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Abstract. The physics of the tokamak pedestal is still not fully understood. However, this
will be a key element for improving our confidence in designing potential fusion power plants.
There is no fully predictive model for the pedestal height and width for example. Work has
been carried out as part of a collaboration on reactor relevant pedestal physics. We report
here some of the results and also review some of the wider work which will be reported
in full elsewhere. First, we attempt to use a gyrokinetic-based calculation to eliminate the
pedestal top density as a model input for Europed/EPED pedestal predictions. We assume
power balance at the top of the pedestal, that is, the heat flux crossing the separatrix must be
equal to the heat source at the top of the pedestal and investigate the consequences of this
assumption. Unfortunately, this method was not successful. Second, we investigate the effects
of non flux surface density on the bootstrap current. Third, type I ELMs will not be tolerable
for a reactor relevant regime due to the damage that they are expected to cause to plasma facing
components. In recent years various methods of running tokamak plasmas without large ELMs
have been developed. These include small and no ELM regimes, the use of resonant magnetic
perturbations and the use of vertical kicks. We discuss the quiescent H-mode here. Finally we
give directions for future work.
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1. Introduction1

1.1. Background2

The pedestal, which is associated with a local formation of a transport barrier (in energy3

and particles), plays an important role in determining the confinement in tokamak H-mode4

plasmas. Indeed the increased confinement associated with the steep pedestal gradients5

strongly affect the global plasma performance, and the expected fusion power associated with6

a given scenario. However, the steep pressure gradients in this transport barrier also lead to7

edge localized modes (ELMs) [1]. There is a reasonable understanding of the pedestal in type8

I ELM regimes being limited by ideal MHD peeling-ballooning modes. The EPED model can9

predict pedestal height and width of type I ELMing plasmas on current machines given various10

assumptions [2], however, type I ELMs are known to damage plasma facing components and11

so future large tokamaks must operate with small or no ELMs. Our collaboration aimed to12

understand various aspects of the physics of reactor relevant pedestals. We document some13

of the new results here and review the work that will appear in detail elsewhere. There is still14

much to understand and we will give our thoughts on where future efforts could be directed.15

1.2. Overview16

In Section 2 we review recent work, especially that carried out as part of our collaboration,17

which improves our understanding of pedestal physics which is relevant to reactors. In Section18

3 we describe the work we have done on improving pedestal prediction models. In particular,19

making the EUROPED model [3] more general and building our understanding of the physics20

that underlies the model. In Section 4 we investigate how a non flux surface density, i.e.21

density is not constant on a flux surface, may change the bootstrap current. In Section 5 we22

discuss the improvements we have made in our understanding of the QH mode. We finish23

with a summary and directions for future work in Section 6.24

2. Recent work on Reactor Relevant Pedestals25

The pedestal continues to be a rich source of interesting physics and we still do not have a solid26

understanding of the underlying processes. It is important that we develop our understanding27

of the pedestal not just because of the interesting physics but also because to design and build28

future tokamak fusion reactors we must be able to predict pedestals to give confidence that29

potential designs will operate at the required performanace.30

The EPED and EUROPED models have had some success in this area but they have31

underlying assumptions that to one degree or another are based on experimental observations.32

One such assumption is the pedestal gradient being limited by the
√

βpol . This is an33

assumption about the transport and the instabilities that are assumed to produce that transport.34

We report work in Section 3 that seeks to improve our approach in this area.35

A further important part of the physics of the pedestal is the bootstrap current that is36

generated by the steep pressure gradient in the pedestal region. There are various ways37
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of calculating the bootstrap current that involve either direct solution of the neoclassical38

equations [4, 5] or a fitting of the numerical solution over various parameter ranges [6], [7].39

Members of our collaboration have used the global full f gyrokinetic code ELMFIRE [8]40

first to benchmark the Hager and Sauter models [9]. It was found that these two formulae41

agree with ELMFIRE in the regime where there is no Shafranov Shift and low collisionality,42

which is relevant for ELMFIRE. Further, ELMFIRE has been used to assess the effect of43

poloidal variation of density on the bootstrap current [9]. Initial results indicate that there is44

an effect which should be investigated further. Analytic calculations of the effect of poloidal45

variation of density have been carried out and this analysis is presented in Section 4. We46

have also investigated the effect of poloidal variation of density on MHD stability using the47

