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Abstract
Edge localized modes (ELMs) pose a critical challenge to the safety and performance of
plasma-facing components in tokamaks due to their periodic expulsion of heat and particles.
This study investigates the behavior of various figures of merit for evaluating resonant magnetic
perturbations (RMPs) as a tool for achieving ELM control in the spherical tokamak MAST-U. A
combination of linear and quasi-linear modeling workflows, including MARS-F (single-fluid
resistive MHD) and KilCA/QL-Balance (two-fluid kinetic) codes, was used to analyze plasma
responses to RMPs under realistic operational conditions. To address recent experimental
results, a detailed model for the n= 2 intrinsic error field (EF) generated by the Poloidal Field
coil system was developed, and the plasma response to this EF was computed. Results indicate
that the n= 2 EF is, at least, of the same order of magnitude as the perturbations introduced by
the external RMP coils. In particular, the EF was found to significantly shift the optimal points
of the analyzed metrics, affecting the effectiveness of ELM mitigation strategies and being
detrimental to the core confinement when unfavorable aligned with the external RMPs,
potentially explaining the observation of locked-modes. These results underscore the critical
need for addressing intrinsic EF correction when designing ELM control strategies.

a See Harrison et al 2019 (https://doi.org/10.1088/1741-4326/ab121c) for the MAST-U Team.
b See Joffrin et al 2024 (https://doi.org/10.1088/1741-4326/ad2be4) for the EUROfusion Tokamak Exploitation Team.
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1. Introduction

Edge localized modes (ELMs) are pressure-current driven
hybrid MHD instabilities that periodically lead to the viol-
ent expulsion of heat and particles in a filamentary fashion
when plasmas in tokamak configurations reach the so-called
H-mode confinement [1]. In reactor-scale experiments such
as ITER, controlling ELMs is crucial to ensure the safety of
plasma-facing components, as the power deposited by ELM
bursts scales with the size of the device [2]. Various tech-
niques have been explored for ELM control, which can be
broadly categorized into pacing, mitigation, and suppression
strategies. ELM pacing is typically achieved through pellet
injection [3], whereas mitigation and suppression are gener-
ally realized via the application of resonant magnetic per-
turbations (RMPs) through external, non-axisymmetric coils
[4]. Mitigation refers to reducing the amplitude while increas-
ing the frequency of ELM events [5, 6], whereas suppression
describes a regime in which ELMs are completely eliminated
[7].

Notably, ELM suppression has never been observed in tight
aspect ratio, or spherical, tokamaks [8].While ELMmitigation
via RMPs was demonstrated in the earlier MAST experiment
[9], replicating this success in MAST-U has proven challen-
ging. Recent MAST-U campaigns have yielded mixed results,
ranging from significant effects leading to mode-locking and
disruptions to negligible impact [10]. Key differences between
MAST-U and its predecessor include an increase in the max-
imum plasma current amplitude, accompanied by a reduction
in the number of independently powered non-axisymmetric
coils [11]. In particular, the previous coil set consisted in
an upper row of six coils and a lower row of twelve. This
allowed the achievement of a maximum of nmax = 3 and
nmax = 6 respectively (with n being the discrete number denot-
ing toroidal periodicity). Currently, in MAST-U the upper row
has four coils (that is nmax = 2) while the lower yields eight
(nmax = 4); this reduction was necessary to accommodate the
installation of the off-axis Neutral Beam Injector (NBI) and
several diagnostics views. Moreover, the poloidal location of
the new coils has been slightly tilted toward the midplane and
the major radius position has been increased. While the coils
for MAST-U have been constructed in the same way as the ori-
ginals (54 cm × 22 cm square windows with four turns each),
the power supplies feeding them have been updated, increas-
ing the output current from 1.4 kA to 2kA (i.e from 5.6 kAt
to 8 kAt). This, together with the new shaping capability of
MAST-U which allows to bring the plasma boundary closer
to the wall, allowed for reaching similar perturbed field mag-
nitudes. A more quantitative comparison is reported in figure
2 in [10].

Moreover, so far RMP experiments have been conducted
only in connected double null (CDN) discharges as no single

null (SN) scenario was yet available. It is known that ELM
control in CDN discharges is more challenging due to the
reduced plasma response on the high field side (HFS) [12].
Since previous MAST experiments, modeling and empirical
evidences have suggested the presence of a residual error field
(EF) dominated by a n= 2 component [10]. While in previ-
ous ELM control experiments the n= 2 was less impacting
because of the access to higher toroidal perturbations (see for
ex: [5]), in the current state of the operations the EF could have
a non-negligible impact. This could, in principle, explain the
discrepancies between experimental results and predictions of
the optimal phase alignment for achieving mitigation when
operating with the RMP coils in n= 2 configuration.

Expanding the modeling effort to understand these dis-
crepancies, this work investigates the plasma response to
external magnetic perturbations in MAST-U. The study eval-
uates and compares the roles of different metrics, both fluid
and kinetic, while assessing the influence of kinetic paramet-
ers. Specifically, the magneto-hydrodynamic, resistive, linear
code MARS-F [13] is applied to compute the perturbation
field resulting from the combined effects of RMP coil currents
and the plasma response. Classical fluid metrics derived from
linear and quasi-linear response theories, are analyzed and
re-evaluated by incorporating an EF model. Additionally, a
quasi-linear figure of merit based on a kinetic plasma response
model, computed within the KilCA framework [14] and pre-
viously applied to AUG results, is integrated into the analysis.

In the following: the numerical models used throughout the
work are presented in section 2 and the different figures of
merit applied are discussed in section 3. In section 4 the EF
model is presented and its implications are discussed. Finally,
section 5 includes the conclusions and the work summary.

2. Modeling workflow

In this work, starting from the experimental discharges, a com-
bination of numerical workflows has been implemented with
the scope of deriving and comparing metrics for the optim-
ization of RMPs in terms of ELM control. The summary
of the complete process is summarized in figure 1. Results
are mainly based on the application of the CHEASE/MARS-
F workflow, where CHEASE is a well-established Grad–
Shafranov solver [15] used to generate equilibrium inputs
for subsequent plasma response calculations. The starting
point for any plasma response evaluation is the equilibrium
configuration, to which a perturbation can then be applied.
To maintain consistency with experimental observations, the
reconstructed equilibrium of an ELMy discharge from the
MU-02 campaign has been chosen, specifically discharge
#47051. A closely related discharge, #47052, was previously
modeled with MARS-F to determine the optimal coil phasing
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Figure 1. Summary of the complete modeling pipeline.

Figure 2. Equilibrium. Left: Magnetic flux reconstruction at 611 ms. Right, top: MSE constrained safety factor profile. Right, bottom:
Kinetic profiles (EFIT++ reconstructed) provided as MARS-F inputs.

for ELM control experiments in the MU-03 campaign [10].
The equilibrium is prepared by running CHEASE on mag-
netically constrained data that has been processed with the
EFIT++ [16] code. In MAST-U, equilibrium reconstructions
are typically constrained using Motional Stark Effect (MSE)
measurements [17], which provide a physical constraint on the
internal current profile and thus on the safety factor (q) pro-
file. Furthermore, to closely replicate experimental conditions,
kinetic radial profiles are fitted within separate EFIT++ runs
and provided to MARS-F as additional inputs. MAST-U dia-
gnostics can reliably measure electron temperature and dens-
ity, ion temperature and toroidal rotation velocity, though the
latter two are only available when the diagnostic NBI is active.

