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An extensive knowledge of a system’s failures is crucial for identifying areas where the reliability of the system 
can benefit from improvements, as well as informing the design of new systems. Moreover, relationships between 
faults and failures can be used to enhance the maintenance of the system. 

In this paper we present a taxonomy of failure modes of the Joint European Torus (JET) Remote Handling 
System (RHS). This system is used during maintenance and enhancements of in-vessel systems, and consists of two 
transporters (articulated booms) and a two-armed manipulator, along with a number of supporting systems. In this 
work we first present a failure taxonomy suitable for our specific system, and then we use a clustering approach to 
introduce example failure modes into the taxonomy. The presented failures have been collected during 
commissioning and operations over a period of over 5 years. Cataloged failures are extracted from the logs 
produced by the control system and from the daily log books recorded by the system operator. 
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1. Introduction 

The Joint European Torus (JET) Remote Handling 
System (RHS) performs maintenance and improvement 
activities of the tokamak vessel structure [1]. It consists 
of two independent transporter systems, called Octant 5 
boom and Octant 1 boom. Each boom has attached at its 
extremity a boom end-effector. In most applications 
Octant 1 boom carries the task module trolley, while 
Octant 5 boom carries MASCOT, a two-armed master-
slave manipulator [2]. JET RHS is deployed into the JET 
torus hall in between physics campaigns for 
interventions, and has been operating successfully during 
last the two decades. 

In remote operations the reliability of equipment is of 
paramount importance, hence there is a need to monitor 
the condition of the plant throughout the maintenance 
process. A Condition Monitoring System (CMS) 
facilitates a change from maintenance as a planned 
process, executed at regular and fixed periods of time, to 
a predicted process, executed according to the 
components needs. Moreover, CMS will be able to 
inform the RHS operators of a possible imminent failure 
during operations to allow them to place the system in a 
safe position. 

In this work we apply statistical methods, such as K-
means and the Dirichlet Process Gaussian Mixture 
Model (DPGMM) to different JET RHS historic data to 
investigate failures occurrence during all years of 
operations, with respect of data availability. 

This paper is organized as follows. In section 2 we 
introduce a taxonomy model suitable for our 
investigation. In the third section we give a description 
of our data. In the fourth section we describe how two 
different sources of data were classified, with particular 
emphasis on identifying position error using DPGMM. 

In the last section we summarize the work and describe 
future works. 

2. Taxonomy  

According to [3] and [4] a failure is defined as “a 
deviation from the specified service as seen by the 
client”. An error is “a state within the system which can 
lead to a failure”. A fault is “anything which could 
cause the system to enter an error state”. In other words, 
a fault is necessary but not sufficient for the system to be 
in an error state; an error state is necessary but not 
sufficient for the system to have failed.  

Different types of taxonomy models have been already 
presented in literature, from a very general purpose, such 
as the one presented in [3] and [4], to more specific one 
presented in [5]. We adopted the taxonomy model 
proposed by [3] and [4] in which we consider only 
failures generated by physical components faults. Our 
taxonomy model is presented in figure 1.  

It is interesting to note that while JET RHS control 
systems are able to identify failures, they do not give to 
the RHS operators or maintainers an indication of the 
causes of the failures. An error in a joint position 
reported by the control systems could have been caused 
by several reasons, for example, a move request that is 
too fast, a structure or another component preventing the 
movement or a genuine hardware failure.  

The aim of our work is to provide a taxonomy model 
that can lead to a better identification of faults for 
common failures.  

It will become clear in section 3, how different data 
sources report failures in different, not congruent, ways. 
Failure taxonomy techniques presented in section 4 are 
aimed to make a preliminary investigation on how to use 
available data in order to correctly identify and classify 
physical failures using the proposed taxonomy model. 



 

 

 

 

Fig. 1.  Our proposed taxonomy model. 

 

3. Data sources 

During JET RH operations data are collected from 
different sources. Each data source is independent from 
the others and has its own purpose. JET RH data sources 
are: 

1. Data Acquisition System (DAS data). High 
frequency (1 kHz) control system data. They are 
numerical values obtained directly from sensors and 
actuators. Because of the vast amount of archiving 
space required they are stored only for failure 
investigations. 

2. Low frequency control system data collectors 
(LFCS system data). They contain only a subset of 
the sensor and of the actuator measurements 
collected continuously at low frequency (~30 Hz). 
They are always available during operations and 
they are stored at the end of each day of operation. 
Since they are recorded at low frequency, they may 
not contain fast events recorded by control system. 

3. Control system logs (HMI logs). These are text logs 
generated by each control system. They contain all 
information sent from the control system to the 
operator’s graphical interface. They include all 
failures flagged by the control system and also 
contain all the commands sent by the operator to the 
control system. 

4. Operator log. This is a log handwritten by operators 
during the shift. They are in form of scanned 
handwritten document. These logs have been 
recorded since the beginning and a change in how 
they are implemented is impractical at the current 
stage. Operator’s comments are a valuable source of 
information about failures, but they depend on the 
personality of the operator.  