JOREK code [10]. The initial results showed that the growth rate of low toroidal mode number48

instabilities were affected but further work is required to confirm this.49

Integrating all of the pedestal models together and running them could be quite time50

consuming if the pedestal prediction is part of a design loop for a reactor design or to design a51

shot or indeed to interpret experimental results. Members of our collaboration have therefore52

been investigating the use of neural networks. These neural networks can be trained either on53

experimental data or on the results of modelling and the resulting neural network can then be54

used to produce fast pedestal predictions. This has been completed for JET using PENN [11].55

Our collaboration investigated some of the small and no ELM regimes that will have to56

be considered for a reactor. The quiessent H-mode (QH-mode) is one such ELM free regime57

that has been investigated in DIII-D [12], JET [13] and at AUG [14]. The plasma still has a58

pedestal and so has reactor relevant performance but it develops an edge harmonic oscillation59

(EHO) which is thought to be a saturated MHD mode. This is thought to produce sufficient60

density transport such that the peeling ballooning (PB) mode boundary is not reached and61

so the ELM is avoided. Experimental evidence so far suggests that an edge rotation shear is62

required for the QH-mode to appear. Our collaboration has investigated the QH-mode both63

numerically and analytically. We have used the VMEC code to find saturated nonlinear MHD64

states [15]. These can be found in two regimes. One where the safety factor profile (q profile)65

is just below a rational at the plasma edge. This is the classical external kink mode. The other66

is a pressure driven mode that requires a flattening of the q profile at the edge. This flattening67

is provided by the bootstrap current which is driven by the pressure gradient in the pedestal.68

The ballooning stability of these two saturated instabilities is discussed in Section 5. The69

QH-mode in JET has also been investigated and in particular the effect of collisionality [16].70

A model for Grassy ELMs has been investigated using a gyrofluid model implimented in the71

BOUT++ framework. Initial tests of the model have been completed but further work will be72

required to test it in the appropriate regime. An analytic model of type III ELMs has been73

developed based on a resistive MHD model and this will be discussed elsewhere [17].74

3. Pedestal Prediction75

In this Section we seek to improve the well known EPED model. This model has various76

assumptions underlying it. In particular, one input is the density at the pedestal top. We aim77
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here to use a gyrokinetic-based calculation to eliminate this input. This idea is to assume78

power balance at the top of the pedestal, that is, the heat flux crossing the separatrix must be79

equal to the heat source at the top of the pedestal. The workflow is as follows: use Europed80

with a range of ne,ped as input to get a corresponding range of Te,ped; use a gyrokinetic-based81

calculation to test each pair of profiles and calculate the heat flux Qped and; then the pedestal82

prediction is the ne,Te profile pair with Qped equal to the experimental heat flux.83

A key part is to calculate the heat flux. There are a number of options available84

which include: full, multi-scale gyrokinetic simulations including neoclassical terms; a85

trio of gyrokinetic simulations: nonlinear global ion-scale, nonlinear local electron-scale,86

neoclassical; quasilinear model with linear gyrokinetic simulations; quasilinear model with87

eigensolver e.g. QuaLiKiz [18] and finally; fast Neural network-type software trained on any88

of the above.89

Work is underway to develop a sophisticated quasilinear model in the pedestal. At the90

time of writing a comprehensive quasilinear model that can be used reliably and routinely has91

not been published. To match the heat flux we must therefore run fully non-linear simulations92

that capture the spatial and temporal scales of the turbulence believed to be the primary source93

of heat flux through the pedestal. However, the computational expense of such simulations is94

prohibitive. We therefore opt for a comparison to linear spectra instead. As we shall see, it is95

unlikely that further information would be obtained from nonlinear simulations.96

In order to test the heat flux matching concept we examine JET-ILW pulse #8479397

which lies along the peeling-ballooning stability boundary, Fig. 1 [19], and therefore satisfies98

one of the key EPED model assumptions. We start by assuming slab-ETG modes are the99

primary driver of turbulent heat flux, and neglect neoclassical heat flux, which can easily be100

added to the model later. We use the GENE gyrokinetic code [20, 21] in its local model101

of operation. The resolution requirements for this pulse are known from previous analysis.102

