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Waste-production predictions for the future demon-
stration fusion power plant (DEMO) are necessary to
produce an accurate picture of the likely environmen-
tal and economic costs of radioactive waste disposal at
end-of-life (EOL). Even during the conceptual stage of
DEMO design it is important to perform waste assess-
ment so as to avoid potential surprises due to design flaws
that could lead to unacceptable levels of long-term high-
level waste. An integrated simulation process combining
Monte-Carlo neutron transport simulations, high-fidelity
inventory calculations, and extensive and reproducible
post-processing algorithms is being used for the evolv-
ing European DEMO designs to quantify the time-varying
mass inventories in different waste classes for individual
regions and components of the reactor vessel, as well as
for the reactor as a whole.

Neutron transport simulations have been performed
for DEMO models of three tritium-breeding con-
cepts: helium-cooled lithium-lead (HCLL); helium-
cooled pebble-bed (HCPB); and water-cooled lithium-
lead (WCLL). The resulting set of statistically-calculated
neutron spectra provide the input to inventory simula-
tions with FISPACT-II [1], which evolve the nuclide com-
position (inventory) of the homogenised material mix-
tures in each region of the DEMO-design geometry dur-
ing the planned 22-year, 2-phase operational scenario of
DEMO, followed by subsequent EOL decay-cooling. An
automated post-processing algorithm takes these time-
evolving nuclide inventories, which, by definition, also
define the level and type (α , β , γ) of activation in the ma-
terial, and uses them to predict the waste class according
to waste categories based on UK regulations (see [2] for
details).

Figure 1 shows how long different regions of the
DEMO reactor (in this case for the WCLL concept)
take to satisfy the low-level waste (LLW) criteria applied
in these studies (must have less than 12 MBq/kg total
combined activity from β and γ emission and less than
4 MBq/kg of α activity). The cross section shows, for
example, that most of the large, homogenized breeder
zones are predicted to remain as intermediate-level waste
(ILW), or worse, for more than 100 years beyond DEMO
EOL, although the shield behind the breeder zones (the
majority of the mass and also part of the replaceable
blanket modules) is predicted to be classifiable as LLW
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much sooner. Ongoing work indicates that the situation
might be more favourable (less ILW at long timescales)
in a fully-detailed (heterogenous) DEMO design. This
demonstrates the need to plan and design for a blanket
that can be dismantled to separate the localized, highly
active regions, which could remain ILW for hundreds of
years, from less active ones, and thus reduce the overall
burden of long-lived waste requiring storage.

14C production from the few hundredths of weight %
nitrogen in Eurofer steel is the primary cause of this sur-
prising result [3], which disagrees with earlier studies [4]
into the activation response of Eurofer because in those
cases the focus was on γ-dose for recycling and remote-
handling considerations, while stored waste in, for exam-
ple, an underground repository, must also satisfy β and α

activity limits (14C is a pure β emitter). This highlights
the importance of considering minor impurities (inten-
tional or otherwise) in materials for activation and waste
analyses. Manufacturing impurities in the ITER-grade
tungsten assumed in European DEMO designs can also
produce long-lived dominant activation products [2]. In
this work we also show how that the potentially unavoid-
able (it is very expensive and difficult to remove com-
pletely) uranium impurities in the beryllium used in the
HCPB concept also produce long-lived radionuclides that
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Figure 1: Poloidal slice of the DEMO model with the WCLL
breeder blanket concept. Each homogenized material region (cell)
is coloured according to the time-interval (shown in the key) during
which each cell is predicted to satisfy the criteria to be classified as
low-level waste (LLW).
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Figure 2: Periodic table with each naturally occurring element coloured according to the time-interval during which it would satisfy the LLW
criteria after irradiation during one full operation cycle in the divertor cassette body. The actual “time-to-LLW” values are given below each
element symbol. Note that no tritium removal is considered for this divertor environment, and this radionuclide is responsible for the long-lived
waste in some of the lighter elements, such as He, and Li.

Figure 3: Nuclide contributions to Be activity under the predicted
conditions in the inboard equatorial blanket breeder zone of the HCPB
concept. The total activity is shown, together with curves representing
the contributions from important radionuclides. The low-level waste
(LLW) limit is also shown as a horizontal dashed line. The “pure” Be
used for these calculations contained 0.01 weight % uranium, which
in a ∼1000-tonne blanket would equate to ∼100 kg of uranium.

exceed the LLW limit. Figure 3 shows the contributions
from different radionuclides to the activity of the Be grade
assumed in the calculations, after an operational life in the
inboard equatorial breeder zone. Radioactive actinide im-
purities have been grouped together in the plot and their
total contribution is significant enough to exceed the LLW
limit (shown in the plot). This observation is only a prob-
lem for the HCPB concept (other breeder-blanket con-
cepts use, instead, Pb for neutron multiplication and mod-
eration), and it is likely that much of the Be used will be
extracted for reuse rather than being disposed of as waste

with the other blanket components. However, it is still
a potentially serious issue that might make this tritium-
breeding option less desirable.

The likely significance of impurities in materials can be
further assessed by using the waste simulation scheme to
perform a “time-to-LLW” analysis for each element. Fig-
ure 2 shows the result of one such assessment for pure ma-
terials in the conditions expected for the divertor cassette
body. The assessment confirms the previously mentioned
problems with nitrogen (it is predicted to take more than
1000 years to become LLW if irradiated in a pure state),
but also indicates which elements are likely to increase
the amount of ILW (and on what timescale) in a compo-
nent if they form part of the material composition of that
component (e.g. Ni and Cu are both problematic but pure
Cu has a shorter time-to-LLW and so could be allowable
to higher concentrations).
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