Since MARS-F cannot explicitly handle the X-point singular-
ity at the plasma boundary, a smoothing routine is applied in
CHEASE before preparing inputs for plasma response com-
putations. This smoothing reduces the edge safety factor (qa)
value but does not affect q95, that is the value of q taken at
the 95% of the poloidal flux. Previous studies have shown
that that this kind of variations in qa still yield similar plasma
response spectra [18]. Figure 2 presents the equilibrium and
kinetic profiles used for the MARS-F computations, where

s=
√

ψ−ψaxis
ψedge−ψaxis

, with ψ being the poloidal flux, is the normal-

ized radial coordinate adopted in the code. It is important to
note that, at this level, the kinetic profiles do not influence the
equilibrium computation performed with CHEASE.

3
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MARS-F solves the linearized MHD equations under
the single-fluid, resistive approximation, within the resistive-
inertial regime. These MHD equations account for a generic
toroidal flow and couple with RMP source terms, modeled as
an antenna problem. The system is expressed as follows:

i(ΩRMP + nΩ)ξ = v+(ξ ·∇Ω)Rϕ̂ (1)

i(ΩRMP + nΩ)v=−∇P+ j×B+ J×b

− ρ
[
2ΩẐ× v+(v ·∇Ω0)Rϕ̂

]
− ρk//|κ//vth,i|(v+(ξ ·∇V0))// (2)

i(ΩRMP + nΩ)b=∇× (v+B)+ (b ·∇Ω)Rϕ̂

−∇× (ηj) (3)

i(ΩRMP + nΩ)p=−v ·∇P−ΓP∇· v (4)

+

∇× b= jRMP, ∇· jRMP = 0. (5)

In this formulation, bold quantities represent 3D vectors,
uppercase variables denote equilibrium quantities, and lower-
case variables indicate perturbed quantities. The unit vector
ϕ̂ points in the toroidal direction, while Ẑ indicates the ver-
tical direction in the poloidal plane. For physical quantities,
J represents the electric current, B the magnetic field, ξ the
perturbed displacement, v the perturbed velocity, P the pres-
sure, ρ the plasma density, and η the resistivity. Additionally,
R is the plasma major radius, Ω is the toroidal rotation fre-
quency, and thus V0 = RΩϕ̂ is the toroidal, single-flow, velo-
city. The toroidal mode number is denoted as n, and Γ is the
adiabatic index. The parallel wave number, κ// = (n− m

q ) is
defined using the poloidal mode number (m) and the safety
factor q. Here, vth,i represents the thermal ion velocity, and k//
is a numerical coefficient that mimics parallel sound damping
[19]. In this study, a strong damping regime is assumed, cor-
responding to k// = 1.5. The input RMP current, jRMP is
modeled as sinusoidal along the toroidal angle, with period-
icity n, such that jRMP ∝ einϕ. Details of the implementation
of the active coil currents in the code can be found in appendix
of [20].

2.1. KilCA/QL-Balance kinetic model

External perturbations are usually effective in controlling
ELMs only when they successfully penetrate into the plasma.
As an initial response to external RMPs, parallel currents are
built up in rational surfaces resonant to the applied perturba-
tion field. These currents are oriented to produce a radial field
opposite to the externally induced one in the attempt to reduce
the perturbation, hence they are also referred to as shielding
currents. The shielding to the external perturbation is propor-
tional to the plasma flow. In principle, the parallel currents will
interact with the radial field causing an electromagnetic torque
which onsets a feedback loop that eventually may lead to the

flow braking and to the loss of shielding. The non-linear pro-
cess for which the plasma response eventually fails in produ-
cing shielding is known as bifurcation [21]. Due to this cyclic
nature of the RMPs dynamic, a quasi-linear model requires to
be employed when studying penetration. In particular, within
the fluid framework, perturbation penetration is assumed to be
related to the bulk fluid braking exerted by the induced external
fields. Alternatively, when considering the kinetic framework,
the penetration is associated to the electron fluid braking.

Here, a quasi-linear kinetic response model has been
applied to study penetration effectiveness with the KilCA/QL-
Balance workflow. KilCA is a linear kinetic Maxwell equation
solver in cylindrical geometry based on a finite Larmor radius
expansion [14]. The equations that are solved in cylinder
coordinates (r,ϑ,z) are

∇×E− iω
c
B= 0, ∇×B+

iω
c
E=

4π
c

(j+ jRMP) . (6)

Note the time-harmonic dependency and the use of CGS
units. Also, due to the periodicity of the cylindrical model,
a Fourier expansion in toroidal and poloidal angle can be
employed. This casts the problem into a set of ordinary differ-
ential equations in the radial variable r. To connect the model
to experimental profiles, the radial variable is set equal to an
effective radius r≡ reff =

√
2ψtor/Bref, where ψtor is the tor-

oidal flux and Bref is the reference magnetic field of the equi-
librium at the magnetic axis. The experimental profiles given
as a function of the square root of the normalized poloidal flux
are mapped to reff.

The current density in Ampere’s law in (6) is given by two
parts: the RMP current density provided by an antenna (i.e. the
active coil) outside the plasma jRMP and the plasma response
current j. The plasma response current is determined in kinetic
theory with a finite Larmor radius expansion to order NFLR as

jimn (r) =
1
r

NFLR∑
k,k ′=0

(−1)k
∂k

∂rk

(
rσilkk′,mn (r)

∂k
′

∂rk′
Emnl (r)

)
, (7)

where the apex i identifies the spatial components and the
species index is suppressed here for brevity. The current is
determined for a specific poloidal and toroidal mode num-
ber m and n, respectively, by the conductivity tensor σ. The
conductivity tensor is derived from the solution to the kin-
etic equation with a Fokker–Planck type collision operator in
the Ornstein–Uhlenbeck approximation including an energy-
preserving integral term. For more details see [14, 22]. In the
following, NFLR = 1 is used.

QL-Balance [14] is a quasi-linear 1D radial transport
code which takes inputs from the linear kinetic response.
This model solves transport equations for the electron dens-
ity, electron and ion temperature, and the toroidal rotation
velocity based on drift-kinetic transport coefficients Dq1 that
are determined by the electromagnetic field perturbations of
KilCA. The radial electric field is determined via the ion force
balance, where the poloidal rotation is calculated by the drift-
kinetic solver NEO-2 [14, 23].
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Furthermore, anomalous transport is taken into account
by a diffusion coefficient Da. Without any prior knowledge
of the anomalous heat diffusion coefficient, its value can be
approximated according to the following procedure. Starting
by assuming a cylindrical plasma with a single ion species
and Te = Ti, the energy confinement time τE =W/P is given
by the ratio of the total stored energy W= πR0

´ a
0 dr r3neTe

and the input power P= πR0
´ a
0 dr rP where P is the input

power density, and a (R0) is the plasma minor (major) radius.
Also, for simplicity, P and ne are assumed constant here.
Considering the steady-state heat transport equation and the
equipartition of the input power to both species, the temperat-
ure can be derived to be Te(r) = (a2 − r2)P/(8neDa), where
Da is the anomalous heat diffusion coefficient which is also
assumed constant. Here, the boundary conditions ∂rTe|r=0 = 0
and Te(a) = 0 have been employed. Using Te(r) in the defini-
tion of the energy confinement time and performing the integ-
ral, one obtains:

Da =
3a2

32τE
. (8)

For typicalMAST parameters [24], that is a= 0.56m and τE =
0.0034 s, this estimate turns out to beDa = 0.87m2 s−1, which
in this work has been eventually set to Da = 1 m2 s−1. This
value was also used in earlier studies of ASDEX Upgrade
[14, 25].

