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Materials used in commercial D-T fusion reactors will be exposed to irradiation and a mixture of
helium and hydrogen plasma. Modeling the microstructural evolution of such materials requires
the use of large-scale molecular dynamics simulations. The focus of this study is to develop a fast
EAM potential for the interactions among the three elements (W, H, and He), fitted to accurately
reproduce both the ab initio formation energies and relaxation volumes of small defect clusters
containing light gases within tungsten. The potential enables the study of tungsten under irradiation
and in the presence of light gases. To demonstrate the utility of the potential, we construct a
thermodynamically motivated model for predicting the energetics of light-gas-filled voids. The W-
He-H system energy is represented by analytical expressions that describe the energetics of hydrogen
occupying distinct configurations. The model is validated using molecular dynamics simulations with
the new interatomic potential and results in a simple expression that quantifies the difference in
hydrogen trapping between a mono-vacancy and a large void.

I. INTRODUCTION

To build a commercially viable fusion reactor, it is cru-
cial to develop a rigorous understanding of the long-term
evolution of the materials that make up the reactor. Es-
pecially plasma-facing components (PFCs) will be sub-
jected to extreme operating conditions, including irradia-
tion by high-energy neutrons and implantation of helium
and lower-energy fluxes of hydrogen isotopes [1]. Tung-
sten is a candidate PFC material [2–6] due to its excellent
properties, such as a high melting point, low sputtering
yield [7], and high thermal conductivity. Still, signifi-
cant microstructural changes are expected to occur dur-
ing reactor operation due to accumulation of irradiation
damage, such as the formation of gas bubbles containing
helium and hydrogen isotopes [8, 9]. Furthermore, light
gases have been shown to bind to dislocations, thereby
impeding their motion and leading to both hardening and
embrittlement of the material [10, 11]. Consequently, the
presence of light gases in tungsten not only degrades its
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performance and longevity [1, 2], but also enhances tri-
tium retention, ultimately reducing the fuel efficiency of
the reactor.

Given the significant costs and challenges associated
with building and testing reactors, and the relative
scarcity of experimental data of materials behavior un-
der relevant conditions, computational models are es-
sential to assess material durability under fusion condi-
tions. The primary effect of irradiation is the generation
of defects at the atomic scale, such as interstitials and
vacancies which coalesce into voids [12] and dislocation
loops [13], respectively. The properties of these nanoscale
defects are typically studied with first-principles meth-
ods, such as density functional theory (DFT). Due to
the high computational demand of DFT, its applicabil-
ity is limited to systems comprising between hundreds
and thousands of atoms [14–16]. Transmission electron
microscopy (TEM) studies have shown that the defects
induced by heavy irradiation and implantation can orga-
nize into microstructural features beyond the micrometer
scale [17, 18]. Molecular dynamics (MD) simulations can
be employed to simulate such structures. To maintain
DFT-level accuracy, the interatomic potentials used in
the MD simulation must be fitted to replicate proper-
ties derived from DFT or relevant experimental proper-
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ties. Recent advancements in machine learning potentials
(MLPs) [19–23] have resulted in interatomic potentials
with accuracy approaching DFT. However, evaluation of
these potentials presently remains orders of magnitude
slower than classical potentials such as the embedded
atom method (EAM) [24].

In this work, we present the development of a classical
potential for the ternary W-H-He system for radiation
damage simulations. We selected an EAM potential due
to its balanced combination of computational efficiency
and accuracy. EAM potentials are widely recognized for
their suitability in modeling metallic systems [25–28] and
have demonstrated the ability to predict properties of
irradiated microstructures consistent with experimental
observations [29–32]. We developed EAM potentials tai-
lored to reproduce the ordering of activation and binding
energies of radiation defects containing light gases, en-
abling a qualitative description of the emergent complex
behaviour. In our study, we focus on two key properties
of macroscopic significance: the binding energy of light
gases to vacancy-type defects and the relaxation volume
of such defects.

Experiments have demonstrated a strong spatial cor-
relation between the irradiation dose depth-profile and
the retention of helium and hydrogen [33, 34]. Comple-
mentary DFT studies [35–37] indicate that this reten-
tion is primarily governed by the trapping of these gases
within irradiation-induced void defects. Additional trap-
ping sites include extended defect structures such as dis-
locations [38–40] and grain boundaries [41, 42], which
are also capable of retaining light gases. Dislocations are
of particular interest because irradiation increases their
density [43, 44], thereby contributing to the population of
trapping sites in irradiated materials. However, thermal
desorption studies (TDS) [45, 46] and theoretical works
[39, 47] show that hydrogen trapping at dislocations is
weaker than at vacancies and voids, and is therefore sig-
nificant primarily at lower temperatures.

At low irradiation doses, small vacancy clusters are
the dominant void-like structures. With increasing dose,
temperature, and light gas concentration, experiments
have shown an increase in void sizes [18, 48, 49]. Since
vacancies and voids play a significantly role as trapping
sites for light gases, it is essential for our EAM potential
to offer an accurate description of the vacancy-gas and
void-gas interactions.

Irradiation-induced swelling has been well documented
in both experimental studies [32, 50–54] and MD simu-
lations [32, 55]. Dudarev et al. [56, 57] and Reali et
al. [58] have shown that defect relaxation volumes are
primary contributors to the macroscopic swelling mecha-
nism and are key parameters in describing the elastic field
interactions between defects. The presence of helium sig-
nificantly amplifies this swelling, particularly under high
flux and dose conditions, where the formation of large
helium bubbles can lead to surface fractures in the ma-
terial [59]. We therefore place emphasis on accurately
modeling the relaxation volumes of clusters of light gases

trapped within both the lattice and vacancies.

Various W-H-He potentials exist in the literature, in-
cluding fully fitted models such as the potentials by Li
et al. [60] and Bonny et al. [61], as well as hybrid ap-
proaches that merge existing potentials such as the po-
tential by Yang et al. [62], which combines the W-W
by Marinica et al. [26], W-H by Wang et al. [63], and
W-He by Juslin et al. [64]. In the following, we shall
refer to the potentials according to the first author of the
corresponding publication. The Bonny potential was not
fitted to reproduce the gas properties of hydrogen and he-
lium, leading to inaccuracies when applied to bubbles. In
contrast, both the Yang and Li potentials effectively de-
scribe hydrogen-helium interactions within the tungsten
lattice and gaseous phases, providing a more reliable de-
scription of the W-H-He system. Since the Li potential
was explicitly fitted to the W-H-He system, it offers a
more accurate representation of defect properties com-
pared to the Yang potential. However, these potentials
were primarily fitted to capture the energetics of defects
in the W-H-He system without considering the relaxation
volumes. As a result, they tend to overestimate these
volumes. Additionally, inaccuracies in the predictions of
tungsten surface energies lead to an imprecise descrip-
tion of voids. This highlights the necessity of developing
a new potential that addresses these limitations and pro-
vides a more comprehensive model for studying common
radiation defects in the W-H-He system.

Here, we describe the development of a new W-H-He
potential building upon the W-H potential developed by
Mason et al. [47], which accurately reproduces DFT-
calculated binding energies and relaxation volumes of
typical small irradiation-induced defects containing hy-
drogen. Furthermore, the potential provides a good de-
scription of tungsten surfaces, enabling accurate model-
ing of voids within the lattice. This alignment with our
modeling goals makes it a suitable choice. We extend this
potential to also include helium interactions, allowing for
the simulation of both hydrogen and helium in irradiated
tungsten. In the remainder of this paper, we compare the
newly developed potential with existing models in the lit-
erature. Specifically, we select the Li potential [60] and
the hybrid approach used by Yang [62] for comparison.

As discussed earlier, high irradiation doses can induce
the formation of large voids capable of trapping hydro-
gen and helium. For such extended defect structures,
DFT becomes impractical for predicting energetics, ne-
cessitating the use of extrapolative models. Examples
of such approaches exist for hydrogen [65] and helium
[66, 67]. In these studies, the total energetics are decom-
posed into contributions from distinct interactions, such
as metal-gas and gas-gas interactions. These contribu-
tions are then extrapolated using analytical expressions
fitted to ab initio data.

Owing to the chemical complexity of hydrogen-helium
containing voids, which involve molecular hydrogen, hy-
drogen adatoms, and monatomic helium, ab initio mod-
eling becomes computationally difficult. In this work,
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we therefore demonstrate how our newly developed in-
teratomic potential — fitted to reproduce accurate void
surface energies and realistic gas properties - can be em-
ployed to construct a generalized analytical model for
hydrogen-helium filled voids. We focus on a minimal for-
mulation that can be readily incorporated into higher-
scale modeling frameworks, such as finite element meth-
ods and kinetic Monte Carlo simulations.

II. FITTING METHOD

We employ the generalized Finnis-Sinclair potential [68].
In this formulation, the total energy Ea of an atom a de-
pends on the interatomic distances rab to its neighboring
atoms b ∈ nebs, and the respective atomic species, α and
β:

Ea =
∑

b∈N

ϕαβ(rab) + Fα

(∑

b∈N

ραβ(rab)

)
. (1)

The potential ϕαβ represents pairwise interactions be-
tween atom a of species α and atom b of species β, where
atom b is from the set N containing the atoms that neigh-
bour atom a. The function ραβ represents the electron
density contribution from atom b of species β to atom a
of species α. The embedding function Fα represents the
many-body interaction energy required to place an atom
a of species α into the electron density generated by the
surrounding atoms. We parameterize the functions using
splines and continuous expressions, with details given in
Sec. III.

