flows may result in an incomplete or
inaccurate depiction of turbulence and transport processes, meaning simulations may
be unable to capture the true turbulence saturation levels. Consequently, an efficient
means of coupling zonal flow and the corresponding turbulence across multiple field
lines is thus crucial for studying turbulent saturation in non-axisymmetric devices.
Efficiently capturing all of this numerically can put a large demand on computing
resources, potentially requiring very large processing times on parallelised systems.

1.1.3 Modelling Plasma Turbulence

The gyrokinetic system of equations serves as a foundational theoretical framework for
analysing magnetised plasmas. Gyrokinetic simulations have become valuable tools
within the field for modelling the plasma on turbulent length and time scales in order
to predict the associated transport. However, achieving solutions to the full nonlinear,
5-dimensional, integro-differential gyrokinetic equation, incorporating comprehensive
physics —such as kinetic electron dynamics, collisionality, and electromagnetic fluc-
tuations—in realistic, non-axisymmetric geometries places substantial demands on
computational resources. Consequently, reduced descriptions of the system, which
suppress certain physics, have become routine.

The main goal of this thesis will be to discuss novel numerical schemes aimed at
addressing these complexities, with the aim to improve the modelling capabilities for
plasma dynamics, and help inform the design of future fusion reactors. The research
presented in this thesis has two main objectives: the first is to accurately model
gyrokinetic turbulence on a flux-annulus in order to capture geometric effects in non-
axisymmetric plasmas, particularly in relation to correctly modelling the zonal flow in
such devices. The second is to develop tools to explore how controllable parameters
of the system can be used to enhance microstability, thereby improving conditions
for fusion. This involves the development of an efficient framework for optimising the
linear growth rates—which can serve as a proxy for the entire nonlinear system—to
achieve microstability by considering a wide range of parameters that can be feasibly
adjusted in the design of an MCF device.
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1.2 Plasma Parameters and Assumptions

In the presence of magnetic fields, charged particles execute a helical motion around
the magnetic field lines. In the absence of an electric field, and in a uniform magnetic
field, the perpendicular component of this motion reduces to a simple circular path,
with a frequency termed the gyrofrequency, Ων , where ν denotes the species index.
Here ν = i and an ν = e indicate the bulk ion and electron species respectively.
The gyrofrequency is given by Ων = ZνeB/mνc, where B is the magnitude of the
magnetic field, mν is the species’ mass, c is the speed of light in a vacuum, and Zνe

is the species charge, with e the proton charge.. The radius of this circular motion is
known as the Larmor radius, ρν .

When deriving a model of the plasma behaviour accounting for turbulence, we
focus on plasma conditions characterised by weak coupling, strong magnetisation,
low frequencies, and small amplitude turbulent fluctuations. We shall detail each of
these assumptions:

• Weak Coupling: This condition is expressed as neλ3De ≫ 1, where ne is the
equilibrium electron density. The Debye length, λDe, is defined in cgs units by:

λDe =

(∑

ν

4πnν(Zνe)
2

Tν

)− 1
2

. (1.1)

This is a statement that there are numerous particles within a ‘Debye sphere’–a
sphere whose radius is the Debye length–meaning that the plasma shields out
the effect of charge perturbations over length scales on the order of λDe. This
leads to an overall quasineutral plasma, for which the perturbed density of each
species, δnν , obeys the following relation

∑

ν

Zνδnν = 0. (1.2)

• Strong Magnetisation: The analysis in this thesis is limited to the regime
in which the Larmor radius, ρν , is considerably smaller than the characteristic
system size, L: ρν/L ≪ 1. This implies that the magnetic field influence
is dominant over particle motion on macroscopic scales, which is required for
plasma confinement.

• Low Frequencies: The characteristic frequencies of fluctuations within the
plasma are taken to be much smaller than the gyrofrequency, which is a conse-
quence of strong magnetisation. This allows the rapid gyromotion to be tem-
porally separated from the slower dynamics of the system.
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• Near Equilibrium: It is assumed that the turbulent fluctuations within the
plasma are small in amplitude compared to the mean field values, meaning
perturbative methods may be used to analyse the plasma behaviour.

1.3 Overview

This thesis aims to address the complex challenge of modelling turbulence in a mag-
netically confined fusion plasma and optimising for gyrokinetic microstability. The
structure of the remainder of this thesis is as follows. In Chapter 2, the foundational
framework upon which this research is based is introduced, presenting the gyrokinetic
equations along with the associated field equations that govern the system behaviour.
Chapter 3 explores the various considerations that must be taken into account when
numerically modelling plasma behaviour, specifying the particular choices made for
the δf -gyrokinetic code stella. Chapter 4 introduces a novel numerical extension
of the existing flux-tube version of the stella code, to include the capability of
modelling turbulence across a full flux-annulus, allowing for a more accurate mod-
elling of turbulence in non-axisymmetric plasmas. The algorithms that have been
implemented are given, and numerical benchmarks are provided to demonstrate the
efficacy of this work. This code has been developed in order to effectively capture
the effects of varying magnetic geometry and accurately model zonal flow, and the
resulting differences between flux-tube and the full flux-annulus versions are shown.
In Chapter 5, the adjoint method is detailed, which provides an efficient approach
for computing gradients in a high-dimensional parameter space. Its application to
the linearised gyrokinetic system is demonstrated, highlighting the capability for op-
timising for microstability within a plasma, and improving plasma profile parameters
favorable for fusion. It is demonstrated that such an optimisation can be achieved
by varying externally controllable experimental parameters, and that this method is
capable of efficiently doing so for a large parameter space. This chapter also includes
numerical validation of the proposed theory using the flux-tube version of the stella
code. The material used in this chapter has been published by Acton et al. (2024)
[3]. By correctly modelling the turbulence and optimising for microstability, this work
aims to contribute to the global effort to move forward fusion as a viable clean energy
source. Finally, Chapter 6 presents a summary of the key work in this thesis and
outlines potential directions for future research.
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Chapter 2

Plasma Description

[The equations] are generally accepted by most theoreticians, they are
developed with the most sophisticated mathematical methods and it is
only the plasma itself which does not understand how beautiful the
theories are and absolutely refuses to obey them. It is now obvious that
we have to start a second approach from widely different starting points.

Hannes Alfvén

2.1 Introduction

In theory, it is possible to use classical physics to solve the equations of motion for
every particle in a plasma, and so predict the fluxes of particles, momentum and
energy out of an MCF device for given sources. However, storing such information
for approximately O(1023) particles is not feasible. Instead, a statistical description
is more practical. This involves considering the distribution functions of each particle
species, fν(x,v, t), which characterises the distribution for a given species ν in terms
of spatial position x, velocity v, and time t. To fully determine fν , one would need to
solve the complete nonlinear Vlasov–Maxwell system of equations, a task that is itself
complex. To make further progress, a fundamental small parameter for each species
is identified in a strongly magnetised plasma, ρ∗,ν , and the separation of spatial and
temporal scales inherent in plasma systems, that were outlined in Section 1.2, can be
exploited. The first nonlinear gyrokinetic equation was derived using this method by
Frieman and Chen in 1982 [41]. There have since been many other works, which have
extended the derivation to include generalised magnetic geometries, electromagnetic
effects, and the use of gyrocenter coordinates (e.g., see [65, 1, ?, 25]). The derivation
covered here closely follows that of Abel (2013) [1] which uses a perturbative ex-
pansion in gyrocenter coordinates to derive the full nonlinear gyrokinetic equations,
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including electromagnetic effects. These derivations take advantage of the scale sepa-
ration present in most MCF plasmas, where the plasma evolves across varying spatial
and temporal scales. The resistive evolution of the magnetic geometry, for exam-
ple, evolves over slow temporal and large spatial scales, while turbulent fluctuations
appear on shorter temporal and spatial scales.

2.2 Magnetic Geometry

In order to consider how turbulent fluctuations of the plasma evolve, one must first
consider the magnetic geometry of the plasma. In MCF devices, achieving a stable
plasma equilibrium is essential for operation. Global plasma equilibrium is governed
by a combination of Maxwell’s equations and the ideal MHD equations. The non-
relativistic version of Maxwell’s equations are

∇ ·E = 4πϱ, (2.1a)

∇ ·B = 0, (2.1b)

∇×E = −1

c

∂B

∂t
, (2.1c)

∇×B =
4π

c
j, (2.1d)

where ϱ is the electric charge density, j is the current density, and c is the speed of
light. The fields E and B are the electric and magnetic fields, respectively.

In a steady state, with no sonic flows, the equilibrium condition for the plasma,
treated as a single fluid, reduces to simple force balance. The forces on the plasma,
at the equilibrium scale, involve the thermal pressure gradient force, the magnetic
tension, and the magnetic pressure

1

c
j ×B = ∇p, (2.2)

where p is the plasma pressure. Equation (2.2) illustrates that B and j must lie on
surfaces of constant pressure, giving rise to the equilibrium conditions B ·∇p = 0 and
j · ∇p = 0. To ensure that B remains tangential to a non-vanishing and singularity-
free pressure gradient, the magnetic field lines must lie on a torus [118, 52]. Given
that B must lie on surfaces of constant pressure with toroidal topology, we can
make the additional assumption for the existence of nested magnetic surfaces of the
configuration. In a poloidal cross-section, these nested surfaces resemble a series of
concentric magnetic surfaces, illustrated by Figure 2.1. The degenerate surface at the
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Figure 2.1: Schematic representation of a poloidal cross section through a torus with
nested flux surfaces.

center of the nested magnetic surfaces is called the magnetic axis, and is marked by the
black dot. The magnetic field B can be expressed using the Clebsch representation
[75]:

B = ∇α×∇ψ, (2.3)

where ψ is the flux surface label, and α labels field lines. A diagram depicting these
coordinates on a flux surface can be seen in Figure 2.2.

Figure 2.2: Diagram illustrating the Clebsch representation on a single flux surface.
The coordinate ψ labels the flux surfaces, and the gradient vector ∇ψ points in the
direction of greatest change in ϕ—i.e., normal to the flux surface. The coordinate α
labels magnetic field lines, with the gradient ∇α lying within the flux surface and
pointing in the direction of maximum variation in field-line labeling.

These labels help in defining a magnetic coordinate system that aligns well with
the geometry of the magnetic surfaces and facilitates the mathematical treatment of
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equilibrium and stability analyses [18]. Together with a third coordinate, that charac-
terises the position along the magnetic field, this forms a non-orthogonal curvilinear
coordinate system. The choice of these coordinates is not unique, and as such they
are currently left unspecified.

2.2.1 Axisymmetric Geometries

Within toroidally axisymmetric geometries, the coordinate labels (θ, ζ, ψ) are com-
monly used. Here, θ represents the poloidal angle, which measures angular distance
along the shorter path around a torus, while ζ represents the toroidal angle, which
measures the angular distance along the longer path around the torus. The ψ co-
ordinate denotes the flux surface label. Figure 2.3 illustrates a flux surface of an
axisymmetric device, with this choice of coordinates. Here the colours indicate the
magnetic field strength—with red signifying the strongest field strength, and blue
representing the weakest.

Figure 2.3: An example of an axisymmetric flux surface with the associated coordinate
system orientations. Here the colour indicates the strength of the magnetic field, with
red denoting a stronger field and blue indicating a weaker field. Image created using
stellapy [115].

In general, θ and ζ can be taken as any 2π-periodic coordinates that advance in the
poloidal and toroidal directions, respectively. Thus, there are two position-dependent
degrees of freedom when choosing (θ, ζ), as one is always at liberty to redefine them:

θ̃ = θ + λ(ψ, θ, ζ),

ζ̃ = ζ + ν(ψ, θ, ζ), (2.4)

where λ and ν are any single-valued functions that are 2π-periodic in θ, and ζ [52, 66].
The specification of these functions is a gauge choice, and each gauge results in
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analogous ‘poloidal’ and ‘toroidal’ angles that are 2π periodic and refer to the ‘short’
and ‘long’ ways around the torus respectively. This provides freedom to define the
coordinate system such that the magnetic field has certain desirable properties. To
relate this back to the Clebsch definition of the magnetic field, let α = α(θ, ζ):

B =
∂α

∂θ
∇θ ×∇ψ +

∂α

∂ζ
∇ζ ×∇ψ. (2.5)

This helical magnetic field in tokamaks is primarily created by the interaction of two
components: a toroidal magnetic field generated by external magnets surrounding the
plasma vessel, and a poloidal magnetic field produced by a toroidal current within the
plasma. In tokamak devices, this toroidal current is typically induced by a central
solenoid, which generates a secondary current in the plasma. Additional methods
for generating the toroidal current include neutral beam injection, microwave heat-
ing, and naturally occurring currents within the plasma itself, driven by the system
gradients. The poloidal magnetic field plays a crucial role in mitigating net particle
drifts, by linking different vertical positions within the plasma and thereby preventing
the formation of a vertical electric field. The toroidal magnetic field is essential to
prevent large-scale plasma instabilities. One characteristic of the magnetic field that
describes the relative size of the toroidal to poloidal magnetic field is the safety factor,
q, which represents the number of toroidal turns a magnetic field line must complete
to achieve a full poloidal rotation,

q(ψ) =
1

2π

∫ 2π

0

B · ∇ζ
B · ∇θdθ. (2.6)

This safety factor indicates the relative increase of the toroidal angle to the poloidal
angle of the field line (i.e., the ‘pitch’ of the field line), with q = 0 corresponding to
zero toroidal field and q = ∞ indicating zero poloidal field. Substituting (2.5) into
this definition gives

q(ψ) = − 1

2π

∫ 2π

0

∂α/∂θ

∂α/∂ζ
dθ. (2.7)

Given the degrees of freedom in the choice of θ and ζ, one can enforce that the
integrand is θ-independent, giving ∂α/∂θ+q∂α/∂ζ = 0. This is an advection equation
with solutions of the form α = α(ψ, ζ − qθ). The choice α = ζ − qθ is made, noting
that any α of the form α̂(ψ) (ζ − qθ) can be manipulated such that α̂(ψ) is absorbed
into the definition of ψ. Using α = ζ − qθ and defining −q(ψ)∇θ × ∇ψ = I(ψ)∇ζ,
the magnetic field can be rewritten as

B = ∇ζ ×∇ψ + I(ψ)∇ζ, (2.8)
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where I(ψ) is a flux function defined by I(ψ) = B · ∇ζ = RBζ , which can be
interpreted as the current inside the flux surface ψ. This coordinate choice results in
a field-aligned coordinate system where field lines are straight in the (θ, ζ) plane. The
remaining degree of freedom allows for tailoring desirable qualities of the magnetic
field, which gives rise to different coordinate choices. One such choice is Boozer
coordinates [17], (θB, ζB, ψ),

B = ∇ζB ×∇ψ + q∇ψ ×∇θB. (2.9)

Boozer coordinates are a useful coordinate choice because they preserve symmetry.
In such coordinates the poloidal and toroidal components of the magnetic field are
constant on flux surfaces. Figure 2.4 gives an example of magnetic field lines in an
axisymmetric system represented in these Boozer coordinates. For an axisymmetric
system, it can be seen that every field line that extends 2π in θB will sample the same
geometry.

Figure 2.4: The magnetic field strength of the configuration in Figure 2.3 represented
in Boozer coordinates. Here the colour indicates the strength of the magnetic field,
with red denoting a stronger field and blue indicating a weaker field. The coloured
straight lines represent magnetic field lines, all of which sample identical geometric
configurations. Image created using stellapy [115].

2.2.1.1 Grad–Shafranov Equation

For toroidal geometries with axisymmetry, if magnetic surfaces exist, the coordinate
ψ in equation (2.8) can be taken to be the poloidal magnetic flux, which is defined as

ψ =

∫

SP (ψ)

B · n̂ d2r, (2.10)
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where n̂ is a unit vector in the poloidal direction, and SP (ψ) is a ribbon-like surface
extending from the magnetic axis to the flux coordinate ψ at fixed poloidal angle.
I(ψ) can be interpreted as the poloidal current density as a function of the poloidal
magnetic flux, ψ, in the plasma. The ψ-component of the plasma equilibrium force
balance, (2.2), is used with Maxwell’s equations, (2.1), to derive the Grad–Shafranov
equation [108, 40]

∇2ψ − 2

R

∂ψ

∂R
= −R2 dp

dψ
− I

dI

dψ
, (2.11)

where R is the major radius, as labelled in Figure 2.1. The quantities p = p(ψ),
and I = I(ψ) are both flux functions. Typically the shape of the outer boundary,
or the coil currents are given along with the pressure and current profiles, p(ψ) and
I(ψ). With this, the function ψ for all inner flux surfaces is solved for, which governs
the shape of the magnetic surfaces in axisymmetric devices, like tokamaks, through
equation (2.8). Once the equilibrium magnetic field geometry has been determined,
it can then be tested for MHD stability [?].

2.2.1.2 Miller Geometry

Miller geometry [86] is a formalism capable of describing the local magnetic geometry
of a flux surface within axisymmetric systems. The Miller approach ensures that
the Grad–Shafranov equation is locally satisfied in ψ by using a set of independent
parameters to define a single flux surface in an axisymmetric device. It is worth noting
that satisfying the Grad–Shafranov equation locally does not guarantee consistency
with a global equilibrium, but rather parameterises a local flux surface. The model
equations describing the shape of the flux surface—with flux label r defined as the
half-diameter of the surface at the height of the magnetic axis—are:

R(r, θ) = R0(r) + r0(r) cos
(
θ + sin(θ) arcsin [δ̄(r)]

)
, (2.12)

Z(r, θ) = r0(r)κ(r) sin(θ), (2.13)

where R(r, θ) and Z(r, θ) define the major radial and vertical locations for a given
poloidal location, θ, illustrated in Figure 2.5. Here, δ̄ and κ indicate the triangularity
and elongation of the surface, respectively. An illustration of how variations in elon-
gation and triangularity affect the shape of the flux surface is shown in Figure 2.6.

By varying θ over a 2π interval, equations (2.12) and (2.13) define a closed
line in the poloidal plane. This cross section is revolved 2π in the toroidal angle
to map out the magnetic flux surface. The Miller geometry formalism allows for
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Figure 2.5: A poloidal cross section of a flux surface, illustrating the definition of the
quantities used in the Miller representation of a flux surface.

the study of local stability and confinement properties without the need to repeat-
edly construct a self-consistent global equilibrium. The set of Miller parameters are
{r0, R,∆, q, ŝ, κ, κ′, I, δ̄, δ̄′, β′}, where primes indicate a derivative with respect to r.
These correspond to markers for the minor and major radii, horizontal Shafranov
shift (∆ = R′), safety factor, magnetic shear (ŝ .

= (r0/q)q
′), elongation and its radial

derivative, the poloidal current density, triangularity and its radial derivative, and the
radial pressure derivative respectively, with each being specified at the flux surface of
interest.

2.2.2 Non-Axisymmetric Geometries

Non-axisymmetric magnetic confinement devices, such as stellarators, present unique
challenges and opportunities for plasma confinement. Unlike tokamaks, which main-
tain symmetry about a central axis, non-axisymmetric devices feature three-dimensional
magnetic field structures, such as the one shown in Figure 2.7. Unlike tokamaks, stel-
larators do not rely on an internal plasma current to generate a helical magnetic field,
and instead achieve this by breaking axisymmetry using external coils that generate
the magnetic field; this can be done by rotating elongated structures into a flux sur-
face, or by making the magnetic axis non-planar. For non-axisymmetric devices, the
rotational transform is defined as

ι(ψ) =
1

2π

∫ 2π

0

B ·∇θ

B ·∇ζ
dθ, (2.14)
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Figure 2.6: Poloidal cross-sections of a flux surface illustrating how variations in
elongation, κ, and triangularity, δ̄, affect the shape of the flux surface.

which is analogous to the inverse of the safety factor for axisymmetric devices. The
same analysis as in Section 2.2.1 gives α = θ − ιζ. It should be noted that, as with
axisymmetric devices, this specific choice for α is not unique. Different choices may
result in varying representations of the magnetic field that can yield useful insights,
depending on the context of the analysis or simulation. For non-axisymmetric devices
a common coordinate choice is (α, ζ, ψ). The magnetic field takes the following form
using this coordinate choice

B = (∇θ ×∇ψ − ι∇ζ ×∇ψ) . (2.15)

With this choice of α we adopt the field-aligned representation for the magnetic field,
an example of which is shown in Figure 2.8. Note that different field lines will sample
different parts of the magnetic geometry for a 2π extension in either θ or ζ. This
is in contrast with axisymmetric geometries, where all field lines are geometrically
identical.
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Figure 2.7: Example of a flux surface for the stellarator W7-X. Here the colours
represent the magnetic field strength, with red indicating a stronger field, and blue
indicating a weaker field. Image created using stellapy [115].

Figure 2.8: The magnetic field strength of the configuration in Figure 2.7 represented
in Boozer coordinates. Here the colour indicates the strength of the magnetic field,
with red denoting a stronger field and blue indicating a weaker field. The coloured
straight lines represent different magnetic field lines, which are sampling different
parts of the geometric configuration. Image created using stellapy [115].

2.3 Plasma Evolution Equations

We wish to consider how plasma turbulence evolves in the core of an MCF device.
To model this evolution of plasma fluctuations we use the δf -gyrokinetic equation
[24, 5, 1, 41, 26, 65], which one derives by assuming a spatial and temporal scale
separation. This model is appropriate for the core of many MCF devices because of
the strong magnetisation and the modest plasma profile gradients. However, scale
separation may fail in certain situations, such as in the pedestal region, where plasma
profile gradients are significant, or in devices with sufficiently weak magnetisation
where the gyroradius of a thermal species may be comparable to the device size [39].
Therefore, we restrict our considerations to scenarios where the scale separation, both
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in space and time, is present.
The starting point is the Vlasov–Maxwell system of equations including collisions;

for this, combine Maxwell’s equations, given by (2.1), with the Vlasov–Fokker–Planck
equation for the evolution of the species distribution functions

dfν
dt

=
∑

ν′

Cνν′ [fν , fν′ ] , (2.16)

where Cνν′ [fν , fν′ ] accounts for the effects on species ν from Coulomb collisions with
species ν ′. The charge and current densities are related to the particle distribution
function, fν , via the velocity space integrals

ϱ =
∑

ν

Zνe

∫
d3v fν , (2.17a)

j =
∑

ν

Zνe

∫
d3v vfν . (2.17b)

Gyrokinetics is formulated to study the turbulent evolution of plasmas, but plasma
dynamics is fundamentally a multiscale problem. As a result, one must consider the
physics driving the system and tease out the different scales that may be present to
exploit a separation of scales and simplify the system.

On the length scales of the equilibrium, the plasma profile parameters, such as
temperature and pressure, vary smoothly. The fundamental assumption is that these
equilibrium quantities have slow spatial and temporal evolution; the dynamics are
governed by slow transport time scales, τE, and variations are on large spatial scales
that are on the order of the macroscopic device size, L.

Conversely, turbulence exists on short spatial and temporal scales. The natural
length scale of turbulence is the Larmor radius, ρν = v⊥/Ων , where v⊥ is the mag-
nitude of the particle velocity in the plane perpendicular to the magnetic field. The
Larmor radius of particles is taken to be much smaller than the system size; ρν ≪ L.
We define, for use henceforth, the thermalised gyroradius of a species, defined as
ρth,ν

.
= vth,ν/Ωr,ν , where vth,ν

.
=
√
2Tν/mν is the species’ thermal velocity, with Tν

the mean species’ temperature. Here Ωr,ν is the species reference gyrofrequency which
is evaluated at some characteristic magnetic field strength. It is important to note
that the electron Debye length is much smaller than the ion turbulent length scale,
λDe ≪ ρi, allowing the plasma to be treated as quasineutral over turbulent scales.
Also, while the turbulence evolves much more rapidly than the equilibrium, the fre-
quency of fluctuations, ω, is taken to be much less than the gyrofrequency of particles;
ω ≪ Ων .
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This separation of scales can be exploited to decompose quantities into their mean
and fluctuating parts. The mean components determine the evolution of the back-
ground plasma, and are found by averaging over all fluctuations. The average of a
given quantity, h, over all fluctuations is represented by ⟨h⟩turb, defined as

⟨h(t)⟩turb =
1

T

∫ t+T/2

t−T/2
dt′ ⟨h(t′)⟩⊥, (2.18)

where T is some intermediate time shorter than the (transport) time scale associated
with mean profile evolution, and longer than time scales associated with typical fluc-
tuations, such that ω−1 ≪ T ≪ L/vth,i. Here ⟨·⟩⊥ is an appropriately defined spatial
average over a surface perpendicular to the magnetic field with a characteristic length
l, satisfying ρν ≪ l ≪ L [1]. The distribution function is decomposed as fν = Fν+δfν

with Fν = ⟨fν⟩turb determining the distribution function of the plasma equilibrium,
and δfν the contribution from plasma fluctuations.

The Vlasov–Maxwell equations including collisions, given by equations (2.1) and
(2.16), are expanded in the small parameter ϵ ∼ ρ∗ ≪ 1, with ρ∗ = ρth,i/L the ratio of
the thermal ion gyroradius to the system size, and terms of equivalent order equated.
The terms are ordered as follows

ϵ ∼ ρ∗
.
=
ρth,i

L
∼ ω

Ωi

∼ k∥
k⊥

∼ eϕ

Tν
∼ δB

B0

∼ δfν
F0,ν

≪ 1 and k⊥ρi ∼ 1 . (2.19)

In the above orderings the magnetic field has been decomposed into the equilibrium
contribution, B0, and the magnetic fluctuations, δB, such that the full magnetic
field is B = B0 + δB. The parallel and perpendicular wavenumbers have also been
introduced, k∥ = k · b̂ and k⊥ = (I − b̂b̂) · k, with b̂ the unit vector in the direction
of the equilibrium magnetic field, and I the identity matrix. The perturbed electric
potential has been introduced as ϕ. The mean and fluctuating components of the
distribution function are also expanded

Fν =F0,ν + F1,ν + F2,ν · · · ,
δfν =δf1,ν + δf2,ν + · · · , (2.20)

with F0,ν ∼ fν , F1,ν ∼ δf1,ν ∼ ϵfν , F2,ν ∼ δf2,ν ∼ ϵ2fν , and so on. Equilibrium quanti-
ties are taken to have characteristic length scales of order L, and evolve slowly on the
long transport time scale τ−1

E ∼ ϵ3Ωi; they are thus understood to be static during
these considerations. Small-scale fluctuations, captured in δfν , have characteristic
length scales of the order ρth,i ∼ ϵL and frequencies ω ∼ ϵΩi.
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Figure 2.9: Illustration of the approximate motion of a charged particle in a magnetic
field. Here the helical path indicates the approximate particle trajectory, whilst Rν

gives the gyrocenter of the particle motion.

The charged particles follow magnetic field lines and perform rapid gyration in
the plane perpendicular to the field, a schematic of which is shown in Figure 2.9. The
particle velocities can be decomposed into the parallel velocity, v∥, the perpendicular
velocity, v⊥, and the gyrophase, ϑ,

v = v∥b̂+ v⊥ [cos(ϑ)x̂+ sin(ϑ)ŷ] , (2.21)

where x̂, and ŷ are unit vectors that locally form an orthonormal basis with b̂. The
notation Rν in Figure 2.9 is introduced as the gyrocentre for particles of species ν,
and r is used to indicate the spatial position vector for any given particle. These
descriptions of particle location are related through Rν = r − ρν(ϑ), with ρν(ϑ) =

b̂× v/Ων the velocity-dependent vector gyroradius. The gyrophase, ϑ, characterises
the gyromotion, and has a large associated frequency |ϑ̇| ≈ Ων , where the dot on
the gyrophase indicates a temporal derivative. A natural approach is to average over
these fast oscillations by introducing a gyroaverage, defined through

⟨h(r)⟩Rν = ⟨h(Rν + ρν(ϑ))⟩Rν =
1

2π

∫ 2π

0

h(Rν + ρν(ϑ)) dϑ, (2.22)

⟨h(Rν)⟩r = ⟨h(r − ρν(ϑ))⟩r =
1

2π

∫ 2π

0

h(r − ρν(ϑ)) dϑ, (2.23)

where Rν and r are held constant when performing the ϑ integrations in equations
(2.22) and (2.23) respectively.

Expanding the Vlasov–Maxwell equations, then equating terms which are ordered
as O(ϵ−1vth,iF0,i/L) one obtains the equation ∂F0,ν/∂ϑ = 0 at fixed Rν , which de-
mands F0,ν be independent of gyrophase. In the presence of modest collisionality1,
zeroth-order terms, O(ϵ0vth,iF0,i/L), provide the further constraint that the equilib-
rium component is a Maxwellian in velocities:

F0,ν :=
nν

(πv2th,ν)
3
2

e−v
2/v2th,ν , (2.24)

1This requires the collisionality ν∗ ≳ ρ∗ω – a regime within which this work is considered.
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where nν represents the species’ mean density.
Equating terms ordered O(ϵ1vth,iF0,i/L) gives the evolution equation for first-

order perturbations. This exists within a six-dimensional phase space with coordinate
choice {Rν , v∥, µν , ϑ}. Here, µν is the magnetic moment defined as µν = mνv

2
⊥/2B

and is a conserved quantity to the order of consideration. Gyrophase dependence
is removed by gyroaveraging the full equation, reducing the phase-space dimen-
sionality by one from 6D to 5D. For convenience, we define the following guiding-
centre-dependent distribution function, in terms of δfν , to be gν(Rν , v∥, µν)

.
= δfν +

(Zνe/Tν)F0,ν [ϕ− ⟨χ⟩Rν ], such that gν is gyrophase independent. The gyrokinetic po-
tential, χ = ϕ − v · A/c, is also introduced, with A = A∥b̂ + A⊥ the fluctuating
magnetic vector potential, δB = ∇ × A, which has been decomposed into compo-
nents parallel and perpendicular to the equilibrium magnetic field. The Coulomb
gauge is imposed on the magnetic vector potential by requiring ∇ ·A = 0.

The total time derivative in (2.16) is expanded in terms of partial derivatives
in {t, v∥, µν , ϑ,Rν} – with each partial derivative taken assuming all other variables
are held fixed, unless explicitly stated otherwise. A ‘low-flow’, or ‘drift’, ordering is
defined to be when the flow speed is ordered as ρ∗ small compared with the thermal
speed. In this ordering the resulting nonlinear, electromagnetic gyrokinetic equation
including collisions is symbolically represented as

∂gν
∂t

+ Sν [gν , χ] +Mν [gν ] +Dν [gν , χ] + Gν [χ] +Aν [A∥] +Nν [gν , χ] = Cν [{gν′ , ⟨χ⟩Rν′
}],

(2.25)
with operations defined by

Sν [gν , χ] .=v∥
(
b̂ ·∇gν +

Zνe

Tν
F0,ν b̂ ·∇⟨χ⟩Rν

)
, (2.26a)

Mν [gν ]
.
=− µν

mν

b̂ · ∇B0
∂gν
∂v∥

, (2.26b)

Dν [gν , χ]
.
=vM,ν ·

(
∇gν +

Zνe

Tν
F0,ν∇⟨χ⟩Rν

)
, (2.26c)

Gν [χ] .=⟨vχ⟩Rν · ∇|E F0,ν

=c
∂⟨χ⟩Rν

∂α
F0,ν

[
∂ lnnν
∂ψ

+
∂ lnTν
∂ψ

(
mνv

2
∥

2Tν
+
µνB0

Tν
− 3

2

)]
, (2.26d)

Aν [A∥]
.
=
Zνe

Tν

µν
mνc

b̂ ·∇B0 F0,ν⟨A∥⟩Rν , (2.26e)

Nν [gs, χ]
.
=⟨vχ⟩Rν ·∇⊥gν = c

(
∂⟨χ⟩Rν

∂α

∂gν
∂ψ

− ∂⟨χ⟩Rν

∂ψ

∂gν
∂α

)
, (2.26f)
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and Cν [{gν′ , ⟨χ⟩Rν′
}] is the corresponding collision operator which depends on gν′ and

⟨χ⟩Rν′
of other species.