2.1.1. Toroidal rescaling. A drawback of the cylinder model
is the lack of poloidal mode coupling which can signific-
antly affect the magnitude of the shielding [26]. This issue
was addressed already for the modeling of ASDEX-Upgrade
in [14] by rescaling the electromagnetic fields calculated by
KilCA with a scaling factor

Cmn =
ItMHD
∥,mn

IKilCA∥,mn
, (9)

given by the integrated parallel shielding currents determ-
ined by a chosen toroidal MHD code (ItMHD

∥,mn ) and by KilCA

(IKilCA∥,mn ). In previous work studying ASDEX-Upgrade, the tor-
oidal ideal MHD code GPEC [27, 28] was used. Here, the tor-
oidal shielding current is provided by MARS-F. The compu-
tation of the parallel current in MARS-F and its integration
into the KilCA current are summarized in appendix, the lat-
ter part is also exhaustively described in [14]. The rescaling
is motivated by the similarities between the plasma response
in the fluid and kinetic models in the case of strong shielding.
Although single-fluid theory does not capture electron dynam-
ics, the total shielding current is only weakly sensitive to the
details of the current density. Therefore, as long as strong
shielding persists, the toroidal rescaling remains valid. Once
the shielding weakens, the system enters a nonlinear regime
where the linear codes are formally no longer applicable any-
way. For more details, see reference [14].

3. Metrics

When preparing an ELM control experiment, the routine pro-
cedure involves running a linear MHD code, such as GPEC
or MARS-F, to quickly predict the coil phasing that optim-
izes a specific objective function or metric. In MAST and
ASDEX [6], successful experiments have been conducted by
maximizing the magnitude of the radial component of the
edge-resonant perturbation field, b1edge,res, which is nominally

defined as: b·∇ψ
B0·∇ϕ

q
R2
0B0

. Here ψ and ϕ are respectively the pol-

oidal and toroidal fluxes, R0 is the machine axis position and
B0 is the equilibrium magnetic field at the axis. This quant-
ity is calculated in straight field line (SFL) coordinates, or
PEST-like, within MARS-F and serves as a figure of merit
for quantifying the perturbation effectively injected into the
edge plasma, accounting for the plasma response. The sub-
script ‘edge, res’ identifies one or more Fourier harmonics
which resonate with the respective rational surfaces located
in the edge region of the plasma. Historically, and in many
works, the last pitch aligned surface is chosen [10, 29], while
this is the most convenient choice for the purpose of compar-
ing with magnetic data, the last resonant surface may be poten-
tially ill defined as it depends on equilibrium reconstruction
and on the smoothing procedure. For this reason some authors
prefer to investigate the plasma response at the pedestal [6]
or at the pedestal top regions [30]. By looking at figure 3,
the positions of these three resonant surfaces can be identi-
fied. Specifically, the resonant surfaces at the pedestal top, the
steep gradient region and the last pitch-aligned can be respect-
ively identified by the poloidal mode numbers:m= 7,9,11 for
the n= 1 and by m= 14,19,22 for the n= 2. The resonant
field metric is particularly valuable for coil systems that may
struggle to surpass the threshold field or input current required
to achieve ELM mitigation. It is especially useful for higher
n perturbations, which tend to penetrate less effectively due
to the higher number of rational surfaces concentrated in the
edge and to a faster spatial decay. At lower n and for suffi-
ciently powerful coil systems, the injected perturbation may
trigger a lockedmode (LM) [21], potentially leading to plasma
termination. In such cases, a figure of merit that decouples the
effects of the perturbation at the edge and core is preferred.
The objective is to degrade the edge confinement just enough
to stabilize the ELM while preserving favorable conditions in
the plasma core [31]. To this end, metrics such as ξNX/ξ

N
mid or

τedge/τcore are often maximized. The first metric, ξNX/ξ
N
mid, rep-

resents the ratio of the normalized plasma displacement at the
X-point to that at the mid-plane. This is considered a robust
marker of confinement degradation induced by the application
of RMPs. Studies have shown that the X-point displacement
tends to couple strongly with a peeling-like plasma response,
which is closely associated with edge stability, whereas mid-
plane displacement is typically linked to a kink-like response
that penetrates further into the plasma core [29]. This beha-
vior has been corroborated by ELM mitigation experiments
conducted in ASDEX and MAST [6]. Notice that, since in
MARS-F the X-points are not reproduced, the ξNX displace-
ments are computed by averaging the regions around the upper

5
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Figure 3. Zoom-in of the density profile around the pedestal region. A few of the rational surfaces relevant for this study have been
highlighted with dotted lines.

most and lower most points of the boundary. The second met-
ric, τedge/τcore corresponds to the ratio of the integrated total
torque injected, by the RMPs, into the edge region to that injec-
ted in the core region. This metric provides a complement-
ary view for evaluating the effects of RMPs on edge and core
dynamics [32].

Linear metrics

MARS-F operates within the linear physics framework, mean-
ing that the superposition of computed solutions also consti-
tutes valid solutions.Mathematically, ifX is a generic solution,
the expression Xtot = A ·XL+B ·XUei∆ϕ remains a solution in
MARS-F. Here,A andB are arbitrary coefficients, and∆ϕ rep-
resents the relative toroidal variation between the coil rows.
As introduced above, MAST-U is currently equipped with 2
rows of ELM coils. Such coils are placed in-vessel on the the
Low Field Side, covering the whole toroidal angle. Of course,
since the two rows have a different number of identical coils,
also the spacing between each of them is different among the
row. In this work the relative phase between respective coils at
the same toroidal position is defined as ϕUPPER −ϕLOWER, that
is: the upper coil row is treated as fixed at ϕUPPER = 0◦, while
the lower coil row, which has a greater number of degrees of
freedom, is varied clockwise. This property enables a rapid
exploration of all possible coil-set combinations in terms of
input current amplitude and toroidal phasing. Such efficiency
is leveraged to identify optimal configurations for address-
ing the ELM mitigation or suppression problem by analyzing
the behavior of various (linear) output quantities while scan-
ning the parameter space of the input currents. The optim-
ization results for the first two metrics, assuming an input
current of 1 kAt, are illustrated in figure 4 for the two tor-
oidal mode numbers, n= 1 and n= 2. The computed optimal

phasing values for each metric align well with those reported
in [10]. As anticipated, the optimal phase is sensitive to the
applied toroidal mode number but exhibits similar trends in
both cases. Notably, the plasma response always introduces a
shift of the optimal phase, of∼ 60◦ for the n= 1 and of∼ 40◦

for the n= 2, with a dependence of few degrees on the pol-
oidal mode number. The only exception to this trend appears
in the field computed at the outermost surface for the n= 1
case (red circles, top left plot of figure 4). Here, including the
plasma response leads to an optimal value shifted by ∼ 90◦,
with a magnitude lower than that at inner surfaces, indicating
exceptionally strong shielding. This behavior is not observed
at the outermost surface resonant with the n= 2 perturbations
(red circles, top right plot of figure 4) which behaves more reg-
ularly. Additionally, the displacement metric achieves optim-
ization at nearly the same relative phase when considering the
displacement at both the lower and upper X-points. Strictly in
terms of magnitudes, the displacement at the upper X-point
exceeds that at the lower X-point for both the n= 1 and n= 2
cases, measuring ξU = 0.49 mmkAt−1, ξL = 0.3 mmkAt−1

and ξU = 0.39 mmkAt−1, ξL = 0.18 mmkAt−1 respectively.

