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Abstract. The Fusion Science Demonstrator in the European Open 
Science Cloud for Research Pilot Project aimed to demonstrate that the 
fusion community can make use of distributed cloud resources. We 
developed a platform, Prominence, which enables users to transparently 
exploit idle cloud resources for running scientific workloads. In addition to 
standard HTC jobs, HPC jobs such as multi-node MPI are supported. All 
jobs are run in containers to ensure they will reliably run anywhere and are 
reproduceable. Cloud infrastructure is invisible to users, as all 
provisioning, including extensive failure handling, is completely 
automated. On-premises cloud resources can be utilised and at times of 
peak demand burst onto external clouds. In addition to the traditional 
"cloud-bursting" onto a single cloud, Prominence allows for bursting 
across many clouds in a hierarchical manner. Job requirements are taken 
into account, so jobs with special requirements, e.g. high memory or access 
to GPUs, are sent only to appropriate clouds. Here we describe 
Prominence, its architecture the challenges of using many clouds 
opportunistically and report on our experiences with several fusion use 
cases. 

1 Introduction  
Access to both High Throughput Computing (HTC) and High Performance Computing 
(HPC) facilities is vitally important to the fusion community, not only for plasma modelling 
but also for advanced engineering and design, materials research, rendering, uncertainty 
quantification and advanced data analytics for engineering operations. The computing 
requirements are expected to increase as the community prepares for ITER, the next 
generation facility and largest fusion experiment ever built. 
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The EUROfusion research community today consists of a series of isolated “islands” of 
computing and storage resources. Users typically access remote resources manually using 
ssh. Moving to a decentralised computing model is vital for future ITER analysis where no 
single site will have sufficient resource to run all necessary workflows. In addition, interest 
in techniques such as uncertainty quantification is gaining momentum and will also 
contribute to the increasing computing requirements. Getting access to resources is 
becoming more difficult and it needs to be possible to easily exploit external resources. 
While there are some facilities, for example MARCONI, providing HPC resources to the 
fusion community, they are under high demand. Typically access to such resources is 
competitive, and the peer review process means that there can be a long delay between 
having a need for computing resources and actually being able to have access to them. 

The use of clouds for running scientific workloads is well established, in particular for 
HTC applications. Many platforms have been developed which create either clusters in a 
cloud or enable a local batch system to burst onto a cloud. However, it has generally been 
assumed that only one or a few large clouds will be used. In EOSCpilot [1] we had purely 
opportunistic access to around ten different clouds from EGI FedCloud [2]. We could 
occasionally get small numbers of cores on some clouds, while on others we could 
sometimes get larger numbers of cores. There was no way of knowing in advance what 
resources would be available to us on each cloud. The aim therefore was to aggregate all 
these resources and make them more useful, benefitting both users who need resources and 
cloud service providers who would like their resources to be as fully utilised as possible. 
We developed a new platform, Prominence [3], which, in addition to providing the 
capability of bursting out from local resources onto external clouds, allows users to 
transparently make use of potentially many clouds opportunistically. 

In this paper we will describe Prominence and look at some fusion use cases and the 
challenges encountered. 

2 Description of Prominence  

2.1 Application portability and reproducibility 

In the fusion community, where computing takes place on traditional batch systems, 
software is made available via NFS and makes extensive use of environment modules. Each 
application is typically only ever run on a limited number of clusters and can be difficult to 
build and run elsewhere. Since we want to make use of distributed computing resources it 
becomes essential to ensure that applications are portable and reproducible, i.e. they can 
easily and reliably run anywhere and give the same result. 
 Due to the potential for a wide variety of applications and dependencies, containers are 
the most logical way to distribute software. Users or groups can build and test their own 
container images locally, knowing that their application can be run reliably anywhere. We 
use Docker Engine to build container images, but we use two unprivileged container 
runtimes for running jobs, specifically Singularity [4] and udocker [5].  
 
2.2 Interacting with Prominence 
 
User interaction with Prominence is via a RESTful API and JSON, using OpenID Connect 
(OIDC) token-based authentication and authorisation. This is significantly more flexible 
than requiring users to connect to a login node and interact with a batch scheduler, as it 
gives users the freedom to manage jobs from anywhere, and can easily be used 
programmatically using any language, for example from a Jupyter notebook. 



 

 

A command line interface (CLI) provides a simple batch system style interface for 
remotely managing workloads, giving users almost the same experience that they have on a 
standard batch system but with the advantage that the CLI can be run from anywhere. 

Workflows and jobs are described using a JSON schema. While there are many 
examples of workload descriptions in JSON, YAML and XML, none are commonly used 
and they don’t provide all the features we require. We therefore use our own generic 
workload descriptions, based on three main components: workflows, jobs and tasks. An 
example is illustrated in Figure 1. 
 A task is an atomic computing job, which consists of a container image, command to 
be executed, any required environment variables and the choice of container runtime. A job 
contains a list of one or more tasks to be executed sequentially, metadata (arbitrary key-
value pairs) and additional information required to run the tasks, in particular the required 
resources (such as CPUs and memory), any input and/or output data, and optionally 
policies. Workflows consist of a list of jobs, any dependencies between them, metadata, and 
optionally policies. Job policies enable users to influence where jobs will run. Both job and 
workflow policies include retry policies for dealing with failures. 
 