Zhou et al. [69] demonstrated that allowing the elec-
tron density to take negative values leads to a signifi-
cantly more accurate representation of the DFT proper-
ties for metallic hydrogen-helium systems. Accordingly,
we allow the electron density contributions ραβ to take on
negative values during fitting, which can be interpreted
as species b inducing a localized reduction in electron
density around species a. This generalized form of the
Finnis-Sinclair model is implemented in the MD simu-
lator Lammps [70] under the pair style eam/he [69]
option.

Since the Mason W-H potential follows the eam/alloy
formulation, we needed to extend the embedding func-
tions of tungsten and hydrogen to accommodate nega-
tive electron density values. In the Mason potential, an
embedding function is generally defined as:

Fα(ρ) = Aα
√
ρ+ sα(ρ), (2)

where sα(ρ) is a set of quintic spline functions constrained
to be zero at ρ = 0. For the extension to negative elec-
tron densities, we adopt the following modification for
the tungsten and hydrogen electron densities:

Fα(−ρ) = −Fα(ρ) (3)

A. Optimization Algorithm

Let a function f to be fitted be defined by a parame-
ter set x, which may include knot parameters, function
coefficients, or other defining parameters. To identify
the optimal parameters, we introduce a single-valued loss
function, with the parameter set minimizing this func-
tion representing the best fit. Here, the loss is given by
the difference in defect properties with respect to DFT
data. For a given parameter set x and given sets of defect
configurations {Di}, defect reactions {Rj}, and gaseous
configurations {Gk}, we define the loss function as:

L(x) =
∑

i

αi |∆Ef(x, Di)|+ βi |∆Ω(x, Di)|

+
∑

j

γj |∆Eb(x, Rj)|+
∑

k

δk |∆E(x, Gk)|
(4)

The first term |∆Ef(x, Di)| represents the loss due to
differences in the formation energy of defect Di; this
term specifically only considers single-helium defects to
ensure accurate description of the migration barrier, as
well as the formation energies in tetrahedral and octahe-
dral sites. The second term |∆Ω(x, Di)| represents the
loss due to differences in the relaxation volume of de-
fect Di. The third term |∆Eb(x, Rj)| represents the loss
due to differences in binding energy for a given reaction
Rj , which includes scenarios such as the binding energy
released when two interstitial helium atoms cluster to-
gether. The final term |∆E(x, Gk)| represents the loss
due to differences in the total energy of gaseous configu-
rations Gk, ensuring that the properties of gaseous states
for light gases are accurately captured.
The loss function aims to balance accuracy between

defect properties and gas properties. To align with the
objectives of this work, greater emphasis is placed on
defect binding energies and their associated relaxation
volumes. As a result, the weights γ and δ, corresponding
to these defect properties, are generally assigned larger
values than the weights α and β, which correspond to gas
properties and secondary contributions. To avoid overfit-
ting the potential to only defect-related quantities, α and
β are still chosen to be of the same order of magnitude
as γ and δ, ensuring that all property types influence the
fitting process.
Furthermore, certain properties are considered more

important than others, which is reflected in the varia-
tion of the weights, i.e. it is not necessarily the case that
αi = αj . For example, greater importance is assigned to
binding energies on the order of 1 eV or lower, as these are
more likely to influence defect dynamics at temperatures
relevant to molecular dynamics (MD) simulations. In
contrast, higher binding energies, e.g. above 2 eV, corre-
spond to processes that are thermally unlikely to reverse
and are therefore weighted less heavily. The weightings
were tuned through a combination of trial and error and
by evaluating whether the resulting potential accurately
reproduced the desired set of physical properties.
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FIG. 1. A simple global minimization algorithm, designed
to work well for highly parallelizable, non-linear and non-
differentiable problems. The algorithm aims to sequentially
refine the sampling region by inferring the regions of low loss.
After running this algorithm for a few iterations the Simplex
method [73] is used to find the minima.

Optimization is non-trivial due to the high dimension-
ality of x, the non-differentiability of the loss function,
and the time-consuming nature of loss evaluations. Var-
ious optimization algorithms exist in the literature for
such scenarios, including genetic algorithms [71] and par-
ticle swarm optimization [72]. However, we found that
the algorithm outlined in Figure 1 provided greater con-
trol over the optimization process and generally well con-
verged parameterizations.

The algorithm essentially performs a form of impor-
tance sampling, where after each iteration, the sampling
region is updated by using a Gaussian Mixture Model
(GMM) [74] to form clusters in parameter space regions
where the loss is predicted to be low. This algorithm
is highly parallelizable, allowing it to be run efficiently
on a high performance computing (HPC) machine. Fur-
thermore, it strikes a good balance between exploring
the parameter space and converging to a region of low
loss. After a set of regions of low loss are found, a lo-
cal minimizer such as the Simplex method [73] is used
to converge to a minimum. We present here the poten-
tial that offers a good compromise between accuracy and
robustness with respect to the test cases, as shown in
section IV. For efficient exploration of the variable space,
we initially fitted sets of parameters independently with
respect to each other: First, we fitted the W-He inter-
actions, whilst keeping He-He and H-He to follow DFT
vacuum properties. Then, we fine-tuned all of param-
eters together to further improve the defect properties
whilst maintaining vacuum properties.

B. DFT Data Generation

The DFT data used in this work are primarily sourced
from literature. The binding energies of various defect

clusters are obtained from Yang et al. [36], and the relax-
ation volumes of helium clusters from Nguyen-Manh et
al. [35]. However, relaxation volume data for hydrogen-
helium clusters are lacking. To address this, we per-
formed DFT calculations using the Vasp [75] program,
starting with several unique minimized atomic configu-
rations taken from Lammps [70], using an intermediary
potential constructed by combing the Mason W-H poten-
tial and Juslin’s W-He potential. These configurations
were further minimized within DFT, from which we ob-
tained defect formation energies and relaxation volumes.
All DFT simulations were performed using the GGA-
PBE exchange-correlation potential [76] with cells con-
taining 4× 4× 4 base-centered cubic (bcc) unit cells and
a 5× 5× 5 k-point mesh. A plane-wave cutoff energy
of 450 eV was used, with a Methfessel-Paxton [77] elec-
tron smearing width of 0.05 eV. The tungsten semi-core
shells were treated as valence electrons, resulting in a to-
tal number of 12 valence electrons for W, 2 for He, and 1
for H. Forces were converged to 0.01 eV/Å. In both MD
and DFT, we computed defect formation energies and
relaxation volumes following the method outlined by Ma
and Dudarev [15], with the formation energies corrected
for periodic elastic interactions using the Calanie [78]
code. The resulting formation energies and relaxation
volumes are listed in table D.1 in the Appendix.

III. POTENTIAL PARAMETERIZATION

To fit each function in the potential, we begin with a
physics-informed prior derived from first-principles stud-
ies, followed by a fitting process to further optimize the
potential. This approach ensures greater reliability and
minimizes the risk of overfitting to the defect dataset [21].
The Ziegler-Biersack-Littmark (ZBL) stopping model

[79] serves as the prior in constructing our pair poten-
tials. This alignment is critical for accurately modeling
high-energy atomic collisions, where ZBL-based short-
range interactions dominate. Equation (5) presents the
formalism employed, where the fitting process optimizes
a set of quintic spline points to minimize the defined loss
function.
At short interatomic distances, constraints are applied

to enforce adherence to the ZBL stopping model, ensur-
ing correct behavior for small separations. Additionally,
as the distance approaches either the cutoff range rc or
zero, the potential is designed to transition smoothly to
zero, with continuity maintained up to the second deriva-
tive. These constraints collectively ensure that the po-
tential is stable both at short and long ranges:

ϕαβ(r) =





ZBL(r) + s1(r) if 0 ≤ r < r1
ZBL(r) + s2(r) if r1 ≤ r < r2
ZBL(r) + s3(r) if r2 ≤ r < rc
0 if r ≥ rc

, (5)

where we omitted the atomic species indices α, β in the
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ZBL and spline functions for brevity.
The general Finnis-Sinclair potential framework per-

mits distinct definitions for electron densities. For
instance, tungsten-helium interactions include ρW−He,
which represents the electron density donated by tung-
sten to helium, and ρHe−W, which represents the electron
density donated by helium to tungsten. Due to the com-
plex charge localization patterns exhibited by light gases
within a lattice, finding a useful prior for these electron
densities proved challenging. Therefore the fitting will be
the only driving factor in defining the functions. Equa-
tion (6) formalizes this approach, with spline constraints
ensuring that the electron densities smoothly decay to
zero, preserving stability across the interaction range:

ραβ(r) =





s1(r) if 0 ≤ r < r1
s2(r) if r1 ≤ r < rc
0 if r ≥ rc

. (6)

A. Tungsten-Helium Pairwise Potential

For greater stability, we incorporated data from quan-
tum mechanical studies [80, 81] on helium adsorption
onto noble metal surfaces. These studies indicate that,
unlike hydrogen, helium does not form chemical bonds
with metal surfaces, as its interaction energies remain in
the meV range. To capture these weak interactions in
the tungsten-helium potential, we constrained the W-He
pair potential to have a minima close to 3 Å with a dimer
energy on the order of a few meV.

B. Helium Embedding Function

The above theoretical studies [80, 81] have also demon-
strated that helium exhibits a repulsive response to elec-
tron density, with the degree of repulsion being linearly
proportional to the electron density. This behavior has
been further corroborated by DFT simulations [82], re-
inforcing the applicability of this functional form.