Quasi-linear fluid metric

The torque induced by externally generated 3D fields is inher-
ently a non-linear effect, as it depends quadratically on the
perturbation. In MARS-F, various types of physical torques
can be calculated based on the plasma response results.
Specifically, the electromagnetic (j×b), neoclassical toroidal
viscosity (NTV), and Reynolds stress (REY) torque sources
are included in this work. The j×b and REY torques are
purely MHD-driven, with the former originated by the inter-
action between the perturbed field (b1) and the shielding cur-
rents built in response to it (j2) and the latter associated to the
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Figure 4. Fluid linear metrics dependence on relative coil phase ∆ϕ. (a) and (c): n= 1, (b) and (d): n= 2. (a) and (b): |b1edge,res| metric
(renormalized to physical units) for different poloidal mode numbers, with blue: vacuum only and red: vacuum + plasma response. (c) and
(d): ξNX−point/ξ

N
mid−plane metric, with red: ξNupperX−point and green: ξNlowerX−point.

REY tensor term, that is ∝ (v ·∇)v. A comprehensive eval-
uation of the NTV torque, instead, would require a full kin-
etic or drift-kinetic treatment. However, in MARS-F, an ana-
lytic formula is implemented to bridge different collisional-
ity regimes, as detailed in [33, 34]. Comparisons of this NTV
computation with kinetic treatments have demonstrated qual-
itative agreement [35]. To leverage the linearity advantages
of the framework, some manipulation of the torque outputs is
necessary. For this purpose, a semi-analytic algorithm is integ-
rated into the code to construct a torque matrix that incorpor-
ates terms accounting for mutual coupling between the rows
of coils [36]. This approach generalizes the torque computa-
tion for arbitrary input current values I, as described by the
following relationship:

Πα (s) = I ·Πα
M (s) · I∗ = [IU IL]

[
ΠαUU ΠαUL
ΠαLU ΠαLL

]
(s)

[
I∗U
I∗L

]
(10)

where Πα(s) is the surface-averaged torque density and α=
j×b,NTV,REY. The superscript ∗ denotes the complex-
conjugate of the vector.

In order to maximize the τedge/τcore ratio, we first define
Πtot ≡

∑
αΠ

α and then take the radial integral separating the

core and edge regions:

τcore ≡
ˆ 0.89

0
Πtot (s)ds (11)

τedge ≡
ˆ 1

0.89
Πtot (s)ds (12)

where the boundary among the two regions has been set
s= 0.89. Of course the separation between the two regions
retains a degree of freedom, however, as long as the edge
region contains the pedestal, the results are fairly robust to
variation of this parameter [32]. In figure 5, a scan in input
current for determining the total integrated torque is reported
for both toroidal mode numbers n= 1 and n= 2 and for both
the edge and the core regions. In the scan the upper row of
coils is again considered fixed while the lower row is allowed
to vary between [0− 360]◦. For both rows the input current
is also scanned in amplitude, ranging between [1− 8] kAt.
Notice that the maximum current achievable in MAST-U act-
ive coils consists of a total of 8 kAt. For both cases, the core
minimization and the edge torque maximization are generally
located at different phases. The result of the torque ratio optim-
ization is shown in figure 6. Here, another free parameter for
the coil set configuration has been introduced in the form of
the current amplitude ratio IL/IU. This parameter was varied to
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Figure 5. Integrated total torque obtained by varying the current magnitude and relative phase between the upper and lower coilsets. (a)
n= 1, core region, (b) n= 2, core region. (c) n= 1, edge region. (d) n= 2, edge region.

Figure 6. Torque ratio, τedge/τcore, varying the current amplitude ratio IL/IU and∆ϕ for n= 1 (a) and n= 2 (b) configurations. The black
solid contour highlights where the ratio is = 1.
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Figure 7. Integral torques split by source and region. Assuming IU = IL = 1 kAt. (a) n= 1, (b) n= 2. Solid lines corresponds to the edge
while dashed lines identify the core. A color code is used to distinct each torque source, so red: j× b, blue: NTV and green: REY.

assess the relative coupling strength of each row to the core and
edge regions of the plasma independently. Notably, this met-
ric shows strong agreement with the displacement ratio met-
ric in terms of optimal phase, with the maximum edge-to-core
torque ratio occurring at a relative phase of ∆ϕ ∼ 80◦ for the
n= 1 and ∆ϕ ∼ 160◦ for the n= 2. Moreover, figure 6 sug-
gest that the maximum ratio would be obtained with a current
amplitude ratio IL/IU ∼ 0.7 for the n= 2 and IL/IU ∼ 0.35 for
the n= 1. Interestingly, the torque ratio could remain above
the unity for any value of ∆ϕ when IL/IU < 0.3 for the n= 1
and IL/IU > 3 for the n= 2 case.

It is possible to analyzemore in detail each source of torque,
in each spatial region, at the variation of∆Φ. This is shown in
figure 7 for both the n= 1 and the n= 2 mode numbers.

Focusing first on the n= 1 component, within the core
region (dashed line in the figure) it appears that the REY and
j×b torques are in competition, with the latter being bigger
hence driving the global flow braking. Moving in the edge
region the picture changes, for most of the ∆Φ values j×b
and REY torques are aligned in braking the flow. The optimum
of the torque ratio metric is justified by observing that, while
in the edge the braking is strongly amplified at ∆Φ ∼ 180◦,
in the core the integral j×b torque has a minimum, whereas
the REY torque is only slightly varying. As a consequence,
around∆Φ ∼ 80◦ the sum of the two components approaches
the zero favoring the satisfaction of the core torque minim-
ization requirement. For the n= 2 case the picture is similar
even if with some differences, now in the edge region (solid
lines, left panel of figure 7) REY and j×b are almost always
in competition with the viscous term trying to compensate the
electromagnetic-induced braking. The core torque is smaller
than the edge one in the majority of the relative phase space. In
particular, its j×b component is minimal in the correspond-
ence of the zero of the REY-driven edge acceleration, which is
located at ∆Φ ∼ 160◦, this allows to simultaneously achieve
both the edge and core torque requirements. Finally, the NTV
contribution to the total toroidal torque is always at least one
order of magnitude less than the others. Therefore evolution

of the velocity profile can be interpreted as being predomin-
antly driven by the competition between the electromagnetic
braking (induced by the external coils) and the correspondent
inertial viscous drag of the plasma.