Here Cν =
∑

ν′⟨Cν,ν′ [F0,ν , δfν′ ] + Cν,ν′ [δfν , F0,ν′ ]⟩Rν is the linearised collision op-
erator. The collision operator is assumed to be self-adjoint, such that C†

ν = Cν holds,
but otherwise its form is left unspecified2. The gradient acting on the Maxwellian
appears as ∇|E . This indicates that the derivative has been taken at constant kinetic
energy, E = mνv

2/2, rather than at fixed {v∥, µν} variables, in contrast to the other
spatial gradients appearing in equation (2.25). Finally, vM,ν and vχ are the magnetic
and generalised E ×B drifts defined through

vM,ν =
1

Ων

b̂×
(
µν
mν

∇B0 + v2∥κ

)
, (2.27)

vχ =
c

B
b̂×∇⊥χ, (2.28)

with κ = b̂ ·∇b̂ the equilibrium magnetic field curvature.
The system is closed by the field equations consisting of quasineutrality, given by

(1.2), and the low-frequency Ampère’s law, ∇×δB = (4π/c)δJ , with δB and δJ the
fluctuating magnetic field and current density respectively. When written in terms of
the distribution function these relations become:

∑

ν

Zν

∫
d3v

[
⟨gν⟩r +

Zνe

Tν
F0,ν (⟨⟨χ⟩Rν ⟩r − ϕ)

]
= 0, (2.29)

∇2
⊥A∥ −

4π

c

∑

ν

Zνe

∫
d3v v∥

[
⟨gν⟩r +

Zνe

Tνc
F0,ν v∥

〈
⟨A∥⟩Rν

〉
r

]
= 0, (2.30)

∇2
⊥δB∥ −

4π

c

∑

ν

Zνe

∫
d3v ∇ ·

〈(
gν +

Zνe

Tν
F0,ν⟨χ⟩Rν

)
(b̂× v⊥)

〉

r

= 0, (2.31)

where δB∥ = δB · b̂ is the parallel component of the perturbed magnetic field, and
equation (2.31) has been obtained by considering ∇ ·

(
b̂× (∇× δB)

)
. With this

choice of coordinates, the velocity space integrals take the following form:
∫

d3vf
.
=

∫ 2π

0

dϑ

∫ ∞

−∞
dv∥

∫ ∞

0

dµν
B0

mν

f.

2.3.1 System Equations

The gyrokinetic orderings, (2.19), imply that the turbulence is characterised by long
parallel wavelengths and short perpendicular wavelengths, and that the parallel dy-
namics along the field line is fast compared with the drifts of particles across the

2It should be noted that this encapsulates a broad range of collision operators including the
linearised Landau, and the linearised Fokker–Planck collision operators.
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field line. Over a sufficiently large domain—much larger than the scale of the fluctu-
ations but still smaller than the equilibrium length scale—the turbulent fluctuations
become decorrelated in ψ, and thus statistically identical at the boundaries. If the
full poloidal domain is also considered, then the turbulence is also periodic in α. With
this, one can take the discrete Fourier transform in the perpendicular domain. The
discrete Fourier transform in {ψ, α} is

gν(ψ, α, z, v∥, µν , t) =
∑

kψ ,kα

ĝk,ν(z, v∥, µν , t)e
(ikψψ+ikαα) . (2.32)

This is justified provided the condition kψ|∇ψ| ∼ kα|∇α| ≫ 1/L is satisfied, allowing
the use of ideal statistical periodicity to enforce periodic boundary conditions in
{ψ, α} [11].

The Fourier transform of the evolution equation (2.25), and field equations (2.29)-
(2.31), is taken, allowing for geometric dependence in the binormal direction, whilst
taking the local limit in the radial direction. As a result of this, when the Fourier
transform is taken the resulting equation contains convolutions over the binormal
mode number, ky,

∂ĝk,ν
∂t

+
∑

k′α

{
Ŝ(kψ ,kα−k′α),ν [ĝ(kψ ,k′α),ν , χ̂(kψ ,k′α),ν ] + M̂(kψ ,kα−k′α),ν [ĝ(kψ ,k′α),ν , Â∥,kψ ,k′α,ν ]

+ D̂(kψ ,kα−k′α),ν [ĝ(kψ ,k′α),ν , χ̂(kψ ,k′α),ν ] + Ĝ(kψ ,kα−k′α),ν [χ̂(kψ ,k′α),ν ]

+Â(kψ ,kα−k′α),ν [Â∥,k] + N̂(kψ ,kα−k′α),ν [ĝ(kψ ,k′α),ν , χ̂(kψ ,k′α),ν ]
}

=
∑

k′α

Ĉ(kψ ,kα−k′α),ν [{ĝ(kψ ,k′α),ν′ , χ̂(kψ ,k′α),ν
′}]. (2.33)

Here F
[
⟨χ⟩Rν

]
k

.
= χ̂k,ν defines the Fourier components of ⟨χ⟩Rν

. For clarity, consider
just the electrostatic potential here. The gyroaverage of ϕ can be written in terms of
Fourier components as follows:

φν = ⟨ϕ⟩Rν
=
∑

k′′

eik
′′·RνJ0(ak′′,ν)ϕ̂k′′ . (2.34)

The variables Jn are the nth-order Bessel functions of the first kind. The Bessel
functions arise naturally as a result of the gyroaverages, and have argument

ak′′,ν =
ck′′⊥(α, z)

Zνe

√
2mνµ

B0(α, z)
, (2.35)

which itself may have α-dependence. For axisymmetric systems, the α dependence is
absent as all field lines are identical, so gyroaveraging becomes a local operation in kα-
space; the α dependence arising from non-axisymmetry introduces coupling between
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Figure 2.10: An illustration of the path of a particle completing multiple gyro-orbits
and sampling multiple magnetic field lines, each with slightly varying structure.

modes with different kα. The zeroth-order Bessel function, J0, can be expanded in
Fourier harmonics as

J0(ak′′,ν) =
∑

k′′′α

Ĵ0,k′′,k′′′α ,ν(z, µ)e
ik′′′α α. (2.36)

With this, the Fourier transform of the gyroaveraged electrostatic potential becomes

φ̂(kψ ,k′α),ν =

∫
d2Rν

∑

k′′,k′′′α

ei(k
′′
ψ−kψ)ψei(k

′′
α+k

′′′
α −k′α)αĴ0,k′′,k′′′α ,νϕ̂k′′ . (2.37)

Making use of the orthogonality of the Fourier harmonics, we find k′′ψ = kψ and
k′′α = (k′α − k′′′α ) such that equation (2.37) simplifies to

φ̂(kψ ,k′α),ν =
∑

k′′α

Ĵ0,(kψ ,k′α−k′′α),k′′α,νϕ̂(kψ ,k′α−k′′α). (2.38)

Using the above procedure, one obtains an expression for the Fourier-transformed,
gyroaveraged gyrokinetic potential

F(kψ ,k′α)

[
⟨χ⟩Rν

] .
= χ̂(kψ ,kα′ ),ν

=
∑

k′′α

[
Ĵ0,(kψ ,k′α−k′′α),k′′α,νϕ̂(kψ ,k′α−k′′α)

−v∥
c
Ĵ0,(kψ ,k′α−k′′α),k′′α,νÂ∥,(kψ ,k′α−k′′α) + 2

µν
Zνe

Ĵ1,(kψ ,k′α−k′′α),k′′α,ν

a(kψ ,k′α−k′′α),k′′α,ν
δB̂∥,(kψ ,k′α−k′′α)

]
. (2.39)

It is clear that gyroaveraging couples different Fourier modes in α. This process can
be interpreted physically as the particle sampling multiple field lines with different
geometries. This is illustrated in Figure 2.10, where the black central line represents
the field line that the particle is following, while the red lines depict nearby field
lines that are not parallel to the original. The tight helical pattern illustrates the
particle’s gyromotion. The gyroaverage induces non-local interactions in kα due to the
geometric variation across field lines. Similar convolutions arise from the geometric
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dependence of coefficients in (2.33). For example, the parallel streaming operator
becomes

Ŝ(kψ ,kα−k′α),ν [ĝ(kψ ,kα′ ),ν , χ̂(kψ ,kα′ ),ν
] =F(kψ ,kα−kα′ )

[
v∥b̂ ·∇z

] ∂ĝ(kψ ,kα′ ),ν
∂z

+F(kx,kα−kα′ )

[
v∥
Zνe

Tν
b̂ ·∇zF0,ν

]
∂χ̂(kψ ,kα′ ),ν

∂z
. (2.40)

2.3.2 Local Approximation

In the limit where the α-variation of the geometry is slow, it is possible to consider the
geometric quantities to be constant in α within the domain. The α-coupling arising
from geometric coefficients and gyroaveraging then vanishes. Under this assumption,
the convolutions in the system equations reduce to local operations that do not couple
different kα modes. This is a good approximation in axisymmetric devices—where all
field lines share the same geometric variation—or in the limit ρ∗ → 0, where turbulent
fluctuations become decorrelated over scales much shorter than the equilibrium scale
such that the turbulent evolution on each field line can be considered independently.
Consequently, the computational domain no longer needs to span the full α-domain,
a reduced domain that considers a single field line is sufficient.

In these regimes, the local-in-α approximation is valid, though it may introduce
inconsistencies in the treatment of zonal flows across different field lines. This is
because, in a flux tube simulation, turbulence drives the generation of zonal flows,
which are assumed to be constant across the simulated domain. However, in non-
axisymmetric devices, performing flux tube simulations on different field lines can
lead to different zonal flow responses, due to the local variation in magnetic geome-
try. This leads to an inconsistency, since zonal flows are, by definition, flux-surface
averaged quantities and must be constant across a given flux surface. However, despite
its potential limitations in capturing zonal flow dynamics, it is still a powerful tool
used to predict turbulent fluxes in devices with geometry that has slow α-variation.
The equations outlined in Section 2.3.1 simplify greatly, which eases the associated
computational cost of solving them, and consequently this is the limit taken by many
existing codes to model the turbulence. Hence it is of interest to consider this limit.

One such place that this simplification can be seen is in the Bessel functions. In the
local approximation, the geometric quantities are considered constant-in-α across the
domain. This means that the α-dependence in the arguments of the Bessel functions,
given in equation (2.35), is absent, and gyroaveraging thus becomes a local operation
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in kα space. Hence, the gyroaveraged gyrokinetic potential reduces to

Fk

[
⟨χ⟩Rν

] .
= χ̂k,ν =

[
J0,k,νϕ̂k −

v∥
c
J0,k,νÂ∥,k + 2

µν
Zνe

J1,k,ν
ak,ν

δB̂∥,k

]
. (2.41)

An additional simplification can be seen in the system equations. Here, the geometric
coefficients become constants in kα space, meaning the convolutions seen in (2.33)
reduce to local operations in kα. The resulting gyrokinetic equation is

∂ĝk,ν
∂t

+Ŝk,ν + M̂k,ν + D̂k,ν + Ĝk,ν + Âk,ν + N̂(kψ ,kα−k′α),ν = Ĉk,ν [{ĝk,ν′ , χ̂k,ν′}], (2.42)

with the local-in-kα operators defined as

Ŝk,ν [ĝk,ν , χ̂k,ν ] =v∥b̂ ·∇z

(
∂ĝk,ν
∂z

+
Zνe

Tν

∂χ̂k,ν

∂z
F0,ν

)
,

M̂k,ν [ĝk,ν ] =− µν
mν

b̂ ·∇B0
∂ĝk,ν
∂v∥

,

D̂k,ν [ĝk,ν , χ̂k,ν ] =iωd,k,ν

(
ĝk,ν +

Zνe

Tν
χ̂k,νF0,ν

)
,

Ĝk,ν [χ̂k,ν ] =iω∗,k,νF0,νχ̂k,ν ,

Âk,ν [Â∥,k] =
Zνe

Tν

µν
mνc

(b̂ ·∇B0)F0,νJ0,k,νÂ∥,k,

N̂k,ν [ĝk,ν , χ̂k,ν ] =cFk

[
F−1

k [ikαχ̂k,ν ] [ikψĝk,ν ]−F−1
k [ikψχ̂k,ν ] [ikαĝk,ν ]

]
, (2.43)

where F−1
k [·] is the inverse Fourier transform, and ωd,k,ν and ω∗,k,ν are the magnetic

drift frequencies resulting from the gradient and curvature of the magnetic field and
the diamagnetic drift respectively. The expressions for these are given by

ωd,k,ν =
1

Ων

(v2∥b̂× (b̂ ·∇b̂) + µν b̂×∇B0) · (kψ∇ψ + kα∇α), (2.44a)

ω∗,k,ν =
ckα
B0

d lnF0,ν

dψ
. (2.44b)
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The corresponding transformed field equations are

∑

ν

Zνe

{
2πB0

mν

∫
d2v J0,k,ν ĝk,ν +

Zνenν
Tν

(Γ0,k,ν − 1) ϕ̂k +
nν
B0

Γ1,k,νδB̂∥,k

}
= 0,

(2.45)

4π

k2⊥c

∑

ν

Zνe
2πB0

mν

∫
d2v v∥J0,k,ν ĝk,ν −

[
1 +

4π

k2⊥c
2

∑

ν

(Zνe)
2nν

mν

Γ0,k,ν

]
Â∥,k = 0,

(2.46)

8π
∑

ν

2πB0

mν

∫
d2v

J1,k,ν
ak,ν

µν ĝk,ν +

[
4π
∑

ν

Zνenν
B0

Γ1,k,ν

]
ϕ̂k

+

[
1 + 16π

∑

ν

nνTν
B2

0

Γ2,k,ν

]
δB̂∥,k = 0,

(2.47)

with
∫
d2v

.
=
∫
dµ
∫
dv∥. In the above, the following functions have been introduced:

Γ0,k,ν = I0(bk,ν)e
−bk,ν ,

Γ1,k,ν = [I0(bk,ν)− I1(bk,ν)] e
−bk,ν ,

Γ2,k,ν = I1(bk,ν)e
−bk,ν ,

where I0 and I1 are modified Bessel functions of the first kind, and bk,ν = k2⊥ρ
2
th,ν/2.

2.3.3 Electrostatic and Boltzmann Electron Response Limit

When the ratio of plasma to magnetic pressure, known as plasma β, tends to zero, the
magnetic field perturbations also tend to zero. This ‘electrostatic’ limit is a reasonable
approximation in many MCF plasmas due to the strong confining magnetic field.
In order to extract the electrostatic limit from the equations, one can simply set
A∥ = δB∥ = 0. With this, the distribution function reduces to the electrostatic limit
gν = δfν + (Zνe/Tν)F0,ν [ϕ− ⟨ϕ⟩Rν ] = ⟨δfν⟩Rν .

A convenient feature of the electrostatic limit is that a further simplification can be
made for the electron dynamics. Taking the limit of

√
me/mi ≪ 1, the electron inertia

becomes negligible, and one finds that the parallel force balance for the electrons
reduces to

e∇∥ϕ = Te∇∥ ln(ntotal,e), (2.48)

which gives a Boltzmann distribution for the density: ntotal,e = n̄e exp(eϕ/Te), where
n̄e is a constant of integration. Recalling the assumption eϕ/Te ≪ 1, then ntotal,e ≈
n̄e(1 + eϕ/Te), such that the equilibrium and perturbed densities can be defined as
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ne = n̄e− c0 and δne ≈ ne(eϕ/Te)+ c0 respectively, where c0 is a constant that one is
free to define. With this, the non-Boltzmann contribution to the electron distribution
function evaluates to zero and δfe = (eϕ/Te + c0/ne)F0,e. This corresponds to the
electrons being of sufficiently light mass that they can instantaneously respond to
the perturbed electrostatic potential set up by the ions along the field line. This
defines the perturbed electron density up to a constant. By further insisting that the
flux surface average of the perturbed density is zero (i.e., it is not contributing to the
equilibrium density), we uniquely define the density through the ‘modified Boltzmann
response’, δne = ene(ϕ−Φ)/Te

3, where Φ indicates a flux-surface average of ϕ, defined
as

Φ
.
=

∫
dαdzJ (α, z)ϕ∫
dαdzJ (α, z)

, (2.49)

with J the α-dependent Jacobian. Thus, the electron distribution function is not
evaluated explicitly; rather, it is determined from the electric potential. The electro-
static, Boltzmann-electron limit of quasineutrality is:

∑

ν ̸=e

Zνe

{
2πB0

mν

∫
d2v J0,k,ν ĝk,ν +

Zνenν
Tν

(Γ0,k,ν − 1) ϕ̂k

}
− e2ne

Te

(
ϕ̂k − Φ̂k

)
= 0.

(2.50)

2.4 Concluding Remarks

This chapter has outlined the magnetic geometry in MCF devices, and provided
the fundamental assumptions and orderings required to derive the gyrokinetic sys-
tem through an asymptotic expansion in ρ∗. The gyrokinetic approach significantly
enhances the tractability of predicting plasma evolution, by averaging over the fast
timescales associated with the particle’s gyromotion, and reducing the dimensionality
by one. This has established gyrokinetics as a powerful tool for predicting the evolu-
tion of plasma turbulence. The method assumes a separation of spatial and temporal
scales within the plasma, allowing the equilibrium state to be treated independently
from the turbulent fluctuations, with turbulence evolving on top of an established
equilibrium.

However, the full nonlinear gyrokinetic system is inherently complex and cannot
be solved analytically in its entirety. Consequently, the use of gyrokinetic codes is
essential for obtaining numerical solutions to these equations. This topic will be the
primary focus of Chapter 3.

3Note that c0 = 0 is another common choice in defining the equilibrium and perturbed density
contributions, and is known as the ‘adiabatic’ electron response
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A further limit of these equations, which is often applicable and is in many gy-
rokinetic codes, has also been considered; the local-in-α limit. This is the limit that
flux-tube codes, which will be discussed in Section 3.4, assume. Whilst this is an
important limit to consider, it has its limitations in predicting turbulent evolution
within non-axisymmetric devices, and may lead to inconsistencies in the zonal flow
evolution. The numerical extension to include these effects will be the focus of Chap-
ter 4.
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Chapter 3

Gyrokinetic Modelling using a δf code

We must think outside the axisymmetric box.

Georgia Acton

3.1 Introduction

In recent years, gyrokinetic modeling has emerged as a powerful tool for understand-
ing plasma behavior in fusion devices. Within the current landscape of gyrokinetic
modelling, there exists a need for codes that can efficiently capture turbulent phe-
nomena in complex magnetic geometries. As the fusion community progresses toward
more sophisticated devices, such as stellarators and advanced tokamaks, the demand
for reliable simulation tools grows. This chapter explores the construction of a δf -code
for gyrokinetic simulations. In an ideal scenario, the turbulent fluxes computed from
these codes would be input into a transport solver, enabling the equilibrium plasma
to be self-consistently evolved for comprehensive modelling of the full MCF device
(e.g., TGYRO [21], Trinity [7], Tango [91], GENE+Tango [30], Trinity3D (T3D)
[99]). Consequently, it is important to develop these codes efficiently to allow for
such analysis on current computing resources.

When constructing a δf -code for gyrokinetic modeling, several critical algorithmic
decisions must be addressed. Selecting the appropriate framework for particle rep-
resentation is an important consideration, with two primary options: particle-in-cell
(PIC) [80, 93, 33], or continuum methods.

For a PIC code one adopts a Lagrangian approach, following particle trajectories.
As it is not feasible to do this for every particle in the plasma, ‘macro-particles’
are used to represent many particles, with time-evolving weights. These codes work
in real space, and can be used locally or to capture global effects across the full
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device. They are comparatively easy to implement and parallelise, and can produce
accurate results with enough particles per cell. PIC codes can often take larger
time steps than continuum codes without associated numerical instabilities. However
they can be computationally intensive due to the need for numerous particles per
cell to achieve statistical accuracy. Without sufficient numbers of particles per cell,
PIC codes are affected by particle noise, arising from numerical errors encountered
when evaluating the moments of the distribution function using particles in phase
space. PIC codes may also lead to particle bunching, resulting in sparse numbers of
particles in some regions of the domain, under-resolving the full dynamics, and it can
introduce statistical fluctuations in low-density regions. Finally, PIC codes work in
real space; while this can ease computational implementation, it also means they can
incur challenges when evaluating particle gyromotion. In order to accurately capture
the Finite Larmor Radius (FLR) effects arising from particle gyro-orbits, a dense grid
perpendicular to the magnetic field is necessary. Issues associated with gyro-orbits
can also appear at the boundaries of the domain where a particle is unable to complete
a full gyro-orbit.

Continuum codes instead solve the kinetic equation to model the distribution
function using Eulerian or semi-Lagrangian methods. These have the advantage that
they can use high-order velocity-space integration algorithms and spectral methods
for improved accuracy. However they can be more complicated to implement and
pose a greater challenge with parallelisation. The choice between spectral and real
space methods is an important consideration when developing such a continuum code.
Spectral methods, which can be applied in both velocity space and in the spatial
domain, can significantly improve accuracy when evaluating derivatives, and improve
computational efficiency and memory management within the code. In particular,
a spatial spectral method in the perpendicular domain allows for a more precise
treatment of the gyromotion of particles at a given numerical resolution, enabling
FLR effects to be captured accurately. Careful consideration is required to balance
the benefits of spectral methods against the potential computational complexities
they may introduce.

Beyond the choice of spectral or real-space particle representation, the choice
between using an Eulerian or a semi-Lagrangian method also needs to be considered,
as each offers different advantages and disadvantages. Semi-Lagrangian methods
provide a hybrid approach, combining the strengths of both Eulerian and Lagrangian
techniques. These allow one to use a spectral approach–associated with Eulerian
schemes–with the enhanced numerical stability associated with Lagrangian schemes.
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The algorithms are relatively simple to implement, but they require interpolations
which can be slow and inaccurate, and can also introduce diffusion [112]. Their
dependence on careful grid point selection in velocity space can also pose challenges.
They also have limited applicability, being useful only in the context of advancing
advection equations.

Eulerian methods can be implemented using explicit or implicit methods. Ex-
plicit time-stepping methods are typically simpler to implement and computationally
lighter, enabling faster simulations; yet, they often require smaller time steps to main-
tain numerical stability, which can limit application and efficiency. Explicit methods
can lead to numerical instabilities if the Courant–Friedrichs–Lewy (CFL) condition
is violated, and may also introduce artificial numerical diffusion. In contrast implicit
time-stepping methods can allow larger time steps without compromising numerical
stability, making them particularly useful in scenarios with stringent CFL restric-
tions. For gyrokinetic simulations, explicit time-integration methods are constrained
to timesteps typically ranging from 10−6 to 10−5 seconds. Conversely, implicit ap-
proaches enable substantially longer timesteps, often of the order 10−3 to 10−2 seconds.
However, despite their ability to handle larger timesteps, implicit methods often re-
quire solving complex algebraic equations at each time step, which can significantly
increase the difficulty of implementation. Thus, while Eulerian frameworks offer a
robust platform, the choice between implicit and explicit time-stepping is another
important consideration that influences the overall performance and accuracy of the
code.

Another critical decision involves choosing the coordinate and grid system to work
in, particularly for the velocity space coordinates [8]. This is especially crucial when
working in the weakly collisional regime. In the absence of collisions or other forms of
dissipation, the distribution of particles in velocity space can form arbitrarily small-
scale structures, necessitating a large number of grid points to accurately resolve
these features [74]. One common choice is to use quantities that are constants of
motion, such as energy, E , and a quantity related to the first adiabatic invariant,
λ = µν/E [73, 22]. This choice removes all velocity space derivatives from the col-
lisionless gyrokinetic equation, thereby simplifying the equations. However, this can
lead to difficulties when trying to capture the bounce points of trapped electrons in
non-axisymmetric devices. Either the spacing of the velocity space grid points needs
to be chosen such that the particle bounce points are included in the grid, or inter-
polation is required in the velocity grid to accurately capture the effects of trapped
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electrons. As there can be many magnetic wells on a single field line, and the lo-
cations of these wells will vary across field lines, this choice of velocity coordinates
makes the treatment of multiple field lines for a non-axisymmetric device potentially
complicated. Conversely, using (v∥, µν) coordinates for the velocity-space simplifies
this process, but consequently introduces velocity derivatives into the system equa-
tions, and can complicate the form of the collision operator. Each of these decisions
carries implications for the accuracy, efficiency, and applicability of the gyrokinetic
code.

In this section the formalism for a pseudo-spectral, mixed implicit-explicit δf -
gyrokinetic continuum code in (kα, kψ, z, v∥, µν) coordinates is outlined. These choices
yield the advantage of maintaining spectral accuracy in the perpendicular derivatives
and gyroaverages, while also facilitating fast parallel dynamics through an implicit
algorithm for advancing motion along the magnetic field, and allowing for treatment
of the complex parallel boundary condition. The specific coordinate choices, normal-
isations, and algorithmic decisions of the code stella are introduced. This will serve
as the foundation for developing the full flux-annulus gyrokinetic code, designed to
capture the α-coupling effects described in Section 2.3.1. The development of this
capability is detailed in Chapter 4. The flux-tube version of the code is also used to
perform the numerical benchmarks in Chapter 5.

It is important to note that many other gyrokinetic codes are available. Notable
examples for PIC methods are GTC [81], ORB5 [78], GTS [121], XGC [76], EU-
TERPE [72], and see also [92]. For continuum methods, notable examples include
GS2 [73], GENE [70], CGYRO [22], GKV [122], GYSELA [48], GKW [95], GENE-3D
[85], and GX [83].

3.2 Coordinates

We work in field-aligned coordinates [11], (x, y, z), where z measures the position along
a given magnetic field line, and (x, y) represents position in the plane perpendicular to
ẑ ≡ b̂. One advantage of using field-aligned coordinates is that turbulent structures
are often highly elongated along the field lines, i.e., k⊥/k∥ ≫ 1. Consequently, a much
coarser grid can be employed in the coordinate parallel to the magnetic field. The
coordinates (x, y) are related to the flux coordinates (ψ, α) via

x =
dx

dψ
(ψ − ψ0) , (3.1a)

y =
dy

dα
(α− α0) , (3.1b)
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with (ψ0, α0) denoting the values of (ψ, α) at the centre of the perpendicular domain.
The only other generic constraint that is placed on the coordinates is that x increases
monotonically from the magnetic axis out to the plasma edge. As described in [9],
the exact choice of (x, y) depends on the choice of model geometry. The parallel
dynamics are treated using the real space coordinate z to correctly capture the parallel
boundary conditions, which will be described in Section 3.5.1. Common choices for
z are the toroidal angle, ζ, the poloidal angle, θ, and the arc length along the field
line. Together the unit vectors {x̂, ŷ, ẑ} form a left-handed, orthonormal basis, and
a uniform grid in each of the coordinates in (kx, ky, z)-space is taken.

The choice of velocity-space coordinates is (v∥, µν), with v∥ the velocity parallel to
the magnetic field, v∥ = v · b̂, and µν the magnetic moment. A uniformly spaced grid
in v∥ is taken, whilst the option of either a uniform grid, or a Gauss–Laguerre grid [2]
is available in the magnetic moment coordinate. This latter choice provides spectral
accuracy in the µν integral, and allows one to more densely sample the region near
µν = 0 for better resolution.

3.3 Normalisations

When implementing the gyrokinetic equation (2.25) into a code, the variables are first
normalised based on physical considerations, to make all terms of order unity. A list
of the normalised quantities are provided in Table 3.1. It is important to note the two
different normalisations for the perpendicular coordinates; quantities relating to the
equilibrium, such as background gradients, are normalised by Lr, whilst turbulent
quantities are normalised using ρr = vth,r/Ωr, which is defined in terms of a user-
specified reference mass mr, and temperature Tr, with the reference length Lr and
magnetic field strength Br being determined by the magnetic geometry specified.
The reference density, nr, is also a user-specified input.

The gyrokinetic equation is normalised by taking its product with the factor
(L2

r/ρrvth,r)exp(−v2/v2th,ν)/F0,ν . In real space, this is schematically written as:

∂g̃ν

∂t̃
+ S̃ν [g̃ν , χ̃ν ] +M̃ν [g̃ν ] + D̃ν [g̃ν , χ̃ν ] + G̃ν [χ̃ν ] + Ã[Ã∥,ν ] + Ñν [g̃ν , χ̃ν ] = C̃ν [{g̃ν′ , χ̃ν′}],

(3.2)
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Table 3.1: List of normalised parameters and variables used in the δf -gyrokinetic code
stella.

