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Abstract—The problem of parameter fitting nonlinear oscilla-
tor models to noisy time series is addressed using a combination
of Ensemble Kalman Filter and Optimisation techniques. Pre-
liminary results for acceptable sampling rates and noise levels
are presented. Application to the understanding and control of
tokamak nuclear reactor operation is discussed.

I. INTRODUCTION

ITER, the world’s device for exploring the physics and
technology of magnetically confined nuclear fusion as a route
to power generation, is currently under construction near
Cadarache in S. France. For critical operational reasons, ITER
needs to be able to model discharge evolution in real time as
accurately as possible, the model in effect forming part of
a closed loop control system. For example, even at current
power levels in the similar but smaller EU funded device
JET, limiting the temperature of the first wall is critical to
the extent that magnetic-flux sweeping to spread the divertor
heat load is becoming the norm. However, there is not at
present a satisfactory model capable of modelling temperature
distributions on plasma facing components (PFCs) which can
operate at sufficient speed.

Even for operation of existing devices, a model will only
be satisfactory if it has the capability to predict behaviour in
new regions of operating space, hence to meet ITER needs it
is critical for extrapolation that there be a physical basis to a
model, which obviously has to incorporate time dependence.
Under these conditions, the developing field of Uncertainty
Quantification (UQ) indicates the favoured approach is data
assimilation (DA)[1] using a multi-parameter surrogate model
containing simplified physics. Amongst other benefits DA
will help avoid problems of over-fitting noisy data, while
being capable of incorporating both point sampled data from
Langmuir probes (LP), 2-D video images of the PFCs, and
line-of-sight data as obtained by bolometry, see [2]. The
current work represents the first part of a programme designed
both to develop suitable surrogate models and maximise the
speed and robustness of DA fitting algorithms.

The surrogates chosen for initial investigation are in mathe-
matical terms, nonlinear low order ordinary differential equa-
tions. As explained in Section II-A, not only might these
systems reproduce the magnetic field behaviour of the device
to sufficient accuracy, but they also represent the resonant

response of a simple but nonlinear electrical circuit. Of course,
as such they might be analysed by a variety of techniques
already developed for such systems, eg. the matlab”?! system
identification tool-box, but since it is conceivable that partial
differential equation models could be used in the course
of ITER operation in future decades, DA is preferred as
more amenable to extension to very computationally expensive
models.

Following description of the model and representative data
quality in Section II-A, the Ensemble Kalman Filter (EnKF)
approach to DA is outlined in Section III-A. Difficulties
caused by sampling effects and noise lead to the need for
a complementary optimisation step to help identify likely
parameters. This is discussed in Section IV, with preliminary
results in Section V and finally Section VI is brief discussion
of conclusions and possible future developments.

II. MODEL AND DATA
A. Models

In the plasma, there is a range of microscopic and macro-
scopic instabilities, such as sawtooth and ELMs, which served
to motivate this work. The sawtooth instability is a relaxation
oscillation in the centre of the plasma at large electric currents,
mainly observed through oscillations in electron temperature
and density, followed by subsequent movement of particles
and energy as a heat pulse from the centre of the plasma to
the boundary. Edge-localised modes occur during sufficient
increase of input power, when the edge of the plasma, char-
acterised by large differences in electron density and tempera-
ture, undergoes short heat and particle eruptions. In addition to
instabilities being prone to nonlinear interactions, a wide range
of spatial and time scales also make simulations of large scale
behaviour of the tokamak plasma at high temperatures difficult
and computationally demanding. However, simplifications of
tokamak geometries under symmetry considerations enables
the study of sawteeth and ELMs via simple ordinary differ-
ential equation (ODE) models that reproduce their behaviour
as outlined [3]. In particular, the source states the equations
follow on from equivariant bifurcation theory, where low
order Taylor expansions of equations are used in regions
of parameter space where qualitative behavioural change is
shown. The simplest coupled equations, called Axisymmetric
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Fig. 1. Plots of b(t) for ANAC model as parameter d, is varied, showing
potential to represent both sawteeth and spiking oscillations.