Quasi-linear kinetic metric

To determine the actual effectiveness of the perturbations
achieved with the MAST-U ELM coil system, the KilCA/QL-
Balance quasi-linear framework has been implemented.
Within the framework a criterion for the bifurcation of an arbit-
rary mode was defined in [14]. This criterion is characterized
by a ratio of diffusion coefficients,

Dmn ≡
Dq1
e,22

Da

∣∣∣∣∣
r=rmn

⩾ 1. (13)

Here, Dq1
e,22 is the quasi-linear electron heat diffusion coef-

ficient determined within drift-kinetic theory employing a
Fokker–Planck collision operator in the Ornstein–Uhlenbeck
approximation. For the expression of the quasi-linear diffusion
coefficient see reference [14]. Da is the anomalous diffusion
coefficient, which is set to 1 m2 s−1. The criterion is based on
the observation that a feedback loop enabling bifurcation, by
local rotation braking or acceleration to approach the electron
fluid resonance, is triggered when the quasi-linear diffusion
increases to the size of the anomalous one. The diffusion ratio
is evaluated at the effective radius rmn of the resonant surface.
Since mode penetration of a resonant surface on the pedestal
top is commonly assumed to be a requirement for ELM sup-
pression [37], the focus of this metric are modes located near
the pedestal top.

In this work, the criterion (13) as a metric for ELM con-
trol is applied. In particular, when scanning over the differen-
tial phase∆Φ, the maximum of Dmn indicates the optimal coil
configuration for mode penetration while the value assumed
by the ratio suggests its actual effectiveness.
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Figure 8. Integrated MARS-F current. The harmonics are given for Boozer angles. The maximum tends toward the optimum of the
MARS-F metric b1edge,res (vertical dashed line) for higher mode numbers.

Figure 9. Kinetic quasi-linear metric for the n= 2 perturbation. The maximum predicted by MARS-F is, again, highlighted by the vertical,
dashed line.

A first qualitative assessment can be provided by the ana-
lytic expression of the quasi-linear diffusion coefficient in
constant-ψ approximation given by equation (51) in [14]. The
expression shows that the coefficient is proportional to the par-
allel shielding current squared, Dq1

e,22 ∝ |I∥|2. This statement
is independent on the model in which the current is calcu-
lated. Hence, since the ∆Φ toroidal dependence can only be
introduced from MARS-F results, assuming constant anom-
alous diffusion, the optimum of the kinetic metric Dmn has to
coincide with the maximum of the shielding currents. Figure 8
shows the integrated current for MAST-U n= 2 perturbations
for various poloidal mode numbers m that are near the ped-
estal top. These are calculated as described in appendix. The
values are given for the maximum RMP coil current pos-
sible in MAST-U (IRMP = 8 kAt). The maxima of the shield-
ing current indicated by ‘x’ markers simultaneously indic-
ate the optimal differential phase to achieve bifurcation of
the respective mode. The optimal differential phase for the
edge modes is, within a few degrees, in agreement with the
prediction of the linear fluid metric b1edge,res, as shown in
figure 4.

On the other hand, core modes, which should ideally not
penetrate, have maxima and minima at higher differential
phase values compared to the edge modes. As discussed
above, for achieving ELM mitigation/suppression, it is desir-
able tominimize the core response, whilemaximizing the edge
response. Hence, the optimal differential phase for the experi-
ment lies within the minimum of the core modes and the max-
imum of the edge modes. This first assessment indicates the
differential phase for optimal edge response, but it does not
infer on actual mode penetration. For this, the kinetic metric
with KilCA/QL-Balance is calculated (including the toroidal
rescaling described in section 2.1.1). Figure 9 shows the kin-
etic metric for various poloidal mode numbers located near the
pedestal top for n= 2. Indicated by dashed–dotted lines are the
maxima of each mode. Notably, the magnitude of the metric
does not imply the bifurcation of any of the modes.

In terms of optimal differential phase, the trend ofDmn goes
toward the optimal value of b1edge,res for higher poloidal mode
numbers. The jump between optimal phases across rational
surfaces is larger than that seen with the linear resonant field
metric. Specifically, near the pedestal top (m= 14,15) the
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quasi-linear criterion predicts an optimal phase about ∼ 20◦

higher than the linear one. However, this is well within the
broadness of the peak. The cylindrical model of KilCA is not
valid anymore at the outermost edge of the plasma where the
model’s neoclassical reconstruction of the radial electric field
loses validity. In fact, the kinetic criterion is mostly reliable
(and hence it should be used) when considering the optim-
ization around the pedestal top [14]. The fluid and the kin-
etic metric can be compared in such region only in terms of
optimal differential phase, as the quantification of the mag-
nitude of the resonant perturbed field within any inner resonant
surface is complicated by the presence of a strong shielding.
Therefore, the fluid metric can quantitatively inform only for
regions closer to the separatrix, that is m= 22 for qedge = 11
and n= 2 for the case at hand. As a result, KilCA/QL-Balance
computations provide a more reliable pedestal-located penet-
ration criterion which could be in principle a more effective
predictor of RMP induced ELM control, than the conventional
linear fluid based metrics.

4. Error field (EF)

Previous MAST-U campaigns faced significant challenges in
achieving ELM control. Multiple attempts were conducted
using the external coils in the n= 2; however, none succeeded
in reaching the threshold current necessary for ELM mitiga-
tion. Instead, in most cases, a LM was triggered, leading to
early plasma termination. A possible explanation for these
failures lies in the presence of a non-negligible n= 2 EF,
which could interfere with the externally induced perturba-
tions. Indeed, in [10], a few experiments varying the abso-
lute phase were reported, which confirmed the presence and
the substantial effect of the n= 2 EF. Historically, MAST-
U has suffered from strong unwanted EFs originating from
imperfections in the placement of poloidal field (PF) coils.
The dominant EF contribution, in the n= 1 configuration,
has been successfully mitigated through mechanical adjust-
ments, as confirmed by recent analyses [38]. However, no cor-
rective measures have been implemented to address a poten-
tial n= 2 component, as tilting or re-positioning the coils
alone would not be effective. The failure of previous exper-
iments motivates a detailed investigation and characteriza-
tion of the n= 2 EF. So far, only few discharges were per-
formed while varying the relative phase in the n= 2 configur-
ation. The results have been reported in table 1 in [10]; out
of six shots, four of them resulted in a LM before achiev-
ing ELM mitigation while the other two did not have any
effect at all. However, no full compass scan or any system-
atic experimental scan on the whole RMP parameters space
have been performed yet. Moreover, to fully explain the mode-
locking dynamic, non-linear physics should be accounted for
once the perturbed fields successfully penetrates. As such,
the aim of this work is simply to quantify and characterize
how the EF might modify the optimization of key metrics for
ELM control. The focus, will lie on recomputing the optimal
phases while incorporating a realistic, 3D EF plasma response
model.