Normalised Parameters

Parameter Normalisation Normalised Quantity

t̃ t Lr/vth,r Time
x̃ x/Lr Radial perpendicular coordinate
xtb x/ρr Turbulent radial coordinate
ỹ x/Lr Binormal perpendicular coordinate
ytb y/ρr Turbulent binormal coordinate
z̃ z/Lr Parallel coordinate
k̃x kxρr Radial wavenumber
k̃y kyρr Binormal wavenumber
k̃⊥ k⊥ρr Perpendicular wavenumber
∇̃ Lr∇ Gradient operator
ψ̃ ψ/(L2

rBr) Magnetic flux

ṽ∥ v∥/vth,ν Parallel velocity
µ̃ν µνBr/2Tν Magnetic moment
ṽth,ν vth,ν/vth,r Species thermal velocity

T̃ν Tν/Tr Species temperature
m̃ν mν/mr Species mass
ñν nν/nr Species density
B̃0 B0/Br Magnetic field
δñν (Lr/ρrnr)δnν Perturbed species density

F̃0,ν (v3th,ν/nν)F0,ν Equilibrium distribution function
g̃ν (Lr/ρr)(exp

(
−ṽ2

)
/F0,ν)gν Guiding centre distribution function

ϕ̃ (e/Tr)(Lr/ρr)ϕ Perturbed electrostatic potential
φ̃ν ⟨ϕ̃⟩Rν

Gyroaveraged electrostatic potential
Ã∥ (Lr/Brρ

2
r )A∥ Perturbed parallel magnetic potential

δB̃∥ (Lr/Brρr)δB∥ Perturbed parallel magnetic field
χ̃ν ϕ̃− 2ṽ · Ã Perturbed gyrokinetic potential
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with normalised operator definitions

S̃ν [g̃ν , ⟨χ̃ν⟩Rν ]
.
=ṽth,ν ṽ∥b̂ · ∇̃z̃

(
∂g̃ν
∂z̃

+
Zν

T̃ν
e−ṽ

2
ν
∂⟨χ̃ν⟩Rν

∂z̃

)
, (3.3a)

M̃ν [g̃ν ]
.
=− ṽth,νµ̃ν b̂ · ∇̃B̃0

∂g̃ν
∂ṽ∥

, (3.3b)

D̃ν [g̃ν , ⟨χ̃ν⟩Rν ]
.
=
vM,ν

vth,r
·
(
∇̃g̃ν +

Zν

T̃ν
e−ṽ

2
ν∇̃⟨χ̃ν⟩Rν

)
,

=
b̂

B̃0

×
(
µ̃ν∇̃B̃0 + ṽ2∥b̂ · ∇̃b̂

)
· ∇̃x̃

(
T̃ν
Zν

∂g̃ν
∂xtb + e−ṽ

2
ν
∂⟨χ̃ν⟩Rν

∂xtb

)

+
b̂

B̃0

×
(
µ̃ν∇̃B̃0 + ṽ2∥b̂ · ∇̃b̂

)
· ∇̃ỹ

(
T̃ν
Zν

∂g̃ν
∂ytb + e−ṽ

2
ν
∂⟨χ̃ν⟩Rν

∂ytb

)
,

(3.3c)

G̃ν [⟨χ̃ν⟩Rν ]
.
=
1

2

∂x̃

∂ψ̃

∂ỹ

∂α

∂⟨χ̃ν⟩Rν

∂ytb e−ṽ
2
ν

(
∂ ln ñν
∂x̃

+
∂ ln T̃ν
∂x̃

(
ṽ2∥ + 2µ̃νB̃0 −

3

2

))
,

(3.3d)

Ãν [Ã∥,ν ]
.
=2

Zν
m̃ν

µ̃ν b̂ · ∇̃B̃0e
−ṽ2νJ0,k,νÃ∥,k, (3.3e)

Ñν [g̃ν , ⟨χ̃ν⟩Rν ]
.
=
∂ytb

∂α

∂xtb

∂ψ̃

Brρ
2
r

2

(
∂⟨χ̃ν⟩Rν

∂ytb

∂g̃ν
∂xtb − ∂⟨χ̃ν⟩Rν

∂xtb

∂g̃ν
∂ytb

)
, (3.3f)

and C̃ν [{g̃ν′ , φ̃ν′}] the appropriately normalised collision operator. The quasineutral-
ity constraint, equation (2.29), is normalised by taking its product with the factor
(Lr/ρrenr),

2B̃0

π1/2

∑

ν

Zνñν

∫ ∞

−∞
dṽ∥

∫ ∞

0

dµ̃ν

(
⟨g̃ν⟩r +

Zν

T̃ν

(
⟨⟨χ̃ν⟩Rν ⟩r − ϕ̃

)
e−ṽ

2

)
= 0. (3.4)

To normalise parallel Ampère’s law, equation (2.30), we take its product with the
factor (Lr/Br)

∇̃2

⊥Ã∥,ν =
2B̃0βr
π1/2

∑

ν

Zνñν ṽth,ν

∫ ∞

−∞
dṽ∥

∫ ∞

0

dµ̃ν ṽ∥

(
⟨g̃ν⟩r +

Zν ṽth,ν

T̃ν
ṽ∥

〈
⟨Ã∥,ν⟩Rν

〉
r
e−ṽ

2

)
,

(3.5)
with βr = 8πnrTr/B

2
r . To normalise perpendicular Ampère’s law, equation (2.31), we

take its product with the factor (Lrρr/Br)

∇̃2

⊥δB̃∥ =
2B̃0βr
π1/2

∑

ν

Zνñν

∫ ∞

−∞
dṽ∥

∫ ∞

0

dµ̃ν∇̃ ·
〈(

g̃ν +
Zν

T̃ν
⟨χ̃ν⟩Rνe

−ṽ2
)(

b̂× ṽ⊥

)〉

r

.

(3.6)

38



For simplicity, the tilde notation denoting the normalisations will be dropped in the
remainder of this chapter, and until Chapter 51.

3.4 Flux Tube Equations in stella

Modelling turbulence in a plasma can be computationally intensive, so simplifying the
domain is advantageous for reducing costs. One such simplification is the use of a flux
tube [51, 12]; this is a ‘local’ domain that follows a magnetic field line, as depicted in
Figure 3.1. This approximation results in the equations becoming local-in-α, reducing
to those given in Section 2.3.2.

Original domain

Sheared domain

1

Figure 3.1: Schematic of a flux tube for an axisymmetric device. The meshed surface
depicts a flux surface, while the green cuboid represents the flux-tube simulation
domain. As one follows the field line, the perpendicular domain experiences shearing.
The original and sheared domains are shown.

In directions perpendicular to the magnetic field, B, the flux tube is considered
to be sufficiently wide (on the order of several thermal ion Larmor radii, ρth,i) so
that turbulent fluctuations on one side of the domain become decorrelated with those
on the opposite side. However, the flux tube must remain much narrower than the
equilibrium length scale, Lr, allowing equilibrium properties and associated drive
terms to be treated as constant across the perpendicular domain. This condition
corresponds to the limit in which ρ∗ → 0. This local approximation guarantees that
fluctuations at either end of the perpendicular domain are not only decorrelated but
also statistically identical, as the same driving factors produce equivalent turbulence

1The electromagnetic version of stella uses a mixed formalism, that includes g̃ν and h̃ν =
g̃ν + Zν/Tνe

−ṽ2
ν ⟨χ̃⟩, to solve these sets of equations. This will not be detailed here.
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on average over time, meaning the perpendicular directions can be treated spectrally
via a discrete Fourier transform. Computationally, this has the benefit that spectral
accuracy may be retained in the perpendicular derivatives, and can capture FLR
effects correctly without the need for a dense grid in the perpendicular domain. To
implement the Fourier treatment, the evolution equations are decomposed into Fourier
harmonics in (x, y) space, and the discrete Fourier transform is taken in x and y:

gν
(
x, y, z, v∥, µν , t

)
=
∑

kx,ky

ĝk,ν
(
z, v∥, µν , t

)
ei(kxx+kyy) . (3.7)

Next, the local-in-α evolution equations (2.42)-(2.47) are normalised, and all variables
are taken to the left hand side to define the objective functions Ĝk,ν , Q̂k, M̂k, and
N̂k that are identically zero. The transformed kinetic evolution equation for species
ν, written in terms of normalised variables, is given by

Ĝk,ν
.
= Ŝk,ν + M̂k,ν + D̂k,ν + Ĝk,ν + Âk,ν + N̂ν − Ĉν = 0, (3.8)

with associated normalised operator definitions

Ŝk,ν =vth,νv∥ b̂ ·∇z

[
∂ĝk,ν
∂z

+
Zν
Tν

∂⟨χ̂⟩k,ν
∂z

e−v
2
ν

]
, (3.9a)

M̂k,ν =− vth,νµν b̂ ·∇B̂0
∂ĝk,ν
∂v∥

, (3.9b)

D̂k,ν =iωd,k,ν

[
ĝk,ν +

Zν
Tν

⟨χ̂⟩k,ν e−v
2
ν

]
, (3.9c)

Ĝk,ν =iω∗,k,νe
−v2ν ⟨χ̂⟩k,ν , (3.9d)

Âk,ν =2
Zν
mν

µb̂ · ∇B0e
−v2νJ0,k,νÂ∥,k, (3.9e)

N̂k,ν =
Br

2

dy

dα

dx

dψ
Fk

[
F−1

k [ikyρrχ̂k,ν ] [ikxρrĝk,ν ]−F−1
k [ikxρrχ̂k,ν ] [ikyρrĝk,ν ]

]
, (3.9f)

and Ĉν is the normalised collision operator. The corresponding transformed, nor-
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malised field equations are given by

Q̂k =
∑

ν

Zνnν

{
2B0√
π

∫
d2v J0,k,ν ĝk,ν +

Zν
Tν

(Γ0,k,ν − 1) ϕ̂k +
1

B0

Γ1,k,νδB̂∥,k

}
,

(3.10)

M̂k = − βr

(k⊥ρr)
2

∑

ν

Zνnνvth
2B0√
π

∫
d2v v∥J0,k,ν ĝk,ν +

[
1 +

βr

(k⊥ρr)
2

∑

ν

Zνnν
mν

Γ0,k,ν

]
Â∥,k ,

(3.11)

N̂k = 2βr
∑

ν

nνTν
2B0√
π

∫
d2vµν

J0,k,ν
ak,ν

ĝk,ν +

[
βr
2B0

∑

ν

ZνnνΓ1,k,ν

]
ϕ̂k

+

[
1 +

βr
2B0

∑

ν

ZνnνTνΓ2,k,ν

]
δB̂∥,k, (3.12)

with the normalised gyrokinetic potential, diamagnetic frequency, and drift frequency
given in Table 3.2.

Table 3.2: List of normalised parameters and variables

Normalised Variables

⟨χ̂⟩k,ν = J0,k,ν ϕ̂k − 2vthv∥J0,k,νÂ∥,k + 4µν(Tν/Zν)(J1,k,ν/ak,ν)δB̂∥,k

ωd,k,ν = (Tνρr/ZνB0)(v
2
∥b̂× (b̂ · ∇b̂) + µν b̂×∇B0) · (kx∇x+ ky∇y)

ω∗,k,ν = (kyρr/2)LrBr(dy/dα)(d lnF0,ν/dψ)

3.5 Boundary Conditions

The spectral flux-tube approach applies a periodic boundary condition in the x and
y dimensions. The incoming boundary conditions along the magnetic field on gν are
taken to be ĝν(z → −∞, v∥ > 0, µ) → 0, and ĝν(z → ∞, v∥ < 0, µ) → 0. The
boundary condition in v∥ is ĝν(z, v∥ → ±∞, µ) = 0.

3.5.1 Parallel Boundary Condition; twist-and-shift

For the parallel boundary conditions one must enforce the constraint that any physi-
cal quantity remains single-valued and continuous throughout the domain. Consider
a device with magnetic geometry that is periodic in ζ with period 2π/Np, where Np

defines the period of the device. A segment of that device, with length 2πp in the z
direction, is considered, where p = M/Np and M is any integer. Any physical quan-
tity, A(t, x, y(θ, z), z), considered over this segment must itself be physically periodic
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across the domain; A(t, x, y∗, z + 2pπ) = A(t, x, y(θ, z), z), where y∗ = y(θ, z + 2pπ).
In an axisymmetric device, the ends of the flux tube domain can be placed at any
two points with the same poloidal location, since such points share identical geometry
and thus the turbulence is statistically equivalent. In contrast, for non-axisymmetric
devices, it is more challenging to identify endpoints with matching geometry. To ad-
dress this, turbulence simulations in non-axisymmetric magnetic configurations often
use an up-down symmetric field line, making it easier to end the flux tube in geomet-
rically equivalent locations. The quantity A can be expanded in terms of its Fourier
harmonics

A(t, x, y, z) =
∑

kx,ky

Âkx,ky(t, z)e
ikyy+ikxx, (3.13)

and physical periodicity is then enforced. The periodicity condition can then be
written as

∑

kx,ky

Âkx,ky(t, z)e
ikyy+ikxx =

∑

kx,ky

Âkx,ky(t, z + 2πp)eikyy
∗+ikxx. (3.14)

Now expand

y∗ = y +
∂y

∂z
2πp = y + 2πp

∂y

∂α

∂α

∂z
= y − 2πpι(ψ)

∂y

∂α
,

where ι is the rotational transform introduced in equation (2.14), and ι(ψ) = ι(ψ0) +

ι′(∂ψ/∂x)x, with ι′ = (∂ι/∂ψ). From this, a relationship between the coordinates
y∗ = y− 2πpι(ψ0)(∂y/∂α)− 2xπpι′(∂y/∂α)(∂ψ/∂x) is determined. Substituting this
into (3.14) gives

∑

kx,ky

Âkx,ky(t, z)e
ikyy+ikxx =

∑

kx,ky

Âkx,ky(t, z + 2πp)eikyy+i(kx−δkx)xei∆. (3.15)

Using the orthogonality of Fourier components, it is determined that Âkx,ky(t, z) =

Âkx+δkx,ky(t, z + 2πp), with

δkx = 2πpι′
∂y

∂α

∂ψ

∂x
ky and ∆ = −2πpkyι

∂y

∂α
.

Physically, this captures the idea that as an eddy travels around the fusion device, it
becomes stretched and tilted by the magnetic shear, which pushes the radial wavenum-
ber to larger values as the eddy develops finer structure. It can also be seen that the
amplitude, Âkx,ky(t, z) picks up a phase factor at the end of the z-domain. This en-
capsulates the fact that the field line does not travel back to the exact same α location
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after traversing 2πp in z, but instead returns to a different location. This phase factor
accounts for the geometric shift in the α coordinate at the ends of the domain.

The perpendicular domain consists of a uniform grid in kx and ky. The spacing in
each grid is set by ∆kx = 2π/Lx and ∆ky = 2π/Ly where Lx and Ly are the respective
sizes of the simulation domain in (x, y). For each ky, different kx modes are linked
together to form an extended domain in z, which is discussed in the next section,
such that physical quantities are periodic at z = 0 and z = 2πp, before and after
experiencing net magnetic shear respectively. A zero-incoming boundary condition is
applied at the extrema of the extended z-domain, at z = ±zmax, ext.

It is worth noting that in a flux-tube simulation the factor pkyι(∂y/∂α) can be
set to an integer value by considering a different flux surface that is a small distance
of order O(ρ∗) away, such that ι(ψ) is sufficiently altered to make pkyι(∂y/∂α) ∈ Z
[109]. This adjustment has the advantage of setting the phase factor to unity, which
helps reduce the complexity of the flux tube code. In the case of small magnetic
shear this approach may be problematic, as it can be seen that δkx becomes very
small, meaning one must either use a large number of poloidal turns, or must use a
large box in the x-domain. This can be problematic from the perspective of memory
and efficiency constraints as more kx-modes are necessary. In this case, we can use
the ‘phase-shift-periodic parallel boundary condition’ described by St-Onge et al. in
[110]. In this case, the phase shift is retained, but δkx is taken to zero

∑

kx,ky

Âkx,ky(t, z)e
ikyy+ikxx =

∑

kx,ky

Âkx,ky(t, z + 2πp)eikyy+ikxxei∆, (3.16)

such that Âkx,ky(t, z) = Âkx,ky(t, z+2πp). Variations of periodic boundary conditions
have been used in gyrokinetic simulations for stellarators with low magnetic shear
[38], and these boundary conditions will be used in the simulations presented in the
results section of Chapter 42.

3.5.2 Extended z-domain

It was shown in Section 3.5.1 that, when magnetic shear is present, modes with a
given ky are sheared to higher radial wavenumbers as the turbulent eddy is advanced
along the field line. Although, in the flux-tube domain, the local value of kx does not
change, the flux tube domain is being sheared, so the ‘lab’ wavenumber is changed.
Hence, a mode that has an incoming lab wavenumber, kx, at the simulation boundary

2Other parallel boundary conditions exist within stella, such as the ‘flux-tube train’ [123], and
a zero boundary condition on the non-extended z-domain, which will not be detailed here.
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zmin will have a different value for the outgoing lab wavenumber, zmax. In order to
capture this shearing effect, one needs to couple different kx modes across the ends
of the flux tube.

Computationally, the physical periodicity condition—described by the ‘twist-and-
shift’ boundary condition—imposes a numerical constraint on the kx grid spacing.
This arises because the modes at the end of the z-domain must be ‘linked’ to the in-
coming modes at the start of the domain. To ensure these outgoing modes are numeri-
cally captured, they must align with grid points in kx. As a consequence, the quantity
δkx/∆kx = 2πŝLx/Ly

.
= jtwist must be an integer, where ŝ = −2x0/ι(dι/dx) is the

global magnetic shear, and x0 is the value at the center of the x-domain. This condi-
tion ensures that the smallest change in radial wavenumber matches the grid spacing
in the kx-domain.

The twist-and-shift condition is applied at the end of each 2π segment in z, linking
together segments with different kx values. This results in an extended z-domain
with Nz+ = Nz ×Nseg grid points, where Nz is the number of grid points in each of
the 2π segments in z, and Nseg denotes the number of connected segments—that is,
the number of 2π segments that are linked together to form the extended domain.
This construction defines the ballooning-space domain upon which the zero incoming
boundary condition is imposed.

Numerically, the parameter jtwist quantifies the number of connections for a
given ky. If jtwist = 1, then all kx modes are connected for the smallest value of
ky; if jtwist = 2, then every other kx mode is connected. Figure 3.2 illustrates the
connectivity of modes for two different jtwist values, for ky ∈ [0, 5] and kx ∈ [−5, 5].
In this illustration, each arch represents which kx modes are connected across one 2π

simulation domain due to the magnetic shear. In order to capture the full dynamics of
the system in the range kx ∈ [−5, 5] it is necessary to capture each of these connections
up to ±kx,max.

The number of distinct mode chains for a given ky is given byNeigen = jtwist(ky/∆ky)

for ky ̸= 0, and Neigen = Nkx for ky = 0, where Nkx is the number of kx modes. In
Figure 3.2, this corresponds to the number of coloured chains for a given ky. The
maximum number of connected segments required to represent a mode in a given
chain is Nseg = (Nkx − 1)/Neigen; in Figure 3.2, this is visualised as the number of
arches within each coloured chain. For example, when jtwist = 1 and ky = 1,
all 11 kx modes are connected, necessitating 11 segments to fully resolve the mode
dynamics.
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Figure 3.2: An illustration of mode connections on the extended z-domain for two
different values of jtwist. For a given ky, the kx modes linked by each coloured
arch form an ‘eigen-chain’, representing modes connected through the twist-and-shift
condition. This connectivity arises due to the magnetic shear, which modifies the
radial mode number of an eddy at fixed ky. The number of arches indicates the
number of connected 2π segments required to fully resolve the mode dynamics. Loops
denote modes that are not connected to any others and are therefore periodic.

3.6 Time Advance Algorithms

Here, the algorithms used in the flux-tube version of stella are outlined. A com-
prehensive summary of all algorithmic choices available, as well as the benchmark
results, can be found in Barnes et al. (2019) [9]. Here, we detail only the algorithms
used to evolve the electrostatic gyrokinetic system, and which are used in the flux-
annulus extension described in Chapter 4. For clarity, the normalised operators are
assigned names reflecting the physical processes they represent within the equations.
The evolution equation for ĝk,ν , (3.2), in the electrostatic collisionless limit, is broken
down as:

∂ĝk,ν
∂t

+ Ŝk,ν [ĝk,ν , ϕ̂]︸ ︷︷ ︸
Parallel streaming

+M̂k,ν [ĝk,ν ]︸ ︷︷ ︸
Mirror

+ Êk,ν [ĝk,ν , ϕ̂]︸ ︷︷ ︸
Explicit

= 0, (3.17)

with
Êk,ν [ĝk,ν , ϕ̂] = D̂k,ν [ĝk,ν , ϕ̂]︸ ︷︷ ︸

Drift

+ Ĝk,ν [ϕ̂]︸ ︷︷ ︸
Drive

+ N̂k,ν [ĝk,ν , ϕ̂]︸ ︷︷ ︸
Nonlinear

. (3.18)
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The aim is to treat the fast parallel dynamics implicitly. This is an important feature
when treating kinetic electrons–meaning electrons evolve under their own dynami-
cal equation, rather than being assumed to have a Boltzmann response–because the
factor vth,e ∼

√
mi/me present in the streaming and mirror terms increases their

relative amplitudes when considering electron dynamics. This has the potential to
impose a stringent CFL condition, which constrains the time step if treated with an
explicit time advance algorithm. For this, the gyrokinetic equation is split into three
pieces using operator splitting. This separates the mirror and streaming terms into
individual equations, enabling an efficient implicit treatment to be used.

First, the operator splitting procedure is outlined, and then the algorithms used
are detailed for each term split out: explicit advance, mirror advance, field solve, and
parallel streaming.

3.6.1 Operator Splitting

As mentioned previously, the mirror and parallel streaming terms are treated implic-
itly in order to avoid the restrictive CFL condition that arises when treating kinetic
electrons. This can be facilitated by using operator splitting to separate the gyroki-
netic equation into three parts that are updated successively:

∂ĝk,ν
∂t

=

(
∂ĝk,ν
∂t

)

1

+

(
∂ĝk,ν
∂t

)

2

+

(
∂ĝk,ν
∂t

)

3

, (3.19)

where equation (3.17) has been split using the Lie-Trotter splitting technique. The
split equations are given by

(
∂ĝk,ν
∂t

)

1

+ D̂k,ν + Ĝk,ν + N̂k,ν = Ĉk,ν ,
(
∂ĝk,ν
∂t

)

2

+ M̂k,ν = 0,

(
∂ĝk,ν
∂t

)

3

+ Ŝk,ν = 0, (3.20)

which is accurate to first order in ∆t [19], where ∆t is the timestep. The temporal
accuracy of this splitting can be readily increased to second order through the appli-
cation of Strang splitting [113]. The electric potential, ϕ̂k, can be thought of as an
operator acting on ĝk,ν , by symbolically writing the electrostatic limit of quasineu-
trality (which closes the system) as

Q̂g,k [ĝk,ν ] = Q̂ϕ,k[ϕ̂k]. (3.21)
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Noting that the electrostatic potential can be pulled out of the operator, as it has
no velocity dependence, and multiplying (3.21) by Q̂−1

ϕ,k = 1/Q̂ϕ,k, one obtains the
desired expression for ϕ̂k:

ϕ̂k = Q̂−1
ϕ,k · Q̂g,k [ĝk,ν ] . (3.22)

Hence, equation (3.20) can be re-cast purely in terms of operators acting on ĝk,ν
∂ĝk,ν
∂t

= Â[ĝk,ν ] + (B̂ + Ĉ)[ĝk,ν ]. (3.23)

Discretising in time gives

ĝnE
k,ν = ĝnk,ν +∆tÂ[ĝk,ν ], ĝnM

k,ν = ĝnE
k,ν +∆tB̂[ĝk,ν ], ĝn+1

k,ν = ĝnM
k,ν +∆tĈ[ĝk,ν ].

(3.24)
The operation Â captures the terms marked explicit in (3.17), B̂ the mirror terms,
and Ĉ the parallel streaming terms. Here the superscript n gives the time index,
with nE and nM being intermediate time stages within the time step, and n + 1 the
updated time index. The time discretisation for ĝk,ν acted on by the operators on the
right-hand sides is left unspecified here, as this will depend on the choice of algorithm
used. We shall detail these in the coming sections.

The algorithm for each operation is now briefly detailed. For the remainder of this
section the subscripts denoting the Fourier mode will be suppressed as all operators,
except the nonlinear operator, do not couple together modes of different k-values.
It is assumed that everywhere the equations are advanced in Fourier space, unless
explicitly stated otherwise.

3.6.2 Explicit Time Advance

The magnetic drifts, the equilibrium drive term and the nonlinearity are advanced
explicitly in time. These are grouped together into the combined operator

Êν [ĝν , ϕ̂] .= D̂ν [ĝν , ϕ̂] + Ĝν [ϕ̂] + N̂ν [ĝν , ϕ̂]. (3.25)

The option to choose from a family of strong-stability-preserving (SSP) Runge-Kutta
(RK) schemes is provided for the explicit time advance [47] due to their favorable
nonlinear stability properties, as described in the original stella paper [9]. These
schemes enable more accurate and less diffusive time-stepping while preserving sta-
bility properties under the same time step ∆t, compared to lower-order methods.
The default scheme, which is SSP-RK3, is described here. The updated distribution
function following the explicit advance is

ĝnE
ν =

ĝnν
3

+
∆t

2
Gn

1 +
∆t

6
(Gn

2 +Gn
3 ) , (3.26)
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with Gn
1
.
= ĝnν + Êν [ĝnν , ϕ̂n], Gn

2
.
= Gn

1 + Êν [Gn
1 ], and Gn

3
.
= Êν [Gn

2 ]. Here ‘nE ’ denotes an
intermediate time step that results from advancing all of the explicit terms. A Fourier
pseudo-spectral approach is used to evaluate the derivatives in x and y appearing in
N̂ν in order to retain spectral accuracy, with de-aliasing applied following the ‘2/3
rule’ [90]. The operators D̂ν and Ĝν are evolved in Fourier space.

3.6.3 Mirror Advance

The mirror terms can be treated explicitly or implicitly, with the latter being crucial
for simulations involving kinetic electrons:

ĝnM
ν = ĝnE

ν −∆tM̂ν [ĝ
n∗
ν ], (3.27)

where n∗ indicates a temporal index which depends on the algorithm chosen. In the
case of explicit advance in time ĝnE

ν,m is used in place of ĝn∗ν,m. For the implicit case,
the subscript n∗ indicates a variable time location between tn and tn+1, defined as

tn∗ =
1− ut

2
tn +

1 + ut
2

tn+1, (3.28)

where ut is a user-specified parameter controlling the time-implicitness. Here ut = 0

indicates a centred-in-time evaluation of the mirror operator, whereas ut = 1 indicates
a fully implicit evaluation. The distribution function is evaluated at tn∗ such that

ĝn∗ν =
1− ut

2
ĝnM
ν +

1 + ut
2

ĝnE
ν . (3.29)

The updated distribution function, for both implicit and explicit time advance, is

ĝnM
ν,m = ĝnE

ν,m +∆tvth,νµν b̂ · ∇z
∂B0

∂z

(
∂ĝn∗ν
∂v∥

)

m

, (3.30)

where the subscript m denotes that terms are evaluated at grid point v∥,m. The
derivative in v∥ is carried out using finite differences with a 3-point stencil. For the
explicit case this is done using a third-order upwind scheme, and for the implicit case
this is done using

(
∂ĝn∗ν
∂v∥

)

m

=
(1∓ uv∥)ĝ

n∗
ν,m+1 ± 2uv∥ ĝ

n∗
ν,m − (1± uv∥)ĝ

n∗
ν,m−1

2∆v∥
, (3.31)

where ∆v∥ = v∥,m+1 − v∥,m is the spacing in v∥. The upper (lower) signs are used
when the advection speed in v∥

3 is positive (negative). Here, uv∥ is a user-specified

3Note that the sign of the advection speed here is given by the sign of −∂B0/∂z, as seen in
equation (3.9b).
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parameter that controls the centring in v∥. If uv∥ = 0 then the derivative in v∥ is
centred, which is second order accurate in ∆v∥. If uv∥ = 1 then the derivative is fully
upwinded, resulting in a scheme that is first order accurate in ∆v∥.

In the case of explicit advance in time, ĝn∗ν,m → ĝnE
ν,m, and ĝnM

ν,m is trivially obtained
from (3.30). For the implicit scheme, algebraic manipulation and matrix inversion
is required. Given that the discretisation in v∥ uses a 3-point stencil the resulting
differentiation matrix is tridiagonal, and the corresponding linear system for implicit
advance can be solved using the Thomas algorithm [117].

3.6.4 Parallel Streaming

Physically, parallel streaming describes the ballistic motion of particles along the
magnetic field, and is captured by equation (2.26a). Both of the terms, involving
ĝν and ϕ̂, account for the parallel dynamics, and are necessary to describe Landau
damping, so are treated together. The streaming operator time advance routine is
structured as:

ĝn+1
ν = ĝnM

ν −∆tŜν [ĝn∗ν , ϕ̂n∗], (3.32)

where the subscripts denoting the Fourier mode have been suppressed. The z-
derivative is evaluated as follows:

(
∂ĝ

∂z

)

i∗
=
ĝi+1 − ĝi

∆z
, (3.33)

where phase space and species coordinates have been suppressed for simplification of
notation. The subscripts i and i + 1 denote that the distribution function is being
evaluated at the z grid locations zi and zi+1, respectively. Here the subscript i∗
indicates evaluation at some intermediate grid point defined by

zi∗ =
1∓ uz

2
zi +

1± uz
2

zi+1. (3.34)

The ∓ captures the sign of the advection velocity, and is determined by the sign of
v∥. The top (bottom) signs are used when the parallel advection speed is positive
(negative), and this sign convention will be maintained throughout the remainder of
this subsection, and in Section 4.3.4 when the extension of the parallel streaming
algorithm to the flux-annulus version is discussed. As with the mirror advance, the
user-specified parameter uz controls spatial centring. Setting uz = 0 results in a
centred derivative accurate to second order in ∆z, while uz = 1 yields a fully upwinded
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derivative accurate to first order in ∆z. All other z-dependent quantities are evaluated
at zi∗ using the approximation

ĝi∗ =
1∓ uz

2
ĝi +

1± uz
2

ĝi+1. (3.35)

The distribution function vector in z is denoted as ĝ, with vector components ĝi,
and similarly the quantity ϕ̂ represents a vector with z-components ϕ̂i. The time
derivative is discretised as

(
∂ĝ

∂t

)n∗
=

ĝn+1 − ĝnM

∆t
, (3.36)

where n is the temporal index, and the index ‘nM’ indicates the distribution function
as evaluated after the previous operation (i.e. mirror advance). The subscript n∗
indicates the same temporal grid point as described in Section 3.6.3. Here we detail
only the implicit time advance algorithm. The other time-dependent quantities are
evaluated at tn∗ such that

ĝn∗ =
1− ut

2
ĝnM +

1 + ut
2

ĝn+1. (3.37)

To determine ĝn+1 using an implicit form of the above equation, ϕ̂n+1 is needed,
which is obtained by inverting the field solve equation, which itself requires ĝn+1.
To overcome this apparent circular dependency, a Green’s function method is used
to facilitate the implicit solve [73]. Equation (3.32) can be further split into the
following:

ĝn+1
∗ − ĝnM

∗ = Ŝg [ĝn∗] + Ŝϕ
[
ϕ̂
n∗]

, (3.38)

where Ŝg and Ŝϕ are the parts of Ŝ that operate on ĝ and ϕ̂ respectively. This is
further expanded to separate the contribution arising from the time levels n+ 1 and
nM:

ĝn+1
∗ − ĝnM

∗ = Ŝg+
[
ĝn+1

]
+ Ŝg− [ĝnM ] + Ŝϕ+

[
ϕ̂
n+1
]
+ Ŝϕ−

[
ϕ̂
nM
]
, (3.39)

where we have defined

Ŝg± =
1± ut
∆t

Ŝg, Ŝϕ± =
1± ut
∆t

Ŝϕ.

