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Introduction

The experimental validation of turbulence models is a critical part of developing a predictive
understanding of plasma transport. Models based on the non-linear gyrokinetic equations are
currently the most well understood and experimentally validated models of turbulence available.
However, models of reduced complexity are required in order to make useful transport predic-
tions for future machines. Development of such models has made steady progress, however,
there has not been extensive validation of these models against measured turbulent quantities
and their trends. It is interesting to compare model predictions, where available, for turbulent
quantities which are directly related to the heat flux, such as fluctuation amplitudes and cross-
phase angles of fluctuating quantities. The most experimentally accessible cross-phase quan-
tity is that between the temperature and density fluctuations ¢,7, and this has previously been
demonstrated using a reflectometer for the density fluctuation information and a radiometer for

temperature fluctuation information [1, 2, 3].

Experiment

At ASDEX Upgrade, an F-band (100-130 GHz) multi-channel ECE diagnostic is combined
with two W-band and one V-band reflectometers along the same line of sight. In practice, the ra-
dial alignment of these diagnostics must be within a radial correlation length, which at ASDEX
Upgrade is 1-2 cm, to ensure a large enough cross-correlation can be achieved to overcome the
thermal noise in the ECE emission. The uncertainty of the density profile makes radial align-
ment to within the required tolerance difficult and time consuming to achieve. We may equally
consider this uncertainty as an uncertainty in the frequency of the radially matched ECE radia-

tion for which a bandwidth of 5 GHz is sufficient to cover the uncertainty in the reflectometer



position. Thus at ASDEX Upgrade, a 28 channel comb with either 125 or 250 MHz spacing
was designed [4], so that the diagnostic cross correlation has a higher chance of success. This
diagnostic was also used for Cross Correlation ECE measurements of temperature fluctuations
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plitude fluctuations and closest ECE channel, while (blue) shows

coherence of 2 adjacent CECE channels. the amplitude fluctuations, as will now be shown.

Reflectometer Modelling

To correctly interpret the measurement of the

cross-phase, o7, it is essential that a thorough un-
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in the linear and non-linear regimes [5, 6]. How-
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ever these studies focussed on cross-correlation of f [kHz]

two reflectometer signals and do not highlight the Figure 2: The cross-coherence of reflectometer amplitude fluc-
relative phase angle between A, ¢ and 71, essential tuations with the original density perturbations.

for the present work. Thus we attempt to address these aspects here. Cross-correlation of these
quantities with 77 was initially studied by utilising full wave calculations performed with the
IPF-FD3D code [7], using a turbulent density field generated by the GENE gyrokinetic code [8]
based on the ECRH heated L-mode plasma described in [9]. The nominal 7i/n from GENE was
0.62% and this produced a nonlinear reflectometer response in the simulations. The turbulence
was scaled by 0.1, 0.5 and 1.0 to generate a range of responses from linear to non-linear. It was
found by cross-correlating the simulated reflectometer signal with the density perturbations,

that ¢ was in phase with 7 for low 7i/n, however coherence was unmeasurable at realistic 7i/n

for this set-up. By contrast, A remained coherent with 7, even in the non-linear regime of the



reflectometer response, as shown by Figure 2. For the AUG experiential set-up, A was found to
be out of phase with 71, however this is not universal. An analytic model for the reflectometer
response, based on the Born approximation was found to be useful in elucidating the behaviour
of ¢ and A. It can be shown from the Born approximation, using the reciprocity theorem to cal-
culate the reflectometer scattered signal response [10] and by only considering 1D perturbations

of the form cos(Qr — k,,x) just inside the cut-off, that the scattered reflectometer signal s has the

e[ (55)' 8] 1
§o< i = cos(Q1), (1)

where 8 = kow? /Regr, w is the 1/e electric field radius at the perturbation and R. is the effective
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radius of curvature beteween the cut-off surface and the wavefronts, 1 /Refr = 1/pwavefront) +
1/p(cutof f). px is positive for wavefronts diverging from the antenna.

Using this model it is possible to show that the
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Figure 3: Experimental results (black), and TGLE-SAT1 (blue) due to the doubling of the frequency of these per-

results for ion heat flux, electron heat flux and oy,7. VITALS . . . . . .
turbations in A originating from a beam swinging
optimised point shown in orange.

behaviour, which is well documented [11].

TGLF Comparisons
The measurements of o7 were made in an AUG ECRH heated L-mode plasma described in
[9] and compared to non-linear gyrokinetic simulations made using GENE. These comparisons

are now extended to the reduced model TGLF-SAT1, where an average o7 is calculated using

Re{[n(ky)T;" (ky)]1 + [n(ky) T2 (ky)la}
Im{[n(ky)T;" (ky)]1 + In(k) T (k)b |

where the subscript 1 and 2 refer to the dominant and first subdominant mode respectively. In

2)

o, 1GLE(ky) = arctan

this case the Ion Temperature Gradient (ITG) mode and Trapped Electron Mode (TEM). These



two modes have distinct o7 which tend to be unchanged from the linear to non-linear state,
and for plasmas close to the transition from dominant ITG to dominant TEM, the saturated
turbulent state contains a mix of these modes. The resulting average o7 thus lies in between
the linear values of o7 of the two modes. Figure 3 shows the average o7 given by Equation
(2) when scanning the normalised ion temperature gradient a/Ly;, driving the ITG instability.
As can be seen, good agreement can be found between TGLF and experiment for all three of Q;,
Q. and oy, within the uncertainty of the inputs. A simulation point matching the experimental
constraints is found by reducing a/Lyz, by 15%, increasing a/Lz, by 17% and decreasing a/L,
by <1% and an optimisation framework for the validation of transport codes, VITALS [12], was
used to find the values for a/Lz, and a/L,. Since the ion mode is predominantly responsible
for the ion heat flux and the electron mode for the electron heat flux, it is encouraging that
the TGLF-SAT1 model is capable of matching all three parameters to experiment, suggesting
a realistic ratio of saturated amplitudes of ITG and TEM to reproduce the experimental heat

fluxes.
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