5. RH issue repository. The RH repository contains a 
record of discussion internal to RH control system 
group. It is in plain English with support of pictures. 

Recorded data are in form of numbers, text sentences or 
a mixture of the two. Data sources collect data at very 
different rates, moreover while the control system data 
acquisition rate is constant, operators collect data 
asynchronously. That makes it difficult to link recorded 
events only relying on timestamps, since timestamps do 
not always agree or exist. Moreover, there is not always 
a one to one relationship among events. For example, a 
failure recorded in the operator log will not be necessary 
recorded at the same time in the control system log. 
Conversely, multiple failures recorded in the control 
system log, can appear as one failure in the operator log. 

The ideal solution would be to use all the suitable data 
sources needed to identify and classify each failure. It is 
important to note that not all the sources contain 
information about each failure. Moreover, identifying the 
optimal combination of data sources is not trivial. 

During the past, not all the data sources were available at 
the same time. Figure 2 shows the overall data 
availability. It can be seen that logs are available for 
almost all the time, while numerical data (LFCS and 
DAS data) availability is limited to approximately the 
last two years. 

 
Fig. 2.  JET RH data availability over time. 

 

4. Failures taxonomy 

To find the exact causal relationship using all the above 
data is impractical due to the amount of data and to the 
uncertainties. To overcome this problem, a first 
classification of the different, but not all data sources has 
been applied: control system logs and low frequency 
control system data (LFCS system). 

Since control system logs contain data mainly in the 
form of automated text, it has been possible to consider 
its “bag of words” representation and to apply K-means 
techniques to group entries into clusters. K-means 
techniques is a set of general-purpose clustering 
techniques in which samples are grouped into a number 
K of not overlapping clusters by minimizing the distance 
of each sample by the cluster mean. [6].  

LFCS data are numerical values, and the Dirichlet 
Process Gaussian Mixture Model (DPGMM) technique 
has been applied to identify failures directly from sensor 
data. In the DPGMM techniques samples are modelled 
as a superposition of multiple gaussian distributions. The 
Dirichlet Process avoids, in practice, the need to 



 

 

calculate beforehand the number of gaussians required to 
model the data [6]. 

4.1 Control system logs clustering 

By clustering control system logs, it is possible to 
transform text entries into time series. Similar entries 
will be associated with the same cluster and so can be 
represented by the cluster number value. 

Before applying the K-means technique uninformative 
words, such as conjunctions and pronouns, must be 
removed from the entries. 

The number of clusters is chosen using the silhouette 
score. The silhouette score is the average of the 
silhouette score of each sample. For each sample i, the 
silhouette score is calculated as: 

 
Where a(i) is the mean of the distances between the 
element i and all the elements inside the cluster it is 
assigned to, while b(i) is the mean of distances between 
the element i and all the elements of the nearest cluster 
[7]. 

In figure 3 the silhouette score is shown as a function of 
the number of clusters. It is possible to see that it 
increases rapidly up to 120 clusters, while increasing 
the number of clusters over 160 is not as effective. 
This gives us an estimation of the number of clusters 
between 120 and 160. 

 

Fig. 3.  Octant 1 boom control system logs silhouette score as 
function of number of clusters. 

Once the number of clusters has been decided, the actual 
clustering action can be executed.  

Figure 4 shows control system logs of Octant 1 boom 
clustered entries as function of time. As example, three 
identified clusters “error a6”, “gross cb0” and “motion 
uncommanded” have been highlighted. 

 

Fig. 4.  Clustered Octant 1 boom control system logs 
represented as function of time. 

 
4.2 Low frequency control system (LFCS) data 
classification 

The aim of the work presented in this subsection is to 
use a statistical method to identify failure occurrences 
from LFCS data. DPGMM is used to represent the health 
status of each joint. When the model is applied to a new 
set of data, any data with a low probability of being in 
any of the gaussians, implies a low probability of being 
healthy and therefore likely to indicate a failure. This 
makes use of the DPGMM as a solution of a one-class 
problem. This can be very convenient as the sub-
domains identified by the DPGMM can be used to 
subdivide the data space (joint positions, joint position 
errors and voltage applied to the joint motor). In future 
works this sub-divisions could be used to identify 
routines [8] and statistics about failures. The actual value 
of the threshold that separates healthy data from failures 
is determined by measuring the precision, recall and F1 
score using failures recorded by the control system as 
ground truth. Precision is defined as the ratio between 
the failure correctly identified and all the failures 
identified by the model. Recall is defined as the ratio 
between the failures correctly identified by the model 
and failures actually occurred. The F1 score is defined as 
2*(Recall * Precision) / (Recall + Precision) and 
represents a weighted average of recall and precision. 
Tuning the parameters of the model, i.e. find the number 
of clusters and probability threshold to discriminate 
failures, has been performed by observing the values of 
F1 score and Precision as the cluster numbers and 
probability threshold have been changed. Values have 
been chosen in order to maximizing both F1 score and 
Precision. It is important to observe that the measure of 
the F1 score is not sufficient as in our case we prefer to 
have lower values of F1 score in order to favor higher 
values of precision.  