Quasineutrality may also be symbolically represented at time level n+ 1:

Q̂g

[
ĝn+1

]
= Q̂ϕϕ̂

n+1
. (3.40)
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First, the distribution function is split further into a ‘homogeneous’ and an ‘inhomo-
geneous’ contribution: ĝn+1 = ĝn+1

hom + ĝn+1
inhom. These contributions are determined by

the following equations with normalised operator definitions

ĝn+1
∗,inhom − ĝnM

∗ = Ŝg+
[
ĝn+1

inhom

]
+ Ŝg− [ĝnM ] + Ŝϕ−

[
ϕ̂
nM
]
, (3.41a)

ĝn+1
∗,hom = Ŝg+

[
ĝn+1

hom

]
+ Ŝϕ+

[
ϕn+1

]
. (3.41b)

Equation (3.41a) can be solved for the z-components of ĝn+1
inhom as ĝnM and ϕ̂

n
are

known. To solve (3.41b) for ĝn+1
hom, a Green’s function approach is used. For this a unit

impulse is provided as the input for ϕ̂ at each z-location on the extended z-domain,
described in Section 3.5.2, and the corresponding ĝn+1

hom is calculated. From this we
get

ĝn+1
i =

Nz+∑

p=1

δĝn+1
i,hom

δϕ̂p
ϕ̂n+1
p

︸ ︷︷ ︸
ĝn+1
hom

+ĝn+1
i,inhom, (3.42)

where δĝn+1
i,hom/δϕ̂p

.
= Ri is the response of ĝn+1

i,hom at grid location zi to a unit perturba-
tion in ϕ̂p at grid location zp, and Nz+ is the size of the extended z-domain, which was
described in Section 3.5.2. Substituting this expression for ĝn+1 into quasineutrality,
(3.40), gives {

Q̂ϕ − Q̂g [R]
}
ϕ̂
n+1

= Q̂g

[
ĝn+1,

inhom

]
. (3.43)

The pre-factor on the left hand side of this equation is a time-independent Nz+×Nz+

matrix that is computed once at the beginning of a simulation, LU decomposed,
and stored for computational efficiency. The pre-factor on the left hand side of this
equation is a time-independent Nz+ × Nz+ matrix that is computed once at the
beginning of a simulation, LU decomposed, and stored for computational efficiency.
The computational cost for the LU decomposition of this matrix, and the subsequent
solution of linear systems is approximately O(N2

z+). As Nz+ typically attains large
values, frequently on the order of O(103), the computational cost associated with these
operations becomes significant. Similarly, the memory requirements for storing the
LU-decomposed factors scale as approximately O(N2

z+). Consequently, the response
matrix can become memory-limiting at large resolutions.

The updated field, ϕ̂n+1, can then be obtained using back-substitution. With this,
the components of the updated distribution function, ĝn+1, can then be solved for
using equation (3.39), and both the distribution function and electric potential have
then been advanced a full time step.
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Chapter 4

Full Flux-Annulus δf -Gyrokinetic
Code

The stellarator world is wonderful - just a bit twisted.

William Morris

4.1 Introduction

Gyrokinetic simulations are essential tools in modern plasma physics, enabling the
study of turbulence and transport in magnetically confined fusion devices. Over the
past two decades, a number of gyrokinetic codes have been developed, which can
broadly be categorised into flux-tube (FT) and ‘global’ codes. FT codes—such as
GS2 [73], GENE (FT version) [70], CGYRO [22], GKV [122], GKW [95], stella

[9], and GX [83]—are typically used to model local turbulence in the plasma core.
Their efficiency and comparatively lower computational cost make them ideal for
high-resolution parameter scans and linear stability analysis. In contrast, some
codes—including GTC [81], ORB5 [78], GTS [121], CGYRO [22], GYSELA [48],
GT5D [71], XGC [76], stella [9], EUTERPE [72], and global versions of GENE-3D
[85]—are capable of simulating turbulence across larger radial and poloidal domains,
possibly accounting for profile variations, boundary effects, and global mode struc-
tures. These tools have been extensively benchmarked and validated against both
theoretical predictions and experimental results.

Several comprehensive benchmarking studies have been conducted in recent years
comparing leading gyrokinetic codes, including stella [45]. A notable example is the
work by Sánchez et al. (2021) [106], which employed a variety of standard linear test
cases to evaluate the consistency and performance of multiple gyrokinetic codes. The
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benchmark demonstrates broad agreement on linear growth rates and zonal saturation
levels, while also identifying areas where numerical or physical modeling choices can
lead to differences in results.

Despite their capabilities, many of these global codes have historically relied on
the adiabatic, or modified-adiabatic electron approximation outlined in Section 2.3.3
in order to reduce computational expense. Although many codes can now simulate
kinetic electron effects, doing so remains computationally challenging. While this
simplification is sometimes justified in core plasma regimes dominated by ion-scale
turbulence, it can lead to inaccurate modelling in scenarios where modes that require
kinetic electron dynamics—such as trapped electron modes (TEMs) and electron-scale
instabilities—play a significant role, and can lead to large quantitative discrepancies
even for ITG, as seen in the CBC (see e.g., [116]). Conversely, FT codes, though more
capable of handling the computational demand of kinetic electrons, may be limited
in their ability to capture the effects arising from variations across flux surfaces.

In this chapter, we present a new gyrokinetic algorithm designed to address these
challenges by implementing a mixed implicit-explicit time advance scheme that in-
cludes kinetic electron effects across a flux-annulus (FA). This approach enables a
more efficient treatment of electron dynamics in complex magnetic geometries, with-
out incurring too heavy a computational cost. At present, this work is restricted to
the electrostatic limit.

4.2 Numerical Implementation

We have developed a novel δf -gyrokinetic algorithm specifically designed to simulate
plasma turbulence in an FA for non-axisymmetric magnetic geometries. This algo-
rithm is particularly focused on capturing the α-coupling effects described in Sec-
tion 2.3.1, which are essential for accurately modelling turbulence and capturing the
correct behaviour of the zonal flow when α-variation is present across the equilibrium.

We provide a detailed explanation of the FA algorithms, including an iterative-
implicit treatment of the parallel streaming terms. This approach allows for the
accurate modelling of kinetic electron behaviour, enabling larger time steps to be
taken compared to explicit methods. As a result, we aim to achieve a reduction
in the computational cost associated with these turbulent simulations in an FA for
non-axisymmetric devices.

This code development is implemented in the existing gyrokinetic code stella,
the algorithmic choices for which have been outlined in Chapter 3. Many algorithms
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remain largely unchanged; however, local k-by-k operations become vector operations
that couple different binormal mode numbers ky. This coupling poses a significant
challenge in the parallel streaming step, where the derivative along the field line
(z-direction) couples modes of different wavenumbers, as demonstrated in the twist-
and-shift derivations in Section 3.5.1. Incorporating the ky couplings into the response
matrix transforms what is originally a matrix of size Nz+ ×Nz+, with Nz+ = NzNkx ,
into a matrix of size Nz+ × Nz+ where now Nz+ = NzNkxNky . Given the O(N2

z+)

scaling in both computational cost and memory requirements, larger response matri-
ces could rapidly become computationally prohibitive. Consequently, the algorithm
requires substantial modifications to efficiently handle these couplings without incur-
ring prohibitive increases in computational and memory costs associated with the
enlarged response matrix dimension. The following chapter builds upon the existing
choices, and outlines the algorithms implemented. Benchmark results demonstrating
the efficacy of the code are given in the final section of this chapter.

4.2.1 Coordinates

The coordinate choices for stella are outlined in Section 3.2. For FT simulations,
stella offers a variety of options to model the equilibrium. For FA simulations in
stellarators, however, the variational moments equilibrium code, VMEC [60, 61, 62],
is required to provide the information about the magnetic geometry and is used
to calculate all the geometrical quantities appearing in the gyrokinetic equation on a
specified flux surface. The flux-surface label used by VMEC is defined as s .

= ψt/ψt,LCFS

with s = 0 indicating the magnetic axis, and s = 1 the outermost closed flux surface.
Here ψt,LCFS is the value of the toroidal flux, ψt, at the last-closed-flux-surface. In
this case dx/dψ = −(ψt/|ψt|)/(

√
sLrBr) and dy/dα = Lr

√
s, with Lr the effective

minor radius computed by VMEC, and Br = 2|ψt,LCFS|/L2
r . From this the identity

(dx/dψ)(dy/dα) = −(ψt/|ψt|)/Br is obtained, and

x =
Lr

2

(√
s−√

s0
)
, (4.1)

y = Lr
√
s (α− α0) , (4.2)

with s0 the value of s at the centre of the simulation domain. A schematic of a flux
annulus domain for a tokamak with circular flux surfaces is shown in Figure 4.1. The
physical domain size in y spans α ∈ [0, 2π], so that Ly = 2πr, where r = Lr

√
s is the

radial location of interest. The smallest normalised wave number (see Table 3.1) that
exists in the system is set by ρ∗, a user-specified input, as ∆ky = ρ∗/

√
s.
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Figure 4.1: Illustration of the flux annulus domain for a tokamak with circular flux
surfaces. The simulation region in the full flux annulus model lies between the inner
red torus and the outer blue torus.

The z-coordinate is chosen to be the normalised arc-length, such that b̂ · ∇z is
independent of z, by enforcing zmin(α, ζ = −π) = −π and zmax(α, ζ = π) = π. Note
that to enforce this condition, the normalisation must itself depend on α. This will
be important for enforcing the parallel boundary condition, which was derived in
Section 3.5.1, as zmin and zmax will thus be α-independent. For this one must relate
z to the physical toroidal angle, ζ,

z(α, ζ) = z(α, ζ0) +

(∫ ζ

ζ0

dζ ′

b̂ · ∇ζ ′

)(
1

2π

∫ ζmax

ζmin

dζ ′

b̂ · ∇ζ ′

)−1

. (4.3)

By setting ζmin = −π and ζmax = π, the total arc length of each field line is guaranteed
to be independent of α. Consequently the normalisation, which does depend on α, is

b̂ · ∇z .
=

(
1

2π

∫ ζmax

ζmin

dζ ′

b̂ · ∇ζ ′

)−1

. (4.4)

4.2.2 Normalisation

All quantities in this chapter are normalised consistently with Table 3.1, unless stated
otherwise. For simplicity, the notation for denoting normalised quantities will not be
carried, and it is remembered that all variables are normalised. The real-space nor-
malised gyrokinetic equation is given by the electrostatic collisionless limit of equa-
tion (3.2), and is repeated here without the notation denoting the normalisations for
clarity:

∂gν
∂t

+ Sν [gν , φν ] +Mν [gν ] +Dν [gν , φν ] + Gν [φν ] +Nν [gν , φν ] = 0. (4.5)
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Similarly, the real-space, normalised version of quasineutrality, (3.4), in the electro-
static limit is

2B0

π1/2

∑

ν

Zνnν

∫ ∞

−∞
dv∥

∫ ∞

0

dµν

(
⟨gν⟩r +

Zν
Tν

(⟨φν⟩r − ϕ) e−v
2

)
= 0, (4.6)

where the reader is reminded that φν = ⟨ϕ⟩Rν is the gyroaveraged electrostatic po-
tential.

4.2.3 Fourier Transform

In keeping with the FT code implementation, the FA development of stella is spec-
tral in the perpendicular plane, and treats parallel derivatives in real space. The
(x, y)-Fourier treatment is important to retain spectral accuracy in the perpendicular
derivatives, and to correctly capture the FLR effects without the need for a dense
grid in the perpendicular domain. For this we decompose the evolution equations
(4.5) and (4.6) in Fourier harmonics in (x, y)-space to obtain the equations used in
the δf -gyrokinetic code stella. To do this the discrete Fourier transform is taken in
x and y:

gν
(
x, y, z, v∥, µν , t

)
=
∑

kx,ky

ĝk,ν
(
z, v∥, µν , t

)
ei(kxx+kyy) , (4.7)

which is justified in the α-domain due to physical periodicity, and in the ψ-domain
provided the condition kx|∇x| ≫ 1/Lr is satisfied, where we assume Lr is comparable
to the various equilibrium scale lengths present. This translates to a requirement
that the turbulent fluctuations at the edges of the domain in the radial direction are
decorrelated, such that they may be considered statistically identical, and periodic
boundary conditions can be enforced in (x, y) [11]. As mentioned in Section 2.3.1,
when this Fourier transform is taken it results in convolutions of functions in the
binormal mode number, ky, which complicates the resulting gyrokinetic equations.

4.2.4 Gyroaverage

One of the most challenging issues arising from the y-dependent geometry occurs
upon gyroaveraging the electrostatic potential. This process results in a Bessel func-
tion multiplying the potential, which couples multiple modes in ky, as described
in Section 2.3.1. The gyroaveraged electrostatic potential is expressed in equation
(2.34). The argument of the Bessel function, given in equation (2.35), itself contains
y-dependence through the y-dependent geometric factors, which leads to the expres-
sion given by equation (2.38). This expression demonstrates that the gyroaveraging
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procedure couples different Fourier modes, complicating computation. In the FT code
this is a local-in-ky operation. However due to this non-locality in ky this operation
turns into a matrix multiplication of non-diagonal matrices, making it more chal-
lenging to manage. To address this, the Fourier harmonics of the Bessel functions
are calculated once at the beginning of the simulation and stored. The number of
harmonics retained for the gyroaveraging procedure is determined to ensure that the
total spectral energy remains within a user-specified tolerance, with the default being
one part in a million.

4.3 Time Advance Algorithms: full flux-annulus

In this section, we present the algorithms employed to extend the δf -gyrokinetic code
stella to incorporate FA effects. Many of the algorithmic techniques discussed in
Section 3.6 are used here. The FA code takes advantage of the operator splitting
technique described in Section 3.6.1, and we outline the algorithms used in each
‘split’ term here. The structure follows the order of the previous chapter, detailing
the explicit advance, mirror advance, field solve, and parallel streaming.

4.3.1 Explicit Time Advance

The magnetic drifts, the equilibrium drive term and the nonlinearity are advanced
explicitly in time. These are grouped together into the combined operator, identical
to that given in equation (3.25), and the family of SSP-RK schemes is also provided
for the FA explicit advance. However, the presence of convolutions in these operators
poses a problem. In a similar manner to the nonlinear terms in the FT code, a
Fourier pseudo-spectral approach is used to update these operators. The derivatives
with respect to x and y are evaluated in (kx, ky)-space to retain spectral accuracy, and
the multiplication with the geometric coefficients is carried out in (x, y)-space. Care
must be taken not only with the nonlinearity but also for terms with y-dependent
coefficients to avoid aliasing, which may be done by following the ‘2/3 rule’ [90]. In
both cases the arrays are padded with zero’s in (kx, ky)-space before transforming
to real space to carry out the multiplication of the y-dependent quantities. For the
geometric coefficients, this process is performed during the initialisation by computing
the coefficients on a finer y-mesh and filtering the highest third of the wavenumbers.
Any additional Fourier coefficients introduced are removed when transforming back to
(kx, ky)-space. The time advance is achieved in the same manner as in Section 3.6.2,
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but now with the explicit operator taken to be in (x, y)-space,

Eν [gν , φν ] .= Dν [gν , φν ] + Gν [φν ] +Nν [gν , φν ]. (4.8)

For SSP-RK3 the real-space explicit time advance is done analogously to the Fourier
explicit time advance:

gnE
ν =

gnν
3

+
∆t

2
Gn

1 +
∆t

6
(Gn

2 +Gn
3 ) , (4.9)

with Gn
1
.
= gnν +Eν [gnν , ϕ̂n], Gn

2
.
= Gn

1 +Eν [Gn
1 ], and Gn

3 = Eν [Gn
2 ]. Note that the benefit

here is that the derivatives and gyroaverages are computed in Fourier space, meaning
the associated spectral accuracy is retained.

4.3.2 Mirror Advance

The mirror terms can be handled either explicitly or implicitly, with implicit treat-
ment being essential for simulations involving kinetic electrons. For both types of
time advancement, the equation is transformed from ky-space to y-space to accom-
modate the y-dependent advection speed. Importantly, the mirror operator does not
require gyroaverages and perpendicular derivatives, and so there are no drawbacks
in updating this term in (x, y)-space as opposed to (kx, ky)-space. The algorithm for
updating the mirror advance parallels the one detailed in Section 3.6.3, except that
the Fourier representation of the distribution function, ĝν , is replaced by its real-space
representation, gν .

4.3.3 Intermediate Field Solve

From the discussions of gyroaveraging it is clear that y-dependent geometric terms
introduce added computational challenges. One key place this arises is in quasineu-
trality. Here, gyroaveraging is required, and the Jacobian associated with the velocity-
space integral contains y-dependent coefficients, such as the magnetic field. Given that
the gyrokinetic equation is coupled with quasineutrality, it is required that they are
solved consistently. The aim is to solve for the Fourier modes of ϕ given those of gν .
However, it should be noted that the distribution function and electric potential are
decomposed into harmonics at the guiding centre and particle position respectively;

gν =
∑

k

ĝk,νe
ik·Rν , (4.10)

ϕ =
∑

k

ϕ̂ke
ik·r. (4.11)
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When these decompositions are used in quasineutrality, the Bessel functions naturally
arise from the velocity integrals, as they are evaluated at fixed particle position:
∑

ν

Zνnν
∑

k

eik·r
(
2B0√
π

∫ ∞

−∞
dv∥

∫ ∞

0

dµνJ0(ak,ν)ĝk,ν +
Zν
Tν

(Γ0(k⊥ρth,ν)− 1) ϕ̂k

)
= 0,

(4.12)
where

Γ0(k⊥ρth,ν)
.
=

1

nν

∫
d3vJ2

0 (ak,ν)F0,ν . (4.13)

Recall that k⊥ and ak,ν are both y-dependent, so it is necessary to further expand
equation (4.12). Hence, anticipating a convolution of the terms with y-dependence, as
in Section 4.2.4, the quantities Q .

= J0B0 and ∆
.
=
∑

ν(Z
2
νnν/Tν)(1−Γ0(k⊥ρth,ν)) are

defined. These quantities are expanded in Fourier harmonics to obtain the (kx, ky)-
component of quasineutrality:
∑

k′y ,ν

2Zνnν√
π

∫ ∞

−∞
dv∥

∫ ∞

0

dµνQ̂(kx,ky−k′y),k′y ,ν ĝ(kx,ky−k′y),ν =
∑

k′y

∆̂(kx,ky−k′y),k′y ϕ̂(kx,ky−k′y).

(4.14)
This inclusion of y-dependent geometric coefficients converts a local response expres-
sion in ky, appearing in the FT version of stella, to a matrix-vector multiplication.
These operators are denoted using

Q̂g [ĝν ] = Q̂ϕ

[
ϕ̂
]
, (4.15)

where ĝν and ϕ̂ are vectors with Fourier components {ĝk,ν} and {ϕ̂k} respectively,
for each z-location. The array Q̂ϕ is band diagonal, square matrix of dimension
(NkyNkxNz), and can be inverted using band LU decomposition and back substitution.
Given ĝn+1,M

ν one can solve for ϕ̂
n+1,M

to find the corresponding electric potential at
an intermediate time step.

4.3.4 Parallel Streaming

If the implicit approach used in Section 3.6.4 for the original FT version of the stella
code were applied in this case, the result would require inverting a large dense matrix
at each time step due to the coupling between different ky-values. This would be
computationally costly. Therefore, the equations are structured to distinguish terms
with and without y-dependent prefactors. For instance, the streaming coefficient may
be decomposed into a component that is constant across field lines and a residual,
with the expectation that the residual is small:

b̂ ·∇z =
〈
b̂ ·∇z

〉
y
+

[
b̂ ·∇z −

〈
b̂ ·∇z

〉
y

]
, (4.16)
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where 〈
b̂ ·∇z

〉
y

.
=

1

2π

∫ 2π

0

dy b̂ ·∇z, (4.17)

is the y-averaged component, which is a constant in Fourier space. The y-independent
piece can be treated implicitly using a response matrix approach [73], similar to that
outlined in Section 3.6.4, and the remainder is included via an iterative scheme. The
field-line coupling in φν is attributed to gyroaveraging, which originates from the equi-
librium scale. As a result, φν is largely y-independent. Hence, we can make a similar
decomposition for φν in (3.32): φν = ϕ + (φν − ϕ). Here ϕ is the non-gyroaveraged
electric potential, and these terms are referred to as the ‘drift-kinetic terms’ as they
are equivalent to the long-wavelength limit. It is assumed that the dominant contri-
bution of φν is given by ϕ with the residual being small, which is guaranteed at long
wavelengths relative to the Larmor radius, k⊥ρi ≪ 1, where the CFL constraint due
to the parallel dynamics is most stringent [9]. The parallel streaming term can hence
be fully decomposed into dominant and correction contributions:

∂gν
∂t

=− vth,νv∥

〈
b̂ ·∇z

〉
y

(
∂gν
∂z

+
Zν
Tν

∂ϕ

∂z
⟨e−v2ν ⟩y

)

− vth,νv∥

(
b̂ ·∇z −

〈
b̂ ·∇z

〉
y

)(
∂gν
∂z

+
Zν
Tν

∂φν
∂z

e−v
2
ν

)

− vth,νv∥

〈
b̂ ·∇z

〉
y

Zν
Tν

(
∂φν
∂z

e−v
2
ν − ∂ϕ

∂z
⟨e−v2ν ⟩y

)
. (4.18)

The parallel streaming term is treated implicitly using a centred scheme in time, as
implemented in the FT version of stella, to enable larger time steps while main-
taining minimal numerical dissipation. We find that the inclusion of terms evaluated
at time level n on the right-hand side of the equation causes numerical instability
when both the parallel streaming and mirror terms are present for small k⊥. Thus,
the parallel streaming terms are always treated as if they are fully implicit in time to
ensure numerical stability.

The terms with y-dependent coefficients are treated with a pseudo-spectral ap-
proach, and all terms are advanced in Fourier space. The discretisation is consistent
with the original FT version of the stella code [9]. The same discretisation in z

is used as in equations (3.33)-(3.35). However, the equation is now fully implicit in
time to ensure numerical stability, meaning ut must now be equal to 1. Using these
discretisations the following symbolic form for parallel streaming is obtained

ĝn+1
∗ − ĝn+1,M

∗ = Ŝ(0)
g

[
ĝn+1

]
+ Ŝ(0)

ϕ

[
ϕ̂
n+1
]
+ Ŝ(1)

g

[
ĝn+1

]
+ Ŝ(1)

ϕ

[
ϕ̂
n+1
]
, (4.19)
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and similarly quasineutrality

Q̂(0)
g

[
ĝn+1

]
+ Q̂(1)

g

[
ĝn+1

]
= Q̂(0)

ϕ

[
ϕ̂
n+1
]
+ Q̂(1)

ϕ

[
ϕ̂
n+1
]
. (4.20)

Here the operators with the superscript (0) are defined to be those which are y-
independent, and those with a superscript (1) are taken to be the residual. They are
defined as:

Ŝ(0)
g [ĝ] = −∆tvth,νv∥

〈
b̂ ·∇z

〉
y

∂ĝ

∂z
, Ŝ(1)

g = Ŝg − Ŝ(0)
g , (4.21)

Ŝ(0)
ϕ

[
ϕ̂
]
= −∆tvth,νv∥

〈
b̂ ·∇z

〉
y

(
Zν
Tν

∂ϕ̂

∂z
⟨e−v2ν ⟩y

)
, Ŝ(1)

ϕ = Ŝϕ − Ŝ(0)
ϕ , (4.22)

and

Q̂(0)
g [ĝ] =

∑

ν

2Zνnν⟨B0⟩y√
π

∫ ∞

−∞
dv∥

∫ ∞

0

dµν ĝ, Q̂(1)
g = Q̂g − Q̂(0)

g , (4.23)

Q̂(0)
ϕ

[
ϕ̂
]
=
∑

ν

Z2
νnν
Tν

⟨1− Γ0(k⊥ρth,ν)⟩yϕ̂, Q̂(1)
ϕ = Q̂ϕ − Q̂(0)

ϕ . (4.24)

This form offers no immediate improvement, as all the correction terms are still
treated implicitly and would require a response matrix to solve. Consequently, an
iterative implicit scheme is chosen, in which the correction terms are evaluated using
the previous iteration, while the drift-kinetic terms are assessed at the current iter-
ation step. This approach enables all terms to be treated implicitly whilst ensuring
the response matrix is only Nz+ ×Nz+ in size, where Nz+ is the size of the extended z
domain, described in Section 3.5.2. The correction terms act as a source in the equa-
tion at each iteration step, and are updated with each iteration until they converge
to the implicit solution. With this adjustment, improved convergence and stability
in the algorithm is achieved. The iterative scheme is split as

ĝn+1,j+1
∗ − ĝn+1,M

∗ = Ŝ(0)
g

[
ĝn+1,j+1

]
+ Ŝ(0)

ϕ

[
ϕ̄
n+1,j+1

]
+ Ŝ(1)

g

[
ĝn+1,j

]

+Ŝ(0)
ϕ

[
ϕ̂
n+1,j − ϕ̄

n+1,j
]
+ Ŝ(1)

ϕ

[
ϕ̂
n+1,j

]
, (4.25)

where j is the iteration index. Here ϕ̄n+1,j+1 is an artificial field, defined through an
artificial quasineutrality:

Q̂(0)
g

[
ĝn+1,j+1

]
+Q̂(1)

g

[
ĝn+1,j

]
= Q̂(0)

ϕ ·ϕ̄n+1,j+1
+Q̂(0)

ϕ ·
(
ϕ̂
n+1,j − ϕ̄

n+1,j
)
+Q̂(1)

ϕ ·ϕ̂n+1,j
.

(4.26)
The initial guesses for ĝn+1 and ϕ̂

n+1
are taken from the mirror advance step, ĝn+1,0 =

ĝn+1,M and ϕ̂
n+1,0

= ϕ̂
n+1,M

. At the (j + 1)th iteration, the values ĝn+1,j and ϕ̂
n+1,j
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are known. The distribution function, ĝn+1,j+1, is further split into a homogeneous
and inhomogeneous contribution: ĝn+1,j+1 = ĝn+1,j+1

hom + ĝn+1,j+1
inhom , as in Section 3.6.4 .

The equations for each are

ĝn+1,j+1
∗,inhom −ĝn+1,M

∗ = Ŝ(0)
g

[
ĝn+1,j+1

inhom

]
+Ŝ(0)

ϕ

[
ϕ̂
n+1,j − ϕ̄

n+1,j
]
+Ŝ(1)

g

[
ĝn+1,j

]
+Ŝ(1)

ϕ

[
ϕ̂
n+1,j

]
,

(4.27)
and

ĝn+1,j+1
∗,hom = Ŝ(0)

g

[
ĝn+1,j+1

hom

]
+ Ŝ(0)

ϕ

[
ϕ̄n+1,j+1

]
. (4.28)

A Green’s function approach is used to solve equation (4.28) for ĝn+1,j+1
hom by providing

a unit impulse at each z-location on the extended z-domain, and solving for the
response of ĝn+1,j+1

hom . From this one obtains

ĝn+1,j+1
i =

Nz+∑

p=1

δĝn+1,j+1
i,hom

δϕ̄p
ϕ̄n+1,j+1
p

︸ ︷︷ ︸
ĝn+1,j+1
hom

+ĝn+1,j+1
i,inhom , (4.29)

where δĝn+1,j+1
i,hom /δϕ̄p

.
= Ri is the response of ĝn+1,j+1

i,hom at grid location zi to a unit
perturbation in ϕ̄p at grid location zp. Substituting this expression for ĝn+1,j+1 into
quasineutrality gives
{
Q̂(0)
ϕ − Q̂(0)

g [R]
}
ϕ̄n+1,j+1 = Q̂(0)

g

[
ĝn+1,j+1

inhom

]
+ Ŝ(0)

ϕ

[
ϕ̂
n+1,j − ϕ̄

n+1,j
]

+ Q̂(1)
g

[
ĝn+1,j

]
− Q̂(1)

ϕ · ϕ̂n+1,j
. (4.30)

The iterative implicit scheme first solves equation (4.27) for ĝn+1,j+1
inhom given ĝn+1,j and

ϕ̂
n+1,j

. Then equation (4.30) is solved using LU decomposition and back substitution
to obtain ϕ̄

n+1,j+1. The iterative implicit scheme employed allows the response matrix
to be of dimension Nz+ ×Nz+, where Nz+ = NkxNz. This approach circumvents the
inclusion of the Nky dimension within the primary response matrix, thereby reducing
its overall size. This is beneficial for both the computational, and memory cost of
treating parallel streaming. Following back substitution, equation (4.25) can be used
to solve for ĝn+1,j+1 by performing a sweep in z. Full quasineutrality can then be
used to solve for ϕ̂

n+1,j+1
using (4.15), and the iteration process is repeated with the

newly found ĝn+1,j+1 and ϕ̂
n+1,j+1

as the inputs for ĝn+1,j and ϕ̂
n+1,j

respectively. The
iteration process is complete when

∣∣∣ϕ̂n+1,j+1 − ϕ̂
n+1,j

∣∣∣ < ϵrr, with ϵrr some specified

error. In this case ϕ̄
n+1,j+1 → ϕ̄

n+1, ϕ̂
n+1,j+1 → ϕ̂

n+1
, and ĝn+1,j+1 → ĝn+1 and

the equations (4.26), (4.25) go to (4.20) and (4.19) respectively. A flow chart of this
implicit scheme is shown in Figure 4.2.
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Have ĝnM and ϕ̂
nM .

Set ĝn+1,j=0 = ĝnM and ϕn+1,j=0 = ϕ̂
nM .

Use ĝn+1,M, ĝn+1,j and ϕ̂
n+1,j

to update for ĝn+1,j+1
inhom

Use ĝn+1,j+1
inhom , ĝn+1,j and ϕ̄

n+1,j to find ϕ̄
n+1,j+1

using a response matrix approach

Use ϕ̄
n+1,j+1 to find ĝn+1,j+1

hom and ĝn+1,j+1

Use ĝn+1,j+1 in QN to find ϕ̂
n+1,j+1

Check tolerance∣∣∣ϕ̂n+1,j+1 − ϕ̂
n+1,j

∣∣∣ < ϵrr

Replace ϕ̄
n+1,j+1 → ϕ̄

n+1,j

and ĝn+1,j+1 → ĝn+1,j

ϕ̂
n+1,j+1 → ϕ̂

n+1

and ĝn+1,j+1 → ĝn+1

no

yes

Figure 4.2: Flow chart showing the iteration scheme employed for implicitly advancing
the parallel streaming term in the FA algorithm.

Figure 4.3 shows the normalised modulus of the difference between ϕ̂ values at
successive iterations, relative to the previous time level. The plot demonstrates that
changes in ϕ̂ decrease with each iteration, with minimal absolute difference between
the sixth and seventh iterations—indicating that ϕ̂ is converging to a given value.
This example, using a W7-X configuration with Ny = 32 y-modes, illustrates typical
behaviour within a given time level using the iteration scheme. As Ny increases,
more iterations are needed to achieve the same level of normalised convergence due
to the growing number of couplings in the correction terms. Section 4.4 gives more
information for the computation cost incurred using this iterative scheme.
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Figure 4.3: A plot showing the normalised convergence of
∣∣∣ϕ̂n+1,j+1 − ϕ̂

n+1,j
∣∣∣ with

the number of iterations for the parallel streaming iterative-implicit scheme. As the
number of iterations completed increases the difference between successive values of
ϕ̂ decreases.

4.3.5 Boltzmann Electrons

In this section, the special case of Boltzmann electrons is considered, which was
discussed in Section 2.3.3. By treating electrons as Boltzmann, their response is in-
tegrated into a modified quasineutrality condition rather than being treated as an
independent kinetic species. Compared with the kinetic electron case, the computa-
tional cost associated with treating electrons using a Boltzmann response is signifi-
cantly reduced, as it eliminates the requirement to capture the fast parallel dynamics
of electrons, relaxing the CFL constraint on the time step. It is hence important
to implement as an option in the code. In this case the electrons adopt a modified
Boltzmann response of the form δne = ene(ϕ−Φ)/Te, where Φ indicates a flux surface
average of ϕ defined by equation (2.49), which is repeated here for convenience:

Φ
.
=

∫
dydzJ (y, z)ϕ∫
dydzJ (y, z)

.