Before continuing, it is first necessary to test the validity of the EPED model and discuss some103

of the features and extensions of Europed that are required in order to fulfil our objective.104

3.1. Europed results105

3.1.1. Details of the EPED model and Europed package The two principle assumptions106

of the EPED1 model are: a) an ideal-MHD constraint - the pedestal is limited by Peeling-107

Ballooning modes, and b) a transport constraint - the width of the pressure pedestal scales108

with the square-root of the pedestal poloidal beta according to: ∆p = Cβ
1/2
p,ped; where C is a109

model constant. The two main inputs to the EPED model are the global beta βN or βp, and110

the value of density at the pedestal top ne,ped . In addition, the standard EPED1 model has the111

following fixed assumptions: ∆p = ∆Te = ∆ne; the density and temperature profiles are aligned112

to the same pedestal position; the profiles are well described by a mtanh fit; and Ti = Te.113

EPED1 also has three notable variable assumptions which are usually device specific:114

the transport constraint model constant C = 0.076; Te,sep = 100eV for JET-ILW [22, 23] and;115

ne,sep = f ×ne,ped where f is a constant - we often use f = 0.25.116

The value of the model constant C can be obtained from an empirical fit to experimental117
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Figure 1. Linear MHD pedestal stability analysis for the deuterium plasma #84793, Ip =

1.4MA,Bt = 1.7T . The numbers indicate the most unstable mode number at given edge current
and pressure gradient.

data. The value of Te,sep is device specific but in the case of JET-ILW, this is borne out118

well by edge modelling. The relationship ne,sep/ne,ped = 1/4 is less well-founded, but the119

pressure profile prediction from EPED1 appears to be relatively insensitive to this. As we120

shall see later, the choice of ne,sep may have important consequences for the stability of slab-121

like microinstabilities in the pedestal. In practice, the density peaking factor, related to the122

core density, must also be specified. However, pedestal predictions are mostly insensitive to123

this so we omit it from discussion here. The Europed package consists of the EPED series of124

models along with some additional functionality. Chief among these are several models for125

the self-consistent heating in the core which allow for an arbitrary core profile shape; and two126

models which allow us to specify ne,ped [24]. These models are not the subject of this work127

and we will be running Europed in the beta constrained mode of operation with ne,ped specified128

according to our model. There are two extensions of the EPED model within Europed that129

are critical for the heat flux matching concept discussed in the following. The first is the130

ability to specify a relative shift, δn−T , between the density and temperature pedestals, an131

important feature of JET-ILW pedestals [23]. The second is the possibility of specifying the132

ratio ∆Te/∆ne , which was implemented as part of this project.133
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3.1.2. Europed runs - the effect of ∆Te 6= ∆ne and δn−T 6= 0 It is well known that an important134

parameter related to the linear stability of slab-ETG modes is the ratio of the normalised135

density and temperature scale lengths ηe given by:136

ηe =
dln(Te)

dln(ne)
=

ne∇Te

Te∇ne
=

1/LTe

1/Lne

=
Lne

LTe

. (1)

Previous work by F. Jenko and others has shown that strong linear slab-ETG drive137

requires ηe & 1 [20]. The standard EPED assumptions that the temperature and density138

pedestal positions, henceforth referred to as ΨN,Te and ΨN,ne respectively, are aligned, and the139

pedestal widths ∆Te and ∆ne are equal, mean that ηe ≈ 1 across the pedestal region by design.140

To this end, we explore the consequences of a finite relative shift δn−T = ΨN,ne−ΨN,Te 6= 0141

and ∆Te 6= ∆ne on Europed predictions for JET-ILW pulse #84793. Figure 2 shows the142

experimental profiles in dotted black along with the results of four Europed runs. Dashed lines143

correspond to δn−T = 0 whereas solid lines correspond to δn−T = 0.8%. Blue lines denote the144

default EPED assumption ∆Te/∆ne = 1 while red lines show the results in which ∆Te/∆ne =145