and Non-Axisymmetric Coupled model (ANAC), observed to
qualitatively fit the experimental data, are the following

i = ~ya+2ua® (1)
b = a—pBb>—(1+0,b)a> ()

where dot notation represents derivatives with respect to time

t. The final goal is to perform data assimilation with this
model. However, due to complexity of the coupled system,
simpler models are first looked at for purposes of testing the
data assimilation algorithm and the optimisation scheme, as
well as to gradually build up complexity and understanding of
the problem. Models considered along with brief outlines of
their dynamical properties are presented below.

The simplified non-coupled version of the system is given
by Equation (1), which represents a non-linear oscillator
provided v < 0 when solutions correspond to motion in a
potential well of the form 4V (a) = —2va® — pa*. The system
state vector is defined as x = (a, @) and the model parameters
as A= (7, 1)

The Lorenz system is a set of three ordinary differential
equations which were first derived by E. N. Lorenz[4]. The
system Equation (3) is known for its non-periodic/chaotic
behaviour. In all our studies o = 10, » = 28 and b = 8/3.

T = O'(y—ﬂ]‘),
= rx—y—zxz, (3)
z = xy—bz

B. Data

All testing described herein is done using synthetic data.
The aim is to make those as realistic as possible in order
for the results to be meaningful for real experimental data
of plasma magnetic field measurements, which are taken

during occurence of ELMs or sawteeth in the tokamak. The
assumptions made are the following:

o The sampling rate of the data (denoted as v), the number
of observations per period of oscillation, is at least 6.
We are able to determine the period oscillation, i.e. the
typical time scale, via the Fast Fourier Transform.

« Noise is present in data. One source of noise are errors
due to truncation of recorded data points, in addition to
other sources of noise difficult to identify.

e Measurements are taken directly of system variables,
therefore, the linear observation model is simply the
identity matrix, h = I, the unit matrix.

Synthetic data are generated by perturbing the solutions ob-
tained by numerical integration at each timestep, assumed
fixed. The perturbations are simply numbers from a uniform or
Gaussian distribution with parameter o. It is further assumed
that the timestep of observations is a positive integer multiple
of the numerical integration timestep.

III. DATA ASSIMILATION

Many simulations are initial-value problems where the
determination of the initial condition is very important. Ob-
servations can be used to obtain the initial condition but are
usually non-uniformly spread in space and time. Hence an
estimate has to be provided for the initial condition on all grid
points. After running the simulation for a few time steps the
observation and the result of the model are combined to obtain
an analysis state. This state is then used as initial condition for
the next set of forecast. The method of combining observations
and the numerical model is called data assimilation (DA).
The analysis cycle described above is run at intermittent time
intervals to obtain new initial conditions for our forecast. A
general outline of the process is shown in Figure 2. The
calling of the analysis cycle is defined by the user or can
be initiated by an increase in the model error. Generally
there is a forecast, =7, an observation, y° and a first guess,
H(z'), where H is the observation map operator. Given the
innovation or observational increment being the difference
between observed and model first guess, y° H (x%), the analysis
can be obtained by adding this innovation to the model forecast
with weights W which are determined by statistical error
covariance.

=2+ W (y°— H(xb)) €]

Many assimilation schemes are based on Equation (4) and dif-
fer only by how they combine the observation and background
to produce the analysis. A specific scheme, namely EnKEF, is
now described.