Using this, and re-defining ∆ → ∆ + ne/Te in equation (4.14) to capture the Boltz-
mann response of the electrons, quasineutrality becomes

∑

k′y

∑

ν ̸=e

Zνnν
2√
π

∫ ∞

−∞
dv∥

∫ ∞

0

dµνQ̂(kx,k′y),ky−k′y ,ν ĝ(kx,k′y),ν

−
∑

k′y

∆̂(kx,k′y),ky−k′y ϕ̂(kx,k′y) = −δky ,0Φ̂kx

ne
Te
, (4.31)
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with δky ,0 the Kronecker delta-function. To obtain an expression for Φ̂kx , the function
J (y, z) is expanded in Fourier harmonics in y and Fourier-transformed in x:

Φ̂kx =

∫
dz
∑

k′y
Ĵ−k′y(z)ϕ̂(kx,ky′ )∫

dydzJ (y, z)
. (4.32)

The linearity of the quasineutrality constraint is used to decompose

ϕ̂(kx,k′y) = ϕ̂inhom
(kx,k′y)

+ ϕ̂hom
(kx,k′y)

, (4.33)

with ϕ̂inhom
(kx,k′y)

and ϕ̂hom
(kx,k′y)

referring to the Fourier components of the ϕ that satisfy the
inhomogeneous and homogeneous components of quasineutrality, respectively:

∑

k′y

∑

ν ̸=e

Zνnν
2

π1/2

∫ ∞

−∞
dv∥

∫ ∞

0

dµν Q̂(kx,k′y),ky−k′y ,ν ĝ(kx,k′y),ν

−
∑

k′y

∆̂(kx,k′y),ky−k′y ϕ̂
inhom
(kx,k′y)

= 0, (4.34)

and ∑

k′y

∆̂(kx,k′y),ky−k′y ϕ̂
hom
(kx,k′y)

= δky ,0Φ̂kx

ne
Te
. (4.35)

Note that adding together (4.34) and (4.35) recovers the complete quasineutrality
equation for ϕ̂(kx,k′y). Equation (4.34) can be solved for ϕ̂inhom provided ĝ(kx,k′y),ν . To
obtain ϕ̂hom

(kx,k′y)
, a Green’s function approach is employed in which

ϕ̂hom
(kx,k′y)

=
δϕ̂hom

(kx,k′y)

δΦ̂kx

Φ̂kx . (4.36)

The response vector {δϕ̂hom
(kx,k′y)

/δΦ̂kx} is calculated once during initialisation by solving

(4.35) for ϕ̂hom
(kx,k′y)

for each kx, with Φ̂kx = δkx = 1. Using equation (4.36) and the

decompositions (4.33) in (4.32) gives an equation for Φ̂kx :

Φ̂kx


1−

∫
dz
∑

k′y
Ĵ−k′y(z)

(
δϕ̂hom

(kx,k′y)
/δΦ̂kx

)

∫
dydzJ (y, z)


 =

∫
dz
∑

k′y
Ĵ−k′y(z)ϕ̂

inhom
(kx,k′y)∫

dydzJ (y, z)
. (4.37)

Once Φ̂kx is obtained, it can be used in equation (4.31) to calculate ϕ̂k.

4.4 Numerical Results

In this section, we present analysis of computational results obtained with the FA
code, alongside comparisons to the existing FT code version. Code agreement in

65



the limiting scenario of a tokamak as the parameter ρ∗ approaches zero, where both
codes are expected to agree, is demonstrated. In addition, we investigate a stellara-
tor configuration with Boltzmann electrons, conducting scans across a range of ρ∗
values, and further verifying against published results. We then present some novel
results including kinetic electrons for a non-axisymmetric case. The definitions and
normalisations of the fluxes used in this section can be found in Appendix A.1. For
this section it is also useful to introduce the following simulation parameters which
give the size of the domain in (x, y)

y0 = 2πLyρr =

√
s

ρ∗
=

r

Lr

1

ρ∗
=

1

∆kyρr
,

x0 = 2πLxρr =
1

∆kxρr
.

It should be noted that the quantities Nx and Ny used in this section are the number
of grid points in kx and ky respectively, and includes the zero-padding used for the
‘2/3 rule’.

The input files for the simulations in this section can be found at https://github.
com/GeorgiaActon/Thesis_input_files.git.

4.4.1 Expectation

When considering a linear flux-tube simulation for a given field line, each binormal
wavenumber ky can be assigned an independent growth rate and frequency. For
axisymmetric magnetic fields, the growth rate and frequency spectra are the same
for every field line within a flux surface; for non-axisymmetric magnetic fields, the
spectra will differ between field lines.

For an FA simulation, all binormal wavenumbers are coupled, and only a single
growth rate and frequency can meaningfully be extracted from the simulation. While
it is theoretically possible to derive the FT spectrum using the FA code for an ax-
isymmetric system, doing so may prove challenging in practice, as the fastest growing
mode tends to dominate the overall behavior, in an initial value code.

In Figure 4.4 the purple line represents the anticipated result from a single linear
FT simulation, where the binormal wavenumbers are decoupled, allowing ky to serve
as a well-defined normal mode of the system, producing a spectrum of the linear
growth rate against ky. To produce this purple curve one single simulation would be
conducted and the growth rate for each ky value is plotted. However, reproducing
the same ‘spectrum’ for the FA case is less straightforward due to mode-coupling in
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the binormal direction. To effectively represent the spectrum in an FA simulation
for a given ρ∗, we fix ρ∗—which in turn fixes the minimum ky—and perform a series
of linear simulations. In each simulation, the number of modes, Ny, is increased to
extend the maximum value of ky. Each simulation gives a single, poloidally-global
growth rate, which is then plotted against the corresponding maximum ky. This
scanning process produces a result comparable to the black curve in Figure 4.4. Here,
as the maximum ky is increased, it is expected that a maximum poloidally-global
growth rate sustained by all field lines is found and communicated to all ky. Given
that all field lines are identical in their geometry they can support the same growth
rate spectrum, meaning the maximum poloidally-global growth rate will correspond
to the local peak.

Up to this maximum growth rate, the results from the FA simulation and the FT
simulation should correspond. Beyond this peak, the FT spectrum eventually shows
a decline in growth rates, indicating that these modes are less unstable. In contrast,
when mode-coupling is present, the FA results should plateau. This flattening oc-
curs because, even with an increased maximum ky, the most unstable mode remains
present, ultimately determining the growth rate of the simulation.

kyρr

γ
(L

r/
v t
h
)

FT

FA

Figure 4.4: Sketch of the expectation for the growth rate spectrum versus the binor-
mal wavenumber, ky, for an axisymmetric device. Here, the purple line represents
an example spectrum one could obtain from an FT simulation, and the black line
represents the expected analogous FA-simulation where the poloidally-global growth
rate is plotted against the maximum value of ky in the linear simulation.

In stellarators, each field line, labelled by the index α, experiences distinct ge-
ometry, resulting in varied growth rate spectra, including different maximum growth
rates and potentially peaking at different values of ky. This is illustrated in Figure 4.5
by the coloured lines, with each colour corresponding to the expected result of a FT
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simulation for a different value of α. In an FA simulation, the full poloidal geometry
of the stellarator is taken into account for a given flux surface, enabling the identi-
fication of the most unstable growth rate that can be supported across the device.
This scan can similarly be performed by fixing the minimum ky of the simulation and
scanning in Ny to increase the maximum ky included. Plotting the global growth rate
against the maximum ky produces a plot akin to the black curve in Figure 4.5. As
the maximum ky is increased, the simulation effectively captures a weighted average
of the maximum growth rates associated with each field line, reflecting the global
growth rate that can be sustained across the variations in geometry. In this example,
while the FT spectrum exhibits a decline in growth rates as ky increases, the FA
simulation is, again, expected to plateau, as the mode that is most unstable is still
present in the simulation, and the growth rate of this mode persists as the largest
growth rate in the simulation. Importantly, this plateau does not necessarily occur
at the maximal growth rate across all field lines; rather, it plateaus at an averaged
value that is supported by the collective behavior of all field lines.

kyρr

γ
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r/
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h
)

FA

Figure 4.5: Sketch of the expectation for the growth rate spectrum versus the binormal
wavenumber, ky for a non-axisymmetric device. Here, the coloured lines represent
example spectra one could obtain from an FT simulation for different field lines
within a given flux surface of a device. Each field line samples different geometry,
and hence will support different instabilities and exhibit different spectra. The black
line represents the expected analogous FA-simulation spectrum.

4.4.2 Axisymmetric Benchmark Cases

We begin by considering an axisymmetric geometry. This is done as a benchmark, as it
is expected that the FT result will capture the dynamics well, given that each field line
has the same magnetic geometry. For these benchmarks the axisymmetric Cyclone
Base Case (CBC) [32] geometry is used. Two different geometric implementations are
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considered for the benchmark: Miller and VMEC. In the Miller case, the z-coordinate
corresponds to the poloidal angle, θ. This choice ensures that, in an axisymmetric
configuration, geometric quantities remain constant across all values of α at a fixed
z, eliminating any mode-coupling introduced by the FA code. Conversely, the VMEC

implementation uses the toroidal angle, ζ, as the field-line following coordinate z.
Here, in (α, ζ) coordinates, geometric quantities vary with α at fixed z, even in the
axisymmetric cases. As a result, the FA code captures non-zero mode-coupling, when
treating the axisymmetric device using the full FA algorithms. Figure 4.6 illustrates
the impact of these coordinate choices. The black line shows a field line at α = 0,
while the background contours represent the magnetic field strength–with red and blue
indicating a stronger and weaker magnetic field respectively. In the Miller case (left),
varying α does not alter the geometry as a function of z, since z = θ holds geometry
constant. However, in the VMEC case (right), changes in α shift the geometry along the
z = ζ direction. This is because the geometry will be constant along θ = α+ ιζ. This
is evident when observing the white line in Figure 4.6: in the Miller case, the magnetic
field strength along this line remains unchanged for all α, while in the VMEC case, it
varies with α at fixed ζ. Thus, under VMEC geometry, the FA formulation interprets
an axisymmetric device as if it were a stellarator, capturing mode-coupling.

Figure 4.6: The magnetic geometry for the CBC as considered by the Miller (left)
and VMEC (right) implementations. Here the black line indicates a field line at α = 0,
and the white dashed line indicates fixed z = 0. It can be seen that for the Miller
case the white line samples uniform magnetic geometry, whilst for the VMEC case the
magnetic geometry varies with α.

4.4.2.1 Miller Geometry: kinetic electron results

The initial validation is carried out using a Miller geometry based on CBC, with
Boltzmann and kinetic electrons. This serves as a benchmark for evaluating the
performance of the algorithms. Due to the coordinate choices, the Miller geometry
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produces no mode-coupling from full surface effects. As a result, we expect good
agreement between FA and FT simulations. Results from the FA simulations are
compared against an equivalent FT simulation using stella. The resolutions and
parameters for these simulations using Miller geometry are given in Table 4.1.

Parameter Linear Simulation Nonlinear Simulation

r/Lr 0.5 0.5
Lr/LTi 2.498 2.498
Lr/LTe 2.498 2.498
Lr/Lni

0.8 0.8
Lr/Lne

0.8 0.8
Nθ 3 1
Nz 32 32
Nµ 12 12
Nv∥ 72 72
Nx 1 192
Ny 64 64
y0 25 10
ρ∗ 0.02 0.01

Table 4.1: Simulation parameters for the case with CBC using Miller geometry.

Here r/Lr gives the normalised radial location of the simulation, Lr/LTν Lr/Lnν the
species temperature and density gradients, Nθ is the number of poloidal turns, Nz,
Nµ, Nv∥ , Nx, and Ny are the number of grid points in z, µ, v∥, kx and ky respectively.

First, the spectra of the linear growth rate and real frequency are shown in Fig-
ure 4.7, as a function of kyρr, for Boltzmann and kinetic electrons. Due to the absence
of mode-coupling in the FA simulation, true spectra for the growth rate and frequency
as a function of kyρr can be produced, as in this limit the different ky-modes evolve
independently.
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Figure 4.7: A comparison of the linear growth rate (top) and real frequency (bottom)
spectra against binormal mode number for CBC using Miller geometry with Boltz-
mann (left) and kinetic (right) electrons. The FT (red) and FA (black) simulation
results are overlaid for comparison.

This plot shows good agreement between the two codes, indicating that in the limit
of no mode-coupling the algorithms used in the FT and FA simulations produce the
same results.

Next, nonlinear simulations are performed using the same Miller geometry with
kinetic electrons. Both the FT and FA codes are run implicitly with twist-and-shift
boundary conditions. The resolutions for these simulations are given in Table 4.1,
and the resulting time traces are shown in Figure 4.8. In this regime, the saturated
turbulent heat flux values from the FT and FA simulations agree to within 5%,
indicating strong consistency between the two approaches. The spectra of the squared
electrostatic potential and heat fluxes also show close agreement, as illustrated in
Figure 4.9. This consistency is expected, as the Miller geometry is axisymmetric and
full surface mode-coupling is zero. Some small discrepancies occur in the nonlinear
spectra at small values of kyρr, which may be due to the presence of a finite ρ∗, which
enter in the twist-and-shift boundary conditions, as discussed in Section 3.5.1.
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Figure 4.8: Time evolution of the nonlinear heat flux for FT (red) and FA (black)
simulations for CBC using Miller geometry, including kinetic electrons. Solid lines
represent the instantaneous heat flux, while dashed lines indicate the average heat
flux over the final 60% of the simulation time. Panels (a) and (b) show the ion and
electron heat fluxes, respectively.
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Figure 4.9: Spectra of the squared electrostatic potential (a) and heat flux (b) for
CBC using Miller geometry, with kinetic electrons, corresponding to the nonlinear
simulations shown in Figure 4.8.

72



4.4.2.2 VMEC Geometry: ρ∗ convergence

In order to determine the dependence on ρ∗, when full surface effects are included,
the convergence of the linear growth rate as a function of ρ−1

∗ is considered for the ax-
isymmetric CBC configuration generated by VMEC. These are compared to the results
obtained from an FT simulation, and it is anticipated that the results should converge
as ρ∗ → 0. Unlike the previous Miller case, which has no mode-coupling in the FA
simulation, the VMEC geometry gives geometric coefficients which vary with α at a
fixed z. In this case, a finite number of binormal modes Ny and a finite ρ∗ result in
mode-coupling that is absent in the Miller limit. Nevertheless, as ρ∗ → 0, this mode-
coupling reduces, and we expect the FA simulation to converge to the FT result. For
this, the maximum kyρr value in the FA simulations is kept fixed at kyρr = 0.4, whilst
ρ∗ is decreased. The result obtained from each FA simulation is compared with the
result obtained by the FT simulation.

This convergence is demonstrated in Figure 4.10, the left-hand side panels of which
show results for linear simulations with Boltzmann electrons, using CBC magnetic ge-
ometry. As ρ∗ → 0, the linear growth rate and real frequency from the FA simulations
approaches those produced in the FT limit.
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Figure 4.10: Scans showing the linear growth rate (top) and real frequency (bottom)
as a function of inverse ρ∗, for CBC using VMEC geometry with a Boltzmann (left) and
kinetic (right) electron response. The black points are from the FA scan, and the red
line is the FT limit.

The same scan in ρ−1
∗ for CBC geometry with kinetic electrons is shown in the right-

hand side panels of Figure 4.10. In this case, the growth rate converges to the FT
limit; however, the real frequency does not reach the corresponding FT value. This
discrepancy suggests that achieving full convergence may require a smaller value of
ρ∗, and potentially signals a stronger dependence on ρ∗ and full-surface effects when
kinetic electrons are included.

4.4.3 Non-Axisymmetric Benchmark Case

The following benchmarks have been carried out using a VMEC equilibrium correspond-
ing to the high-mirror configuration of the W7-X magnetic geometry [43, 45].

4.4.3.1 Linear Results with Boltzmann Electrons

The first benchmark compares the linear growth rates and frequencies obtained from
the FA simulation using the stella code and the FT simulations performed using
the GX code, both of which are conducted using explicit algorithms. The simulation
parameters used in the stella simulations are given in Table 4.2. For the FT results,
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Parameter Value

r/Lr 0.5
Lr/LT 4.0
Lr/Ln 1.0
Nz/Nθ 128
Nµ 12
Nv∥ 72
y0 10 and 50
ρ∗ 0.05 and 0.01
Nx 1

Table 4.2: List of simulation parameters for the linear Boltzmann electron simulations
using W7-X geometry.

linear growth rate spectra are computed across a set of field lines spanning one poloidal
turn. These are shown as different coloured lines in Figure 4.11, with the colour
corresponding to the field-line label α. In contrast, the FA results are obtained by
scanning in kyρr: the number of binormal modes Ny is increased while keeping ρ∗

fixed, effectively extending the maximum resolved ky in the simulation. This method
is discussed in more detail in Section 4.4.1.

It can be seen from Figure 4.11 that the FA results behave as expected: the
growth rate represents a weighted average of the FT results and plateaus beyond the
peak growth rate of the most unstable field line (α = 0) from the FT simulations.
This plateau occurs because the maximal growth rate present in the system remains
constant beyond that point. Two FA cases are shown: one with ρ∗ = 0.05 (plotted
in black) and another with ρ∗ = 0.01 (plotted in grey). The case with the smaller ρ∗
value (grey) more closely follows the growth rate of the most unstable field line, α = 0,
but still falls short of reaching the peak growth rate observed in the FT simulations.
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Figure 4.11: Comparison of linear growth rate (top) and real frequency (bottom)
spectra as functions of binormal mode number, using the high-mirror W7-X configu-
ration with Boltzmann electrons. Panels (a) and (c) show the FT spectra for field lines
within a given flux surface at various values of α (represented by different coloured
lines). The FA results for ρ∗ = 0.05 (black) and ρ∗ = 0.01 (grey) are overlaid. Panels
(b) and (d) display the maximum growth rate and frequency, respectively, as func-
tions of α. Dashed black and grey lines indicate the maximum global growth rates
from the corresponding FA simulations.This demonstrates that the flux-annulus code
produces results that differ from those of the flux-tube code, consistent with the ex-
pectations outlined in Section 4.4.1. For the smaller value of ρ∗, the flux-annulus
result more closely resembles that of the most unstable flux-tube, as anticipated. In
the limit ρ∗ → 0, the two approaches are expected to converge.

Next, the FA linear growth rate and frequency spectra are compared against
results from other codes using the benchmark data presented in Sánchez et al. (2021)
[106]. These comparisons are performed using the same W7-X equilibrium, and are
shown in Figure 4.12. The marker shapes and colours are kept consistent with those
used in the original paper. The overlaid black and grey points are from the stella FA
simulations with ρ∗ = 0.05 and ρ∗ = 0.01 respectively. Good agreement is observed
between the FA stella code and the other global-in-α codes, which are highlighted
with filled markers in the figure, as none of these experience a peak at kyρr ∼ 2..
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Figure 4.12: Comparison of the real and imaginary components of the growth rate for
the FA code with the benchmark W7-X case performed by Sánchez et al. [106]. For
the FA case the following simulation parameters are used: Lr/LT = 4.0, Ln = 1.0,
ρ∗ = 0.05 (black) and ρ∗ = 0.01 (grey), Nz = 128, Nµ = 12, Nv∥ = 36, r/Lr = 0.5.
For the other codes, the simulation parameters are provided in Sánchez et al. [106].
This demonstrates good agreement between the flux-annulus version of stella and
the other global codes, as all exhibit similar behavior in comparison to the flux-tube
codes. In particular, while the flux-tube codes show a clear peak in the growth rate
at kyρr, this peak is absent in the results from all global codes.

4.4.3.2 Nonlinear Results with Boltzmann Electrons

To compare the FA code with the FT results in the nonlinear regime with Boltzmann
electrons, a scan is performed over the flux-tube length, by increasing the number of
poloidal turns, Nθ, thereby allowing the flux tube to sample more of the magnetic
geometry. It is expected that, as ρ∗ → 0 and Nθ → ∞, the spectra for the potential
and heat flux at high wavenumbers will converge. However, some disagreement may
exist at lower wavenumbers due to the coupling into, and correct modelling of, the
zonal mode by the FA code. Both the FA and FT results are obtained using stella.
The FT simulations are performed explicitly for α = 0, for the ‘bean-shaped’ cross-
section, such that the flux tube exhibits up-down symmetry. This symmetry, and
the small value of the global magnetic shear in W7-X, allows for the use of periodic
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boundary conditions, described in Section 3.5.1.
In the FT scan, Nθ is increased from one to five, while maintaining a constant

grid-point density in the z-direction. The regions of geometry sampled with each
additional poloidal turn are illustrated in Figure 4.13, where the straight coloured
lines indicate the z-domain introduced by each successive poloidal turn. The contours
of the background represent the magnetic field strength for the high-mirror W7-X
configuration, with red and blue indicating regions of stronger and weaker magnetic
field strength respectively.

Figure 4.13: The geometry sampled by a single field line in an FT simulation, as it
is extended for multiple poloidal turns. The flux tube for the ‘bean-shaped’ cross-
section is centered at (α, ζ) = (0, 0), and extended along the coloured lines for 2, 3,
4, and 5 poloidal turns, Nθ.

The resolutions used for the following nonlinear simulations are given in Table 4.3.
Two sets of resolutions are used; ‘high’ and ‘low’ resolutions, which are used to ease
computation for the FT simulations with higher numbers of poloidal turns. The time
traces, and time-averages of the heat flux for the FT and FA simulations are shown in
the left panel of Figure 4.14. The different coloured lines correspond to explicitly-run
FT simulations with varying numbers of poloidal turns. The number of poloidal turns
for each simulation is shown in the right panel of Figure 4.14. Each coloured point
represents the saturated heat flux from the corresponding time trace, plotted against
the number of poloidal turns. In this figure, the FA results are presented for both
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Parameter FT - High Res. FT - Low Res. FA - ρ∗ = 0.025 FA - ρ∗ = 0.025

r/Lr 0.5 0.5 0.5 0.5
Lr/LT 3.0 3.0 3.0 3.0
Lr/Ln 1.0 1.0 1.0 1.0
Nθ 1, 1.5, 2, 2.5, 3 4, 5 ι = 0.88028 ι = 0.88028
Nz 48Nθ 36Nθ 48 36
Nµ 24 12 24 12
Nv∥ 72 72 72 72
Nx 108 81 108 81
Ny 128 128 128 324
y0 20 20 20 60
ρ∗ 0.0 0.0 0.025 0.01
x0 30 30 30 30

Table 4.3: List of simulation parameters for the nonlinear simulations in the high-
mirror W7-X configuration with Boltzmann electrons.

the explicit and implicit algorithms at ρ∗ = 0.025, along with another explicit FA
simulation conducted at ρ∗ = 0.01. These are overlaid in the left panel of Figure 4.14,
and the black horizontal lines give the corresponding saturated heat flux for the
FA simulations. All simulations give saturated heat fluxes that are in reasonable
agreement. The FT simulations exhibit variation in heat flux with the number of
poloidal turns. It should also be noted that FT simulations with a larger number of
poloidal turns ideally require longer run times to ensure confidence in the saturation
level.
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Figure 4.14: Time trace (a), and time-average (b) of the heat flux from flux-tube
simulations with varying parallel domain lengths, compared with the corresponding
flux-annulus result. FA results for ρ∗ = 0.025 (solid and dashed for explicit and
implicit algorithms respectively) and ρ∗ = 0.01 (dot-dashed line), are given. The FT
results are performed with y0 = 20.

The corresponding potential and heat flux spectra for these simulations are pro-
vided in Figure 4.15. The explicit and implicit algorithms for the FA simulations
show excellent agreement for the same value of ρ∗. In the FT simulations with fewer
poloidal turns, the spectra show different behaviour at higher mode numbers and the
peaks for both the potential and heat flux are at larger values of kyρr. As the number
of poloidal turns increases, the FT spectra progressively converge towards those of
the FA simulations, with the exception of the lowest kyρr values, where discrepancies
remain likely due to the influence of zonal flows.
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Figure 4.15: Spectra of the squared electrostatic potential (a) and heat flux (b) from
nonlinear simulations. Coloured lines indicate FT simulations with varying numbers
of poloidal turns corresponding to the same values as in Figure 4.14. Black lines
show FA simulation results for both explicit and implicit algorithms, and for different
values of ρ∗. These spectra correspond to the time-averaged quantities presented in
Figure 4.14.

To see what may be causing the differences between the FT and FA codes at
smaller ky-values, the zonal potential and zonal flow are plotted in Figure 4.16 against
time and the real-space radial coordinate, x. Though the saturated heat fluxes and
spectra given reasonable agreement, it is clear that the evolution of the zonal com-
ponents are very different in the FT and FA cases. As the number of poloidal turns
increases for the FT simulations, the zonal potential and zonal flow begin to more
closely resemble those of the FA result. However there are still noticeable differences
between the FA and FT results even for the Nθ = 5 FT simulation.
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(a) Zonal potential (top) and zonal flow (bottom) for the FT simulations with different Nθ.
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(b) Zonal potential (top) and zonal flow (bottom) from FA simulations. From left to right,
the panels show the results of the explicit algorithm with ρ∗ = 0.025, implicit algorithm
with ρ∗ = 0.025, explicit algorithm with ρ∗ = 0.01.

Figure 4.16: The amplitudes of the zonal potential and zonal flow are compared
between the FT and FA results. These are plotted as functions of radial position and
time, normalised to the maximum value of ϕ.
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4.4.3.3 Numerical Cost
The cost associated with a nonlinear stella FT simulation for Nθ = 1 was the lowest
among the FT cases considered. this simulation used 5 nodes on Leonardo, with a
total of 560 CPUs, and it completed in approximately 48 hours. Consequently, the
total computational cost amounted to 26,880 CPU hours. However, as the number
of poloidal turns increased, the computational cost of each FT simulation increases
approximately linearly. For instance, the case with Nθ = 5–which was run with
lower resolutions–required around 144 hours to complete, translating to a total of
80,640 CPU hours. It should be highlighted that the Nθ = 5 case was run with lower
resolutions than the Nθ = 1 simulations and the corresponding FA simulations. Had
it been run with the same resolutions as the Nθ = 1 simulation, it would have been
more expensive.

In comparison, the case using the explicit FA algorithm with ρ∗ = 0.025 required
around 43,550 CPU hours, and the implicit FA simulation required a total of 51,690
CPU hours to simulate the 4000 normalised time units. It is important to note that
the implicit algorithm is not expected to provide significant computational savings
in cases involving Boltzmann electrons. It is included primarily as a benchmark for
evaluating implicit methods. The computational benefits from implicit algorithms
arise when treating kinetic electrons. In nonlinear simulations with Boltzmann elec-
trons, the time step is constrained by nonlinearity for both the implicit and explicit
schemes. Since the implicit advance is slightly more computationally intensive than
its explicit counterpart, simulations using the FA method with Boltzmann electrons
are actually more expensive when run implicitly with the same time step. This is
also true for the FT algorithms. Although both explicit and implicit FA simulations
are more expensive than the FT simulation with Nθ = 1, it remains significantly less
costly than the FT simulation with Nθ = 5, which used lower resolutions, and is
required in order to begin capturing the correct zonal dynamics. The computational
cost of the various simulations, including the explicit FA simulation with ρ∗ = 0.01,
are summarised in Table 4.4.

Simulation Case Time Step (dt) CPU Hours

FT, Nθ = 1 0.049666 26,880
FT, Nθ = 5 0.030470 80,640
FA (explicit), ρ∗ = 0.025 0.1 43,550
FA (implicit), ρ∗ = 0.025 0.1 51,690
FA (explicit), ρ∗ = 0.01 0.1 35,420

Table 4.4: Computational cost for the nonlinear simulations with Boltzmann elec-
trons.
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4.4.4 Nonlinear Results with Kinetic Electron Results
The nonlinear results incorporating kinetic electrons are now presented. The simula-
tion parameters employed are detailed in Table 4.5. These results have been obtained
using the implicit algorithms outlined earlier in this chapter, which is necessary due
to the stringent CFL conditions introduced by simulating kinetic electron dynamics.

In preliminary tests with the FA version for linear simulations using an explicit
scheme, it was observed that a time step on the order of 1 × 10−9 was required to
ensure numerical stability. Since the timestep in nonlinear simulations is constrained
by the underlying linear dynamics this timestep can be taken as an indicative upper
bound for the nonlinear simulations (it is possible that the nonlinear term may re-
strict the time step further). By contrast, the nonlinear kinetic electron simulations
presented here with the implicit scheme were numerically stable using a significantly
larger timestep of approximately 10−3. This clearly demonstrates the necessity for an
implicit approach when treating kinetic electrons.

Parameter FT Simulation 1 FT Simulation 2 FA Simulation 1 FA Simulation 2

r/Lr 0.5 0.5 0.5 0.5
Lr/LT 3.0 3.0 3.0 3.0
Lr/Ln 1.0 1.0 1.0 1.0
Nθ 1 1 1.136 0.2272
Nz 64 64 64 16
Nµ 12 24 12 24
Nv∥ 72 72 72 72
Nx 96 108 96 108
Ny 96 144 96 256
y0 10 20 10 50
ρ∗ 0.0 0.0 0.05 0.01
x0 10 20 10 50

∆t (CFL limited) 1.6577× 10−2 2.1195× 10−2 7.7464× 10−3 5.6368× 10−3

tfinal 1500 1470 355 270
CPU hours 46,080 76,800 107,520 128,640

Table 4.5: List of simulation parameters for the two sets of nonlinear simulations with
kinetic electrons.

The time trace for the first set of nonlinear simulations with kinetic electrons in
the high-mirror W7-X geometry (parameter sets Simulation 1 in Table 4.5) is shown
in Figure 4.17. In this figure, the red lines represent the FT results with one poloidal
turn, while the black lines correspond to the FA results over one full toroidal turn.
The associated spectra of the squared electrostatic potential and the heat flux are
shown in Figure 4.18.
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Figure 4.17: Time traces from nonlinear simulations with kinetic electrons in the
high-mirror W7-X geometry (parameter sets Simulation 1 in Table 4.5). The left and
right panels show the ion and electron heat fluxes, respectively. Red lines indicate
the FT results, while black lines represent the corresponding FA results.
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Figure 4.18: Spectra of the squared electrostatic potential and heat flux from the
nonlinear simulations with kinetic electrons, corresponding to Figure 4.17.

Notable differences are observed between the FT and FA simulations. The FT
heat flux peaks at a wavenumber kyρr of order unity. In contrast, the FA heat flux
peaks much closer to the system (box) scale. This shift may be a result of increased
coupling with the zonal flows in the FA case, which tends to suppress small-scale
fluctuations and drive the energy towards larger spatial scales.
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Figure 4.19: Time traces from nonlinear simulations with kinetic electrons in the
high-mirror W7-X geometry (parameter sets Simulation 2 in Table 4.5). The left and
right panels show the ion and electron heat fluxes, respectively. Red lines indicate
the FT results, while black lines represent the corresponding FA results.
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Figure 4.20: Spectra of the squared electrostatic potential and heat flux from the
nonlinear simulations with kinetic electrons corresponding to Figure 4.19.

The time trace for the second set of nonlinear simulations, carried out at ρ∗ = 0.01

with kinetic electrons, is presented in Figure 4.19 (parameter sets Simulation 2 in
Table 4.5). Given the box-scale character of the turbulence observed in the previous
FA example, a significantly smaller ρ∗ was used for the FA simulations in this case.
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Since the previous FT simulations did not exhibit strong box-scale behaviour, only a
modest increase in y0 was required, as the previous domain already captured the peak
of the turbulence. As before, the red lines represent the FT results over one poloidal
turn. Here, however, the black lines correspond to FA results computed over a single
field period (i.e. one fifth of the device), rather than a full toroidal turn. This reduced
domain was chosen to alleviate the substantial memory constraints associated with
the FA simulations. The corresponding spectra of the squared electrostatic potential
and the heat flux are shown in Figure 4.20.