1.76 (chosen to match experiment), made possible by newly implemented functionality. Note146

that a corollary of the latter input is that ∆ne < ∆pe < ∆Te [25]147

148

In all four cases, the predicted ∆p varied between ∼ 0.030 and 0.034, i.e. ∆p is149

relatively insensitive to these modifications between the relationship between the density and150

temperature pedestals. We also note in passing that the Europed predicted ∆p is approximately151

equal to the experimental ∆ne , a feature that will be explored in future work with a larger152

experimental dataset. In these four runs we set ne,sep = 0.33ne,ped , which, in the case153

of a finite relative shift and equal density and temperature pedestal widths, matches the154

experiment almost exactly. This is because of the aforementioned, and perhaps coincidental,155

correspondence between the Europed predicted ∆ne and the experimental ∆p. The solid traces156

show that, in general, δn−T influences pedestal profile prediction more than having ∆Te 6= ∆ne .157

The solid red line has the most physical effects in that δn−T and ∆Te/∆ne have been chosen to158

match experiment. This prediction therefore gives the closest match in Te,ped to experiment,159

but under-predicts the width of both the density and temperature pedestals. Note that this160

prediction required the input of two known quantities from experiment. Figure 3 displays:161

ηe, the normalised density gradient, and the normalised temperature gradient corresponding162

to the profiles shown in Fig. 2. The colour scheme and line-styles are the same as Fig. 2. The163

dashed blue line, corresponding to the standard EPED1 prediction, shows identical density164

and temperature gradients in the steep gradient region, along with a flat ηe ∼ 1 trace. Looking165

at the solid blue line we see that the finite relative shift has flattened the density profile in166

the pedestal region (ΨN ≤ 1) which results in a larger, and non-constant value of ηe more167

in line with experiment. In the dashed red line, with no relative shift but unequal pedestal168

widths, the ∆ne prediction has decreased which has realised in a normalised density gradient169

much larger than the experimental value. This has the effect of lowering ηe. However, as170

∆Te/∆ne > 1 means ∆Te > ∆p, the normalised temperature gradient is less than that of the171

standard EPED1 prediction (dashed blue trace). These two effects, larger density gradient172
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Figure 2. Density (left) and electron temperature (right) as a function of normalised ΨN in the
pedestal region for JET-ILW pulse #84793. An mtanh fit to raw HRTS data is shown in black.
Blue traces show Europed predictions with ∆Te/∆ne = 1.0 (the default EPED assumption),
while red traces show Europed predictions with ∆Te/∆ne = 1.76 (the experimental value).
Dashed traces show Europed predictions with δn−T = 0 (the default EPED assumption), while
red traces show Europed predictions with δn−T = 0.8% (the experimental value). In both
panels, the vertical black line denotes ΨN ≈ 0.956, which is the location of the temperature
pedestal top for the widest pedestal prediction. Europed data points with ΨN . 0.956 are
therefore outside the range of accurate Europed predictions.

and smaller temperature gradient, compensate for each other and lead to an ηe profile which173

closely resembles the experimental profile. When we add a relative shift to this, shown in the174

solid red trace, the flat density profile increases ηe to larger values than experiment. Thus,175

despite having less physical effects, the dashed red trace seems to be a better predictor of176

ηe than the solid red trace. This is a coincidence, the normalised density gradient profile is177

clearly not in line with experiment.178

3.2. Proof-of-principle test179

We now proceed to test our heat flux matching idea for this pulse using our proxy method of180

comparing the linear spectra. Recall that the aim is to eliminate ne,ped as an input variable181

in the EPED model. Using the experimental values of δn−T = 0.8% and ∆Te/∆ne = 1.76, we182

perform a three point scan of ne,ped centred on the experimental value using: 3.0×1019m−3,183

3.5× 1019m−3, and 4.0× 1019m−3. We again set ne,sep = 0.33ne,ped . We have modified184



Understanding reactor relevant tokamak pedestals 8

0.95 1.00
Normalised Poloidal Flux N

0

5

10

15

20
e

0.95 1.00
Normalised Poloidal Flux N

0

20

40

60

80

100

1/
L n

e

EXP
Te/ ne = 1.00 - No shift

Te/ ne = 1.00 - Shift = 0.8%

Te/ ne = 1.76 - No shift

Te/ ne = 1.76 - Shift = 0.8%

0.95 1.00
Normalised Poloidal Flux N

0

20

40

60

1/
L T

e

Figure 3. ηe (left), normalised density gradient (middle), and normalised temperature gradient
(right) as a function of normalised ΨN in the pedestal region for JET-ILW pulse #84793.
Experimental data is shown in black. Blue traces show Europed predictions with ∆Te/∆ne = 1.0
(the default EPED assumption), while red traces show Europed predictions with ∆Te/∆ne =