EF model

The EF model was derived by integrating vacuum dis-
charge measurements into the fully toroidal Biot–Savart code,
ERGOS [39], within which the detailed geometry of the
MAST-U PF coil system has been inserted [40]. As a first
check, to provide procedure validation, the model compu-
tations were compared to the experimental measurements
obtained from the #47216 vacuum discharge during which
only one set of PF coils, namely P5 (upper and lower) was
powered. The P5 coil set was chosen since, as can be seen
later in the discussion, its contribution to the EF turns out to be
the predominant one. The measures were taken from the out-
board saddles, a pair of toroidal arrays of saddle coils which, in
MAST-U, allows to detect and evaluate the n> 0 component
of the radial field BR. The pair is divided into the big and the
small saddles, which are positioned at the same radial location
(around R= 1.99 m from the machine axis) with the center
aligned with the machine’s midplane. The coils have slightly
different heights, hence the nomenclature, with the big span-
ning about 2 m and the small around 1.6 m. Being positioned
right behind the P5, covering all their frames, these outboard
saddles should detect the whole magnetic field produced by
the poloidal coils, hence representing the best choice to com-
pare vacuum discharges with the modeling results. It is worth
noticing that the previous validation of the model was car-
ried out in MAST which had worse capabilities in terms of
radial field detection, instead, the comparison relied on meas-
urements taken with three high-accuracy Hall probes that were
installed ad-hoc [40].

Figure 10 shows the comparison between the saddles meas-
urements and the ERGOS results taken at the same radius and
at the toroidal angles ϕ corresponding to the probes location.
To best match the observations, ERGOS computations are also
averaged over the nominal coils area. It should be noted that
neither the big nor the small saddles cover entirely the tor-
oidal circumference, instead they provide total coverage only
when superposed. To obtain the EF measurement, the equi-
librium contribution (i.e the mean value) to the radial field
must be taken out from the signal. Then, when comparing the
remaining n> 0 components with the correspondent ERGOS
prediction, a satisfying match between model and measure-
ments occurs. Notably, both the measured and the modeled
signals display a clear n= 2 behavior.

A Fourier transform of the ERGOS 3D field was per-
formed to correctly isolate the n= 2 component. The com-
puted vacuum field, for a unit current of 1 kAt, is shown
in the left panel of figure 11. According to equations (5), to
compute the plasma response using MARS-F, the EF must
be translated into an equivalent current on a conformal sur-
face outside the plasma boundary. This is achieved using the
equivalent surface current (ESC) technique, which allows to
prescribe an arbitrary magnetic field and to map it, by solv-
ing an inverse Biot–Savart problem, into the required input
current [41]. This ensures that the plasma response calcula-
tion remains consistent within the entire domain enclosed by
the ESC. The n= 2 EF obtained via the ESC procedure was
recomputed in MARS-F, and figure 12 shows the excellent
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Figure 10. Comparison between the n> 0 radial field predicted by the ERGOS model (solid lines) and as detected from the outboard saddle
probes (dotted lines) during discharge #47216, at 600 ms. Figure (a) shows the big saddle signals whereas (b) shows the small saddle
signals. In both cases the ERGOS field has been obtained by averaging over the correspondent probe surface.

Figure 11. (a) n= 2 ERGOS BR components (cylindrical coordinates) generated by the poloidal field coils (in blue) which distribution is
marked in the poloidal section. The dashed line identifies the plasma boundary of #47051 at 611 ms. (b) n= 2 normal component of the
ERGOS field interpolated on the MARS-F grid. The ERGOS field has been computed singularly for each poloidal coil reported in the left
figure, assuming 1 kAt feeding current.

agreement between the vacuum field modeled by ERGOS and
the results processed in MARS-F at the plasma boundary. The
b1res poloidal spectra of the computed EF, for both vacuum-
only and with plasma response runs, is reported in figure 13.
For comparison, figure 14 shows the spectra (obtained with
plasma response) for the upper and lower rows of RMPs coils.
By observing the maximum values of each spectra, it can be

immediately noted how the magnitude of the combined per-
turbation injected by the RMPs system, when in perfect con-
structive phase, would still be of the same order of the intrinsic
EF.

To identify the primary sources of the n= 2 EF, compu-
tations were performed for each individual PF coil. Figure 15
indicates that the dominant contributions arise from the P4, P5,
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Figure 12. Poloidal distribution of the normal component of the n= 2 vacuum error field at the plasma boundary, computed assuming 1 kAt
current flowing in the poloidal field system. Solid lines represent Re(Bn), whereas the dotted lines show Im(Bn). Blue color identifies the
ERGOS field, while the red color shows the same field but computed in MARS-F after applying the ESC technique.

Figure 13. Poloidal spectrum of |b1| per 1 kAt (in SFL coordinates) produced by the intrinsic n= 2 EF. (a) Vacuum field. (b) Total field
(vacuum + plasma response). The dotted white line corresponds to the q profile while the white dots identify the positions of rational
surfaces.

and P6 coil sets, with a minor contribution from the D coils.
However, not all contributions are oriented in the same direc-
tion. The right panel of figure 15 illustrates the distribution of
the perturbed radial field in the complex plane, in the radial
location corresponding to the last resonant surface. While it
shows partial cancellation between certain contributions like,
for example, P4U and P4L, it also demonstrates that the over-
all largest contribution comes from the P5 coils, with the lower
P5L coil being dominant. This analysis suggests that distan-
cing the plasma column from the P5 coil set could help reduce
the intrinsic EF. Furthermore, as shown in figures 15 and 16,
the green bar/marker in the complex plane represents the per-
turbation induced by the ELM coil system when in maximum
constructive phase. A direct comparison with the EF compon-
ents confirms that both effects produce perturbations of the

same order of magnitude. This highlights the non-negligible
impact of the intrinsic EF on the overall injected perturba-
tion, potentially influencing the effectiveness of external RMP
actuation.

To accurately assess the impact of EF-induced perturba-
tions, the plasma response must account for the actual cur-
rents flowing in the PF coils during the experiment. In MAST-
U, an external Rogowski coil is wrapped around each PF
coil, enabling the precise estimation of the currents that
feed the PF system [42]. For discharge #47051 at 611 ms,
these currents are reported in table 1. Notably, the P5 coils,
which already yield the strongest contribution, also appear
to carry the largest fraction of the current. By re-scaling the
ERGOSfieldwith these experimentallymeasured currents, the
actual effect of the EF plasma response during the discharge
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Figure 14. Poloidal spectrum of |b1| (in SFL coordinates) total field produced by the the ELM coil sets in n= 2 configuration, assuming an
input current perturbation of 1 kAt. (a) ELM coils, upper row. (b) ELM coils, lower row. The dotted white line corresponds to the q profile
while the white dots identify the positions of rational surfaces.

Figure 15. b1 resonant component (in SFL coordinate) of the vacuum n= 2 EF and RMP perturbations computed at the q= 11 rational
surface. (a) Histogram bars representing the absolute value of the field for each individual error field source. The green bar shows the
absolute values correspondent to the sum of the ELM upper and lower row at the maximum alignment phase. (b) Representation of the field
in the complex plane. Opposite vectors are in phase-opposition hence they would destructively add up. The b1 field is computed assuming
1 kAt current flowing in each coil.

can be determined. Those re-scaled computations, shown in
figure 16, confirm the P5 coils as the dominant sources of EF.
Furthermore, the actual perturbation amplitude, due to the EF
alone, measures up to ∼ 3G, representing a substantial effect.