 
 

Fig. 1. An example workflow showing how it is built up from jobs, with dependencies between them, 
where each job consists of one or more tasks. 

 Since resources are specified at the job level, the resources used by a workflow can be 
tailored for each individual step. A workflow can contain combinations of both HPC and 
HTC jobs, where the HPC jobs use MPI and run across multiple nodes while the HTC jobs 
each run on single nodes, with the jobs potentially being run on different sites dependent on 
the resources required. 
 
2.3 Architecture 
 
An overview of the Prominence architecture, showing the basic building blocks, is shown 
in Figure 2. Identity is provided by an OIDC server, such as INDIGO IAM [6] or EGI 
Check-in [7]. The foundation of Prominence is provided by HTCondor [8], providing 
essential basic functionality such as a transactional database for jobs, the ability to securely 
run jobs remotely, and the ability to stream standard output and error while a job is running. 
HTCondor job router hooks, which allow arbitrary code to be invoked at defined points in 
the job lifecycle, are used to initiate deployment and deletion of infrastructure on clouds by 
interaction with a placement policy engine. Infrastructure Manager (IM) [9] is used to 
manage the infrastructure. 

With this model, a unique VM (or group of VMs for multi-node MPI jobs) runs each 
job and is destroyed immediately after the job finishes. This is of course not very efficient 
for large numbers of short jobs, but typical fusion jobs run for hours or days, resulting in 
the time taken to deploy a VM being small compared to the lifetime of a job. The use of a 
VM per job also helps to ensure that we use resources efficiently since VM flavours can be 
tailored to each job. The combination of potentially long-running jobs and a wide range of 



 

 

resource requirements would present a challenge in trying to use VMs efficiently if they 
were all of the same size and each ran multiple jobs. 
 

 
Fig. 1. An overview of the Prominence architecture. 

 
A placement policy engine is used to decide where to deploy infrastructure for each 

job, based on each job’s requirements and preferences. This is implemented using policies 
in Open Policy Agent (OPA) [10], an open-source general purpose policy engine. OPA is 
used to store static and dynamic information about each cloud, such as current quota (where 
available), recent failures, available images and VM flavours. It also maintains policies to 
determine what clouds meet requirements and to rank clouds based on preferences. Clouds 
are automatically queried for the required dynamic information. 
 Extensive failure handling is essential. If deployment on any cloud fails it will be 
retried up to a specified number of times on the same cloud. After this, if the infrastructure 
cannot be deployed, another cloud meeting the job’s requirements is tried. This process is 
repeated until either the infrastructure is successfully deployed or all clouds have been tried 
and failed. There are timeouts for all state changes, so for example, if a VM is stuck in a 
provisioning state, after a time limit it will be deleted and retried. 

The actual deployment of virtual infrastructure is handled by IM, which acts as an 
abstraction layer allowing us to use a single API for accessing multiple clouds. We have 
successfully tested Prominence with OpenStack, Microsoft Azure, AWS and Google Cloud 
Platform, in addition to OpenStack and OpenNebula clouds in EGI FedCloud accessible via 
the OCCI API. 

With this system we can preferentially use a local cloud but burst onto national 
research clouds when needed, then burst onto EGI resources when needed, and finally burst 
onto public clouds. Jobs with special requirements, such as high CPU counts or low-latency 
interconnects, will only be run on appropriate clouds. 

Finally, there needs to be some way for jobs to access input data and for users to 
access output data generated by jobs. In the absence of a standard way of remotely 
accessing data in the fusion community, we chose to make use of Ceph-based object 
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storage with the S3 API [11]. This enables data to be automatically staged-in and staged-out 
allowing jobs to access the required data, and output data can be made available to users, all 
through the use of pre-signed URLs. 

The CLI provides a simple way for users to upload any input files or container 
images, list uploaded files and download output files, using pre-signed URLs supplied by 
the Prominence RESTful API. In the absence of a private container registry, this also 
enables jobs to obtain private container images, stored as either a tar-ball or in the 
Singularity format. This feature is important as many codes used in the fusion community 
cannot be made available on a public registry. 

Multi-node MPI jobs generally require access to shared storage. We leverage BeeGFS 
[12] in order to provide multi-node MPI jobs with converged shared storage, available only 
for the lifetime of the job, aggregating the performance and capacity of the nodes used to 
run the job. 

3 Example use cases 
Here we describe some example fusion use cases which have been migrated to make use of 
Prominence. 
 
3.1 Breeding blanket design  
 
A breeding blanket covers the interior of a nuclear fusion vessel and has the important role 
of ensuring tritium self-sufficiency in deuterium-tritium fusion power plants. A blanket 
design tool was created which automates and parameterizes the production of 3D CAD-
based neutronics models. Machine learning was used to drive the parametric model creation 
and optimize the breeder blanket performance in terms of tritium production. 
 From a computational point of view, this use case was quite straightforward as it just 
involved running a large number of identical jobs. These jobs were completely self-
contained and self-organising, in that each job contacted a remote database to obtain a set 
of input parameters and wrote the output back into the database once complete. Prominence 
enabled these jobs to be run across four clouds in EGI FedCloud opportunistically, thus 
making use of resources previously inaccessible and resulting in a publication [13]. 
 