1.76 (the experimental value). Dashed traces show Europed predictions with δn−T = 0 (the
default EPED assumption), while red traces show Europed predictions with δn−T = 0.8% (the
experimental value). In both panels, the vertical black line denotes ΨN ≈ 0.956, which is the
location of the temperature pedestal top for the widest pedestal prediction. Europed data points
with ΨN . 0.956 are therefore outside the range of accurate Europed predictions.

Europed so that once the pedestal profile has been predicted, the code runs an instance185

of HELENA followed by CHEASE to produce an eqdsk equilibrium file for use in GENE186

simulation for the prediction. The profiles that result from this scan are shown in Fig. 4 and187

a plot of ηe and the normalised gradients are shown in Fig. 5. We immediately see from the188

left panel of Fig. 4 that that ∆ne turns out to be approximately the same in all three cases.189

This is because the Europed ∆p prediction is approximately the same, and the two widths are190

related to each other by a constant scale factor. A consequence of this is that βp,ped ∝ ∆2
p191

is approximately constant, which in turn means that as ne,ped increases, Te,ped decreases in192

a predictable fashion according to ∝ 1/ne,ped . As expected, the scan point closest to the193

experimental value (orange) predicts pedestals that are closest experiment (black).194

Looking at the centre panel of Fig. 5, we see that the normalised density gradients are195

very-nearly the same for the three scan-points (they are minutely different due to differences in196

ne,sep). This is because the ∆ne prediction is the same for all three runs and the un-normalised197

density gradient scales with the input ne,ped . We also see that the normalised temperature198

gradients are of similar value across a wide range of the pedestal. The values of 1/LTe do199

change towards the separatrix, but this is a consequence of fixing Te,sep = 100eV for differing200

values of Te,ped . The combined effect of these two things is that the ηe profiles in the pedestal201

region (to the right of the vertical black line) are indistinguishable.202

Given the similarity of the ηe, a/Lne , and a/LTe profiles, we expect no substantial difference203

in the linear spectra and nonlinear flux for the three scanpoints. There may be some difference204

in the GENE spectra for simulations at ΨN ∼ 0.98 if the excited modes are driven primarily205

by changes in a/LTe . As discussed, the changes in the a/LTe profiles ΨN ∼ 0.98 are a206
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Figure 4. Density (left) and electron temperature (right) as a function of normalised ΨN in
the pedestal region for JET-ILW pulse #84793. An mtanh fit to raw HRTS data is shown in
black. Blue, orange, and green traces show Europed pedestal predictions using 3.0×1019m−3,
3.5×1019m−3, and 4.0×1019m−3 respectively. In both panels, the vertical black line denotes
ΨN ≈ 0.956, which is the location of the temperature pedestal top for the widest pedestal
prediction. Europed data points with ΨN . 0.956 are therefore outside the range of accurate
Europed predictions.

consequence of fixing Te,sep = 100eV. For the moment, we assume this change in the a/LTe207

profile has physical meaning and proceed to run a trio of linear local GENE simulations at208

ρt = 0.98 (in the vicinity of ΨN ∼ 0.98). The resolution requirements for these simulations is209

known from previous work, and we restrict our attention to modes at the outboard mid-plane,210

that is θ0 = 0. Figure 6 shows the linear normalised growth rate γ as a function of the binormal211

wavenumber ky. The red trace shows the equivalent calculation using the experimental profiles212

for this pulse. The modes present in the experimental profiles have a smaller peak γ than213

the spectra produced using the Europed predicted profiles predictions. More importantly,214

the growth rate spectra for the three Europed profile predictions are extremely similar. We215

emphasise that even these small variations in the spectra are almost entirely a consequence216

of fixing Te,sep = 100eV. Past experience suggests that the nonlinear counterparts of linear217

simulations with extremely similar spectra will also predict extremely similar heat fluxes. We218