However, a purely linear form would incorrectly imply
that helium could be attracted to regions of negative elec-
tron density, leading to erroneous predictions. To avoid
this issue, we used a modified functional form:

FHe(ρ) =
√

a2ρ2 + b2 − b, where a ≥ 0, b ≥ 0. (7)

This ensures physical consistency by preventing attrac-
tion to negative electron densities while still capturing
the correct repulsive behavior at larger electron densi-
ties.

C. Helium-Helium Interactions

Traditional He-He pair potentials like the Beck param-
eterization [83] are derived from gas-phase experimental

data, particularly the second virial coefficient of the virial
equation of state [84]. While effective for low-pressure
systems up to 2–3MPa [85], these potentials prove inad-
equate for the highly pressurized environments encoun-
tered in small helium bubbles in stressed tungsten lat-
tices.

To address this limitation, we developed a revised po-
tential that explicitly incorporates DFT data from the
high-pressure regime, where helium adopts a hexagonal
close-packed (hcp) structure [86]. Our fitting strategy
balances both the experimental second virial coefficients
governing dilute gas behavior, and first-principles energy
and stress curves for hcp helium, see Figure 3. These
curves were generated through systematic variation of
hcp lattice parameters followed by DFT calculations of
total energy and hydrostatic stress.

The hcp system was initialized with perfect c/a ra-

tio for lattice vectors (1/2,−
√
3/2, 0), (1/2,

√
3/2, 0), and

(0, 0, 2
√
2/3), with two He atoms placed at (0, 0, 0) and

(1/2, 2/3, 1/2). We used a 20× 20× 20 k-point mesh and
a plane-wave cutoff energy of 1000 eV. The total energy of
the crystal was computed for hcp lattice constants rang-
ing from 1.3 to 4 Å. No structural minimization was per-
formed. The same structures were used to compute the
cohesive energies with the interatomic potential.

As shown in Figures 2 and 3, our potential exhibits
good agreement with high-pressure hcp helium data
while maintaining reasonable accuracy for low-pressure
virial coefficients. By accepting a modest reduction in
the accuracy of the second virial coefficient, we achieve
a significantly improved description of small interstitial
helium clusters within the tungsten lattice.

This trade-off does not adversely affect the accuracy
for large voids, where helium behaves nearly as an ideal
gas. In the opposite limit, such as over-pressurized he-
lium bubbles, where the pressures can range from the
MPa to GPa regime [87] - the second virial term is no
longer dominant. In this regime, many-body interactions
become significant, and the system behavior approaches
that described by the hcp helium equation of state and
its associated stress–energy relations. Consequently, the
second virial coefficient is most critical in a regime that is
not central to the intended application of this potential.
This compromise is therefore consistent with our objec-
tive of accurately capturing the elastic fields associated
with helium-based defects.

During optimization, we found that introducing the
many-body interaction as represented by the embedding
function provided no statistically significant improve-
ment. To prevent overfitting while maintaining physi-
cal realism, we constrained helium’s electron densities to
zero, given the minimal contribution of noble gas elec-
trons to the delocalized electron gas.
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D. Hydrogen-Helium Interactions

To ensure stability in H-He interactions, we began devel-
oping the H-He potential by generating DFT data points
for the binding energy of a H-He dimer in vacuum. The
binding energies were computed in an orthogonal simu-
lation cell with side lengths of 12, 10, and 10 Å. The H
and He dimer was placed along the x-direction, and the
binding energies were computed for bond distances rang-
ing from 1 to 4 Å. We used a 3× 3× 3 k-point mesh and
a plane-wave cutoff energy of 1000 eV.

Initially, we fitted a pair potential in the form of Equa-
tion (5) directly to this DFT dataset, omitting any elec-
tron density contributions to isolate the pairwise interac-
tion. After achieving a converged fit for the W-He sys-
tem, we iteratively refined both the electron densities of
both H-He and He-H and pair potential parameters with
respect to defect and dimer properties. This dual opti-
mization aimed to improve the accuracy of defect prop-
erties, e.g. binding energies in tungsten vacancies, while
preserving the accuracy of the H-He vacuum interaction
derived from DFT.

Figure 2 demonstrates that our potential reproduces
the DFT-calculated diatomic H-He interaction curve
with high precision. This agreement suggests that the
energetics of hydrogen and helium within voids or low-
density regions will remain reliable. Furthermore, the
close adherence to the diatomic interaction indicates that
overfitting has been avoided, as the potential’s transfer-
ability is validated by its performance in this fundamen-
tal limit.

In the gaseous phase, hydrogen exists predominantly
as a diatomic molecule. During the original fitting of the
W-H potential, Mason et al. [47] parameterized the in-
teraction to accurately reproduce the molecular energy,
bond length, and vibrational frequency of H2, whilst en-
suring that formation of H3 is unfavourable. By accu-
rately describing both the hydrogen molecule and the
hydrogen-helium pairwise interaction, we expect the in-
teractions within a hydrogen-helium gas mixture to be
captured with sufficient fidelity, enabling a reliable de-
scription of these gases within voids.

E. DFT Charge Density Comparison

To assess the qualitative accuracy of our potential, we
performed a charge density analysis using DFT calcula-
tions. While it is not possible to capture many of the
nuances of DFT in an empirical potential optimised for
speed, choosing the correct functional forms can signifi-
cantly enhance the accuracy and reliability of the poten-
tial.

Previous potentials [27, 60, 64] neglect electronic in-
teractions involving helium. This simplification is jus-
tified since helium is a noble gas, and therefore has a
tightly bound electronic structure. However, in the fol-
lowing charge density analysis we show that there are

non-negligible electronic interactions for helium inside a
tungsten lattice.
In figure 4, we illustrate how the charge density as-

sociated with a helium atom changes when is part of a
He-H defect in either an interstitial or vacancy site in
tungsten, relative to its state in vacuum. In the intersti-
tial configuration, the charge density increases near the
neighboring tungsten atoms and decreases around the he-
lium atom. This trend is consistent with previous find-
ings [91], which report hybridization between the helium
p-orbitals and tungsten d-orbitals, suggesting that there
is some a degree of electronic interaction. In the vacancy
configuration,the charge density of helium becomes more
localized, suggesting that tungsten acts to further confine
the helium charge density.
Additionally, we observe a polarization of charge den-

sity in the direction of the hydrogen atom, indicating
some degree of electronic interaction between hydrogen
and helium within the tungsten lattice. Interestingly, the
direction of polarization along the He-H axis differs be-
tween the interstitial and vacancy configurations. In the
interstitial defect, a reduction in charge density is seen
around helium, while in the vacancy defect, an increase
is observed. This contrast highlights the complexity of
electronic interactions in these systems and the impor-
tance of including such effects when fitting interatomic
potentials.

IV. DEFECT PROPERTIES

For the potential to be applicable to highly irradiated
microstructures, it must accurately describe the interac-
tions between irradiation-induced defects and light gases.
This section examines the potential’s accuracy in predict-
ing these interactions.

A. Interstitial Helium Properties

We begin by examining the energies and relaxation vol-
umes of a single helium atom within a perfect tungsten
lattice. We define the formation energy ED

f of a defect D
as the difference between the total energy of the defect
E(D) and the total energies of an equivalent number of
constituent atoms in their respective ground states, these
being bcc tungsten, diatomic hydrogen in vacuum, and
monoatomic helium in vacuum:

ED
f = E(D)−NWEW(bcc) −

1

2
NHEH2

−NHeEHe. (8)

The equilibrium sites of helium within a tungsten lat-
tice dictate diffusion pathways, making their accurate
mapping essential. As shown in table I, our potential
effectively captures the differences between formation en-
ergies in these equilibrium sites. To further analyze kinet-
ics, we compared the minimum energy pathway for the
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FIG. 2. Gas properties of helium and hydrogen. (a) The second virial coefficient of helium, which quantifies deviations from
the ideal gas law. Experimental data from Beck et al. [83] is shown, it is to be noted that the Yang potential uses the Beck
potential to describe He-He interactions. (b) H-He diatomic interactions, where the Lennard-Jones potential is taken from [88].
This H-He potential has been widely used in the literature [36, 89, 90] to model H-He interactions. These plots demonstrate
that our potential accurately captures H-He interactions, though minor discrepancies exist in the ideal gas law corrections.
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10−2

10−1

100

101

102

103

S
tr

es
s
( eV

Å
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FIG. 3. Properties of hcp helium as a function of lattice constant: (a) potential energy and (b) stress (left to right). Our potential
exhibits small deviations in the predicted energy of the hcp crystal and accurately captures the low-stress regime. However, at
higher stresses, the accuracy decreases as the ZBL term dominates, which is an inherent part of the potential formulation. This
trade-off is unavoidable but acceptable. Overall, our potential provides a consistent and reliable representation of hcp helium.

migration of interstitial helium computed by our poten-
tial with DFT calculations, as shown in Figure 5. This
comparison confirms that our model accurately repro-
duces the primary energy barrier. However, deviations
in the second derivatives along the pathway introduce in-
accuracies in zero-point energy estimates, potentially af-
fecting hopping frequency calculations in diffusion stud-
ies [92]. Despite these discrepancies, the dominant factor
in determining hopping frequencies remains the Debye
frequency of tungsten atoms, due to their significantly
higher mass. Consequently, while minor deviations in
diffusion coefficients may occur, they should remain close

TABLE I. Properties of single helium defects within a
perfect tungsten lattice.