EF correction (EFC) to the metrics

By linearly combining the plasma response to the n= 2 EF
with the perturbation generated by the ELM control coils, the

effect of the EF on key optimization metrics can be evalu-
ated. Figure 17 shows the phase scan of both the linear met-
rics with the EF included compared to the curves obtained
without. From the left panel, it is possible to appreciate the
shift of the resonant field metrics. Notice that, since the reg-
ular behavior displayed by the different polodial harmonics
for the n= 2 case (figure 4(b)), here for simplicity only the
resonant field at the last-pitch aligned surface has been repor-
ted. When including the EF, the vacuum and the total optimal
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Figure 16. Same as figure 15 but here the b1 field is scaled with the experimental value of the source currents, taken at 611 ms for the
discharge #47051, in each poloidal field coil. The RMP field is scaled with the maximum nominal current: 8 kAt.

Table 1. Values of the currents feeding each PF coil (both Upper and Lower) during shot #47051 at 611 ms (in kAt), as measured by the
external Rogowsky coil. P5 information are highlighted.

P4 P5 P6 D1 D5 D6 D7 DP

Upper −2.89 −6.05 −0.08 3.91 −0.14 1.45 −1.71 −3.58
Lower −2.87 −5.99 0.08 3.92 −0.13 1.44 −1.72 −3.61

alignments get moved behind of ∼ 50◦ and ∼ 70◦ respect-
ively. The displacement ratio metric (right panel) displays,
instead, a more drastic shift. The new optimum is shifted, for
both the X-points, close to almost 0◦ relative phasing and the
ratio drops marginally above one for ξU and even below for
ξL. A displacement ratio smaller than the unity indicates that
the kink-like response is dominating hence affecting, poten-
tially in a detrimental way, the core confinement. This inter-
pretation may be further supported, at least qualitatively, by
the limited set of experimental data points available in table
1 of [10]. The corresponding values of the relative phase∆Φ,
associated with either the onset of a LM (crosses) or a lack of
effects (circles), have been overlaid in figure 17(b). It can be
observed that the inclusion of the intrinsic EF tends to shift the
displacement ratio ξX/ξM toward values less than unity in the
phase intervals where LMs are experimentally observed. This
suggests that, if unfavorably aligned with the EF, the perturb-
ations may effectively lead to core braking and mode locking.
The only clear deviation from this trend is represented by the
rightmost cross. Again, it should be noted that a fully quantit-
ative explanation of the LM onset requires a non-linear treat-
ment of the plasma response, which is beyond the scope of this
analysis. Moreover, small differences between the equilibrium

and kinetic profiles used in the modelling and those corres-
ponding to the actual experimental discharges could also con-
tribute to explaining the discrepancy. To investigate a little
more in detail the influence of the EF, the evolution of the
metric optimization is shown as the RMP current is ramped-
up from 1 to 8 kAt, which is the maximal nominal current of
the coil set (figure 18). Initially, the EF dominates the field
response, shifting the optimization to ∼ 131◦. However, as
IRMP increases, the intrinsic field is gradually compensated by
the ELM coils which attempt to restore the original optimum.
Indeed, once the current finally saturates, the predicted shift
settles down at∼ 160◦. The optimal curve for the same metric
but for the case without EF is also shown (black-dashed in the
figure) for comparison sake. Aside from shifting the optimum,
the inclusion of the EF also induces extra magnitude to the
radial field which increases by approximately 30%.

When looking at the displacements metric, instead, the
changes in the ratio values can be explained by observing
figure 19 which shows the ∆Φ dependence of the absolute
value of ξ in each region considered. When adding the EF all
the displacements are increased and shifted of few degrees. In
particular, the displacement at the midplane becomes the dom-
inant one and, most importantly, the maximum of each curve
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Figure 17. ∆Φ scan of the linear, fluid metrics adding the EF effect. Left: |b1res| metric. Here blue is the vacuum field while red is the total
one. Right: ξL/ξM metric. The green curves corresponds to ξL, while the red one to ξU . The dotted lines correspond to the case without EF
and with the RMP system at full power (8 kAt). The solid lines are obtained by summing the EF. In the left figure (b), also the experimental
points from table 1 in [10] have been reported. Here crosses identify ∆Φ for which locked modes were triggered while circles corresponds
to alignments without LMs.

Figure 18. Total |b1res,edge| field metric for the case RMP + EF varying the RMP current from 1 kAt (blue-ish) to 8 kAt (yellow-ish), while
fixing the latter. The black dashed curve shows the optimum trend for the total |b1res,edge| field, at 8 kAt, without the EF.

aligns at the same relative phase. This strongly suggest that the
EF would dominate the response, non-negligibly affecting the
core.

The analysis of the torque ratio metric further consolidate
previous observations. Figure 20 shows τedge/τcore while vary-
ing ∆Φ and scanning simultaneously the current amplitude
ratio, fixing IU = 8 kAt. Clearly, when adding the EF, the rel-
ative coil current amplitude looses importance in determin-
ing the optimal configuration. In fact, the maximum ratio is

obtained when both the rows of coils are activated at full cur-
rent. Moreover, while the torque ratio remains overall above
the unity, its magnitude gets sensibly reduced, to a maximum
of 3 (figure 6(a)). The relative phase dependence is also inver-
ted, with the optimum now localized around 0◦, in line with
the displacement ratio metric prediction, and a region of core
torque dominance is found for the combination of parameters:
IL ∈ [0.3,0.8] ∗ IU and∆Φ ∈ [260◦,320◦]. In general, both the
core and the edge regions seem to be braked with a similar
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Figure 19. Magnitude of the displacements ξ measured at midplane (blue) and at both the X-points (ξU , ξL). The dotted lines correspond to
the case without EF and RMPs at full power.

Figure 20. τedge/τcore metric computed adding the effect of the EF. Here the current amplitude ratio is computed by fixing IU = 8kAt and
varying IL.

Figure 21. Integrated torque magnitudes, in absolute values, varying∆Φ. Different spatial regions are denoted by colors with: red the core
region, green the edge and purple the whole radius. (a) Torque injected by powering the RMP coils at full current (8 kAt). (b) torque
injected by powering the RMP coils at full regime and including the EF scaled with the experimental currents.
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magnitude now and the introduction of the EF clearly causes
the disruption of the decoupling which was achieved by the
ELM control coils alone (figures 21(a) and (b)). This res-
ult points again in the direction of EF to be mostly affect-
ing the core region of the plasma column. Notably, due to the
presence of the EF, the core induced torque is now maxim-
ized at the RMPs-only optimal phase, assuming a peak value
of τtot ∼ 140 mNm and τcore ∼ 60 mNm which would be the
double of the core torque induced by the RMP coils alone,
even when aligned with an unfavorable phasing. This could
provide an explanation for the observations of LMs when the
RMP coils were set to the predicted optimumwithout account-
ing for the EF presence.

