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Introduction
In Doppler Backscattering (DBS) measurements, the probe beam is launched into the plasma

such that the beam reaches the cut-off perpendicular to the magnetic field, fulfilling the Bragg
condition

2Kb =−k'−k⊥. (1)

Here Kb is the wavevector of the probe beam, k is the turbulent wavevector, and the ⊥ subscript
represents projection perpendicular to the magnetic field. Due to the nature of turbulence in high
magnetic fields, k is mostly perpendicular to B. Since the Bragg condition requires Kb to be
parallel to k, it follows that Kb must be perpendicular to B. It is difficult to meet this condition
in spherical tokamaks at all points and times, hence the backscattered signal is reduced. The
quantitative dependence of signal on mismatch angle is not known. Understanding this is vital
for interpreting DBS data from spherical tokamaks [1].

Beam tracing
We write the electric field due to the microwaves as Ee−iωt , where ω is the angular frequency

of the microwave beam. Assuming that the electron density has equilibrium piece ne and small
fluctuating part δne � ne, we split εεε , the cold plasma dielectric tensor, into equilibrium and
turbulent fluctuating parts εεε = εεεeq+εεε tb, associated with probe beam Eb and scattered Es electric
fields, respectively.

We model Eb as a Gaussian beam, which is approximately what the DBS antenna emits. We
assume that the length scale associated with the inhomogeneity L is long compared to both the
width w and wavelength λ of the beam, and that the wavelength λ is much smaller than the
width of the beam w, λ � w� L. We choose the specific ordering

w
L
∼ λ

w
� 1. (2)

We then consider a region of space close to the trajectory of the central ray, r = q(τ), where τ

is a parameter that gives the position along the ray. To define a coordinate system, we introduce
the effective group velocity (this is not the true group velocity since it is a derivative with respect
to the parameter τ , not with respect to time)

g = gĝ =
dq
dτ

, (3)

where g = |g| is the magnitude of g, and ĝ its direction. The group velocity g is parallel to the
central ray, and we will describe any arbitrary position as being composed of the position along
q(τ) and across the ray,

r = q(τ)+w = q(τ)+wxûx(τ)+wyûy(τ). (4)

Here ûx(τ) and ûy(τ) are two mutually perpendicular unit vectors which are also perpendicular
to g. The unit vectors (ûx, ûy, ĝ) form an orthogonal basis (Figure 1). The beam is taken to be a



Figure 1: Beam coordinates

Gaussian envelope about a central ray. The electric field of the probe beam is

Eb = Aant exp(iφ (0)
b )
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where φ
(0)
b is the Gouy phase of the beam, s =

∫
Kgg dτ , and ê is the polarisation. The wavevec-

tor and position of the ray are K(τ) and q(τ), respectively. The curvature and width of the
envelope are given by the real and imaginary parts of the 2D matrix ΨΨΨw(τ), respectively. We
use the subscripts w and g to indicate projection perpendicular and parallel to the group velocity,
respectively, while the subscript ant refers to the value at the antenna. The evolution of g(τ),
K(τ), φ

(0)
b (τ), and ΨΨΨw(τ) along the beam is given by the beam tracing equations [2].

Reciprocity
We then calculate the backscattered signal using the reciprocity theorem [3]

As =
Aantgant

2πi
ω

c

∫ √det[ℑ(ΨΨΨw)]

g
exp(φ (0)

b +φ
(0)
r )

× δne

ne
ê∗ · (εεεeq−1) · ê exp(2is+2iKw ·w+ iw ·ΨΨΨw ·w) dV.

(6)

Here φ
(0)
r is the Gouy phase of the reciprocal beam. We then order |k⊥|� k‖∼ L−1 and express

the density perturbation as

δne =
∫

δNe(τ,k⊥)exp
(

ik⊥ ·w+ i
∫

k⊥ ·g dτ

)
d2k⊥. (7)

Writing the differential volume element as

dV = g dwx dwy dτ, (8)

we note that the integrals with respect to wx and wy are Gaussian integrals. Hence we get

As
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r )ê∗ · (εεεeq−1) · ê
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dτ d2k⊥.
(9)



Effect of the mismatch angle
To understand equation (9), we consider how the backscattered signal can be maximised. The

exp(2is+ i
∫

k⊥ · g dτ) piece is quickly oscillating and can be maximised using the method of
stationary phase, while the exp