conclude that for this pulse, and this range of scanpoints, it is not possible to use gyrokinetic219

simulations as a means of eliminating ne,ped as an input variable.220
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Figure 5. ηe (left), normalised density gradient (middle), and normalised temperature gradient
(right) as a function of normalised ΨN in the pedestal region for JET-ILW pulse #84793.
Experimental data is shown in black. Blue, orange, and green traces show Europed predictions
using 3.0× 1019m−3, 3.5× 1019m−3, and 4.0× 1019m−3 respectively. In both panels, the
vertical black line denotes ΨN ≈ 0.956, which is the location of the temperature pedestal top
for the widest pedestal prediction. Europed data points with ΨN . 0.956 are therefore outside
the range of accurate Europed predictions.

Figure 6. Growth rates as a function of binormal wavenumber ky of slab-ETG modes
from linear local GENE simulations at ρt = 0.98 for JET-ILW pulse #84793. The red
trace corresponds to the experimental profiles at the same flux surface. Blue, orange, and
green traces show Europed pedestal predictions using 3.0× 1019m−3, 3.5× 1019m−3, and
4.0×1019m−3 respectively.

3.3. Discussion221

In this work we have tested the feasibility of using a gyrokinetic-based calculation as a means222

of eliminating the pedestal top density ne,ped as an input into the EPED/Europed model. Us-223

ing a JET-ILW pulse lying along the Peeling-Ballooning boundary as our test case, we found224

that in order for the Europed predictions to approach experiment the effects of relative shift225

δn−T = ΨN,ne−ΨN,Te and non-equal temperature and density pedestal widths had to be in-226



Understanding reactor relevant tokamak pedestals 11

cluded. We found that this was necessary in order to predict Te and ne profiles that have ηe > 1227

and are hence susceptible to slab-ETG instabilities, which have been found to be important228

[26, 27]. In addition, we upgraded Europed to allow for ∆Te/∆ne 6= 1 and to produce equi-229

librium files for use in gyrokinetic simulations. Note that these features allow us to predict230

profiles susceptible to slab-ITG instabilities as the EPED assumption Ti = Te results in ηi =ηe.231

232

These additional physical effects aside, we found that for a range of ne,ped around the233

experimental value, the Europed predicted profiles were too similar for a linear gyrokinetic234

calculation to accurately distinguish between input profiles. We fully expect this result to235

carry over to a nonlinear calculation of heat flux, meaning it is currently not possible to use236

gyrokinetic simulations as a means of eliminating ne,ped as an input variable. The source of237

this limitation may lie within the EPED transport constraint ∆p = Cβ
1/2
p,ped . This relationship238

means that for a given shot, the predicted ∆p and βp,ped will always be similar over a wide239

range of inputs. In evidence, a scan of δn−T from 0.4% to 1.1% (not shown here) resulted in a240

variation in the predicted ∆p changes by only ∼ 9%. In the results discussed in previous sec-241

tions, changing ∆Te/∆ne changed ∆p by ∼ 4% for δn−T = 0 and by ∼ 13% for δn−T = 0.8%.242

Most importantly, for the cursory ne,ped scan discussed above, ∆p changed by only ∼ 5%.243

These small variations in ∆2
p ∝ βp,ped ∝ Te,ped mean that for an ne,ped scan, the normalised244

density and temperature gradients will always be similar, which in turn means the value of245

ηe = ηi will always be similar.246

247

In conclusion, using a gyrokinetic based calculation to eliminate ne,ped as an248

EPED/Europed input is not feasible until the transport assumption ∆ = Cβ
1/2
p,ped is improved249

[28]. Such an improvement must be the primary focus of future work. Finally, we note that if250

ne,ped were known in advance, a gyrokinetic-based heat flux matching calculation may prove251

useful for eliminating the ratio ∆Te/∆ne and/or δn−T as model inputs, as Fig. 3 shows the252

driving parameters are much more sensitive to this.253

4. Effect of a Poloidal Variation of the Plasma Density on the Bootstrap Current254

The use of gas puffing and the result of recycling might be expected to introduce a poloidal255

variation of the plasma density on a flux surface [29] and it is of interest to investigate the256

impact this has on the bootstrap current [30] in a plasma H-mode edge pedestal, as it could257

affect the peeling-ballooning mode stability [31] believed to play a role in the triggering of258