Property DFT Our Work Yang [62] Li [60]

EHe,tet
f (eV) 6.16 [93] 6.73 6.68 6.21

EHe,tet−oct
m (eV) 0.22 [93] 0.21 0.32 0.13

EHe,tet−tet
m (eV) 0.06 [93] 0.07 0.21 0.08
ΩHe−tet

rel (Ω0) 0.36 [35] 0.48 0.63 0.67

to expected values.

Empirical potentials, while widely used in materials
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(a)

(b)

FIG. 4. Change in charge density of helium in a H-He inter-
stitial (top) and H-He vacancy (bottom) defect relative to the
helium charge density in vacuum, shown here as a slice of the
(100) plane intersecting the helium atom. Atoms shown are
W (gray), He (light blue), and H (light red).

simulations, inherently have limitations in accurately re-
producing all properties derived from DFT. These limita-
tions necessitate thoughtful compromises. In our study,
a discrepancy is the overestimation of the interstitial he-

lium formation energy, denoted as EHe,tet
f . For simu-

lations of bulk tungsten, this discrepancy will only af-
fect the binding energies of helium to large voids, where
helium can behave like an ideal gas. However, for sur-
face simulations, the significance of this property may
increase. Nevertheless, due to the high magnitude of

EHe,tet
f and the small relative error, these effects are neg-

ligible within typical MD timescales and reasonable tem-
perature ranges.

Another inaccurately predicted property is the relax-
ation volume of interstitial helium atoms. During the
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FIG. 5. Nudged elastic band (NEB) calculation of the helium
migration barrier between two tetrahedral sites. Our poten-
tial is in agreement with DFT [94].

fitting process, we prioritized accurately modeling relax-
ation volumes for larger defects and those involving va-
cancies, as these are more prevalent in irradiated ma-
terials. Consequently, this compromise introduces inac-
curacies in the elastic interactions of interstitial helium
atoms with large elastic fields, such as those surrounding
dislocations.

B. Helium Interaction with Surfaces

Hydrogen binds to tungsten surfaces with an energy of
approximately 0.5 eV [95]. In contrast, helium binds
much more weakly to metal surfaces [80, 81]. Our model
predicts a weak helium binding energy to the tungsten
surface, ranging from 0.05 to 0.06 eV, depending on sur-
face orientation. While this slightly overestimates the
interaction compared to theoretical predictions [80, 81],
which place helium-surface binding energies on the or-
der of 0.1–1meV, it remains consistent with the over-
all trend of weak helium adsorption. Furthermore, such
small binding energies are negligible in finite-temperature
MD simulations.

Wang et al. [63] conducted first-principles nudged
elastic band (NEB) calculations to study helium migra-
tion paths out of surfaces with different orientations.
Given the numerous possible migration pathways, these
results should be interpreted with caution. Nevertheless,
they provide valuable insights into helium-surface inter-
actions. Their calculations indicate significantly higher
escape barriers: 0.55 eV for (100), 0.30 eV for (110), and
1.03 eV for (111) surface orientation. As shown in Fig-
ure 6, our potential underestimates these barriers but
still captures their presence, demonstrating a reasonable
extrapolation, since such configurations are not included
in the fitting.
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FIG. 6. NEB calculation of helium migration from vacuum
into a tungsten surface using our potential. The results re-
veal small escape barriers, representing the energetic thresh-
old that helium must overcome to enter or escape tungsten
surface.

C. Energetics of Helium-Hydrogen Clusters

For reliable MD simulation, ist is essential to accurately
predict the binding energies between combined defects
with high accuracy. We define the binding energy for
forming a defect D3 from the constituent defects D1 and
D2 as:

Eb = ED1

f + ED2

f − ED3

f , (9)

where a positive Eb indicates a favorable reaction D1 +
D2 → D3.
In this paper, a binding energy will often refer to the

energy released when an interstitial gas atom binds to
a defect. When multiple light gas atoms are already
present in the defect, the number of possible configu-
rations increases exponentially, leading to a distribution
of observed binding energies in simulations. To system-
atically quantify differences between interatomic poten-
tials, we conduct multiple MD simulations at 400K for
25 ps using a simulation cell of 12× 12× 12 unit cells, fol-
lowed by conjugate gradient (CG) minimization to iden-
tify metastable configurations of helium defect clusters.
We then retain the minimum energy configurations for
further analysis. Clusters that fragmented or underwent
trap mutation [96] were excluded to maintain consistent
structural definitions across all potentials. This exclusion
criterion ensures direct comparability, as trap mutation,
for example, transforms an interstitial helium cluster into
a vacancy-helium complex and a self-interstitial, altering
the defect’s classification.

In Figures 7 to 9, only binding energies between the
found minimum energy configurations are shown. It is to
be noted that many metastable configurations exist, and
so within a given MD simulation there will be variation
in the measured binding energies. Furthermore, we com-
pare our results with DFT calculations from the litera-

ture [35, 36] where available, and perform our own where
none exist. Additionally, we compare against other EAM
potentials, specifically the W-H-He potentials by Li [60]
and Yang [62].

D. Interactions of Helium with Helium Clusters

Figure 7 demonstrates that all three potentials accurately
predict the binding energies of interstitial helium atoms
and helium clusters, where trap mutation has not oc-
curred. However, discrepancies emerge in their predic-
tions of relaxation volumes: the Li and Juslin potentials
overestimate these volumes compared to DFT-derived
data, whereas our potential aligns more closely. This di-
vergence highlights the improved accuracy of our model
in capturing the elastic fields of these helium-filled de-
fects, ensuring more realistic representations of defect-
induced strain fields, which are critical for understanding
helium-driven swelling.

E. Helium driven Trap Mutation

Helium driven trap mutation occurs when a large in-
terstitial helium cluster emits a Frenkel pair, forming
a vacancy-helium cluster and a self-interstitial atom.
This phenomenon, widely reported in atomistic and
DFT studies [96–99], is observed in our simulations and
marked by star symbols in Figure 7 (upper left plot).
Our interatomic potential predicts that trap mutation

becomes energetically favorable for helium clusters as
small as five atoms. DFT studies report some variation
in the critical cluster size required for trap mutation: You
et al. [98] reported five atoms, Boisse et al. [96] reported
six atoms, and Zhang et al. [99] found a slightly larger
threshold of seven atoms. These discrepancies highlight
the difficulty of accurately capturing the trap mutation
process, likely due to the vast number of possible spa-
tial configurations that must be sampled to definitively
identify the minimum-energy state. Given this inherent
complexity, we consider our potential’s prediction of a
five-atom threshold to be consistent with the range of
reported values.
Furthermore, our potential exhibits a pronounced ten-

dency toward trap mutation, stabilizing the resulting
configurations by approximately 1 eV compared to states
where trap mutation has not occured. DFT studies
[96, 98] report that on the onset of trap mutation the
energy difference between the two states is quite small.
This leads to an overestimation of helium binding ener-
gies in practical simulations. While the potential accu-
rately predicts binding energies for clusters of size 5 and 6
in static calculations, the spontaneous onset of trap mu-
tation during dynamic simulations artificially enhances
trapping strength. Importantly, this discrepancy does
not invalidate the model’s utility: as while qualitatively
the model performs correctly however quantitative rate

Page 9 of 24 AUTHOR SUBMITTED MANUSCRIPT - JPCM-125644.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



10

0 2 4 6 8
0

1

2

3

4

5

6

B
in

d
in

g
E

n
er

gy
(e

V
)

Eb : v0Hen + He→ v0Hen+1

E∗b : v0Hen + He→ i1v0Hen+1

Yang

X.C Li

Our Work

DFT

0 2 4 6 8

n: Number of Helium within the cluster

0

1

2

3

4

5

6

Eb : v1Hen + He→ v1Hen+1

Yang

X.C Li

Our Work

DFT

0 2 4 6 8
0

1

2

3

4

5

6

Eb : v2Hen + He→ v2Hen+1

Yang

X.C Li

Our Work

DFT

0 2 4 6 8
−1

0

1

2

3

4

R
el

ax
at

io
n

V
ol

u
m

e
(Ω

0
)

Ω : v0Hen

Ω∗ : i1v0Hen

Yang

X.C Li

Our Work

DFT

0 2 4 6 8

n: Number of Helium within the cluster

−1

0

1

2

3

4

Ω : v1Hen

Yang

X.C Li

Our Work

DFT

0 2 4 6 8
−1

0

1

2

3

4

Ω : v2Hen

Yang

X.C Li

Our Work

DFT

FIG. 7. Binding energies (top row) of an interstitial hydrogen atom joining a interstitial helium-hydrogen cluster (left), a
vacancy helium-hydrogen cluster (middle), and a di-vacancy helium-hydrogen cluster (right). The bottom row shows the
relaxation volumes of the corresponding cluster. The ’star’ symbol marks self-trapped configurations, where a Frenkel pair was
formed.

calculations may show discrepancies. An overestimation
of trapping energy would only further suppress an already
rare event. Moreover, the potential correctly reproduces
configurations where trap mutation does not occur, con-
firming that the overestimation arises from a physical
mechanism rather than a systematic error.

The sensitivity of the trap mutation is also demon-
strated by considering the variations in the empirical po-
tentials and the DFT data available in literature. Whilst
the binding energies of helium to interstitial helium clus-
ters are very similar, their predictions on trap mutation
are quite different due to the large configurational space
one must explore to find the minimum energy configu-
ration. Therefore it is difficult to quantitatively validate
the behavior of trap mutation, while we can still qualita-
tively under what conditions it occurs.