As with the earlier simulations, the FA results exhibit a peak at the box-scale.
This again may suggest an enhanced interaction between the turbulence and the mag-
netic geometry in the FA simulations, particularly at lower ky values. The influence
of long-wavelength modes and zonal flows appears to be more pronounced in these
configurations when using FA compared with FT approaches. However, it should be
noted that there is an O(1) difference in the heat flux between the FT simulations
with different values of x0 and y0, which suggests that box-scale effects may already
be influencing the FT results. In particular, the y-extent of the second FT simulation
is comparable to the flux surface circumference, implying that the FA simulations are
capturing geometric variations on a spatial scale similar to that of the turbulence it-
self. In this context, it is perhaps not surprising that the long-wavelength components
of the spectra differ so markedly between the FT and FA cases, as the FA simulations
are more sensitive to global geometric features that the more local FT approach may
not fully resolve.

The zonal electrostatic potential and corresponding zonal flows for these simu-
lations are shown in Figure 4.21. A clear distinction can be seen between the FA
and FT cases: the FA simulations exhibit significantly finer zonal structure com-
pared to the broader, more coherent zonal modes in the FT case. This trend is even
more pronounced in the lower ρ∗ FA simulation, where the zonal structures are finer
still, and the zonal modes appear to propagate radially at a faster rate. While these
observations are intriguing, further investigation is needed to fully understand the un-
derlying mechanisms driving this behaviour, assess its physical realism, and explore
its sensitivity to variations in ρ∗.
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(a) Zonal potential (top) and zonal flow (bottom) for the FT simulations with y0 = 10 (left)
and y0 = 20 (right).
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(b) Zonal potential (top) and zonal flow (bottom) from FA simulations, with ρ∗ = 0.05
(left), and ρ∗ = 0.01 (right).

Figure 4.21: The amplitudes of the zonal potential and zonal flow are compared
between the FT and FA results. These are plotted as functions of radial position and
time, normalised to the maximum value of ϕ.
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Chapter 5

Optimisation of Linear Microstability
Using an Adjoint Method

We did not embark upon this calculation
because it was easy. We did it because we
thought it would be easy.

Michael Hardman

This chapter is adapted from Acton et al. 2024 [3].

5.1 Introduction

The growth rate of linear microinstabilities can be influenced by a large number of
parameters, and their gradients, including plasma density, temperature, flow profiles,
and the magnetic geometry. In an idealised situation, one would determine how
such growth rates depend on all parameters governing the system, and then design
MCF devices that are optimised with respect to microstability. However analytical
searches are intractable, and, because the number of tunable parameters in modern
MCF devices is large, full numerical parameter scans are often prohibitively expensive.

This chapter aims to address the optimisation challenge by employing an adjoint
approach [96] that enables efficient calculation of the local variation of the linear
growth rate with respect to all parameters of interest within the local, δf -gyrokinetic
model. In contrast to a finite-difference calculation, the adjoint method is essentially
independent of the dimension of the parameter space. Consequently, it can be used
to optimise over a large number of variables at once, without incurring additional
computational cost beyond solving the system equations; the associated cost of the
adjoint method is roughly equivalent to solving the linearised gyrokinetic system of
equations twice.
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The application of the adjoint method to the linear gyrokinetic equation is pre-
sented and its utility in the optimisation process is demonstrated by calculating the
sensitivity of the linear growth rate of a selected microinstability to geometrical pa-
rameters in a tokamak. The microinstability considered is the ITG mode introduced
in Section 1.1.1, and the aim is to maximise the critical ion temperature gradient for
instability onset with respect to variations of the local flux-surface shape. In general,
the adjoint method presented here is agnostic to the mechanism behind the instabil-
ity, and gives the gradient of the linear growth rate with respect to a set of external
parameters, independent of the mode type. Given that the linear growth rate is a
continuous function this approach can be applied in situations where the instability
mechanism changes.

Adjoint methods are a powerful tool for efficiently calculating the numerical deriva-
tives of an objective function for a linear system of equations. The gyrokinetic equa-
tion, along with its associated fields, can be linearised by neglecting the nonlinear
terms. Because the distribution function and fields are time-dependent, one in prin-
ciple needs to account for their time history when formulating an adjoint method.
However, this can be obviated by decomposing the solutions into normal modes and
considering the long-time limit, as we now describe. For a generic set of initial con-
ditions, the fastest growing (or slowest decaying) mode is likely to have an initial
amplitude that is comparable to, or smaller than, other normal modes in the system.
This results in an initial transient period due to the superposition of these different
normal modes, followed by exponential growth or decay once the fastest growing (or
slowest decaying) mode has a much larger amplitude than all others. Figure 5.1 shows
a schematic of the typical expected behaviour exhibited by the system electrostatic
potential–the distribution function will behave similarly. A critical consideration for
adjoint methods, particularly in time-dependent or high-dimensional systems, is the
substantial memory requirement often imposed by the need to store the full forward
solution trajectory for the backward adjoint integration. To circumvent this, we will
adopt an adjoint formulation that avoids the need to store the time history of the
forward problem by extracting the fastest growing mode.

Therefore one takes the following approach, decomposing the distribution function
as1 ĝk =

∑
j ḡk,je

γk,jt with γk,j ∈ C the complex frequencies, and ḡk,j the amplitude for
the jth normal mode2. In the local approximation outlined in Section 2.3.2, quasineu-

1It is worth remembering here that k denotes the Fourier mode from the spatial decomposition,
and j is the subscript denoting the temporal normal mode.

2There are instances when the linear growth rates of two independent modes may be very similar,
and a single dominant growth rate may require long run times to become evident.
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Figure 5.1: A schematic of the temporal evolution of the electric potential during a
typical linear instability.

trality and Ampère’s law, along with the linearity of the gyrokinetic equation, ensure
that all fluctuating quantities for a single normal mode, of a given wavenumber,
share the same complex frequency and will thus exhibit the same time-dependent
behaviour during the period of exponential growth or decay. In the non-local limit,
as described in Section 2.3.1, the perturbations at all participating wavenumbers in
field line label α will grow with a single global growth rate that is supported across
the entire flux annulus. In both instances, after a sufficiently long period of time
(the exact length of which will depend on both the relative growth rates and start-
ing amplitudes of each mode), the fastest growing mode will dominate, meaning the
time dependent behaviour at long times can be approximated using a single temporal
mode; ĝk ≈ ḡk,0e

γk,0 t̃, with R(γk,0) > R(γk,j), ∀j, j ̸= 0.
Here it is of interest to minimise the dominant linear growth rate in order to try

and achieve microstability. The linear growth rate, γk,0, is minimised with respect to
a set of currently unspecified parameters {pi}, which are taken to be the components
of the parameter vector p ∈ RN . This section outlines how one can take advantage of
the adjoint method to efficiently obtain the gradient ∇pγk,0 that is needed to achieve
such a minimisation. In order to do this for an unspecified set of parameters, one could
calculate the growth rates at nearby values of pi and use a finite difference scheme
to obtain the components of ∇pγk,0. However, this is computationally expensive,
scaling with the dimensionality of p, denoted Np. In contrast, the adjoint method
allows us to solve the system equations only once, and in exchange one must solve
the set of adjoint equations, for which the cost is computationally roughly equivalent
to the original system equations.

It should be noted that is also possible to use an eigenvalue solver for the above
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decomposition and extraction of the fastest growing mode. However many gyrokinetic
codes are initial-value solvers, which eases implementation and integration within
existing simulation frameworks. Moreover, the computational cost of running an
initial-value gyrokinetic simulation to extract the fastest growing linear eigenmode is
comparable to that of using an eigenvalue solver.

It should also be noted that while focusing on a single, fastest-growing normal
mode limits our analysis to established instabilities rather than their onset, this ap-
proximation offers significant computational advantages. Fully resolving the time-
dependent PDE without this simplification would necessitate storing the entire sys-
tem’s time history, leading to prohibitive memory and computational costs for adjoint-
based gradient calculations.

5.2 Adjoint Method Introduction and Procedure

The adjoint-based optimisation method is a procedure that, at its heart, efficiently cal-
culates derivatives of a desired quantity with respect to a potentially large number of
parameters. The associated computational cost depends only on the expense of solv-
ing both the original and adjoint systems of equations, and is essentially independent
of the dimension of the parameter space. Adjoint methods have already been success-
fully applied to certain other aspects of MCF devices, such as optimising coil configu-
rations for stellarator geometries, and divertor designs (see, e.g., [94, 44, 89, 29]). The
novelty here is to apply the adjoint method to geometric optimisation and plasma
microstability, which includes the complexity of the full linearised gyrokinetic sys-
tem. To begin, the underlying principles of the adjoint method are introduced by
considering a simplified model system.

In this section a simple model is introduced to demonstrate the implementation
of the adjoint method. Consider a system defined through a constraint partial differ-
ential equation (PDE), which is the residual of the forward problem:

L̂[p; f(p, s)] = 0. (5.1)

Here L̂ is some linear operator, in the domain Ω ⊂ Rn that has explicit dependence
on a parameter vector p ∈ RN , and acts on a function f(p, s) which may also depend
on another set of variables s; specifically, L̂ is taken to be some partial differential
equation (PDE) constraint whose adjoint, L̂†, exists and is well defined. The aim is
to optimise an aspect of the system with respect to the set of independent parameters
p = {pi}. Equation (5.1) is to be satisfied for a given p provided a consistent f(p, s).
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The forward PDE may contain both explicit and implicit dependence on p through
the operator itself, or through f(p, s).

Suppose the aim is to compute the gradient of the function Ĥ = Ĥ[p; f ] with
respect to p, ∇pH ∈ RN . Here Ĥ[p; f ] is some functional operator that depends on
p and acts on f . The function Ĥ can be chosen to be written in the following way:

Ĥ[p; f ] = ⟨ĥ[p; f(p)], f⟩, (5.2)

with ⟨·, ·⟩ some appropriate definition of inner product3, and ĥ[p; f ] some linear op-
erator whose adjoint exists and is well defined. The aim is to perturb p and study
the response of Ĥ, i.e., to compute the gradient with respect to p. One method to
calculate such derivatives would be to consider a standard finite-difference approach
for each element of p:

∂Ĥ

∂pi
=
Ĥ[pi + δpi; f(pi + δpi)]− Ĥ[pi; f(pi)]

δpi
+O

(
δp2i
)
. (5.3)

However, this approach is computationally expensive when Np is large, as equation
(5.1) must be solved once to obtain the unperturbed values, and again for each {pi+
δpi} in order to compute each derivative. This process equates to solving the original
PDE Np + 1 times. An alternative method is to use the adjoint technique.

5.3 Example: the Heat Conduction Equation

Consider the transient heat conduction equation in a domain Ω ⊂ Rn over a time
interval t ∈ [0, T ]:

∂f

∂t
−∇ · (κ∇f) = S in Ω× (0, T ), (5.4)

with boundary and initial conditions

f = fD on ∂ΩD × (0, T ),

−κ∇f · n̂ = q on ∂ΩN × (0, T ),

f(x, 0) = f0(x) in Ω. (5.5)

Here, f is the temperature field, κ is the thermal conductivity, S is a heat source
term, and n̂ is the outward unit normal to the boundary. Define a cost functional H

3The form of inner product is chosen consistently and appropriately for the system that is being
considered.
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that we aim to minimise, for example:

H =
1

2

∫ T

0

∫

Ω

(f − ftarget)
2 dx dt, (5.6)

where ftarget is a desired temperature distribution. To derive the adjoint problem,
we introduce a Lagrangian functional that incorporates the forward PDE constraint
using an adjoint variable, λ(x, t):

L[f, λ] = H(f) +

∫ T

0

∫

Ω

λ

(
∂f

∂t
−∇ · (κ∇f)− S

)
dx dt. (5.7)

To find the stationary point of L, we take the variation with respect to f and integrate
by parts. Setting the first variation to zero yields the adjoint equation:

−∂λ
∂t

−∇ · (κ∇λ) = f − ftarget in Ω× (0, T ), (5.8)

with final-time and boundary conditions:

λ(x, T ) = 0 in Ω,

λ = 0 on ∂ΩD × (0, T ),

k∇λ · n = 0 on ∂ΩN × (0, T ). (5.9)

The adjoint variable λ evolves backward in time and provides gradient information
for sensitivity analysis or optimisation. Once λ is computed, the gradient of the cost
functional with respect to a control parameter (e.g., S, u0, or boundary conditions)
can be evaluated using the chain rule involving λ.

5.3.1 Gradient Computation via the Adjoint Method

Suppose the heat conduction equation depends on the parameter vector p ∈ RN ,
which may represent, for example, a distributed heat source, an initial condition, or
a spatially varying conductivity. The solution f = f(p) depends on p through the
PDE, and the objective functional H = H[p; f(p)] depends both on the state and
the control.

Our goal is to compute the gradient of H with respect to p, denoted ∇pH ∈ RN .
Direct computation of this gradient via finite differences or sensitivity analysis requires
solving N +1 forward problems, which becomes computationally intractable for large
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N . The adjoint method provides a more efficient alternative. Consider the residual
of the heat conduction equation (forward problem) as a constraint:

L̂[p; f(p)] :=
∂f

∂t
−∇ · (κ∇f)− S = 0 in Ω× (0, T ), (5.10)

with appropriate boundary and initial conditions. The dependence on p enters
through the source term S(p), κ(p) or other parts of the model. Define the La-
grangian functional:

L[p; f, λ] = H[p; f(p)] +

∫ T

0

∫

Ω

λ

(
∂f

∂t
−∇ · (κ∇f)− S

)
dx dt, (5.11)

where λ = λ(x, t) is the adjoint variable. We seek the gradient derivative of H with
respect to p:

∇pH =
∂H

∂f
∇pf +

∂H

∂p
. (5.12)

Since f satisfies the PDE constraint, we apply the adjoint method to eliminate the
need to compute ∇pf directly. We define the adjoint equation by requiring that the
variation of the Lagrangian with respect to f vanishes:

δL
δf

= 0 ⇒ −∂λ
∂t

−∇ · (κ∇λ) = ∂H

∂f
in Ω× (0, T ), (5.13)

with final time and boundary conditions:

λ(x, T ) = 0, (5.14)

λ = 0 on ∂ΩD, (5.15)

k∇λ · n = 0 on ∂ΩN . (5.16)

Once the adjoint solution λ is obtained, the gradient is given by:

∇pH =
∂H

∂p
−
∫ T

0

∫

Ω

λ
∂L̂

∂p
dx dt. (5.17)

This formula expresses the gradient in terms of the partial derivative ∂H/∂p, which
captures the explicit dependence of H on p, and the adjoint-weighted sensitivity of
the PDE residual to p.
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5.4 Adjoint Method Introduction and Procedure

The optimisation Lagrangian must first be defined;

L[p; f, λ] = Ĥ[p; f(p)] +
〈
L̂[p; f(p)], λ

〉
, (5.18)

where f is part of the Hilbert space f ∈ F , and λ ∈ F∗ is an adjoint variable, residing
in the dual space of F . It should be noted that in the above expression f need not
obey the original objective function defined in (5.1) when we consider variations of
the Lagrangian; however, when we evaluate the Lagrangian using values of p and
the corresponding f(p) that satisfy the objective function, equation (5.18) reduces to
L = Ĥ, as the original objective function vanishes, L̂ = 0, in accordance with (5.1).

By varying L with respect to perturbations in p, the solutions that are stationary
with respect to the functions f and λ can be found, subject to the constraint equation
given by (5.1). From this a constraint equation for the adjoint variable λ is found,
the solution to which will be denoted by λ. Perturbing the system given by equation
(5.18) yields an expression for the gradient of Ĥ, as shown in (5.19), where ∇p

indicates the gradient derivative with respect to p, and is evaluated by perturbing all
quantities that have explicit and implicit p dependence4:

∇pL[p; f, λ]|p=p0,f=f(p0),λ=λ(p0)
= ∇pĤ[p; f(p)]

∣∣∣
p=p0,f=f(p0),λ=λ(p0)

, (5.19)

with both sides being evaluated at f = f(p0), λ = λ(p0), and p = p0, where p0 ∈ RN

are the initial set of parameters. Note that the term involving the adjoint variable is
not present because both L̂[p; f ], and ∇pL̂[p; f ] are zero when evaluated at f = f(p0),
in accordance with (5.1)5.

As the right-hand side of (5.19) is equivalent to the desired gradient of Ĥ, the
desired derivatives can be obtained by computing the gradient derivative of the op-
timisation Lagrangian given by equation (5.18). The aim of the adjoint method is to
take advantage of the freedom available in choosing the adjoint variable to simplify
the calculation of ∇pĤ, by eliminating the dependence on ∇pf . The desired result
is

∇pĤ[p; f(p)]
∣∣∣
p0

= ∇pL[p; f, λ]|p0

= ∂p Ĥ[p; f ]
∣∣∣
p0

+

〈
∂pL̂[p; f ]

∣∣∣
p0

, λ

〉
, (5.20)

4This amounts to perturbing the explicit dependencies on p as it appears in (5.18), as well as f ,
and λ.

5∇pL̂[p; f ] = 0 as L̂[p; f ] is identically zero for each choice of p and p+ δpi.
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where equation (5.18) was used to evaluate the right-hand side. Here the notation
∂p(·)|p0

has been introduced for brevity to indicate that the variables f and λ are
being held fixed when taking this partial derivative, and that the resulting expression
has been evaluated at p0. It shall be assumed that everywhere ∂p(·) appears, f and
λ are held constant for the partial differentiation.

The expressions derived here for ∇pL and hence for ∇pĤ are exact (to machine
precision), as they arise from analytic differentiation using the tangent-linear and
adjoint formulations. This stands in contrast to finite-difference approximations,
which estimate the gradient by evaluating the model at perturbed parameter values
and differencing. Such finite-difference methods incur numerical error and require
multiple PDE solves across parameter space. In contrast, the adjoint-based approach
used here requires only one forward and one adjoint solve and yields gradients accurate
to machine precision.

The derivative of (5.18) is as follows:

∇pL[p; f, λ] = ∇pĤ[p; f ] +
〈
∇pL̂[p; f ], λ

〉
+
〈
L̂[p; f ],∇pλ

〉
+ ∂J

〈
(∇pJ ) L̂[p; f ], λ

〉
.

(5.21)

where the notation ∂J

〈
∇p (J ) L̂, λ

〉
is used to indicate the derivative of any p-

dependent terms appearing in the Jacobian of the inner product itself. It is now
advantageous to split the derivatives into terms which explicitly act on f , and those
which do not. To do this, write the explicit dependence of Ĥ = Ĥ[p; f ] and L̂ =

L̂[p; f ], to obtain the following expression:

∇pL[p; f, λ] = ∂pĤ[p; f ] +

〈
δĤ

δf

∣∣∣∣∣
p;f

,∇pf

〉

+
〈
∂pL̂[p; f ], λ

〉
+

〈
δL̂

δf

∣∣∣∣∣
p;f

[∇pf ] , λ

〉
+
〈
L̂[p; f ],∇pλ

〉

+ ∂J

〈
(∇pJ ) L̂[p; f ], λ

〉
. (5.22)

Here δĤ/δf and δL̂/δf denote the functional derivatives of Ĥ and L̂ with respect to
f , respectively, and [∇pf ] indicates that the operator acts on the gradient ∇pf . So-
lutions around p0 are sought, for which L̂ [p0; f(p0)] = 0 is satisfied. Hence, equation
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(5.22) may be written as:

∇pL[p; f, λ]|p0,f,λ
= ∂pĤ[p; f ]

∣∣∣
p0,f

+

〈
δĤ

δf

∣∣∣∣∣
p0,f

,∇pf

〉

+
〈
∂pL̂[p; f ], λ

〉∣∣∣
p0,f,λ

+

〈
δL̂

δf

∣∣∣∣∣
p0,f

[∇pf ] , λ

〉∣∣∣∣∣∣
p0,f,λ

.

(5.23)

Note that the terms corresponding to the derivative of λ and the Jacobians have been
removed, as L̂[p0; f(p0)] is identically zero. The computation of ∇pf is costly for
a large number of parameters, as (5.1) necessarily needs to be solved for f at the
initial coordinate, p0, and for each new perturbed coordinate. As an alternative, the
coefficients of ∇pf terms are collected by performing integrations by parts to move
the functional derivatives to act on f and λ:

∇pL[p; f, λ]|p0,f,λ
= ∂pĤ[p; f ]

∣∣∣
p0,f,λ

+
〈
∂pL̂[p; f ], λ

〉∣∣∣
p0,f,λ

+

〈(
δĤ

δf

)†

[p; f ] +

(
δL̂

δf

)†

[p;λ],∇pf

〉∣∣∣∣∣∣
p0,f,λ

+ B.C. (5.24)

Here B.C are the boundary conditions that result from the integrations by parts,

which themselves contain terms involving ∇pf . The adjoint operators
(
δĤ/δf

)†

and
(
δL̂/δf

)†
are defined such that they satisfy the integration by parts. In order

to remove the requirement to find ∇pf , the adjoint variable λ is sought such that it
satisfies the adjoint equation:

(
δĤ

δf

)†

[p; f ] +

(
δL̂

δf

)†

[p;λ] = 0. (5.25)

The boundary conditions for λ are not arbitrary choices, but are entirely determined
by the forward PDE (equation 5.1) and the functional form of Ĥ through the varia-
tional principle, ensuring that the B.C term vanishes. With this (5.24) reduces to:

∇pL[p; f, λ]|p0
= ∂pĤ[p; f ]

∣∣∣
p0

+
〈
∂pL̂[p; f ], λ

〉∣∣∣
p0

, (5.26)

where f and λ are the solutions to (5.1) and (5.25) respectively. Hence, using the
analog of (5.19), the desired result in (5.20) is recovered.
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5.5 Adjoint Method for Gyrokinetics

The aim is to apply these methods to gyrokinetics to optimise for microstability. To
do this, we consider the linear gyrokinetic equation in the limit of no α-coupling. We
further consider the behaviour beyond the transient period, illustrated in Figure 5.1,
for which there is a single dominant normal mode. In this limit the distribution
function can be approximated as ĝk ≈ ḡk,0e

γk,0 t̃, with R(γk,0) > R(γk,j), ∀j, j ̸= 0.
In this case the time derivative can be well approximated as ∂ĝk/∂t ≈ γk,0ḡk,ν,0, and
the unnormalised gyrokinetic equation becomes

Ĝk,ν = γk,0ḡk,ν,0 + v∥b̂ ·∇z

[
∂ḡk,ν,0
∂z

+
Zνe

Tν

∂χ̄k,ν,0

∂z
F0,ν

]

+ iω∗,k,νF0,νχ̄k,ν,0 + iωd,k,ν

[
ḡk,ν,0 +

Zνe

Tν
χ̄k,ν,0F0,ν

]

− µν b̂ ·∇B0
∂ḡk,ν,0
∂v∥

+
Zνe

Tν

µν
mνc

(b̂ ·∇B0)F0,νJ0,k,νĀ∥,k,0 − Ĉk,ν [{ḡk,ν′,0, χ̄k,ν′,0}].
(5.27)

We start by considering the general case of low-flow, linear, electromagnetic, δf -
gyrokinetics including collisions, with equations (5.27) and (2.45)-(2.47) as the func-
tional operators defining the system in the long time limit.

5.5.1 General Formalism

Since we consider the gyrokinetic system in the linear regime, with no α-coupling, it
is possible to consider each perpendicular wavenumber individually. Given that the
post-transient limit is being considered, with only one dominant growth rate, it will
henceforth be assumed that only a single perpendicular wavenumber is being consid-
ered, and the k subscript will be dropped, along with the subscript that denotes the
dominant mode for the distribution function and field quantities. For notational sim-
plicity the over-bars that appear on the distribution function and fields that denoted
normal mode decomposition will also be dropped. Hence everywhere ĝν , ϕ̂, Â∥, and
δB̂∥ appear it shall be assumed that they contain suppressed spatial and temporal
Fourier subscripts.

Consider now a set of variables that influences the system and which exists within
a parameter space spanned by all possible p. The set {pi}, i ∈ [1,Np] is taken to be
linearly independent, with no time variation, and it shall be explored how variations
within this space affect the linear growth rate. At present one need not specify which
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variables are denoted by p, and thus one derives a general set of adjoint equations
for the unnormalised gyrokinetic-Maxwell system above, (5.27) and (2.45)-(2.47).

The objective functional, Ĝν , is a linear functional of {ĝν , ϕ̂, Â∥, δB̂∥}, which are
coupled to the fields through the field equations, (2.45)-(2.47). Taking the derivatives
of Ĝν invariably leads to derivatives acting on all four of these variables. This is
undesirable because it requires calculation of the gradients of ĝν and the fields, which
in turn requires the gyrokinetic system to be solved Np+1 times, as discussed above.
In order to eliminate these four derivatives, four adjoint variables are introduced,
which multiply the corresponding constraint equations. The optimisation Lagrangian
is thus

L :=
〈
Ĝν , λν

〉
z,v,ν

+
〈
Q̂, ξ

〉
z
+
〈
M̂, ζ

〉
z
+
〈
N̂ , σ

〉
z
, (5.28)

with the angle brackets representing inner products defined through6:

⟨a, b⟩z =
∫

dz

B0 b̂ ·∇z
a b∗, ⟨a, b⟩v,ν =

∑

ν

2πB0

mν

∫
d2v a b∗,

⟨a, b⟩z,v,ν =
∑

ν

∫
dz

B0 b̂ ·∇z

2πB0

mν

∫
d2v a b∗. (5.29)

These inner products were chosen because the velocity integrals naturally appear in
the field equations, while the spatial integrals correspond to field line averages. An
additional benefit of this choice is that it leads to the cancellation of certain terms
later in the calculation.

The set of adjoint variables λν , ξ, ζ, and σ have been introduced, with their
forms to be determined7. The variable λν is identified as the adjoint variable to
the distribution function, ĝν , whereas ξ, ζ, and σ are adjoint to the field variables
(referred to henceforth as adjoint fields). The quantities Ĝν , Q̂, M̂ , and N̂ are the
objective functions, and note that, since Ĝν = Q̂ = M̂ = N̂ = 0 for a consistent set
of {p0, ĝν(p0), ϕ̂(p0), Â∥(p0), δB̂∥(p0)}, L|p0

= 0 for all choices of adjoint variables.
For later convenience the functional operators are decomposed into their components

6Note that these must be linear in their arguments, exhibit conjugate symmetry, and satisfy the
Cauchy–Schwartz inequality to be well defined. All arguments are required to be square-integrable
in order for the optimisation to be finite.

7Note that the adjoint variables here are defined in Fourier space, so λν , ξ, ζ, and σ also contain
suppressed k subscripts, and thus the calculation is done for each k independently. The derivatives
∇p indicate how these Fourier components respond to external changes of the parameters p in the
system.
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that act on ĝν , ϕ̂, Â∥, and δB̂∥ separately:

Ĝν [p; ĝν , ϕ̂, Â∥, δB̂∥]= Ĝg,ν [p; ĝν ] + Ĝϕ,ν [p; ϕ̂] + ĜA∥,ν [p; Â∥] + ĜB∥,ν [p; δB̂∥], (5.30)

Q̂[p; ĝν , ϕ̂, δB̂∥] =
〈
Q̂g,ν [p; ĝν ], I

〉
v,ν

+ Q̂ϕ[p; ϕ̂] + Q̂B∥ [p; δB̂∥], (5.31)

M̂ [p; ĝν , Â∥] =
〈
M̂g,ν [p; ĝν ], I

〉
v,ν

+ M̂A∥ [p; Â∥], (5.32)

N̂ [p; ĝν , ϕ̂, δB̂∥] =
〈
N̂g,ν [p; ĝν ], I

〉
v,ν

+ N̂ϕ[p; ϕ̂] + N̂B∥ [p; δB̂∥], (5.33)

with I simply equal to one. Explicit expressions for these operators in unnormalised
coordinates are given in Appendix B.1.