A. EnKF

A very simple derivation for the EnKF approach to Data
Assimilation, suitable for a first introduction begins with
Bayes’ theorem in probability, which states that

P(z|d) x P(x)P(d|x) )
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Fig. 2. General Schematic for Data Assimilation.

when Gaussian distributions for P(x), P(d|x) imply

P(z|d) exp{—%T(m)} where (6)
T(x) = (x—mf)(Cff)_l(x—xf)—i— 7
+ (2 - d)(Ce) !z —d) ®)

Minimising T' gives the analysis z = x¢,

0T (x) = 0=2(z — /) (Css) " +2(x = d)(C) ™" (9)

as
f ~1 —1
o = TG +d(C) (10)
(Cff)ilJr(Cee)il
_ xfCEE—i-dCff an
o OEE—FOff
Css

(p2)? = Cyy (1 - W) = Caq < Cyy (12)

The above generalises to give the vector formulation of EnKF
x“—xf:C’ff(Cff—&—C’“)_l(d—i—éd—fo) (13)

where Hx/ is what is observed, and 6d makes explicit the
addition of a perturbation to the observed data.

Combined state and parameter estimation with EnKF

For many dynamical real-world problems a common prob-
lem are poorly known model parameters. Evensen [5] intro-
duces a scheme for estimating poorly known model parameters
in addition to system state during data assimilation with an

Ensemble Kalman Filter. The main difference with the classic
system state estimation algorithm is that poorly known model
parameters A are added to the state vector x. Therefore, at
every time step the new state vector is z; = (Xxx, \px) the
ability to change in time and should eventually converge to
the true values, i.e. limy_,ooAr, = AP, under the assumption
that model parameters are constants. This was implemented
by revising the dynamical model to account for this by adding
d(X\;)dt =0 for i =1,...ny to the original system.

The reasons for choosing EnKF may be enumerated as

1) Extensibility - from 1 to 10® variables.

2) Simultaneous parameter and state estimation.

3) Wide range of practical applications - oil reservoir mod-

elling, weather forecasting, image processing, MHD.
4) Convergence studies

a) Successful empirical parameter fitting for Lorenz
chaos [6].
b) Recent positive analytic results [1]

B. EnKF from matlab to python

EnKF-matlab is described in [7], and may be freely down-
loaded from the website http://enkf.nersc.no/, This version is
used as a stepping stone to understand how to program EnKF
and its working. In the matlab code there is a file which holds
10000 sample points each with its own X,y and z values. At the
start of the simulation this sample file is shuffled, the first point
now is taken to be the initial condition for the true state and
the points following in the sample are taken to be the initial
conditions for the ensemble state. The size of the ensemble is
chosen by the user and can be changed through the parameter
file. Both the true state and the ensemble are propagated
in series using the same time step which is specified in a
custom file. The model steps before assimilation is specified
by the user in the parameter file. Depending on the settings
for variables such as inflation and localization in the parameter
file different assimilation algorithms are followed. The default
version of the matlab code uses[7] to work out the corrections,
but for comparison purposes the version of EnKF described
above was used. with localization and inflation turned off.

The matlab code for this algorithm was straightforwardly
converted to Python. As seems to be standard [6], the Lorenz
model was used to test the new code. A typical verification
test is shown in Figure 3.

IV. OPTIMISATION AND CMA-ES

Three optimisation algorithms have been tested, two local
solvers for nonlinear least squares problems, DFOGN [8] and
DFO-LS [9] and a stochastic search method called Covariance
Matrix Adaptation Evolutionary Strategy (CMA-ES) [10]. The
variety of types of solvers was chosen to see variations in
performance, and their appropriateness for this problem.

Local solvers perform the search iteratively by zooming
in on error function values in the close neighbourhood of
the current best value held; the new best candidates are
taken deterministically to be the best neighbouring points.
Solvers DFOGN and DFO-LS in particular choose the next
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Fig. 3. Results for Lorenz system, verifying EnKF-python (bottom) against
EnKF-matlab (top). The blue line is the ensemble average and the red line is
the true state.

iterate based on the approximation of the error function in the
neighbouring region via a linear model, as this is cheaper and
easily applicable to black-box or noisy functions.

On the other hand, stochastic search implies that there is
an element of randomness in searching for new best candi-
dates that minimise the error function. CMA-ES specifically
searches the neighbourhood of some starting guess by moving
and reshaping a normal distribution based on sorting between
samples from the distribution.