F. Interactions of Hydrogen and Helium Clusters

Figure 8a illustrates a scenario in which helium and hy-
drogen are implanted into a sample with little to no irra-
diation, meaning that no vacancies are available as traps.
In this case, helium clusters through trap mutation, and
DFT results indicate a positive binding between hydro-
gen and these clusters. Importantly, the energy of this
interaction is small, on the order of 0.5 eV, implying that
detrapping occurs regularly even at room temperature.
Both our potential and the Li potential accurately cap-

ture this weak binding, whereas a significant overestima-
tion is observed with the Yang potential.
In contrast, Figure 8b depicts a scenario where irradi-

ation results in helium being trapped within vacancies.
Here, the binding energy of hydrogen to these clusters
is quite significant, on the order of 1 eV—similar to the
binding energy of hydrogen to an isolated vacancy. Al-
though our potential tends to underestimate this binding
for certain configurations, it shows consistent trends with
DFT and the Li potential.
Finally, our potential delivers relaxation volumes of

these light-gas vacancy clusters in good agreement with
DFT.

G. Binding to Interstitial Atoms

Self-interstitial atoms (SIA) are the counterparts to va-
cancies, both of which are generated during irradiation.
Unlike vacancies in metals, they are highly mobile [100],
allowing them to migrate easily through the material.
When a helium atom approaches an interstitial, the in-
terstitial can shift its position to accommodate the in-
coming helium atom. As a result, it becomes energeti-
cally favorable for helium to bind near these defects, as
the interstitial facilitates its integration into the lattice.
During our fitting process, we specifically considered

the binding energy of interstitial helium to a single SIA,
as reported in [82] (1.05 eV). The binding energies are in
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(a) Binding energies of interstitial hydrogen joining an interstitial helium-hydrogen cluster (top row), with relaxation
volumes of the corresponding clusters (bottom row).
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(b) Binding energies of interstitial hydrogen joining an vacancy helium-hydrogen cluster (top row), with relaxation volumes
of the corresponding clusters (bottom row).

FIG. 8. Binding energies of an interstitial hydrogen atom joining an interstitial helium-hydrogen cluster (a) and a vacancy
helium-hydrogen cluster (b), including relaxation volumes of the corresponding defects. The initial helium clusters used are the
minimum-energy configurations, allowing for self-trapped helium clusters, as these are expected to form in practical simulations.
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FIG. 9. Binding energies of an interstitial helium atom joining
a self-interstitial and helium cluster. DFT data from [101].
Self-trapped configurations are marked with a star (⋆).

TABLE II. Binding energy (eV) of helium to various ideal
dislocation structures in tungsten.

dislocation type DFT our work Yang [64] Li [60]
1/2⟨111⟩ edge 2.96 [104] 2.88 4.05 3.56
1/2⟨111⟩ screw 1.32 [104] 1.12 1.42 1.28

⟨100⟩ edge - 3.26 5.97 3.07
⟨100⟩ screw - 2.93 5.83 2.75

good agreement with DFT, as shown in Figure 9. We also
observe that our potential predicts that a helium cluster
of size six undergoes trap mutation, leading to a sharp
increase in binding energy. This behavior is expected, as
our potential tends to favor trap mutation.

H. Interactions with Dislocations

In the high-dose regime, irradiation-induced defects can
accumulate and coalesce, leading to the formation of
more complex structures such as dislocation loops, voids,
and vacancy loops [102, 103]. Modeling such large defect
structures is typically beyond the practical scope of DFT.
To ensure that our potential behaves appropriately when
interacting with these defects, we have tested a variety
of idealized defect structures using our potential.
For both edge and screw dislocations, dislocation core
structures were first generated using Atomsk [105] based
on theoretical elastic displacement fields and subse-
quently relaxed to an energy minimum using Lammps.
To evaluate binding energies, a helium atom was ran-
domly placed near the dislocation structure, the system
was annealed at 500K, and then minimized. This was
repeated 10 times, and the most stable structure was
chosen for the binding energy evaluation. As shown in
table II, the three EAM potentials show variation but on
the whole demonstrate good agreement with the limited
DFT data available. The results provide confidence in
the transferability of this potential to the more complex

defect structures occurring under irradiation.

V. HYDROGEN RETENTION WITHIN
HELIUM-FILLED VOIDS

Under fusion conditions, voids form in the microstruc-
ture, either through vacancy clustering at high tempera-
tures [18, 106, 107] or through the presence of hydrogen
and helium, which promote void growth under irradiation
[48, 49]. As shown in the following section, voids exhibit
significantly different hydrogen retention behavior com-
pared to an equivalent number of isolated monovacancies.

Both DFT [35, 96] and our potential show that he-
lium strongly binds to voids, and through trap mutation,
can promote void growth to accommodate additional he-
lium atoms. In contrast, hydrogen exhibits more com-
plex behavior. Hydrogen not only readily adsorbs onto
tungsten surfaces [108, 109], but it will also form hydro-
gen molecules within a free volume. In the following, we
quantify the binding energy of hydrogen to helium-filled
voids using molecular dynamics (MD) simulations with
the new potential and present a simple model to explain
the observed trends.

Figure 10 illustrates the energy landscape of hydrogen
within a void. We show that the possible sites a hydrogen
atom can occupy within a void in tungsten can be sep-
arated into three distinct categories: (i) adatoms bound
to the void surface, (ii) molecular hydrogen gas residing
within the free volume of the void, and (iii) lattice-bound
hydrogen, representing atoms that have escaped into the
surrounding tungsten lattice. By treating each of these
sites separately we arrive at an expression for the total
formation energy of a void containing nH hydrogen and
nHe helium atoms:

Ef(nH) = Esurf
f (ns) + Egas

f (nH2
, nHe) + Elat

f (nL), (10)

where ns, nH2 , and nL denote the number of atoms in the
three respective sites, with the total number of hydrogen
atoms given by nH = ns + 2nH2 + nL. The formation
energies are defined in the following sections, Esurf

f (ns)
in Eq. (26), Egas

f (nH2 , nHe) in Eq. (22), and Elat
f (nL) in

Eq. (23). Note that this is a highly simplified model—we
do not account for free energy, elastic effects, or inter-
actions between the three hydrogen populations. The
purpose of the model is to understand the key features of
binding in hydrogen-helium filled voids, while the poten-
tial itself should be used for high-fidelity binding energy
calculations.

Under athermal conditions, the thermodynamic equi-
librium corresponds to the configuration that minimizes
the total energy for a given hydrogen concentration.
Therefore, the occupancy of each site type can be deter-
mined by solving the following constrained energy mini-
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FIG. 10. Depiction of the model energy landscape of a hydrogen atom inside and outside of a gas-filled void. The illustration
shows the void being filled by surface bound hydrogen (blue), diatomic hydrogen molecules (green), and monoatomic helium
(yellow) in its core, as well as hydrogen at interstitial lattice sites (purple). In this model, α represents the binding energy of
hydrogen to the surface in the limit of low occupancy, Etet

f is the formation energy of interstitial hydrogen at the tetragonal
lattice site, and EH

m is the migration barrier of interstitial hydrogen.

mization problem:

min
ns, nH2

, nL

[
Esurf

f (ns) + Egas
f (nH2

, nHe) + Elat
f (nL)

]

subject to ns + 2nH2
+ nL = nH.

(11)
Furthermore, at finite temperature this model can be ex-
tended to describe the free energies of the various popu-
lations.

In the following section, we shall introduce and val-
idate models for the formation energies of hydrogen in
each of the different sites, leading to a consistent and
generalizable model for hydrogen binding to voids in the
presence of helium.

A. Model

We begin with a model of the surface trapping process.
As hydrogen binds strongest to the void surface, we ex-
pect the void surface to be populated first. The number
of the surface trapping sites NS is expected to scale with
the ratio of surface area to volume of the void. With
the void size quantified by the number of constituting
vacancies NV, the resulting expression is

NS = βN
2
3

V , (12)

where β is a scaling coefficient which is to be fitted to the
dataset. Taking the monovacancy as a reference, which
can trap up to six hydrogen atoms [37], we expect β ≈ 6.
The first few hydrogen atoms to bind to the surface

will occupy the deepest part of the energy well. As
more hydrogen is added and more surface sites become
occupied, the repulsive interactions between hydrogen
adatoms cause the incremental binding energy to de-
crease [37, 65]. For example, in a monovacancy, the
binding energy starts at 1.28 eV for the first hydrogen

atom and decreases to 0.32 eV by the sixth hydrogen. We
propose the following scaling law for the surface binding
energy:

Eb(ns|NS) = α

[
1−

(
ns

NS

)γ]
(13)

where α represents the binding energy of hydrogen in the
limit of low occupancy, shown graphically in figure 10.
To find the formation energy, we take note that the

incremental binding energy is defined by:

Eb(ns) = Etet
f + Esurf

f (ns − 1)− Esurf
f (ns) (14)

and so the formation energy of nH hydrogen atoms on
the surface is given by:

Esurf
f =

(
Etet

f − α
)
ns + α

ns∑

n=0

(
n

NS

)γ

. (15)

We can approximate the sum using an integral in the
limit of large surface occupancies, resulting in:

Esurf
f ≈

(
Etet

f − α
)
ns +

αns

1 + γ

(
ns

NS

)γ

. (16)

With increasing hydrogen content, the low energy sur-
face traps begin saturating and hydrogen will begin form-
ing dimers in the free volume of the void. In our forma-
tion energy calculations, the reference state of hydrogen
is taken to be an ideal diatomic gas. Consequently, if the
hydrogen dimers interact negligibly with the void sur-
face, the formation energy of each dimer is 0 eV. How-
ever, as the void becomes increasingly filled with hydro-
gen molecules, intermolecular interactions become signif-
icant. At this stage additional energy is required to insert
another hydrogen molecule. This repulsive interaction is
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a steric effect, which must be accounted for under ather-
mal conditions.