{
1
4 i[2Kw +(k⊥)w] ·ΨΨΨ

−1
w · [2Kw +(k⊥)w]

}
piece decays quickly

for 2Kw + (k⊥)w 6= 0 due to the imaginary part of ΨΨΨ
−1
w . Hence, the signal is largest when

2 ds
dτ

+k⊥ · g = 0 and 2Kw +(k⊥)w = 0, recovering the Bragg condition 2Kb +k⊥ = 0 if g is
perpendicular to B. If they are not perpendicular, then the Bragg condition is not met in general.
When there is a mismatch angle, equation (9) enables us to determine the backscattered signal.
Equation (9) is a generalisation of reference [3], which assumes slab geometry.

Verification
To further understand equation (9), we study it in the limit of a conventional tokamak. In

a conventional tokamak, where mismatch angle is small, we can make two approximations.
First, the probe beam’s path is approximately perpendicular to the magnetic field, hence ĝ · b̂'
0. Second, the poloidal field Bp is small compared to the total field B. Hence, the dispersion
relation of the O and X modes implies that Kw is small in Bp/B.

We neglect Kw and use the beam tracer Torbeam [2] and our post-processing code to evaluate
equation (10). We choose the basis (ĝ, k̂⊥,2, b̂). To further simplify the equation, we assumed
that δNe does not depend on τ . This is equivalent to assuming uniform density fluctuations
throughout the beam. Evaluating the integral in equation (9) with respect to k⊥,2, we get

As

Aant
=
∫

I(k⊥,1) δNe
(
k⊥,1,k⊥,2 = 0

)
. dk⊥,1, (10)

Where
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(11)

Here ΨΨΨ
−1 is the inverse of ΨΨΨw and Ψ

−1
22 = k̂⊥,2 ·ΨΨΨ−1 · k̂⊥,2. We evaluate equation (11) for a toka-

mak with concentric circular flux surfaces (Figure 2 (a)), with a launch angle of 20◦, O-mode
polarisation, frequency of 55 GHz, minor radius of a = 0.5m, and major radius of R0 = 1.5m.
The poloidal and toroidal magnetic fields have the forms Bp = Bp,max

(√
(R−R0)2 +Z2

)
/a

and Bt = Bt,maxR0/R, respectively. We used Bp,max = 0.01T and Bt,max = 0.67T.
When k⊥,1 is too small, there are no stationary points. That is, there are no points where the

phase of the integrand of I is stationary (Figure 3, blue lines). Hence, the signal is suppressed
(Figure 2 (b), k⊥,1 > 18cm−1). When k⊥,1 is sufficiently large, there is one stationary point
(Figure 3), green lines) at the cut-off corresponding to where the Bragg condition is met. Since
the beam spends more time in this region, density fluctuations here matter more than along
the other sections of the beam. When k⊥,1 is even larger, there are now two stationary points
corresponding to the two points along the beam where the Bragg condition is met (Figure 3, red
lines). However, the signal from these two points can interfere constructively or destructively
depending on the phase difference of the waves scattered from them, explaining the oscillations
in the signal when k⊥,1 is large, as seen in Figure 2(b).

There are several reasons for the large spread of k⊥,1 contributing to the integral in Figure
2 (b). First, the turbulence spectrum is not yet taken into account. More localisation at cut-off



(a) Path of the beam (b) Amplitude of the integral I with respect
to τ , given in equation (11)

Figure 2: The black line shows the path of the beam, and the grey lines show the 1/e contours
of the Gaussian envelope (a). The red line shows the values of k⊥,1 where the Bragg condition
is met at the cut-off (b).

(a) Phase of the integrand in I (b) Meeting the Bragg condiiton

Figure 3: The phase of the integrand as the beam propagates through the plasma (a). Schematic
showing where the Bragg condition is met along the beam (b).

is expected once it is taken into account because there are more fluctuations at lower |k⊥,1|.
Second, the tokamak model is simple, with circular flux surfaces and parabolic density profiles.
Third, the probe beam is launched from the outboard mid-plane with a shallow angle of 20◦.
Fourth, the Doppler shift would give additional localisation at the cut-off.

Conclusions
We have written a program, to be used together any beam tracing code, that is able to calculate

backscattered signal in general geometry when there is no mismatch. More importantly, we
have developed an analytical understanding of mismatch angle on backscattered signal, and are
currently developing tools to numerically calculate effect of mismatch angle.
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