All solvers were initially run for 100 different starting
guesses of parameter and initial state values, over which
optimisation was attempted. In reality it might occur that
observed data can provide a very good guess of the initial
system state. To imitate and test such situations, the true
initial state was perturbed with small noise level of 0.05.
Optimisation was for such cases performed over parameters
only with the same 100 starting candidates for parameters.
Robustness of solvers for these problems to noisy or sparse
data sets was tested by varying noise levels and sampling rates
of synthetic observations.

V. RESULTS

All solvers were initially run for 100 different starting
guesses of parameter and initial state values, over which
optimisation was attempted. In reality it might occur that
observed data can provide a very good guess of the initial
system state. To imitate and test such situations, the true
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Fig. 4. Performance profiles for combined parameter and initial state
estimation (top) and estimation of just parameters (bottom) with v = 12
and Gaussian noise o = 0.5.

initial state was perturbed with small noise level of 0.05.
Optimisation was for such cases performed over parameters
only with the same 100 starting candidates for parameters.
Robustness of solvers for these problems to noisy or sparse
data sets was tested by varying noise levels and sampling rates
of synthetic observations.

Comparison of derivative-free solvers DFOGN, DFO-LS
and CMA-ES showed that for combined parameter and initial
state estimation, with and without noise, DFOGN was the
best-performing solver overall. The increase in the number
of solved problems to high accuracy was the steepest and the
final proportion reached was the highest at about 60%. It was
followed closely by DFO-LS, whereas CMA-ES consistently
performed considerably worse on average (see Figure 4 (top)).
Stagnation of local solvers at local function minima was
observed. Local minimum of a function is a point which,
compared to points in its close vicinity, gives the smallest
value of the function. Increased sampling rate seemed to have
decreased the chances of local solvers getting stuck at these
points.

Sole parameter estimation, as in Figure 4 (bottom), showed
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Fig. 5. Plots of average error of estimates for combined parameters and initial
state case (top) and just parameters (bottom). v is the sampling rate and o is
the Gaussian noise level.

very encouraging results for all solvers, as within 500 function
evaluations the solvers found the minimum for about 90%
of starting guesses. This was the case for the error function
measuring error from observations with as well as without
noise. DFOGN and DFO-LS were consistently the fastest
solvers over CMA-ES here as well.

When varying noise levels and sampling rates (denoted as
v) with DFOGN solver, it was found that in general larger
sampling rates seem to mitigate large noise levels. There is
a clear trade-off visible between the two when estimating
parameters and the initial state in Figure 5 (top). With just
parameters, this trend is less strong, and one can notice in
Figure 5 (bottom) that the average error over the runs for
different starting guesses stays constant. This is an encourag-
ing result pointing to errors in parameter estimation occurring
mostly due to small noise in the known initial state.

The new approach developed for initialisation of the en-
semble Kalman filter involves using observations over the
first period for parameter and initial state estimation. The
optimised values of parameters are used to initialise the model

0 20 40 60 80 100

10
© 0
-10
0 20 40 60 80 100
Time

Fig. 6. Ensemble average (red) with observations (black), reference solution
(green) and standard deviation (blue) for sampling rate 12 and Gaussian noise
level o0 = 0.5

to be assimilated, whereas optimised initial state is used for
initialisation of the initial ensemble of state vectors. Results
for one run including error estimates can be found in Figure 6,
where performance plots and average root mean square errors
are similar to the case of initialisation with true values, as
desired.

VI. CONCLUSION

Software has been developed for parameter identification of
noisy time-dependent systems. Its robustness has been con-
firmed using synthetic data representative of simple nonlinear
oscillators with additive noise. It is expected to be most
useful in situations where it is desired to produce surrogates
of varying degrees of sophistication, the more detailed ones
including spatial as well as temporal variation. Even the
simple surrogates may however be used to validate physical
assumptions about tokamak dynamics, as well as employment
in system control.
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