5. Conclusions

This study investigated the role of linear and quasi-linear mod-
eling to understand, and eventually achieve, ELM control in
the spherical tokamak MAST-U. Particular focus has been set
on the correlation between the plasma response to external
RMPs and the presence of an intrinsic EF. In terms of optimiz-
ation, this work evaluated the relative effectiveness of fluid and
kinetic metrics in guiding ELM mitigation strategies. While,
in general, validation with the experiments is essential to cla-
rify which figure of merit should be applied, some considera-
tions can be done about the reliability and the convenience for
the use of each metric. The resonant radial field is usually a
robust metric which value mostly relies on predicting whether
the system is able, or not, to produce enough perturbation to
affect the plasma and achieve control. This metric usually dis-
play broad peaks around the optimal configuration points and
it can also quantify the plasma response shift throughout dif-
ferent resonant surfaces. However, to be applied in a recipe the
results computed with this metric necessarily requires compar-
ison with the experiment and it is usually device-dependent. It
can, in turn, represent the fastest way to determine the optimal
coil parameters when ELMs control has already been achieved
on a device. In order to better understand the details of the
response to the perturbation, the radial field metric should be
complemented by a figure of merit that decouples the types
of response, this could also be useful to prevent the on-set
of dangerous locked-modes while still investigating the coil-
set parameter space. The displacement-based metric displays
a strong optimum localization feature. While notable results
have been previously achieved using this metric, it remains
device-dependent and it may turn out to be unreliable if the
scenario characteristics happen to be too uncertain. The torque
ratio metric, which accounts for the mutual coupling between
each set of coils (and EF) show a remarkable agreement with
the displacement metric, this result further consolidate the
validity of the latter despite its linear nature. The usefulness of
this metric could be found into assessing the safety region of
coil configurations prior to experimentation. However, simply
having a torque ratio slightly above the unity could be not
enough to prevent detrimental effects in the core region and, in
general, assessments on the overall torque magnitude should
always be performed. Analysis of the composition of the fluid

torque on MAST-U identifies the dominant role of the j×b
process which requires minimization in the core and maxim-
ization at the edge. So far only the optimal ∆Φ an IL/IU ratio
have been computed with the fluid quasi-linear torque met-
ric which, in principle, could also be used to derive the min-
imum current magnitude to achieve penetration by evolving
the single-fluid momentum equation using the RMP torque as
input source. This is currently left as future work.

The quasi-linear kinetic analysis, even if still unrefined,
provided a good comparison with the more traditional reson-
ant field metric and an adequate agreement in the prediction
of the optimal phase is demonstrated between the two work-
flows. A precise assessment of the RMPs magnitude needed
to achieve the full penetration, even if time consuming, helps
in determining the validity threshold for the linear metrics. In
future, comparing penetration dynamic as computed in the kin-
etic and fluid models would further deepen the physical under-
standing of RMPs applied to the ELM control. This pushes in
the direction of directly benchmark the two quasi-linear frame-
works. Moreover, careful analysis of the dependency on other
kinetic parameters should be carried out to improve the char-
acterization of the metric sensitivity and enhance the modeling
prediction capability.

In general, all these findings suggest that careful consider-
ation of metric selection is essential to develop effective ELM
control strategies in MAST-U.

Finally, this analysis characterized and quantified the dom-
inant contribution to the n= 2 component of the intrinsic EF
associated with the PF system. The plasma response com-
putations indicate that the EF may affect non-negligibly the
core region, possibly compromising confinement and prevent-
ing ELM mitigation. Unfortunately, to mechanically correct
the imperfections that produce all the unwanted n> 1 com-
ponents is not practically feasible, as it would require bend-
ing and deforming the coils shape, hence likely incurring in
the risk of breaking them. Operation-wise, it could be a solu-
tion to try to adjust the plasma column to distance it from the
P5 coil set. Alternatively, a possibility could be implementing
EFC with another set of external 3D coils such as the EFC
coils which have been previously applied to correct the n= 1
EF [11]. In the meanwhile, in this work alternative optimal
phases have been computed including the model-based pres-
ence of the EF. Nevertheless, a thorough investigation should
also include potential contributions from the toroidal field sys-
tem and central solenoid to ensure a comprehensive evaluation
of the intrinsic fields. This is, again, left as future work.
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Appendix. MARS-F shielding current integration

Bridging between MARS-F and the KilCA code requires the
computation of the parallel component of the perturbed current
density j// which arise in response to any external magnetic
perturbation. This can be done directly starting fromMARS-F
outputs. Indeed:

j∥ =
j ·B0

B0
(A.1)

where B0 is the equilibrium field and B0 its modulus. This
expression can be expanded in terms of MARS-F variables
since B0 = [B1

0,B
2
0,B

3
0] = [0,ψ

′
/J,F/R2]withψ

′
= dψ/ds and

with ψ being the poloidal flux, J the metric Jacobian and
F the poloidal current flux function and where 1,2,3 super-
scripts denominates the radial, poloidal and toroidal compon-
ents respectively. Then:

jiBi =
j1ψ

′
g12
J

+
j2ψ

′
g22
J

+ j3F (A.2)

B0 = |B0|=
√
Bi0Bi,0 =

√
0+ψ′g22/J2 +(F/R)2 (A.3)

with gij being the metric elements. Finally:

jMARS−F
∥ =

j1ψ
′
g12/J+ j2ψ

′
g22/J+ j3F√

ψ′g22 +(F/R)2
. (A.4)

The parallel current density determined in real space with
MARS-F is expanded for Boozer coordinates in Fourier har-
monics. For a single harmonic, we have

j∥ = B0

(
j∥
B0

)
m
eiϑBm+iφBn, (A.5)

where ( j∥/B0)m is the Boozer harmonic of the current in tor-
oidal geometry for the specificmode numberm= (m,n). Note
that the current calculated by MARS-F is given for a spe-
cific toroidal mode in geometrical angles. Hence, we need to
account for a phase factor occurring in the transformation to
the toroidal Boozer angle

j∥,n (sp,ϑB) = jMARS−F
∥,ng (sp,ϑg (ϑB))e

−inG(sp,ϑB), (A.6)

where ng indicates the toroidal mode number for the geomet-
rical angle used in MARS-F.

To get the mode specific parallel current, we integrate over
a surface S,

I∥m =

ˆ
dS ·B0

(
j∥
B0

)
m
. (A.7)

We choose the surface to be a toroidal surface, i.e. fixed tor-
oidal angle, meaning that dStor ·B0 = dΨtor. Hence,

I∥m =

ˆ
dΨtor

(
j∥
B0

)
m
. (A.8)

To proceed we realize that, in the case of flux variables, the

harmonic of the current density only depends on s=
√
Ψn

pol,

where Ψn
pol is the normalized poloidal flux, or Ψpol =Ψa

pols
2

with the poloidal flux at the last closed flux surface, Ψa
pol. We

further recall that the safety factor is defined as

q=
dΨtor

dΨpol
. (A.9)

With this, we can write dΨtor = 2Ψa
polsds, with which the

integration is written as

I∥m = 2Ψa
pol

sres+sdˆ

sres−sd

ds sq

(
j∥
B0

)
m
. (A.10)

Note that the integration is over a region around the resonant
surface with sres. Previously [14], the width of this region was
determined by a Gaussian fit, where sd was taken to be five
times the standard deviation. Here, however, it proved more
consistent to integrate between the two neighbouring minima
around a resonant surface.
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