Next, consider taking the gradient of (5.28) with respect to the variables in the
parameter space, p. By isolating all terms multiplying derivatives of {ĝν , ϕ̂, Â∥, δB̂∥}
each of their coefficients can be set to zero–for this the self-adjoint property of collision
operators is used [58]. We are at liberty to do this because of the freedom that exists
in choosing the adjoint variables introduced in equation (5.28). The gradient of (5.28)
is expanded using equations (5.30)-(5.33):

∇pL = ∂pL+
〈
∇pĝν , Ĝ

†
g,ν [p;λν ] + Q̂†

g,ν [p; ξ] + M̂ †
g,ν [p; ζ] + N̂ †

g,ν [p; σ]
〉
z,v,ν

+

〈
∇pϕ̂,

〈
Ĝ†
ϕ,ν [p;λν ]

〉
v,ν

+ Q̂†
ϕ[p; ξ] + N̂ †

ϕ[p; σ]

〉

z

+

〈
∇pÂ∥,

〈
Ĝ†
A∥,ν

[p;λν ]
〉
v,ν

+ M̂ †
A∥
[p; ζ]

〉

z

+

〈
∇pδB̂∥,

〈
Ĝ†
B∥,ν

[p;λν ]
〉
v,ν

+ Q̂†
B∥
[p; ξ] + N̂ †

B∥
[p; σ]

〉

z

+ B. (5.34)

Here the daggers that appear on the functional operators denote the adjoint of those
operators with respect to the relevant inner product. The partial derivative, ∂p, is
taken at fixed ĝν , ϕ̂, Â∥, and δB̂∥. Note that it acts on the inner product itself, in
addition to the terms within it, to account for the p-dependence of the Jacobians8

and functional operators. The term ‘B’ accounts for boundary terms that arise from
the integration by parts to invert operators such as ⟨∇p∂zĝν , λν⟩z onto the adjoint

8It is noteworthy to point out that although the Jacobians present in the integrals (as well as
the Lagrange multipliers themselves) are p-dependent, it is anticipated that when the distribution
function and fields are evaluated at p0 their derivatives provide zero contribution as they multiply
the functional operators, which are identically zero at p0. Hence, it would be justified to pull the
partial derivative through these inner products, and the final derivative of the growth rate obtained
should be the same.
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variables, producing terms of the form ⟨∇pĝν , ∂zλν⟩z, and is given by

B =
∑

ν

2πB0

mν

∫
d2v v∥ λ

∗
ν

[
∇pĝν +

Zνe

Tν
J0,νF0,ν∇pϕ̂

−2
Zνe

Tν
v∥J0,νF0,ν∇pÂ∥ + 4µν

J0,ν
aν

F0,ν∇pδB̂∥

]∣∣∣∣
z=∞

z=−∞

−
∑

ν

2πB0

mν

∫
dz

∫
dµ µν

∂B0

∂z
λ∗ν∇pĝν

∣∣∣∣∣

v∥=∞

v∥=−∞

. (5.35)

Setting this term to zero determines the boundary conditions for the adjoint variables.
The incoming boundary conditions along the magnetic field on ĝν are taken to be
ĝν(z → −∞, v∥ > 0, µν) → 0, and ĝν(z → ∞, v∥ < 0, µν) → 0, independently of
p, such that dpĝν = 0 at these limits. The boundary condition λ∗ν(z → −∞, v∥ <

0, µν) → 0, and λ∗ν(z → ∞, v∥ > 0, µν) → 0 is imposed on λ∗ν in order to eliminate the
boundary term arising from the z integration by parts, and hence remove the need to
calculate ∇p{ĝν , ϕ̂, Â∥, δB̂∥} at the boundaries in z. The boundary term arising from
integration by parts in v∥ is automatically satisfied as it is assumed that ĝν(z, v∥ →
±∞, µν) = 0, ∀{z, µν} independently of p. However it is convenient to impose that
λ∗ν(z, v∥ → ±∞, µν) = 0 such that λ∗ν and ĝν satisfy similar boundary conditions,
whilst also ensuring λν is sensibly defined and normalisable9. The substitution λ↔,∗

ν =

λ∗ν(z,−v∥, µν) is made such that the adjoint equations more closely resemble those
in the original gyrokinetic system. This redefines the z-boundary condition on the
adjoint variable λ↔,∗

ν (z → −∞, v∥ > 0, µν) → 0, and λ↔,∗
ν (z → ∞, v∥ < 0, µν) → 0,

which now mirrors those satisfied by ĝν .
Setting the remaining coefficients of ∇pĝν , ∇pϕ̂, ∇pÂ∥, and ∇pδB̂∥ in equation

(5.34) equal to zero yields the constraint equations for the adjoint variables

Ĝ†
g,ν [p;λ

↔
ν ] + Q̂†

g,ν [p; ξ] + M̂ †
g,ν [p; ζ] + N̂ †

g,ν [p; σ] = 0 , (5.36)〈
Ĝ†
ϕ,ν [p;λ

↔
ν ]
〉
v,ν

+ Q̂†
ϕ[p; ξ] + N̂ †

ϕ[p; σ] = 0 , (5.37)

⟨Ĝ†
A∥,ν

[p;λ↔ν ]⟩v,ν + M̂ †
A∥
[p; ζ] = 0 , (5.38)

〈
Ĝ†
B∥,ν

[p;λ↔ν ]
〉
v,ν

+ Q̂†
B∥
[p; ξ] + N̂ †

B∥
[p; σ] = 0 . (5.39)

The expressions for these adjoint operators are stated in Appendix B.2. The z-
derivatives which appear in the Ĝν operators, under the velocity integrals, in equations
(5.37)-(5.39) pose a potential difficulty; to calculate the adjoint fields, information

9An additional consequence is that this choice simplifies the implementation into an existing
gyrokinetic code.
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is required for λ↔ν at all z, for both positive and negative velocities. Given the
boundary conditions on λν and the propagation of information by advection this
information is not readily available. This is akin to the problem faced when solving the
gyrokinetic system; an incoming boundary condition is imposed on the distribution
function at z → ±∞ when v∥ < 0 and v∥ > 0 respectively. The outgoing boundary
information is not known a priori but must instead be solved for. Anticipating the
numerical difficulties this will create, moments of (5.36) are taken to simplify the
adjoint equations. This brings them into a form more closely resembling that of the
gyrokinetic field equations. It should be emphasised that a fully kinetic treatment is
retained in doing so.

A summary of this calculation can be found in Appendix B.3, and the result after
algebraic manipulation is:

γ∗λ↔ν + v∥b̂ ·∇z
∂λ↔ν
∂z

− µν
mν

b̂ ·∇z
∂B0

∂z

∂λ↔ν
∂v∥

− iωd,νλ
↔
ν + ZνeJ0,νξ

− 4π

k2⊥
ZνeJ0,ν

v∥
c
ζ + 8π

J1,ν
aν

µνσ − Ĉν [λ
↔
ν ] = 0 , (5.40)

ξ +
1

η

∑

ν

2πB0

mν

∫
d2v

[
iω∗,ν +

Zνe

Tν
γ∗
]
J0,νF0,νλ

↔
ν = 0 , (5.41)

ζ − 1

k2⊥

∑

ν

2πB0

mν

∫
d2v

v∥
c

[
iω∗,ν +

Zνe

Tν
γ∗
]
J0,νF0,νλ

↔
ν = 0 , (5.42)

σ −
∑

ν

2πB0

mν

∫
d2v

(
2
µν
Zνe

J1,ν
aν

)[
iω∗,ν +

Zνe

Tν
γ∗
]
F0,νλ

↔
ν = 0 , (5.43)

with η =
∑

ν(Zνe)
2nν/Tν . Noting that one can also rewrite equation (5.27) as

Ĝν [p; ĝν , ϕ̂, Â∥, δB̂∥] = γĝν+L̂ν [p; ĝν , ϕ̂, Â∥, δB̂∥], and using ∇pL|p0
= 0, the equation

(5.34) can be rearranged to obtain

∇pγ ⟨ĝν , λν⟩z,v,ν = −
[
⟨∂pL̂ν , λν⟩z,v,ν + ⟨∂pQ̂, ξ⟩z + ⟨∂pM̂, ζ⟩z + ⟨∂pN̂ , σ⟩z

]∣∣∣
p0

,

(5.44)

where the partial derivatives have been pulled inside the inner products as the con-
tribution arising from the Jacobian derivatives is zero by virtue of Ĝν(p0) = Q̂(p0) =

M̂(p0) = N̂(p0) = 0.
To solve for the derivative of the linear growth rate, the following procedure is

taken: The gyrokinetic equation, (5.27), is solved in combination with the field equa-
tions, (2.45)-(2.47), to obtain ĝν and γ, and then equations (5.40)-(5.43) are used to
solve for the adjoint variables. These quantities are then all fed into equation (5.44)
to compute ∇pγ.
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5.5.2 Electrostatic, Collisionless Limit

The numerical tests are performed in the electrostatic, collisionless regime outlined
in Section 2.3.3 with Cν,ν′ = 0. The linear, collisionless, electrostatic gyrokinetic
equation in the long time limit is:

Ĝν [p; ĝν , ϕ̂] = γĝν + v∥b̂ ·∇z

[
∂ĝν
∂z

+
Zνe

Tν

∂J0,νϕ̂

∂z
F0,ν

]
+ iω∗,νJ0,νϕ̂F0,ν

− µν
mν

b̂ ·∇z
∂B0

∂z

∂ĝν
∂v∥

+ iωd,ν

[
ĝν +

Zνe

Tν
J0,νϕ̂F0,ν

]
,

(5.45)

which is closed by the electrostatic limit of quasineutrality:

Q̂[p; ĝν , ϕ̂] =
∑

ν

Zνe

[
2πB0

mν

∫
d2v J0,ν ĝν +

Zνnν
Tν

(Γ0,ν − 1)ϕ̂

]
, (5.46)

with Ĝν and Q̂ identically zero, and M̂ , N̂ providing no contribution in the electro-
static limit. In the above the long time behaviour of a single wavenumber is being
considered, and the associated subscripts have been suppressed.

As in Section 5.5.1 the functional operators Ĝν [p; ĝν , ϕ̂], and Q̂[p; ĝν , ϕ̂] are de-
composed into components that act on ĝν and ϕ̂ separately, with all other operators
in (5.30)-(5.33) set to zero. The derivation in Section 5.5.1 is unchanged, with the ex-
ception that some terms may now be omitted. The resulting derivative of the growth
rate in the electrostatic, collisionless regime is:

∇pγ ⟨ĝν , λν⟩z,v,ν =−
[
⟨∂pL̂ν , λν⟩z,v,ν + ⟨∂pQ̂, ξ⟩z

]∣∣∣
p0

, (5.47)

where L̂ν = Ĝν − γĝν is given by equation (5.45), and the adjoint equations are

γ∗λ↔ν + v∥b̂ ·∇z
∂λ↔ν
∂z

− µν
ms

b̂ ·∇z
∂B0

∂z

∂λ↔ν
∂v∥

− iωd,νλ
↔
ν + ZνeJ0,νξ = 0 , (5.48)

ξ +
1

η

∑

ν

2πB0

mν

∫
d2v

[
iω∗,ν +

Zνe

Tν
γ∗
]
J0,νF0,νλ

↔
ν = 0 , (5.49)

with λ↔ν (v∥) = λν(−v∥), and η =
∑

ν(Zνe)
2nν/Tν as before.

5.6 Normalisations and Magnetic Geometry

To evaluate (5.47) the set of variables {γ, ĝν , ϕ̂, λ↔ν , ξ} must be solved for, and eval-
uated at the unperturbed geometric values, p0. This is done by implementing the
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adjoint system within the local flux-tube δf -gyrokinetic code stella [9] the equa-
tions, normalisations and algorithms for which are outlined in Sections 3.3-3.4. The
normalisations outlined in Section 3.3 are used, with the list of normalised parame-
ters given in Table 3.1 and Table 3.2. It has been previously shown that shaping can
affect the microstability of a plasma in an MCF device [13], hence p will be chosen
to vary the magnetic geometry. The specific choice for p is taken to be the Miller
parametrisation of the equilibrium outlined in Section 2.2.1.2, and the application of
the adjoint method is detailed in this case. For this section we reinstate the tilde
notation to denote normalised variables.

5.6.1 Gyrokinetic Normalisations

Here the normalised gyrokinetic equation and field equations are presented for the
long time limit. The reader is reminded that the subscripts denoting wavenumber, k,
have been suppressed, as these can be considered independently of one another. All
variables are taken to the left hand side to define objective functions, Ĝν , Q̂, M̂ , and
N̂ that are identically zero. The normalised low-flow, electromagnetic gyrokinetic
equation taken in the long time limit is

Ĝν = γ̃g̃ν + ṽth,ν ṽ∥ b̂ · ∇̃z̃

[
∂g̃ν
∂z̃

+
Zν

T̃ν

∂ ⟨χ̃⟩ν
∂z̃

e−ṽ
2
ν

]

+ iω̃∗,νe
−ṽ2ν ⟨χ̃⟩ν + iω̃d,ν

[
g̃ν +

Zν

T̃ν
⟨χ̃⟩k,ν e−ṽ

2
ν

]

− ṽth,νµ̃ν b̂ · ∇̃B̃0
∂g̃ν
∂ṽ∥

+ 2
Zν
m̃ν

µ̃ν b̂ · B̃0e
−ṽ2νJ0,k,νÃ∥ − Ĉν [{g̃ν′ , χ̃ν′}], (5.50)

The corresponding transformed, normalised field equations are given by equations
(3.10)-(3.12).

5.6.2 Adjoint Normalisation

The normalisation of the adjoint variables is chosen in such a way that the optimi-
sation Lagrangian is dimensionless. In general this is achieved by enforcing that the
dimension of the adjoint variables in Section 5.5 satisfy:

[λν ] = [Ĝν ]
−1, [ξ] = [Q̂]−1, [ζ] = [M̂ ]−1, [σ] = [N̂ ]−1, (5.51)

with [A] denoting the dimensionality of A. The normalised adjoint variables should
then satisfy:

λ̃ν =
λν
[λν ]

, ξ̃ =
ξ

[ξ]
, ζ̃ =

ζ

[ζ]
, σ̃ =

σ

[σ]
. (5.52)
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From considering the dimensions of the distribution functions, fields, and the defined
inner products, the adjoint normalisation follows:

λ̃ν = λν
F0,ν

e−ṽ2ν
ρrvth,r

L2
r
, ξ̃ = ξ

nreρr

Lr
, ζ̃ = ζ

Brρ
2
r

Lr
, σ̃ = σ

Brρr

Lr
. (5.53)

The adjoint equation, (5.40) as written in terms of normalised coordinates, is multi-
plied by a factor of (ρr/Lr)F0,ν/e

−ṽ2ν to obtain the electromagnetic, collisional adjoint
equations in normalised units:

∂λ̃↔ν
∂t̃

+ γ̃∗λ̃↔ν + ṽth,ν ṽ∥ b̂ · ∇̃z̃
∂λ̃↔ν
∂z̃

− ṽth,νµ̃ν b̂ · ∇̃B̃0
∂λ̃↔ν
∂ṽ∥

− iω̃d,νλ̃
↔
ν

+ ZνñνJ0,ν ξ̃ −
βr

(k⊥ρr)2
Zνñν ṽth,νJ0,ν ṽ∥ζ̃ + 2βrT̃νµ̃ν

J1,ν
ãν

σ̃ − Ĉν [λν ] = 0 ,

(5.54)

ξ̃ +
1

η̃

∑

ν

2B̃0√
π

∫
d2ṽ

[
iω̃∗,ν +

Zν

T̃ν
γ̃∗
]
J0,νe

−ṽ2ν λ̃↔ν = 0 , (5.55)

ζ̃ −
∑

ν

2B̃0√
π

∫
d2ṽ (2ṽth,ν ṽ∥)

[
iω̃∗,ν +

Zν

T̃ν
γ̃∗
]
J0,νe

−ṽ2ν λ̃↔ν = 0 , (5.56)

σ̃ −
∑

ν

2B̃0√
π

∫
d2ṽ

(
4µ̃ν

T̃ν
Zν

J1,ν
ãν

)[
iω̃∗,ν +

Zν

T̃ν
γ̃∗
]
e−ṽ

2
ν λ̃↔ν = 0 . (5.57)

The inclusion of an artificial time derivative in equation (5.54) is a practical numer-
ical strategy, and the steady state solution for λ̃ν is obtained when ∂t̃λ̃ν = 0. This
approach transforms the (potentially stiff or non-invertible) stationary problem into a
well-posed relaxation system that can be marched forward in pseudo-time until con-
vergence. This choice is primarily motivated by our use of an initial value code, with
the absence of a dedicated eigenvalue solver for direct computation of the stationary
solution. While it is true that introducing an artificial time derivative can theoretically
lead to non-convergent behavior, such as periodic orbits, rather than asymptoting to
a stationary solution, for the class of linear stability and adjoint problems considered
here, this method has consistently and reliably converged to the correct steady-state
solutions in practice.

As before, one can use Ĝν [p; g̃ν , ϕ̃, Ã∥, δB̃∥] = γ̃g̃ν + L̂ν [p; g̃ν , ϕ̃, Ã∥, δB̃∥], with the
constraint ∇pL|p0

= 0 to rearrange the above and obtain:

∇pγ̃ ⟨g̃ν , λ̃ν⟩z̃,ṽ,ν = −
[
⟨∂pL̂ν , λ̃ν⟩z̃,ṽ,ν + ⟨∂pQ̂, ξ̃⟩z̃ + ⟨∂pM̂, ζ̃⟩z̃ + ⟨∂pN̂ , σ̃⟩z̃

]∣∣∣
p0

,

(5.58)

106



with closure equations provided by (5.54)-(5.57). As in previous chapters, the tilde
notation denoting normalised quantities will henceforth be dropped for the remainder
of this chapter, unless stated otherwise.

5.6.3 Electrostatic Collisionless Limit

Finally, in the electrostatic, collisionless regime, the system of equations to solve in
the normalised stella coordinates is given by

∂λ↔ν
∂t

+ γ∗λ↔ν + vth,νv∥ b̂ ·∇z
∂λ↔ν
∂z

− vth,νµν b̂ ·∇B0
∂λ↔ν
∂v∥

− iωd,νλ
↔
ν

+ZνnνJ0,νe
−v2νξ = 0 , (5.59)

ξ +
1

η

∑

ν

2B0√
π

∫
d2v

[
iω∗,ν +

Zν
Tν
γ∗
]
J0,νe

−v2νλ↔ν = 0 , (5.60)

and

∇pγ ⟨ĝν , λν⟩z,v,ν =−
[
⟨∂pL̂ν , λν⟩z,v,ν + ⟨∂pQ̂, ξ⟩z

]∣∣∣
p0

. (5.61)

5.6.4 Miller Geometry

The coefficients in equations (5.50)-(3.12), and thus the associated linear growth rates,
are implicitly dependent on the magnetic geometry. For the remainder of the chapter
p will be taken to be an appropriate set of parameters that specifies the local magnetic
geometry. In particular, the Miller formalism [86] will be used to parameterise the
magnetic field on the flux surface of interest, as outlined in Section 2.2.1.2.

The user specified input parameters used in the local version of stella are
{rψ0 , Rψ0 ,∆ψ0 , qψ0 , ŝψ0 , κψ0 , κ

′
ψ0
, Rgeo,ψ0 , δψ0 , δ

′
ψ0
, β′

ψ0
}, which are the Miller parame-

ters defined in Section 2.2.1.2 evaluated at the flux surface ψ0. Note that stella

defines the triangularity as δ .
= arcsin

(
δ̄
)
. Here Rgeo,ψ0 ≡ I(ψ0)/Br sets the refer-

ence magnetic field. Further information about how the Miller geometry is treated
in stella is given in Appendix B.4. Henceforth the parameters p will be set as
p := {rψ0 , Rψ0 ,∆ψ0 , qψ0 , ŝψ0 , κψ0 , κ

′
ψ0
, Rgeo,ψ0 , δψ0 , δ

′
ψ0
, β′

ψ0
}. The subscript ψ0 shall be

dropped, and everywhere these Miller parameters appear it shall be assumed that
they are evaluated at a given flux location, ψ0.

5.7 Numerical Implementation

As discussed, the aim when applying the adjoint method to a system unstable to
ITG is to find the magnetic geometry that minimises the linear growth rate for the
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User Input

Create input file with given temperature gradient

Solve GK system for γ and adjoint variables

Adjoint Method Calculates ∇pγ

Is γ ≤ 0? Exceeded maximum
number of iterations?

Exceeded maximum
number of iterations?

Improve plasma profile parameters

Enter Optimisation loop
update p

Finish

yes

no
no

yes
yes

no

Figure 5.2: Flow chart showing a practical implementation of the adjoint method, to
optimise for a plasma profile parameter by modifying the geometry coefficients, p.

ITG instability, whilst maximising the linear critical temperature gradient across the
device. This requires three distinct stages: first, the computation of ∇pγ at a fixed
ion temperature gradient, T ′

i ; second, its subsequent use in an optimisation algorithm
to find the p that minimises γ for this given T ′

i ; third, iteration of this procedure with
variable T ′

i to find the maximum temperature gradient for which γ ≤ 0 for the range
of p considered.

5.7.1 Initial Simulation

Solving, at an initial set of p0, for γ, ĝν and ϕ̂ is achieved by performing a standard
stella run for a sufficiently long time, such that the solution is dominated by a single
normal mode. To determine the time at which this is satisfied, a convergence test
can be employed: the growth rate is calculated at each time step and if the value of
this is constant in time (within a specified tolerance) then the system is deemed to be
converged. There are two components of the convergence test. The first is to check
that the growth rates calculated at adjacent time steps are within a given tolerance
of each other. The second is to perform a windowed average to check that the growth
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rate remains consistent over a defined number of time steps. Two windowed averages
are done; one over Nt time steps and one over Z(Nt/2) time steps. When these
two window-averaged growth rates agree within a set tolerance, ĝν and ϕ̂ are taken to
have converged. The corresponding growth rate is then calculated from the windowed
average10.

5.7.2 Adjoint Simulation

As previously introduced, an artificial time dependence is added to the adjoint equa-
tions to facilitate computation. The solution is found in the steady state limit, in
which the time derivative appearing in the adjoint equations goes to zero.

The adjoint equations are treated in a similar way to the treatment of the usual
gyrokinetic system of equations in stella. The main aim is to ensure that the
parallel streaming term may be treated separately from the rest of the dynamics
through operator splitting. This is done by discretising in time, and splitting the
time derivative into a series of three steps:

∂λ↔ν
∂t

=

(
∂λ↔ν
∂t

)

1

+

(
∂λ↔ν
∂t

)

2

+

(
∂λ↔ν
∂t

)

3

, (5.62)

where
(
∂λ↔ν
∂t̃

)

1

=− γ∗λ↔ν + iωd,νλ
↔
ν − Zνnνξ, (5.62a)

(
∂λ↔ν
∂t

)

2

= vth,νµν b̂ ·∇B0
∂λ↔ν
∂v∥

, (5.62b)
(
∂λ↔ν
∂t

)

3

=− vth,νv∥ b̂ ·∇z
∂λ↔ν
∂z

. (5.62c)

Analogous to stella, the terms in (5.62a) are treated explicitly using a strong-
stability-preserving, third order Runge–Kutta method [47]. The Runge–Kutta al-
gorithm is second order accurate in time step size, ∆t, whilst the operator splitting
is only first order accurate in ∆t.

The parallel streaming and mirror terms, given by equations (5.62c) and (5.62b)
respectively, are treated separately, due to the presence of the prefactor vth,ν , which

10In cases where there exist two modes of similar growth rates, it may take a long run time to
isolate the dominant mode. In these instances of ambiguity, the adjoint method as demonstrated
here may fail to provide the correct gradient of the linear growth rate in the desired parameter space
at that point. However, it should be noted that one can move away from this point of ambiguity
in the growth rate by applying a random kick in the parameter space, and as soon as you move
away from this region the adjoint method can continue to be applicable, and will provide the correct
gradient in the parameter space. Hence, even if the random step is taken in the wrong direction
within the space, the adjoint method should correct itself to then step in the direction of stability.
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increases the relative amplitude of these terms when considering electron dynamics.
As a result these terms have the potential to exert a stringent Courant–Friedrichs–
Lewy (CFL) condition on the simulation, and require a small time step to be taken
in order to retain accuracy. Thus, these terms are treated implicitly in time to
circumvent this constraint.

The mirror term, (5.62b), is a simple advection equation of λ↔ν in v∥, which is
treated using a semi-Lagrange method11, akin to the algorithm used to advect the
distribution function in v∥ within stella. The mirror coefficients are independent of
both time and v∥ and hence the exact characteristics of this equation are known. The
interpolation in v∥ is fourth order accurate in v∥ grid spacing, ∆v∥ [9].

The streaming term, (5.62c), is also an advection equation in z, which is treated
using the Thompson algorithm for tri-diagonal solve. When fully centred in time the
discretisation reduces to the Crank–Nicolson method, which is second order accurate
in time and z grid spacing, ∆t and ∆z, respectively.

We are seeking a steady state solution to the adjoint equations. The same con-
vergence test is performed on λ↔ν as that performed on the distribution function, in
order to check that the complex growth rate has converged to zero within a given
tolerance. When this is satisfied, the resulting λ↔ν is used to solve for λν . This is then
stored for use in the remainder of the calculation.

5.7.3 Optimisation Loop

Once the gradients ∇pγ are obtained they can be used inside an optimisation loop
to find the p that minimises γ. The Levenberg-Marquardt (LM) algorithm [119]
is employed to find the local minimum. This method adopts a steepest descent
behaviour when the location in parameter space is considered to be far from the
minimum, and progresses towards Gauss-Newton behaviour as one approaches the
minimum. This is achieved by introducing a damping factor, Γ, which is updated
with each iteration. The Levenberg-Marquardt algorithm is designed specifically to
solve nonlinear least squares problems. Consider the least squares problem to find
parameters p that minimise the squared residual:

min
p

1

2
∥γ(p)∥2 = 1

2

m∑

i=1

γi(p)
2. (5.63)

11This is an option within the FT version of stella. This has not been detailed in this thesis as
it is not readily extendable to the FA formalism.
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The algorithm does this by iteratively solving the following:

[H+ Γ diag(H)]dp = −∇pγ, (5.64)

with H = ∇2
pγ ≈ (∇pγ)

†∇pγ the Hessian matrix. When Γ is large pnew ≈ pold −
α · ∇pγ, with α

.
= [Γ diag(H)]−1, which mimics the gradient descent algorithm.

However, when Γ is small (5.64) reduces to pnew ≈ pold −H† ·∇pγ, which matches
with the Gauss-Newton algorithm.

The LM formalism is derived using the Taylor expansion, and as such a trust
region is included within the optimisation loop to ensure that the updated value of
p is close enough to the previous value, such that the Taylor approximation is valid
within the limits for which the algorithm is applied. The trust region for p is defined
via:

T =
0.5 dp† ·H · dp

dp ·∇pγ
< ϵ̄, (5.65)

where ϵ̄ is a chosen tolerance. If T > ϵ̄ for a given dp the algorithm rejects the
output pnew and increases the weight Γ, in an attempt to improve the accuracy of the
approximation. This helps ensure that the updated value of p is a reasonable one. It
is worth noting that the LM algorithm is designed to find local minima, so there is
no guarantee that the minimum obtained is the global minimum of the system.

It should be emphasised that the gradient-based optimisation algorithm is inde-
pendent of the adjoint method that has been developed for gyrokinetic microstability.
The optimisation loop may be itself optimised to efficiently search for regions of sta-
bility given a gradient input. Different algorithms, and indeed different parameter
choices within each algorithm, will yield different efficiencies in finding stable solu-
tions. An illustrative example of this is given later in Figure 5.3, where the step size
for the optimisation loop is varied to yield two distinct paths through the parameter
space using the adjoint gradient. However, this external optimisation loop incurred
negligible run time cost, so will not be included in the focus of this thesis and we will
not labour on enhancing the gradient-based optimisation loop.

5.8 Numerical Results

5.8.1 Initial Benchmark

The first numerical check performed was to ensure that the values of dpγ obtained
from the adjoint method agree with those obtained using a finite difference approach.
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Following this a more extensive benchmark can be performed by conducting a param-
eter scan in the growth rate using stella for different values of the Miller parameters.
An initial set of parameters is chosen and the adjoint-optimisation scheme described
above is performed. The results are overlaid on those from the parameter scan for
their comparison. As a proof of principle two parameters: triangularity, δ, and elon-
gation, κ, are chosen to be varied, whilst holding the other Miller variables fixed.
Given that the Miller parametrisation is local to a given flux surface, this variation is
not necessarily consistent with a global solution to the Grad–Shafranov equation. The
choice to vary these two parameters in isolation is driven by two considerations; first,
it is only intended as a proof-of-principle check of the adjoint approach so simplicity
is desirable. Second, previous research has shown that maximal shaping, with large
elongation and triangularity, minimises the linear ITG instability. In contrast, the
effect on the growth rate from changing parameters such as κ′ and δ′ is small, ordered
with the inverse aspect ratio, a/R0 ≪ 1, where a and R0 are the scales associated
with the minor and major radii respectively [57]. Thus the that the linear growth
rates are expected to be most sensitive to elongation and triangularity. Table 5.1
lists the values of input equilibrium variables in the Miller geometry. These have
been chosen to coincide with values used in Beeke (2020) [10] in order to verify the
qualitative behaviour found.

Given these initial values of δ and κ, the linear growth rates are determined for
a grid of perpendicular wavenumbers within kx < 2.0, ky < 2.0, which reveals that
the most unstable mode is found at {ky, kx} = {0.68, 0.0} for mass ratio me/mi =

2.7×10−4, normalised species temperatures and densities of Ti = Te = 1, ni = ne = 1,
and normalised species temperature and density gradients of Lr/LTi = Lr/LTe = 2.42,
Lr/Lni = Lr/Lne = 0.81.

Figure 5.3 shows a scan in the linear growth in elongation and triangularity ob-
tained by running stella with the Miller parameters specified in Table 5.1, and the
values of κ and δ adjusted accordingly. The contour colour indicates the magnitude
of the growth rate, and the plot extends over a range of values that has been set by
reasonable physical constraints on MCF devices.

Figure 5.3 shows that increasing the elongation and triangularity of the flux surface
reduces the linear growth rate, and that there exists a region of stability when the
shaping is maximal, in agreement with previous work. The path taken using the
adjoint method is indicated in white. At the chosen starting point, located in the
region of instability, the gradient dpγ is calculated and the value of p = {δ, κ} is
updated using the previously mentioned LM method. The final point is found to be
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Table 5.1: List of Miller Parameters

Miller Initial
Parameter Value

r 0.5
R0 2.94
Rgeo 2.94
∆ -0.11
κ 1.52
κ′ 0.10
q 2.02
ŝ 0.34
δ 0.14
δ′ 0.29
β′ 0.069

Equilibrium Miller parameter values
used in the initial benchmark simula-
tions in Section 5.8.1.

locally stable as the growth rate here is negative. The algorithm then checks a nearby
point to determine if a small region of stability exists and, once this has been verified,
outputs this as the final p value.

A second path is plotted on Figure 5.3 in grey. This path is taken using the same
adjoint technique, but increasing the step size within the optimisation loop. When the
step-size is small, as with the white path, the LM algorithm more closely resembles a
gradient-descent method, however when the step size is larger, as with the grey path,
the LM algorithm resembles Newton’s method for gradient optimisation. The figure
illustrates how the adjoint algorithm can be combined with an optimiser to quickly
and efficiently converge to a stable region of parameter space.

5.8.2 Increasing the Critical Temperature Gradient

It has been shown that the adjoint method is a powerful technique for computing
stable points in a large parameter space; Figure 5.3 shows that it can efficiently be
used inside an optimisation loop to find a minimum of the linear growth rate for a
given temperature gradient. Once the adjoint optimisation loop locates a region in the
parameter space with negative or zero growth rate, the local temperature gradient (or
other plasma profile variable of interest) may be increased and the process repeated.
Conversely, if a minimum positive (unstable) growth rate is found, the temperature
gradient can be reduced to seek out the optimal shape that maximises the critical
temperature gradient at which linear instability occurs.
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Figure 5.3: Two-dimensional parameter scan over elongation and triangularity, with
the colour map indicating the amplitude of the linear growth rate. Here ky = 0.68,
kx = 0.0, me/mi = 2.7 × 10−4, Ti = Te = 1, ni = ne = 1, Lr/LTi = Lr/LTe = 2.42,
Lr/Lni = Lr/Lne = 0.81, with a the minor radius of the last closed flux surface. The
path taken by the optimisation algorithm is indicated in white, with the initial point
κ = 1.5, and δ = 0.14. A second path, drawn in grey, is shown indicating the adjoint
optimisation with a larger step size for the optimisation loop.

Figure 5.4: Plots showing a parameter scan in elongation and triangularity, with
a temperature gradient of Lr/LTi = 3.80, increased from the Lr/LTi = 2.42 value
used in Figure 5.3. The geometry of the initial point, located in the unstable region,
is provided by final point in Figure 5.3 and is now unstable due to the increased
temperature gradient. Here ky = 0.68, kx = 0.0, me/mi = 2.7 × 10−4, Ti = Te = 1,
ni = ne = 1, Lr/LTi = Lr/LTe = 3.80, Lr/Lni = Lr/Lne = 0.81. Note that the colour
scales used in the figures above are different than that used in Figure 5.3. The right
hand side plot is a zoomed region from the figure of the left.
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Figure 5.4 demonstrates an iterative use of the adjoint optimisation. Here the
temperature gradient has been increased compared to the setup used to generate
Figure 5.3. Inside each temperature gradient iteration the adjoint method is used
to find a stable geometric configuration. This process could be continued, increasing
the temperature gradient until no region of stability is available, indicating a limiting
temperature gradient that can be achieved through geometric considerations alone.
Figure 5.4 is a demonstration that the adjoint method may be used to increase the
temperature gradient, whilst retaining stability, using geometry. Though only two
parameters have been considered in the above, with the focus on ITG for clarity, it is
possible to employ the adjoint method to optimise over a large number of geometric
parameters simultaneously. Such an exploration would be expensive using traditional
finite difference methods. One could also extend this to include simulations with
kinetic electron effects. In this case, careful consideration would be given to the
individual ramping strategies for the ion temperature, electron temperature, and
density gradients to systematically explore the multi-dimensional parameter space.