In order to account for steric effects, we construct the
following model: At 0K, the diatomic gas will settle
into its minimum energy configuration. Assuming that
the only interaction between molecules is a radial re-
pulsion, the minimum energy configuration would cor-
respond to the one maximizing the packing density of
the molecules within the given volume. According to
Kepler’s conjecture, the packing density is maximized by
either face-centered cubic (fcc) or hexagonal close-packed
(hcp) structures. X-ray diffraction studies of solid hy-
drogen suggest an hcp structure [110]. Therefore, we as-
sume an hcp configuration where only interactions with
the first nearest neighbors are significant. Upon this as-
sumption, the total energy of a system of nH2

hydrogen
molecules in a volume V is given by:

Egas
f = 6

nH2∑

i

E
(
1
2ahcp

)
, (17)

where

ahcp =

(
V

3
√
2nH2

) 1
3

. (18)

Assuming a Lennard-Jones (LJ) type repulsion of the
form

E(r) ∼ r−12, (19)

the energy can be expressed simply by:

Egas
f = k

(nH2

V

)4
nH2

(20)

where k is simply a constant dependent on the gaseous
interaction.

As hydrogen binds to the void surface, a thin shell
adjacent to the surface is not accessible to molecular hy-
drogen. This is corroborated by Hou et al. [65] who show
that molecular hydrogen was not found within small va-
cancy clusters NV < 3. Hence introducing an exclusion
volume to our model is crucial to prevent excessive for-
mation of hydrogen molecules. To account for this, we
first approximate the total void volume as the atomic
volume of tungsten multiplied by the number of vacan-
cies, then determine the equivalent spherical radius. By
subtracting an exclusion distance δr from this radius, we
obtain the following expression:

V =
4π

3

[
a

(
3NV

8π

) 1
3

− δr

]3
. (21)

The effect of helium gas on the formation energy is also
treated in the steric energy model. We adapt the steric
energy to account for the H-He and He-He interactions
by the following expression:

Egas
f =

(nH2
+ nHe)

3

V 4

(
k1n

2
H2

+ 2k2nH2
nHe + k3n

2
He

)

(22)

TABLE III. Lennard–Jones interaction parameters for the
various gas-gas interactions

parameter interaction value (eV Å12)

k1 H2 −H2 36500 ± 140
k2 H2 −He 0.0
k3 He−He 58.6 ± 0.1

where k1, k2, k3 denote the LJ parameters for each of the
H2-H2,H2-He and He-He interactions respectively.
The interstitial hydrogen atoms are all assumed to have

the same formation energy Etet
f , since the population of

available interstitial lattice sites is much greater than the
number of hydrogen in the lattice. This applies towards
low hydrogen concentrations : although there is an ener-
getic driving force for the formation of hydrogen platelets
within the lattice [111], DFT studies find negligible bind-
ing energies between interstitial hydrogen [111]. As a
result, there is no effective nucleation point, and the for-
mation of such platelets is only likely at sufficiently high
hydrogen concentrations. Upon this assumption the total
formation energy of the lattice hydrogen is simply given
by:

Elat
f = Etet

f nL (23)

By combining the formation energies in equations (15),
(22), and (23), we can express the total formation energy
of the void, see Equation (10). Given a concentration
of hydrogen and helium, we can then find the formation
energy and the occupancies of the various sites by solving
the constrained minimization problem (11) numerically.
To find the binding energy of a hydrogen to a void, we can
take the finite difference between the formation energies
as given by Equation (14).

B. Parameter Inference - Steric Effects

The steric parameters are the simplest to infer. To de-
termine them, we construct a 5×5×5 hcp supercell, con-
taining 500 lattice sites, with varying lattice constants.
Each site is initialized with either a hydrogen molecule
(H2) or a helium atom, according to the composition of
the mixture. After initialization, the system energy is
minimized, and the resulting formation energy is com-
puted by subtracting the energy contribution of the H2

bonds. Finally, the steric parameters k1, k2, k3 are ob-
tained through a fit, minimizing the least-squares differ-
ence between the MD-simulated and model energies. The
uncertainties are calculated by estimating the covariance
matrix from the Hessian of the loss function at the min-
ima [112].
Figure 11 illustrates the quality of the fit and table III

lists the resulting fitted parameters. The steric energy
is clearly dominated by H2 −H2 interactions, which is
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FIG. 11. Steric energy of a minimized hcp structure contain-
ing hydrogen molecules and helium atoms. Shown here is the
energy per gas atom over the fourth power of the total particle
density. Pure H2 (orange) exhibits the highest steric energy,
while increasing the helium fraction progressively lowers the
steric energy.

roughly two orders of magnitude larger than the corre-
sponding He−He interactions. The fit shows slight devi-
ations at lower particle densities and higher helium con-
centrations, likely due to attractive contributions that are
not included in our model. Additionally, the fit indicates
that H2 −He interactions contribute negligibly to the
overall repulsion. This behavior can be attributed both
to the unmodeled attractive component—evidenced by
the negative intercept in figure 11—and to the repulsive
contribution being effectively captured by the H2 −H2

interactions.

Furthermore, Fig. 11 shows that the gaseous interac-
tions described by our potential are well captured by
a LJ model. This result is noteworthy, as such behav-
ior was not explicitly included in the fitting procedure.
Given that LJ potentials are commonly employed to de-
scribe interactions between simple molecules and atoms
[88, 113, 114], this agreement provides additional confi-
dence in the potential’s ability to reliably model gaseous
interactions.

C. MD Simulation of Voids

To determine the remaining model parameters, we per-
form MD simulations to obtain formation energies of
light-gas-filled voids. The simulations are initialized with
a 15×15×15 supercell at the equilibrium lattice param-
eter at 0K. A void is created by successively deleting
atoms with high potential energy. A set concentration
of hydrogen and helium atoms is then introduced to the
void, and the system is annealed from 400K to 200K

over 250 ps using a Langevin thermostat with a damping
time constant of 100 ps. Finally, the energy of the system
is minimized using the method of conjugated gradients
to obtain a local energy minimum. For each given hydro-
gen and helium concentration, we perform 32 simulations
that only differ in the random seed, and take the lowest
energy configuration as our estimate of the global energy
minimum.
To approach the global energy minimum more effi-

ciently, we initialize the gas inside the void following
a schema informed by our model. As an initial guess,
we set α = 1.28 eV, β = 6 and γ = 2, values fit-
ted to the monovacancy binding energies, and assume
δr = 0. Using these parameters, we estimate the occu-
pancies (θX = nX/nV) of the various populations and
initialize the gas atoms accordingly. By annealing the
system and performing multiple (32) independent sim-
ulations, we aim to enhance sampling and improve the
chances of reaching a good estimate of the global mini-
mum.

D. Parameter Inference – Surface Parameters

We begin by examining Equation (13), which intro-
duces a power-law scaling for the incremental surface
binding energy. This, in turn, implies via Equation (16)
that the total formation energy also follows a power-law
dependence. A straightforward way to test this hypoth-
esis is to plot

y ≡ Ef

nH
against x ≡ 1

1 + γ

(
nH

N
2
3

V

)γ

.

If hydrogen atoms occupy only the surface sites, the
power law reduces to an affine relation,

y =
α

βγ
x+

(
Etet

f − α
)
, (24)

with slope αβ−γ and y-intercept Etet
f − α.

The model also provides a criterion for the onset of
molecular hydrogen formation: this occurs when the hy-
drogen binding energy at the surface equals Etet

f . The
corresponding hydrogen content at this transition point
is then defined as nT

H:

(
nT
H

N
2
3

V

)γ

= βγ

(
1− Etet

f

α

)
. (25)

In this representation, γ is chosen such that the MD
data points collapse onto a straight line for nH < nT

H,
i.e., up to the onset of molecular hydrogen formation.
Accordingly, we select the value that maximizes the Pear-
son correlation coefficient r uptill the transition point nT

H.
The exponent γ is restricted to natural numbers to allow
for an analytical expression of the surface formation en-
ergy. Since the transition point nT

H is not yet known, we
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FIG. 12. (Top) Mean Pearson r-value averaged over different
vacancy sizes, helium contents, and all trial β values for each
α. The r-value is maximized at γ = 4, which was therefore
selected. (Bottom) Normalized formation energy as a function
of surface occupancy in transformed coordinates for different
void sizes. Markers indicate MD data points, while the solid
lines show the fits, see Eq. (24), up to the transition hydrogen
content, indicated by the gray dotted line. Colors correspond
to helium occupancy: blue, orange, and green represent θHe =
0, θHe = 0.5, and θHe = 1, respectively. These plots use γ = 4
applied to the full dataset. A trial value of α = 1.6 and β = 6
was used to appropriately scale the plots for visualization.

TABLE IV. Variation in α and β averaged over void size for
3 different helium occupancies, inferred by fitting a straight
line to the transformed MD data, for γ = 4.