Data provided by the LFCS system are not suitable for 
clustering directly. In this case the definitions of the 
failures as they are expressed by the control system data, 
are not correct from clustering point of view. As an 
example, a failure (internally called “gross error”) is 
signaled whenever the measurement of the position error 



 

 

exceeds a fixed and predefined value. When this failure 
occurs, the control system flags it to the RH operator and, 
at the same time, stops the current move by resetting the 
position error. The reset is done by artificially setting the 
target position equal to the current position. As a side 
effect both the position error and driving voltage 
recorded by the LFCS system is zeroed when this failure 
occurs. Moreover, the control system remains in this 
state until the operator manually resets the state. This 
situation creates confusion in between “gross error” and 
a position perfectly controlled. Figure 5 shows an 
example of this behavior. The solid line represents the 
position error, while vertical dashed lines represent the 
time when a “gross error” failure is identified by the 
control system. It is possible to see that when the 
position error is close to the threshold, in this case 400, 
the value drops to zero and the “gross error” failure is 
raised and maintained for many samples. 

 

Fig. 5.  Example of position error failure raised by the boom 
control system. The solid line represents position error as a 
function of time, while vertical dashed lines represent the time 
when a “gross error” failure is identified. 

This situation can be mis-interpreted as a joint ready to 
operate since both position error and driving voltage 
have exactly the zero value. To overcome this problem 
the definition of the “gross error” event has been 
changed by considering it as a failure event in only one 
sample, i.e. the sample before the one flagged by the 
control system. Using this modification, the failure 
events are still in the data set but are correctly 
differentiated from the state in which the system is ready 
to operate.  

Data have been gathered with the above modification in 
place. Figure 6 shows healthy data from the joint CB0. A 
single data point represents the triple: joint position, joint 
position error and voltage applied to the joint motor.  

 

Fig. 6.  Healthy data as function of joint position, joint motor 
applied voltage and joint position error. 

Once the model is fitted with a DPGMM with a 
sufficient number of clusters and the threshold 
discriminating the healthy data from failures has been 
determined, it is possible to apply the model to data 
containing failures. Figure 7 shows the reported joint 
data for an operational day. Each data sample is 
represented by a blue dot, while failures estimated by the 
DPGMM are represented by a green dot. The revised 
definition of “gross error” is also reported in the figure 
as red crosses.  

 

Fig. 7.  Data containing “gross error” failures as function of 
joint position, joint motor applied voltage and joint position 
error (blue dots). Gross errors identified by DPGMM are 
represented with green dots. Gross errors identified by the 
control system are represented with red crosses.  

Figure 8 shows the joint position, applied motor voltage 
and joint position error as function of time. Dashed green 
vertical lines represent “gross error” identified by 
DPGMM, while red crosses represent the time when 
revised version of “gross error” is reported by control 
system. It is possible to observe that the DPGMM 
identifies 3 consecutive occurrences of “gross error” at 
about time 05:33:26. First two occurrences are false 
positive while the last one is correct. Therefore, in this 
example, a single true positive event has been 
accompanied by two false positive events hence a low 
value of F1 score. 

 



 

 

Fig. 8.  Joint position, joint motor applied voltage and joint 
position error as function of time. Gross errors identified by 
DPGMM are represented with green vertical line. Gross errors 
identified by the control system are represented with red 
crosses.  

In figures 9 and 10 a similar example from a different 
day of operations is shown. Also, in this case the 
DPGMM correctly identifies the “gross error” but also 
produces a false positive.  

 

Fig. 9.  Data containing gross error failures as function of joint 
position, joint motor applied voltage and joint position error 
(blue dots). Gross errors identified by DPGMM are represented 
with green dots. Gross errors identified by the control system 
are represented with red crosses.  

 

Fig. 10.  Joint position, joint motor applied voltage and joint 
position error as function of time. Gross errors identified by 
DPGMM are represented with green vertical line. Gross errors 
identified by the control system are represented with red 
crosses.  

 

5. Summary 

 

In this work we presented a first analysis of JET RH 
failures that occurred during remote handling operations. 
Firstly, we proposed a taxonomy model for classification 
purposes that could be used once all data sources will be 
analyzed. Then we apply statistical methods (K-means 
and Dirichlet Process Gaussian Model Mixture) to the 
two biggest class of data currently available.  

Successful results for both techniques have been 
produced. In particular, machine generated control 
system logs have been converted into time series. 
Moreover, a model to identify failures using statistical 
methods, has been produced for low frequency control 
system data. 

More work is indeed needed to exploit all the remaining 
data sources and be able to correlate in time orderly 
manner.  

Particular attention will be put on acquisition of new 
data specifically for training models for the condition 
monitoring system. Moreover, an effort will be made in 
order to make machine readable the handwritten operator 
logs. As already mention in section 3, these logs have 
not been originally designed for machine learning 
techniques. Being able to make them machine readable 
will enable understanding their information content. 

Future works will provide more information for the 
design and the development of the condition monitoring 
system. 
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