5.8.3 Negative Triangularity

To form a final example here, it is noted that there has been previous evidence that
negative triangularity can offer improvements for microstability [97], so the bench-
mark scan is repeated using a geometry with negative triangularity. All values of
equilibrium Miller parameters are the same as in Table 5.1, except now the initial
value of triangularity is set to δ = −0.14.
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Figure 5.5: Growth rate contours for a parameter scan with negative triangularity for
ky = 0.68, kx = 0.0 and equilibrium parameters me/mi = 2.7 × 10−4, Ti = Te = 1,
ni = ne = 1, Lr/LTi = Lr/LTe = 3.80, Lr/Lni = Lr/Lne = 0.81. The white line
indicates the path taken by the optimisation algorithm. The initial values of {δ, κ}
are taken to be {−0.14, 1.52}.

The path taken using the adjoint optimisation loop is again shown in Figure 5.5
by the white path, starting in the dark red region at {δ, κ} = {−0.14, 1.52}. This
highlights a key feature of the gradient-based optimisation method: the solution is
not unique, and the output can depend on the starting region within parameter space.
See Figure 5.6 for an illustrative example of this, which is produced by combining
the results demonstrated so far. Finally, the temperature gradient for the negative
triangularity case is increased, and the procedure is repeated to find a stable region of
parameter space. The input parameters {δ, κ} = {−0.9965, 2.4488} are again taken
to be the outputs from the previously optimised case at a temperature gradient of
Lr/LTi = 2.42. The adjoint algorithm coupled with the gradient optimiser is used to
look for a stable region of parameter space at an increased temperature gradient of
Lr/LTi = 3.8. The results of this are shown in Figure 5.7.
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Figure 5.6: Growth rate contours for a parameter scan with both positive and negative
triangularity for ky = 0.68, kx = 0.0 and equilibrium parameters me/mi = 2.7×10−4,
Ti = Te = 1, ni = ne = 1, Lr/LTi = Lr/LTe = 3.80, Lr/Lni = Lr/Lne = 0.81.
The white line indicates the two paths taken by the optimisation algorithm starting
in different regions in parameter space. The initial values of {δ, κ} are taken to be
{0.14, 1.52} and {−0.14, 1.52}.

Figure 5.7: Growth rate contours for a parameter scan with negative triangularity at a
temperature gradient of Lr/LTi = 3.80, increased from Lr/LTi = 2.42. The geometry
of the initial point is taken as the final point in Figure 5.5, and is now unstable due
to the increased temperature gradient. The scan is performed at the same parameter
values as those in Figure 5.5 – ky = 0.68, kx = 0.0 me/mi = 2.7× 10−4, Ti = Te = 1,
ni = ne = 1, Lr/LTi = Lr/LTe = 3.80, Lr/Lni = Lr/Lne = 0.81. The white line
indicates the path taken by the optimisation algorithm. The initial values of {δ, κ}
are taken to be {−0.9965, 2.4488}.
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5.9 Numerical Efficiency
In the demonstrations presented above, where only a 2D parameter scan is involved,
a finite difference approach requires three simulations plus one additional simulation
at the next iteration to compute the growth rates. The adjoint method necessitates
one simulation of the gyrokinetic equation and the solution of the adjoint equations,
which have a similar computational cost. In such low-dimensional cases, the advan-
tage of the adjoint approach is limited compared to the finite difference method. A
conventional finite difference approach for a parameter vector p of size Np scales
linearly with the number of parameters, requiring Np + 1 simulations to compute
one gradient. Conversely, the adjoint method operates independently of the number
of parameters considered, incurring only a marginal cost for the calculation of es-
sential partial derivatives, which are highly efficient for computational systems and
can be executed by a single processor. This makes the adjoint approach suitable for
high-dimensional spaces without significant computational cost increases.

The progressive computational improvement of using the adjoint method is il-
lustrated by cases extending those presented in Section 5.8. Comparing to a finite
difference approach demonstrates the favourable scaling with increasing Np. In order
for the comparisons to be fair, all simulations are run to a standard time of 100Lr/vth,i.

For the case where Np = 2 the optimisation is performed with respect to two
parameters, {δ, κ}. To calculate a gradient at each point in the parameter space
requires a total of ∼ 4.752 CPU (Central Processing Unit) hours on 4 nodes, each
with 48 cores on the supercomputer Marconi. The same calculation as performed
using the adjoint method requires a total of ∼ 3.168 CPU hours. Though this is only
a modest improvement, it will be shown that as Np increases the advantage of using
the adjoint method, over a finite difference scheme, becomes increasingly apparent.

Increasing the number of parameters to Np = 4, optimising over the Miller pa-
rameters {∆, κ, q, δ}, the finite difference approach requires ∼ 7.920 CPU hours to
compute a gradient at each point in parameter space. However, when computing the
same gradient using the adjoint method the CPU time, to the precision of the CPU
clock, is ∼ 3.168 CPU hours.

If the number of parameters is increased further to Np = 7, optimising over the
Miller parameters {R0, Rgeo,∆, κ, q, ŝ, δ}, using the finite difference approach requires
∼ 12.672 CPU hours to compute each gradient at a point in parameter space. When
using the adjoint method to compute the same gradient, to the precision of the CPU
clock, the CPU time is still ∼ 3.168 CPU hours.
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Figure 5.8: Plots of the flux surfaces in the poloidal cross section. The orange surface
is the flux surface of interest, at a normalised radial location of r/Lr = 0.5, and the
blue and green surfaces are the two adjacent flux surfaces. The image on the left is
the initial unstable configuration, before optimising. The image on the right is the
stable, optimised configuration found using the adjoint-LM system.

Hence, it may be concluded that the numerical speed up is significant with in-
creasing Np. This allows for the potential inclusion of multiple parameters within our
shaping optimisation at very little additional computing cost.

As a closing demonstration, for the example including seven parameters, the pro-
cess of stepping through parameter space to find a point of stability is iterated.
The set of initial parameters is taken to be those given in Table 5.1, and the sim-
ulation uses a temperature and density gradient of Lr/LTi = Lr/LTe = 2.42 and
Lr/Lni = Lr/Lne = 0.81 respectively. The magnetic geometry is perturbed by varying
{R0, Rgeo,∆, κ, q, ŝ, δ}. Following iterations of the coupled adjoint-LM system a stable
configuration is found, with the final set of parameter values: {R0, Rgeo,∆, κ, q, ŝ, δ} =

{2.979, 2.846, 0.562, 1.656, 2.085, 0.167, 0.225}. The cross sections of the initial, unsta-
ble configuration and the final, stable configuration, with their corresponding neigh-
bouring flux surfaces, are shown in Figure 5.8. It is important to note that this
process was performed for a single mode and does not account for the global equi-
librium. Additionally, this example excludes engineering constraints, such as the
increased complexity of coil designs. To develop this into a practical method for fu-
ture machine design, the analysis must be extended to multiple mode numbers and
to incorporate relevant engineering constraints.
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5.10 Conclusion and Discussion

An adjoint method tailored for local, linear gyrokinetics has been derived and its
numerical integration within the δf -gyrokinetic code stella has been demonstrated.
As a proof-of-principle, the effectiveness of the adjoint method is demonstrated, as
applied to a gyrokinetic system, by finding the magnetic geometry of a flux surface
that is stable to microinstability. The illustrative example given has focused on
increasing the temperature gradient, whilst preserving microstability; ion temperature
gradient (ITG) instabilities are often prevalent in fusion devices due to the existence of
large temperature gradients, and thus it is conceivable that geometric considerations
could help mitigate their growth and so improve overall efficiency.

As the computational cost of the adjoint method remains independent of the num-
ber of parameters, its applicability to high-dimensional parameter spaces is readily
apparent. The advantages become more pronounced with an expanding number of
parameters, as the adjoint method outperforms traditional techniques for calculating
gradients, where the computation cost scales with parameter count. This becomes
especially beneficial when examining devices like stellarators, which have a large num-
ber of geometric parameters that can influence the microinstability of the confined
plasma.

It is important to stress that although a specific example focused on increasing
the ion temperature gradient has been considered, this approach can be readily ex-
tended to optimise the density gradient or other plasma properties, by adapting the
overarching LM optimisation loop, without necessitating alterations to the adjoint
calculation itself. Such adaptability enables the application of stella, and other lo-
cal δf -gyrokinetic codes, to the exploration of the impact of shaping on various types
of microinstabilities, and assessing how geometry can be instrumental in mitigating
their growth.

While the numerical examples presented above have focused on the electrostatic,
collisionless regime for optimisation with respect to the Miller geometry, equations
(5.40)-(5.44) are general. They can be applied to an electromagnetic system, includ-
ing collisions, and can be optimised using any appropriate set {pi}. It should also
be stressed that the adjoint method is agnostic to the underlying mechanism driving
the linear instability, and provides a gradient in the desired parameter space inde-
pendently of the drive. As a result the method presented here is applicable to a wide
range of microinstabilities.
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Note that it should also be emphasised that the adjoint method and the gradient-
based optimisation presented are independent of one another. The simplified case of
optimising the linear growth rate of a single wavenumber, k, has been considered.
For more practical purposes one may wish to apply the adjoint method to a range of
wavenumbers, and design the external optimisation routine to take an appropriately
weighted average of these, as the most unstable wavenumber may change as one moves
within the parameter space.
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Chapter 6

Summary and Discussion

In this thesis, the gyrokinetic formalism has been explored as a framework for mod-
eling plasma turbulence in magnetically confined fusion devices. A key component
of this work has been the development and implementation of the full flux-annulus
(FA) version of the δf -gyrokinetic code stella. This extends the algorithms of the
flux-tube (FT) version of the code to capture the mode-coupling that arises in non-
axisymmetric geometries. One key motivator for this is to correctly model and capture
the zonal flows, which have the potential to strongly influence the turbulent saturation
levels.

To extend this capability to the kinetic electron regime, we have further devel-
oped an iterative-implicit algorithm tailored for efficient and stable time evolution.
The accuracy of the FA approach has been benchmarked in the linear regime with
Boltzmann electron response, where good agreement with existing flux-tube-based
codes has been demonstrated. Notably, we have presented visual evidence of physical
differences introduced by the FA treatment—particularly in the zonal flow dynam-
ics—highlighting the importance of capturing global coupling in realistic magnetic
configurations.

In addition to the FA code development, an adjoint-based optimisation frame-
work was introduced for minimising the linear growth rate in the gyrokinetic system.
While the derivation was performed in the electromagnetic, collisional regime without
mode-coupling, the numerical implementation and demonstration was carried out in
the electrostatic, collisionless limit. This approach was shown to significantly out-
perform finite-difference methods in terms of computational efficiency as the number
of parameters included in the optimisation increased, making it particularly suit-
able for high-dimensional optimisation tasks. This is particularly relevant to non-
axisymmetric magnetic geometries, where the parameter space is large.
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6.1 Future work

Several avenues for future research naturally follow from the work presented in this
thesis. One immediate direction is to further apply the FA simulations in order to
gain a deeper understanding of zonal flows in non-axisymmetric geometries. Since
these flows play a critical role in regulating turbulent transport, a more accurate
representation within poloidally-global geometries could reveal new insights into their
behaviour and impact.

The FA simulations provide a powerful tool for addressing a wide range of out-
standing physics questions. Key among these are determining when the FA growth
rates differ from the FT ones, as well as understanding the roles of ρ∗ and mag-
netic geometry. Another important avenue of investigation lies in quantifying the
impact of modelling only a single field period versus the full torus, particularly in
terms of the role played by the connection length. While the flux-annulus code is
presently designed to model turbulence over the complete 2π toroidal domain, simu-
lating a fraction of the device would yield considerable computational savings. Thus,
a critical investigation into the viability and potential constraints of this capability is
warranted. Furthermore, while we have so far employed phase-shift-periodic parallel
boundary conditions, it remains to be explored how non-periodic boundary condi-
tions influence the resulting dynamics. Finally, the question of how long it takes for
a global mode structure to develop, and whether this timescale is long relative to the
nonlinear saturation time, will be crucial in assessing the relevance of global effects
in practical scenarios

An important extension to include within the FA capabilities will be incorporating
electromagnetic effects into the framework. This would enable the simulation of a
broader range of physical phenomena, particularly those relevant to high-β plasmas,
where electromagnetic fluctuations become significant.

In parallel, there are several opportunities to build upon the adjoint-based optimi-
sation framework. A logical next step is to implement the electromagnetic equations
derived in this thesis directly into gyrokinetic codes, enabling adjoint-based opti-
misation in fully electromagnetic regimes. Applying this method to realistic three-
dimensional stellarator geometries would also be a valuable advance, particularly
given the high dimensionality of their configuration spaces. This could be done by
coupling the adjoint method to a global equilibrium solver, such as VMEC. Further-
more, adapting the analytical framework to account for global effects—such as radial
and poloidal mode-coupling, which involve interactions between different kx and ky
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modes—would enhance the method’s applicability to capture more comprehensive
physics and the zonal flow dynamics. Finally, the development of a time-dependent
adjoint formulation could allow for the inclusion of dynamic mechanisms such as
E × B flow shear, opening the door to optimisation strategies that target not just
stability, but transport dynamics as well.

These extensions represent natural and impactful directions that build on the
foundation laid in this thesis, contributing to the broader goal of improving predictive
and optimisation capabilities in gyrokinetic simulations for fusion plasma research.
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Appendix A: Full Flux-Annulus

This Appendix contains details of the derivations required in Chapter 4.

A.1 Flux-Surface Average

The chosen coordinate system is (α, ψ, z), which is right-handed, as ∇α×∇ψ ·∇z =

B. The flux surface average is then

⟨f⟩x
.
=

1

A

∫ zmax

zmin

dz

∫ ymax

ymin

dyJ f, (A.1)

with J = (dα/dy)(dψ/dx)/(B ·∇z) = −(ψt/|ψt|)/B0 and

A =

∫ zmax

zmin

dz

∫ ymax

ymin

dyJ , (A.2)

and
B · ∇ζ = ∇ψt ×∇θ · ∇ζ. (A.3)

With this the relationship between ψvmec and the toroidal flux is found

ψvmec =
1

2π

∫ s

0

ds′
∫ 2π

0

dθ|√g|B · ∇ζ =
∫ s

0

ds′
∫ 2π

0

dθ|√g|∇ψt ×∇θ · ∇ζ, (A.4)

=
1

2π

∫ s

0

ds′
∫ 2π

0

dθ
∇ψt ×∇θ · ∇ζ
|∇θ ×∇ζ ·∇s′| , (A.5)

= − 1

2π

∫ s

0

ds′
∫ 2π

0

dθ
∇θ ×∇ζ · ∇ψt
∇θ ×∇ζ ·∇s′

= −ψt. (A.6)

A.1.1 Particle Flux

The aim is to calculate the cross-surface particle flux. To obtain the radial components
of flux quantities, the flux is projected onto the ∇x direction:

Γν =
1

Lx

∫ x0+Lx

x0

dx

〈∫
d3v

vE · ∇x
⟨|∇x|⟩x

δfν

〉

x

, (A.7)
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with δfν = gν+Zνe/Tν(⟨ϕ⟩Rν−ϕ). Expanding the E×B velocity and inner product:

Γν =
1

Lx

∫ x0+Lx

x0

dx

〈∫
d3v

∂ϕ

∂α

dx

dψ

c

⟨|∇x|⟩x
δfν

〉

x

. (A.8)

In order to correspond with the variables in stella the heat flux is normalised to it’s
gyroBohm value. Defining Γ̃ν = (Γν/nrvth,r)(Lr/ρr)

2 yields

Γ̃ν = − ñν
⟨|∇x|⟩x

ψt
|ψt|

1

Lx

∫ x0+Lx

x0

dx

〈
ρr
∂ϕ̃

∂y

B̃0

π1/2

∫ ∞

−∞
dṽ∥

∫ ∞

0

dµ̃ν⟨δf̃ν⟩Rν

〉

x

. (A.9)

Recall the definition of particle density as the first moment of the gyroaveraged dis-
tribution function

δñν
.
=
δnν
nr

= ñν
2B̃0

π1/2

∫ ∞

−∞
dṽ∥

∫ ∞

0

dµ̃ν⟨δf̃ν⟩Rν , (A.10)

to simplify the expression for the heat flux

Γ̃ν = − 1

2 ⟨|∇x|⟩x
ψt
|ψt|

1

Lx

∫ x0+Lx

x0

dx

〈
∂ϕ̃

∂y/ρr
δñν

〉

x

. (A.11)

Because the Jacobian, J , appearing in the flux surface average has y-dependence of
the form 1/(B̃0b̂·∇̃z̃), this is factored out and the Fourier expansion of δñν/(B̃0b̂·∇̃z̃)

in (x, y) is taken to get

Γ̃ν = − 1

2A ⟨|∇x|⟩x

∫ zmax

zmin

dz

(∑

k

ikyρrϕ̂
∗
k(z)δn̂k,ν(z)

)
, (A.12)

with δn̂k,ν(z) the Fourier coefficent of δñν/(B̃0b̂ · ∇̃z̃), and k = (kx, ky). To obtain
δn̂k,ν(z), begin by computing δf̂k,ν from ĝk,ν and ϕ̂k, then use this to evaluate the k-
component of ⟨f̃ν⟩Rν . Perform an inverse Fourier transform to express the distribution
function in (y, kx)-space. Integrate over velocity space to obtain δñkx,ν(y, z). This
transformation to y-space is required due to the y-dependent coefficient in the velocity
space Jacobian. Divide δñkx,ν(y, z) by (B̃0b̂ · ∇̃z̃) in y-space, then take the Fourier
transform of the result to obtain δn̂k,ν(z).

A.1.2 Momentum Flux

The radial component of the angular momentum flux is

Πν =
1

Lx

∫ x0+Lx

x0

dx

〈∫
d3vmνR

2v ·∇ζ
vE · ∇x
⟨|∇x|⟩x

δfν

〉

x

. (A.13)
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As before, the momentum flux is normalised to its gyroBohm value by defining the
normalised quantity Π̃ν

.
= (Πν/mrnrLrv

2
th,r)(Lr/ρr)

2:

Π̃ν = −vth,ν

vth,r

ñνΠ̃ν

⟨|∇x|⟩x
ψt
|ψt|

1

Lx

∫ x0+Lx

x0

dx

〈
ρr
∂ϕ̃

∂y

B̃0

π1/2

∫ ∞

−∞
dṽ∥

∫ ∞

0

dµ̃νR̃
2⟨δf̃νṽ · ∇̃ζ⟩rν

〉

x

,

(A.14)
where R̃ .

= R/Lr. Consider the gyroaveraged term ⟨δf̃νṽ · ∇̃ζ⟩rν and decompose the
toroidal speed as follows:

v ·∇ζ = v∥
dζ

dz
+ v⊥ · ∇ζ, (A.15)

where dζ/dz is a quantity that can be determined from geometric coefficients. Using
this the non-normalised gyroaverage can be expanded into known terms

⟨δfνv ·∇ζ⟩rν =
〈
δfν

(
ṽ∥
dζ

dz
+ v⊥ ·∇ζ

)〉

rν

,

= v∥
dζ

dz
⟨δfν⟩rν +∇ζ · ⟨v⊥δfν⟩rν . (A.16)

The first term is the familiar result ⟨δfν⟩rν = J0(ak,ν). The second term can also be
manipulated into a simplified form

⟨v⊥δfν⟩rν =
∑

k

δf̂k,νe
ik·r⟨eiv⊥· b̂×k

Ων v⊥⟩rν ,

= −i
∑

k

δf̂k,νe
ik·r 1

Ων

b̂× ∂

∂k
⟨eik·

v⊥×b̂

Ων ⟩rν ,

= i
∑

k

δf̂k,νe
ik·r b̂× k⊥

k⊥
v⊥J1(ak,ν). (A.17)

Hence, the kth Fourier component of the second term in (A.16) can be written as:

[∇ζ · ⟨v⊥δfν⟩rν ]k =i∇ζ ·
(
b̂× k⊥

) v2⊥
vth,ν

J1(ak,ν)

ak,ν
ρνδf̂k,ν ,

=− i
1

B

dα

dy

dψ

dx
∇ζ · ((∇x×∇y)× (kx∇x+ ky∇y))

v2⊥
vth,ν

J1(ak,ν)

ak,ν
ρνδf̂k,ν ,

=i
1

B

dα

dy

dψ

dx

∂ζ

∂y

[
∇ζ ·∇x(kx∇x ·∇y + ky|∇y|2)

−∇ζ ·∇y(kx|∇x|2 + ky∇x ·∇y)
] v2⊥
vth,ν

J1(ak,ν)

ak,ν
ρνδf̂k,ν . (A.18)

Coefficients such as ∇ζ ·∇x and ∇ζ ·∇y can be obtained from geometry files provided
by e.g. VMEC geometries. The gyroaveraged toroidal flow (A.17) can thus be related
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to the normalised parallel and perpendicular flows,

δũ∥,ν
.
=
vth,ν

vth,r

2B̃0

π1/2

∫ ∞

−∞
dṽ∥

∫ ∞

0

dµ̃ν⟨δf̃ν⟩rν ṽ∥, (A.19)

δũ⊥,ν
.
=
vth,ν

vth,r

2B̃0

π1/2
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−∞
dṽ∥

∫ ∞

0

dµ̃ν⟨ṽ⊥δf̃ν⟩rν . (A.20)

Combining the above, the normalised toroidal momentum flux is

Π̃ν = − ñνm̃νñν
2 ⟨|∇x|⟩x

ψt
|ψt|

1

Lx

∫ x0+Lx

x0

dx
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∂y/ρr

(
δu∥,ν

dζ

dz
+ δũ⊥,ν · ∇̃ζ

)
δp̃ν

〉

x

. (A.21)

A.1.3 Heat Flux

The definition for the radial heat flux is

Qν =
1

Lx

∫ x0+Lx

x0

dx

〈∫
d3v

mνv
2

2

vE · ∇x
⟨|∇x|⟩x

δfν

〉

x

. (A.22)

Normalising this to its gyroBohm value Q̃ν
.
= (Qν/nrTrvth,r)(Lr/ρr)

2 gives:

Q̃ν = − ñνT̃ν
⟨|∇x|⟩x

ψt
|ψt|

1

Lx

∫ x0+Lx

x0

dx

〈
ρr
∂ϕ̃

∂y
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−∞
dṽ∥

∫ ∞

0
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. (A.23)

To relate this to the pressure perturbations, recall the normalised definition

δp̃ν =
2B̃0

π1/2

∫ ∞

−∞
dṽ∥

∫ ∞

0

dµ̃ν⟨δf̃ν⟩rν ṽ2. (A.24)

Combining the above, a definition for the normalised heat flux can be obtained

Q̃ν = − 1

2 ⟨|∇x|⟩x
ψt
|ψt|

1

Lx

∫ x0+Lx

x0

dx

〈
∂ϕ̃

∂y/ρr
δp̃ν

〉

x

. (A.25)
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Appendix B: Adjoint
This Appendix contains details of the derivations required in Chapter 5.

B.1 Decomposition of Operators
The definitions of the operators introduced in Section 5.5 in (5.30)-(5.31) are

Ĝg,ν [p; ĝν ] =γĝν + v∥b̂ ·∇z
∂ĝν
∂z

− µ

mν

b̂ ·∇z
∂B0

∂z
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+ iωd,ν ĝν − Ĉν [p; ĝν′ ],
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ĜA∥,ν [p; Â∥] =−
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M̂A∥ [p; Â∥] =

[
1 +

4π

k2⊥c
2

∑

ν

(Zνe)
2nν

mν

Γ0,ν

]
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µν ĝν ,

N̂ϕ[p; ϕ̂] =

[
4π
∑

ν

Zνenν
B0

Γ1,ν

]
ϕ̂,

129



N̂B∥ [p; δB̂∥] =

[
1 + 16π

∑

ν

nνTν
B2

0

Γ2,ν

]
δB̂∥,

(B.26)
and Ĉν is the appropriate collision operator, which can be thought of as acting on
ĝν′ , ϕ̂, Â∥, B̂∥ separately:

Ĉν [p; {ĝν′ , χ̂ν′}] =Ĉν [p; ĝν′ ] + Ĉϕ,ν

[
p;
Zν
Tν
J0,ν′ϕ̂

]
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]

+ ĈB∥,ν
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J1,ν′

aν′
B̂∥

]
. (B.27)

B.2 Adjoints of Operators
The adjoint operators appearing in equations (5.36)-(5.39) are obtained by performing
integration by parts wherever a derivative acts on the distribution function or a field
variable. Following the change of variables ṽ∥ → −ṽ∥ these operators take the form:

Ĝ†
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b̂ ·∇B0F0,νJ0,νλ
↔
ν +

Zνe

Tν

v∥
c
J0,νF0,νĈ

†
ν [p;λν′ ],

Ĝ†
B∥,ν

[p;λ↔ν ] = 2
µν
Tν

J1,ν
ãν

F0,νŜν − 2
J1,ν
aν

µν
Tν
F0,νĈ

†
ν [p;λν′ ],

Q̂†
g,ν [p; ξ] = ZνeJ0,νF0,νξ,

Q̂†
ϕ[p; ξ] =

∑

ν

(Zνe)
2nν

Tν
(Γ0,ν − 1) ξ,

Q̂†
B∥
[p; ξ] = 4π

∑

ν

Zνenν
B0

Γ1,νξ,

M̂ †
g,ν [p; ζ] = −4π

k2⊥

v∥
c
ZνeJ0,νζ,

M̂ †
A∥
[p; ζ] =

[
1 +

4π

k2⊥c
2

∑

ν

(Zνe)
2nν

mν

Γ0,ν

]
ζ,

N̂ †
g,ν [p; σ] = 8π

J1,ν
aν

µνσ,

N̂ †
ϕ[p; σ] =

[
4π
∑

ν

Zνenν
B0

Γ1,ν

]
σ,

N̂ †
B∥
[p; σ] =

[
1 + 16π

∑

ν

nνTν
B2

0

Γ2,ν

]
σ, (B.28)
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and Ĉ†
ν [p; ·] = Ĉν [p; ·] is the self-adjoint collision operator. Here, the following defi-

nitions have been made

Ŝ[p;λ↔ν ] = v∥b̂ ·∇z
∂λ↔ν
∂z

− iωd,νλ
↔
ν − iω∗,νλ

↔
ν . (B.29)

B.3 Simplifying Adjoint Equations

Consider taking the following moments of (5.36):
〈
Zνe

Tν
J0,νF0,ν , ·

〉

v,ν

,

〈
Zνe

Tν
J0,νF0,ν

v∥
c
, ·
〉

v,ν

,

〈
2
J1,ν
aν

F0,ν
µν
Tν
, ·
〉

v,ν

, (B.30)

giving

0 =
∑

ν

2πB0

mν

∫
dv∥

∫
dµν αν(z, v∥, µν)F0,ν

{
γ∗λ↔ν + v∥b̂ ·∇z

∂λ↔ν
∂z

− µν
mν

b̂ ·∇z
∂B0

∂z

∂λ↔ν
∂v∥

− iωd,νλ
↔
ν + ZνeJ0,νξ −

4π

k2⊥
ZνeJ0,ν

v∥
c
ζ + 8π

J1,ν
aν

µνσ

−Ĉν [λ↔ν ]
}
, (B.31)

where αν can take the forms:

αν =





Zνe

Tν
J0,ν

Zνe

Tν
J0,ν

v∥
c

2
J1,ν
aν

µν
Tν

. (B.32)

We now identify different terms in (B.31) for each αν which are odd in v∥ so evaluate
to zero when integrated over the domain {−∞,∞}:

0 =
∑

ν

2πB0

mν

∫
d2v

Zνe

Tν
F0,ν

{
γ∗J0,ν λ
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∂B0
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∂λ↔ν
∂v∥

+ ZνeJ
2
0,νξ +

4π

k2⊥
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2
0,ν

v∥
c
ζ

︸ ︷︷ ︸
odd in v∥

+8π
J1,νJ0,ν
aν

µνσ − Zνe

Tν
J0,νĈν [λ

↔
ν ]

}
,

(B.33)
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0 =
∑

ν

2πB0

mν
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c
λ↔ν +

v2∥
c
b̂ ·∇zJ0,ν

∂λ↔ν
∂z

− µν
mν

v∥
c
b̂ ·∇z

∂B0

∂z

∂λ↔ν
∂v∥

− iωd,ν
v∥
c
J0,νλ

↔
ν

+ ZνeJ
2
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2
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,

(B.34)

0 = 2
∑

ν
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mν
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. (B.35)

Integration by parts can be performed on the remaining v∥ derivative, using velocity-
independence of the fields. Using equations (5.37)-(5.39) it is then possible to simplify
the above equations to produce the results (5.41)-(5.43).

B.4 Geometry Implementation

The code stella has an input option to use the Miller parametrisation of a flux
surface; it takes a set of input variables to describe the local geometry of a specified
flux surface along with the two adjacent flux surfaces on either side. Equation (2.12)
is taken in the form

R(r, θ) = R0(r) + r0(r) cos[θ + sin(θ)δ(r)], (B.36)

with the triangularity redefined as δ(r) .= arcsin[δ̄(r)]. Consider Taylor expanding in
r about r = rψ0

R0(r) = R0(rψ0) +
dR0

dr

∣∣∣∣
rψ0

(r − rψ0) + ... ≈ Rψ0 +∆ψ0dr +O(dr2), (B.37)

with dr = r − rψ0 , Rψ0 = R0(rψ0), and ∆ψ0 =
dR0

dr

∣∣
rψ0

. Similarly,

δ(r) = δ(rψ0) +
dδ

dr

∣∣∣∣
rψ0

(r − rψ0) + ... ≈ δψ0 + δ′ψ0
dr +O(dr2), (B.38)
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with δψ0 = δ(rψ0), and δ′ψ0
= dδ/dr|rψ0 . We also define r0(rψ0) = r0,ψ0 , such that

r0(r) = r0,ψ0 + dr. Combining this and equations (B.37) and (B.38) gives

R(r, θ) ≈Rψ0 + r0,ψ0 cos[θ + sin(θ)δψ0 ]

+
{
∆ψ0 + cos[θ + sin(θ)δψ0 ]− r0,ψ0 sin[θ + sin(θ)δψ0 ] sin(θ)δ

′
ψ0

}
dr, (B.39)

such that the above definition holds on any given flux surface, ψ0. Equivalently, (2.13)
can also be expanded about r = rψ0 by first expanding the elongation

κ(r) = κ(rψ0) +
dκ

dr

∣∣∣∣
rψ0

(r − rψ0) + ... ≈ κψ0 + κ′ψ0
dr +O(dr2), (B.40)

with κψ0 = κ(rψ0), and κ′ψ0
= dκ/dr|rψ0 to then write

Z(r, θ) ≈ r0,ψ0κψ0 sin(θ) +
[
κψ0 + r0,ψ0κ

′
ψ0

]
sin(θ) dr. (B.41)

These functions are used to describe the geometry of the flux surface of interest and
the two adjacent flux surfaces by setting dr = {0,±Λ}, with Λ ≪ 1 a constant, in
order to evaluate their radial derivatives. These quantities are then used to compute
the Jacobian, magnetic field strength and configuration, along with other functions
defined on the flux surface.
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