Parameter θHe = 0 θHe = 0.5 θHe = 1

α (eV) 1.6± 0.2 1.5± 0.1 1.3± 0.1
β 5.5± 1.0 5.0± 1.0 5.0± 0.5

test several values of α (1.4–1.8 eV) and β (4–8) and then
choose the γ that performs the best overall.
Figure 12 shows that γ = 4 provides a good fit to

the dataset, with the data points showing strong linear
correlation below the transition hydrogen content. Using
γ = 4 for the surface formation energy (15) results in the
following expression:

Esurf
f = (Etet

f − α)ns+
α

30N4
S

[
ns(1 + ns)(1 + 2ns)(3n

2
s + 3ns − 1)

]

(26)
Table IV shows that void size scatters these parame-

ters with respect to void size, with greater variation with
respect to helium content. So it is still important to ad-
dress the cause of these fluctuations.
The variations in β can be attributed to two factors.

First, vacancy clusters are not generally perfect spheres,
particularly when they are small. For example, a void
consisting of 16 vacancies corresponds to an approxi-
mately spherical cluster with an additional monovacancy
attached. As a result, the surface area does not scale
smoothly with the surface-to-volume ratio, leading to dis-
crete jumps in the number of available sites at small clus-
ter sizes and thereby introducing some scatter.
The second source of variation in β arises from an ar-

tifact of the potential, which exhibits an attraction be-
tween the void surface and hydrogen molecules. Conse-
quently, newly formed hydrogen molecules adopt energies
similar to those of surface adatoms, making it appear as
though more sites are available than expected. We note
that these observations are made at 0K; at finite temper-
ature, thermal effects are expected to smooth out these
artifacts. Since we lack a clear physical motivation for
scaling β with void size, and because such scaling would
imply that the number of sites does not follow the ex-
pected surface-area to volume ratio (2/3 power), we sim-
ply adopt a constant β to ensure predictability and to
prevent overfitting.
The variation of α is most pronounced for smaller

voids, whereas larger voids show only minor discrepan-
cies. The dependence of α (the binding energy of hydro-
gen to the void at low occupancies) has been reported
in both MD and DFT studies [47, 63, 65]. Modeling
this behavior is non-trivial, partly due to the highly non-
linear interaction between hydrogen and tungsten, which
involves both embedding and pairwise effects, and partly
because void surface sites have distinct binding energies
depending on the local surface topology [65]. To ensure
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TABLE V. Optimized parameters obtained from fitting our
model to the MD dataset. Reported uncertainties correspond
to one standard error. We give two sets of parameters, one
fitted to the entire dataset (’full fit’), and one fitted to only
the larger voids NV > 8 (’large void fit’)

parameter full fit large void fit units

α0 1.63± 0.01 1.55± 0.01 eV
β 5.4± 0.05 6.2± 0.1 –
δr 0.40± 0.03 0.50± 0.05 Å
λ 7.2± 0.4 5.5± 0.3 eV Å4

transferability, we therefore adopt a constant value of α
across all vacancy sizes, even though this choice may not
be perfectly accurate for every individual cluster.

The second source of variation in α arises from the
helium occupancy. Owing to the comparatively simpler
interaction between hydrogen and helium, it is possible to
construct a physically motivated relation to capture this
effect. Referring back to gas energy in Equation (17),
we note that the average separation between gas atoms
scales with the inversely cube root of the particle den-
sity. Consequently, the distance between an introduced
hydrogen atom and a helium atom will also follow this
dependence.

Using the pair potential fitted in figure 3, we apply
a power-law approximation to the repulsive interaction,
which is found to scale as r−4. Combining these results,
the repulsive energy between an introduced hydrogen
atom and the helium gas within the void can be expressed
as:

δE ∝
(
NHe

V

) 4
3

, (27)

where the volume V is given by Equation (21). Assuming
that this repulsive energy is simply added to the binding
energy, we find:

α = α0 − λ

(
NHe

V

) 4
3

, (28)

where α0 is the binding energy of hydrogen to the void
surface in the limit of low hydrogen occupancy and in the
absence of helium in the void.

Equation (28) also accounts for the non-linearity ob-
served in figure 12, where helium exerts a strong influence
on small voids but a much weaker effect on larger ones.
This behavior is governed by the parameter δr which
excludes a thin spherical shell of volume from the total
available volume, see Equation (21). At small void sizes,
this exclusion represents a significant fraction of the to-
tal volume, whereas for larger voids the effect becomes
negligible.

Due to the variability of α and β, we performed two
separate fits: one for the entire dataset and one focused
on the larger voids, which exhibit much less variability,
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FIG. 13. Plot of predicted binding energy against the hydro-
gen θH occupancy for three different helium occupancies θHe,
using the ’full fit’ parameters described in table V, for void
sizes 32 and 128. The two discontinuities indicate formation
of molecular hydrogen, and subsequently hydrogen escaping
into the surrounding tungsten lattice.

see table V). We recommend using the ’full fit’ parame-
ters when the void size distribution is unknown, as they
perform well across all void sizes. However, if the void
sizes are known and predominantly large, the ’large void
fit’ parameters are preferred, as they are tailored to larger
voids but may not provide optimal predictions for smaller
ones.
The fitting procedure is straightforward: the loss func-

tion was defined as the sum of squared errors of the scaled
formation energies (EF/nH) and subsequently minimized
with the Simplex algorithm [73]. To estimate the stan-
dard errors of the fitted parameters, we employed a
Hessian-based approach. The Hessian of the loss func-
tion was evaluated at the minima and used to construct
the covariance matrix, from which the standard errors of
the parameters were obtained [112].
Figure 14 illustrates the quality of our fit for the ’Full

Fit’ parameters given in table V. The model reproduces
most void sizes and helium occupancies very well, but de-
viations appear for the smaller vacancy clusters. These
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FIG. 14. Plot of normalized formation energy with respect to
the surface occupancy to the fourth power, the colours blue,
green and orange represent helium occupancies (θHe) of 0,
0.5, and 1, respectively. The solid markers represents the MD
datapoints while the curves represent the model prediction
for the ’full fit’ parameters described in table V.

discrepancies stem from the discrete jumps in the num-
ber of sites and the variation of α. In addition, the fit
is especially sensitive to the exclusion distance δr at the
smallest void sizes. This sensitivity arises because remov-
ing a constant radial thickness eliminates a large fraction
of the total void volume, and the resulting nonlinear ef-
fect amplifies the impact of δr.
Figure 13 shows the binding energies predicted by our

model for 32-vacancy and 128-vacancy voids at three dif-
ferent helium occupancies. The two observed discontinu-
ities correspond to changes in the filling mechanism: the
first discontinuity indicates the formation of molecular
hydrogen, while the second marks the escape of hydro-
gen from the void, signaling saturation.
Another notable feature is the influence of helium.

Beyond the first discontinuity, the presence of helium
rapidly increases the steric energy of the gas within the
void, leading to much faster saturation. We add a cau-
tionary note regarding the use of our model at high he-
lium occupancies: Equation (28) was derived under the
assumption of a simple helium–hydrogen interaction, ne-
glecting helium–tungsten interactions. At high helium
concentrations, however, helium is expected to interact
with the void surface. Therefore, we consider the model
to be applicable for helium occupancies of up to θHe ∼ 1,
which we expect to lie well in the range of what is en-
countered under fusion conditions.
From the perspective of hydrogen retention modeling,

it is evident that larger voids retain proportionately less
hydrogen. As the void size increases, the relative num-
ber of surface sites becomes vanishingly small, and more
hydrogen can potentially be stored as diatomic gas in a
bubble.
The maximum number of hydrogen atoms that can be

accommodated in a void is reached once the surface sites
are occupied and the energy required to form molecular
hydrogen exceeds the formation energy of interstitial hy-
drogen. In the limit of large voids, this condition can be
expressed as

∂Egas
f

∂nH2

= Etet
f . (29)

Substituting the gas formation energy (20) and the def-
inition of the void volume in terms of tungsten atomic
volumes yields:

nH2

NV
=

a30
2

(
Etet

f

5k1

) 1
4

. (30)

To arrive at the maximum occupancy, we consider that
each H2 molecule contains two hydrogen atoms and also
include the number of hydrogen atoms on the fully oc-
cupied void surface, see Equation (12), resulting in the
simple expression for the hydrogen occupancy at satura-
tion:

θsatH = βN
−1/3
V + a30

(
Etet

f

5k1

)1/4

, (31)
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which in the limit of an infinitely sized void yields

θsatH (NV → ∞) ≈ 1.4. (32)

A similar analysis can be carried out for a helium-filled
void, see Equation 22, however, owing to the quartic form
of the expression, the resulting solution is not easily ex-
pressed in closed form.

We observe that this value is three times smaller than
the typically predicted maximum retention for a mono-
vacancy. This highlights the strong size dependence of
hydrogen retention and underscores that accurate mod-
els must account for the void size distribution.

VI. CONCLUSION AND OUTLOOK

In this study, we have developed an empirical poten-
tial for the W-H-He system specifically for reproduc-
ing ab initio binding energies and relaxation volumes of
irradiation-induced defects. We have demonstrated its
robustness across a wide range of defect types, includ-
ing vacancies and dislocations. A key contribution of
this work is the explicit fitting of relaxation volumes, an
aspect often overlooked in prior studies that focused pri-
marily on defect energetics. Relaxation volumes are crit-
ical for defining the elastic fields associated with defects
and play a significant role in predicting microstructural
properties such as eigenstrains.