3.2 JET Application Management System 
 
The JET Application Management System (JAMS) [14] is a user interface to a variety of 
transport and magnetohydrodynamics codes for the integrated simulation of all phases of a 
Tokamak. It includes the ability to submit and manage jobs on a local batch system. Our 
aim was to extend this to be able to make use of external resources using Prominence, 
allowing users to continue running jobs when local resources are full. 

Python scripts were written to enable JAMS to be able to submit jobs to Prominence 
using the RESTful API. The workflow used is fairly standard and applicable to many 
applications. When a user creates a job in JAMS, a set of input files and data is created in a 
unique “run directory”, typically of the order of MB in size in total. JAMS uploads this run 
directory to object storage and submits a job to Prominence. Prominence provisions the 
required resources on a cloud, copies over the run directory and container image from 
object storage, executes the job then copies the run directory, now containing output files, 
back to object storage. JAMS is able to query the Prominence RESTful API in order to 
obtain a pre-signed URL which is used to download the run directory. 



 

 

A time-consuming aspect of this use case was building the container image. It took 
around two months of development and testing to build and validate the containerised code, 
mainly due to having to start completely from scratch in the clean environment of a 
container rather than relying on all the existing dependencies in the environment of a 
cluster which has been used for many years.  

The new system has been in used in production successfully for around six months. 
 
3.3 HPC applications 
 
The use of true HPC applications, i.e. multi-node MPI applications usually run on batch 
systems with low-latency interconnects, is very common in the fusion community. 
Currently none of the cloud resources we have access to provide low-latency interconnects, 
nevertheless it is worthwhile to check the performance when running these applications on 
clouds with standard networking as many users prefer their jobs to be running, rather than 
waiting in a queue, even if they will run for longer. A variety of codes have been tested, 
including LAMMPS [15], VASP [16], BOUT++ [17], ASCOT [18] and JOREK [19]. Here 
we will only discuss LAMMPS as it highlights some common issues experienced with the 
other HPC codes. 
 The LAMMPS molecular dynamics simulation code is used in many communities, 
not just for fusion. The first step is to build a container image containing LAMMPS built 
with the Intel compiler, as it is known that use of the Intel compiler with the USER-INTEL 
acceleration package provides the best performance. Since the Intel compiler is licensed 
commercial software, we do this by building LAMMPS on a local cluster then copying the 
binary into a container image with the free Intel Parallel Studio XE Runtime installed. 

Next it is important to consider the effect of containerisation on multi-node MPI jobs. 
We tried running LAMMPS on an HPC cluster using Singularity and compared this to 
LAMMPS running on bare metal, with up to eight 32-core machines. The differences in 
wall times between Singularity and bare metal was found to be negligible. 

An interesting issue we encountered was that when the container image was 
optimised to give the best performance on one system it resulted in a loss of portability. 
LAMMPS built using the GNU compiler and Open MPI was very portable, and the same 
container image worked on multiple Intel processors and other systems like AMD EPYC. 
However, when compiled with the Intel compiler and optimised for AVX512, giving the 
best performance on recent Intel processors (around four times faster than GNU/Open 
MPI), it of course didn’t work at all on processors not supporting the AVX512 instruction 
set. Unlike public clouds, none of the academic clouds we have access to provide any 
means of requesting a particular type of processor, and in some cases have a mixture of 
machines with different generations of processors supporting different instruction sets, 
making it difficult to determine the appropriate clouds to run the most optimised codes. 

The performance of multi-node MPI jobs on clouds without low-latency interconnects 
was, as expected, significantly poorer than on HPC systems. Generally runtimes increased 
as the number of nodes used increased, however with some examples two nodes did give 
better performance than a single node. The decrease in performance as the number of nodes 
increases makes sense since the MPI communication increases significantly as the number 
of nodes increases in the case of nodes with high core counts. 

3 Summary and outlook 
We have presented a platform enabling users to exploit idle cloud resources for running 
containerised scientific workloads. All cloud selection and infrastructure provisioning is 



 

 

handled completed automatically and is fully transparent, giving users the same experience 
as using a local batch system. We are currently working on several additional fusion use 
cases, including running actual workflows rather than individual jobs. 
 Finally, it is worth pointing out that Prominence is not fusion specific at all and could 
be used by other communities. 
 
The European Open Science Cloud for Research pilot project was funded by the European 
Commission, DG Research & Innovation under contract no. 739563. This work benefited from 
services and resources provided by the fedcloud.egi.eu Virtual Organization, supported by the 
national resource providers of the EGI Federation. We acknowledge computing resources supplied by 
the IRIS (STFC) Consortium. 
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