While we found the potential to perform well across the
investigated properties, we would like to note some lim-
itations. These include an overestimation of the energy
released during helium-driven trap mutation, an underes-
timation of the second virial coefficient of helium gas, and
a slight overestimation of the formation energy of helium
in tungsten. The elevated energy favors trap mutated
configurations; however, as the critical cluster size for
trap mutation is predicted consistently with DFT, this
is not expected to affect most applications significantly.
The underestimated second virial coefficient introduces
minor inaccuracies in helium gas behavior, though this
is likely negligible due to helium’s near-ideal behavior.
The overestimated helium formation energy is unlikely to
impact most molecular dynamics simulations, though it
may affect predictions involving helium detrapping from
the bulk to the surface or to voids.

In the final section of this study, we present a ther-
modynamically motivated model to capture the energet-
ics of light-gas-filled voids. Our interatomic potential is
unique in its ability to replicate tungsten surface ener-
gies whilst providing a reasonably accurate description
of hydrogen–tungsten interactions, making it well-suited
for these predictions. We demonstrate the applicabil-
ity of our minimal model across a range of void sizes,
from the smallest vacancy cluster, the di-vacancy, to large
voids of size 256, and for varying helium concentrations.
The model is based on a physically motivated descrip-
tion of a void containing hydrogen and helium, providing
confidence in its predictive capability and transferability.

Moreover, the simplicity of the model enables its efficient
integration into component-scale hydrogen retention sim-
ulations, with the binding energy of hydrogen to a void
at a given occupancy accessible through on-the-fly mini-
mization or a precomputed lookup table.
For future work, our potential can be used to model

gas-filled voids at finite temperatures, including all free
energy contributions. In a fusion reactor, large tempera-
ture gradients and irradiation damage leads to void for-
mation, and understanding the transport of hydrogen
through these gradients is crucial. This work provides
a key component for such comprehensive modeling.
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Appendix A: Pair Potential Parameters

The pair potentials are mathematically expressed by
Equation (5), and the fitted parameters are a set of knot
points with corresponding function values, derivatives
and second derivatives. Each pair potential is described
by of three quintic splines, parameterized by four sets
of knot points. The spline knot parameters are listed in
tables A.1 to A.3.

TABLE A.1. Quintic spline knot parameters for tungsten-
helium pair potential ϕW−He

r f(r) f ′(r) f ′′(r)
0.00000000 0.00000000 0.00000000 0.00000000
1.50385307 -1.46343606 4.08015088 2.21413655
2.17164089 -0.42714108 0.41350907 -0.03906926
4.85138892 0.00000000 0.00000000 0.00000000

TABLE A.2. Quintic spline knot parameters for helium-
helium pair potential ϕHe−He

r f(r) f ′(r) f ′′(r)
0.00000000 0.00000000 0.00000000 0.00000000
1.62963646 -0.36582470 0.48055115 -0.36578079
3.23371698 -0.02758561 0.04354402 -0.07569902
4.85138892 0.00000000 0.00000000 0.00000000

TABLE A.3. Quintic spline knot parameters for hydrogen-
helium pair potential ϕH−He

r f(r) f ′(r) f ′′(r)
0.00000000 0.00000000 0.00000000 0.00000000
1.02918772 -0.23061786 0.51641884 -3.56305596
1.97614819 -0.10469481 0.05159951 -0.02773368
4.85138892 0.00000000 0.00000000 0.00000000
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FIG. A.1. Comparison of the pair potentials from the three
W-H-He potentials developed in this study: W-He (top), He-
He (middle), and H-He (bottom).
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Appendix B: Electron Density Parameters

The electron densities are mathematically expressed by
Equation (6), and the fitted parameters are a set of knot
points with corresponding function values, first deriva-
tives, and second derivatives. Each electron density is
described by two quintic splines, parameterized by three
sets of knot points corresponding to the first point at
r = 0, the point at which the two splines join smoothly,
and the final point at the cutoff distance. The spline
knot parameters are listed in tables B.1 to B.4. As a re-
minder, the helium-helium electron density ρHe−He was
constrained to be zero for all values of r, and is therefore
omitted in the following tables.

TABLE B.1. Quintic spline knot parameters for tungsten-
helium electron density ρW−He

r f(r) f ′(r) f ′′(r)
0.00000000 0.43713164 -0.45984388 0.06396610
3.44981134 -0.01261921 -0.05946207 0.10985777
4.85138892 0.00000000 0.00000000 0.00000000

TABLE B.2. Quintic spline knot parameters for helium-
tungsten electron density ρHe−W

r f(r) f ′(r) f ′′(r)
0.00000000 1.66573508 -2.13726997 0.95357865
2.00290949 -0.02952314 -0.01585972 0.19978338
4.85138892 0.00000000 0.00000000 0.00000000

TABLE B.3. Quintic spline knot parameters for hydrogen-
helium electron density ρH−He

r f(r) f ′(r) f ′′(r)
0.00000000 0.01916530 0.02846895 0.00100977
2.89654804 -0.00680907 0.03072697 -0.09030046
4.85138892 0.00000000 0.00000000 0.00000000

TABLE B.4. Quintic spline knot parameters for helium-
hydrogen electron density ρHe−H

r f(r) f ′(r) f ′′(r)
0.00000000 -0.00112266 -0.00045572 -0.00056383
2.08093585 -0.00028101 -0.00000000 -0.00180142
4.85138892 0.00000000 0.00000000 0.00000000

Appendix C: Embedding Function

The helium embedding function is given by:

FHe(ρ) =
√

7.173176ρ2 + 0.6779852 − 0.677985 (C1)

0 1 2 3 4 5

Radial Distance (Å)
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FIG. C.1. Plots of the electron density functions developed in
this study: W–He and He-W (top), H-He and He–H (middle),
and the embedding functions of each element (bottom).

Appendix D: DFT Data Used for Fitting

As outlined in Section II B, we conducted a density func-
tional theory (DFT) study to address gaps in the existing
literature. Table D.1 presents the DFT data generated
using the methods described in Section II B, and this
dataset along with available literature data was subse-
quently employed for fitting the potential.
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TABLE D.1. DFT-calculated formation energies and relaxation volumes for various point defects in a tungsten lattice

Nvac NHyd NHel Eform(eV) Ωrel Nvac NHyd NHel Eform(eV) Ωrel

0 0 1 6.22 0.36 1 1 0 3.21 -0.27
0 0 2 11.44 0.80 1 1 1 5.00 -0.11
0 0 3 16.31 1.16 1 1 2 8.12 0.09
0 0 4 20.84 1.65 1 1 3 11.22 0.37
0 0 5 25.22 2.03 1 2 1 4.99 0.01
0 1 0 0.93 0.18 1 2 2 8.13 0.27
0 1 1 7.00 0.59 1 2 3 11.35 0.52
0 1 2 12.06 1.04 1 3 1 5.01 0.10
0 1 3 16.85 1.51 1 3 2 8.21 0.42
0 1 4 21.17 1.96 1 3 3 11.59 0.69
0 2 1 7.64 0.77 1 4 1 5.07 0.30
0 2 2 12.64 1.20 1 4 2 8.30 0.57
0 2 3 17.25 1.77 1 4 3 11.88 0.85
0 2 4 21.70 2.12 2 0 0 7.13 -0.64
0 3 1 8.35 0.96 2 0 1 8.66 -
0 3 2 13.23 1.38 2 0 2 10.03 -
0 3 3 17.74 - 2 0 3 12.28 -
0 3 4 22.21 2.34 2 1 0 6.64 -
0 4 1 9.09 1.15 2 1 1 8.17 -0.43
0 4 2 13.91 1.54 2 1 2 9.78 -0.28
0 4 3 18.23 2.09 2 1 3 11.96 -0.07
0 4 4 22.73 2.48 2 2 1 7.65 -0.37
1 0 0 3.49 -0.32 2 2 2 9.56 -0.10
1 0 1 5.09 -0.23 2 2 3 11.73 0.07
1 0 2 8.14 -0.06 2 3 1 7.24 -0.28
1 0 3 11.22 0.14 2 3 2 9.34 0.02
1 0 4 14.25 0.38 2 3 3 11.62 0.21
1 0 5 18.26 0.71 2 4 1 7.13 -0.17
1 0 6 22.21 1.09 2 4 2 9.06 0.09
1 0 7 25.98 - 2 4 3 11.50 0.34
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[34] A. Kärcher, T. Schwarz-Selinger, V. Burwitz,
L. Mathes, C. Hugenschmidt, and W. Jacob, Nu-
clear Materials and Energy 34, 101370 (2023).

[35] D. Nguyen-Manh and S. Dudarev, Nuclear Instruments
and Methods in Physics Research Section B: Beam In-
teractions with Materials and Atoms 352, 86 (2015).

[36] L. Yang and B. Wirth, Journal of Applied Physics 123
(2018).

[37] K. Heinola, T. Ahlgren, K. Nordlund, and J. Keinonen,
Physical Review B—Condensed Matter and Materials
Physics 82, 094102 (2010).

[38] A. De Backer, D. R. Mason, C. Domain, D. Nguyen-
Manh, M.-C. Marinica, L. Ventelon, C. S. Becquart, and
S. L. Dudarev, Physica Scripta 2017, 014073 (2017).

[39] A. De Backer, D. R. Mason, C. Domain, D. Nguyen-
Manh, M.-C. Marinica, L. Ventelon, C. Becquart, and
S. L. Dudarev, Nuclear Fusion 58, 016006 (2017).

[40] H. Xie, K. Xu, G.-H. Lu, T. Yu, and F. Yin, Journal of
Nuclear Materials 484, 270 (2017).

[41] S. Markelj, T. Schwarz-Selinger, M. Kelemen,
E. Punzón-Quijorna, J. Zavašnik, A. Šestan, D. Del-
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