ELMs in tokamak H-mode. Furthermore, toroidal rotation can also generate a variation in259

density, with it peaking on the outboard side [32].260

We first describe the kinetic equation for a large aspect ratio tokamak geometry with a261

zero order (in a Larmor radius expansion) plasma distribution function that is a Maxwellian262

having a poloidally varying density, a model that we use to illustrate the calculation. Then we263

calculate the increment in the bootstrap current, relative to the standard result, that the poloidal264

variation in the density produces. However, it may well be that in reality the distribution265

differs from a simple Maxwellian and additional corrections to our simple model for the266
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bootstrap current might emerge, but these would involve a much more complex calculation.267

A related paper [33] avoided this difficulty by introducing a source (as a δ -function in268

poloidal angle) in the first order equation, rather than in lowest order as our Maxwellian269

ansatz implies. We compare the effect of sinusoidal variations in two situations: one up-down270

symmetric (case (a)), the other symmetric in the inboard-outboard direction (case (b)). In271

practice, however, edge modelling codes show the variation due to neutral sources crossing272

the separatrix may be better represented by a more poloidally localised function [34]. We273

therefore also consider case (c) where we represent this situation by a δ -function (although274

assuming the localisation exceeds the electron Larmor radius in order to justify the use of275

the electron drift kinetic equation in calculating the bootstrap current). We show this solution276

also serves as a Green’s function for an arbitrary poloidal variation in density. Furthermore,277

it allows one to extend the calculation to describe a general, axisymmetric toroidal geometry278

although we limit this to toroidal equilibria with a small number of trapped particles to justify279

the use of the pitch-angle scattering collision operator - and also to up-down symmetric ones,280

for simplicity. The electron and ion temperatures will also respond to a density variation281

on a flux surface through rapid electron thermal transport along field lines and pressure282

equalisation on a flux surface on the sound time scale to produce temperature perturbations283

that equalises the plasma pressure on the surface. We consider the impact of this, as well as284

that of the density variation, on the incremental bootstrap current. A numerical investigation285

of this problem has been carried out using ELMFIRE [9]. Previous work on understanding286

the effect of a poloidal density variation on transport was carried out by Solano and Hazeltine287

[35]. This work is in the plateau regime rather than the banana regime and the structure of the288

source is different.289

4.1. The model290

The distribution function for species j , f j , satisfies a kinetic equation291

∂ f j

∂ t
+

Iv‖
BR2q

∂ f j

∂θ
− vd j ·∇ f j +C j( f j)+S(r,θ ,v) = 0 (2)

where spatial derivatives are at constant energy. In first order we introduce a source292

S(r,θ ,v) to ensure a steady state if the drift terms lead to a net flux across a flux surface293

Here we use velocity space co-ordinates: v, λ = v2
⊥/Bv2, σ = v‖/|v‖|, v‖ =

σv
√
(1−λB) so that

∫
d3v = πΣσ

∫
Bdλ

∫
v2dv/|

√
(1−λB), vd j = (v‖/B)×∇(v‖/ωc j).

Specialising to a large aspect ratio tokamak geometry and a steady state situation for simplicity
(we indicate how to generalise our results to an arbitrary axisymmetric toroidal geometry
later), this can be written [36]

v‖
Rq

∂ f j

∂θ
−

m j

e j
v‖

(
∂

∂ r

(v‖
B

)
∂ f j

r∂θ
− ∂

r∂θ

(v‖
B

)
∂ f j

∂ r

)
+C j( f j)+S(r,θ ,v) = 0, (3)

with B = B0(1− r
R cosθ), so that ∂

∂ r (v‖/B) = −cosθ

R and ∂

∂θ
(v‖/B) = sinθ

R . We expand294

f j = FM j + f j1, where FM j(v,r,θ) is the Maxwellian and consider the incremental changes295

to f j due to the effects of the perturbations, δn j(r,) and δTj(r,) in FM j.296
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To illustrate the calculational formalism, we just consider the effect of a density
perturbation: δn j(r,θ) = n0 j(r)γ j(r)h j(θ), and assume a Lorentz collision model for the
electrons [37]:

Ce( fe) = vei
v‖

v2
the

∂

∂λ

(
v‖λ
B

∂

∂λ
fe

)
+ vei

v‖u‖i
v2

the
FMe, (4)

with u‖i the mean ion parallel flow. Since we ignore temperature gradients for the moment,
the ion distribution is merely a displaced Maxwellian. To capture the effect of the δTj(r,θ), it
will be necessary to include an ion flow, like-particle collisions and the effects of the energy
dependence of the collision frequencies [37]; including the former is discussed below and the
others later. For the electron density variation, we take

ne(r,θ) = n0(r)(1+ γ(r)h(θ)). (5)

Since we consider the pedestal region, we can also take ∂ne
∂ r �

1
r

∂ne
∂θ

. With these assumptions
the effect of the ion flow in the collision operator is merely to combine with the radial
derivative of the electron density, which is taken at constant energy in eqn. (3), replacing it by
the combination ∂ne

∂ r + Ti
Te

∂ni
∂ r , (where we take the ion charge as Z = 1, so that quasi-neutrality

requires ne = ni . The radial derivatives are of the actual densities as the electrostatic potential
terms cancel between the ion and electron contributions (as in standard neoclassical theory).
Thus, we have

v‖
Rq

∂ fe

∂θ
− me

e
v‖FMe

∂

∂ r
(δn(r,θ))

∂

r∂θ

(v‖
B

)
+Ce( fe)+S(r,θ ,v) = 0 (6)

with δn = (1+Ti/Te)δne. We take the source to be poloidally symmetric, in which case

S(r,v) =−me

e
FMe〈

∂

∂ r
(δn(r,θ))

∂

r∂θ

(v‖
B

)
〉/〈 1

v‖
〉. (7)

4.2. The Incremental Bootstrap Current, δ jbs.297

The lowest order solution f 0 is:

f 0 =
meRq

e
FMe

∫ θ

θ0

dθ
∂

∂ r
(δn(r,θ))

∂

r∂θ

(v‖
B

)
−
∫

θ

θ0

dθ

v‖
〈 ∂

∂ r
(δn(r,θ))

∂

r∂θ

(v‖
B

)
〉 1
〈 1

v‖
〉

+g

(8)
where ∂

∂θ
g = 0 and the end-point contribution from θ0 to the integral (θ0 is to be chosen

judiciously to simplify calculations) can be absorbed into g. The function g is then determined
from a solubility condition arising in first order in the collisional expansion:

〈 ∂

∂λ

(
v‖λ
B

∂

∂λ
f 0
)
〉= 0, (9)

where the operator 〈A〉 =
∮

dθA/2π for passing particles and 〈A〉 = 1
2Σσ

∫ θ2
θ1

dθA/2π , with

v‖(θ1) = v‖(θ2) = 0, for trapped particles. This determines ∂g
∂λ

and hence ∂ f 0

∂λ
. Now the
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incremental bootstrap current is given by

δ jbs =−e
∮

dθ

2π

∫
d3vv‖ f 0 = eπ〈Σσ

∫
Bdλ

∫
v‖v

3dvλ∂ f 0/∂λ/|v‖|〉. (10)

We then obtain

δ jbs =−
3
8
(Te +Ti)

Bθ

d
dr

(n0(r)γ(r))I, (11)

where I = (I1 + I2) with

I1 = 2v〈
∫

BdλBλ

[∫
θ

θ0

dθh(θ)
∂

∂θ

(
1
v‖

)
− 1
〈|v‖|〉

〈|v‖|
∫

θ

θ0

dθh(θ)
∂

∂θ

(
1
|v‖|

)
〉

]
〉, (12)

I2 =−2v〈
∫

BdλB
1

〈1/|v‖|〉

[∫
θ

θ0

dθ
1
|v‖|
− 1
〈|v‖|〉

〈|v‖|
∫

θ

θ0

dθ
1
|v‖|
〉

]
〈h(θ) ∂

∂θ

(
1
|v‖|

)
〉〉,

(13)
for passing particles, defined to be independent of v. For trapped particles, I = I3 with

I3 = 2v〈
∫

BdλB

〈∫ θ

θ0

dθh(θ)
∂

∂θ

(
1
|v‖|

)
−
∫

θ

θ0

dθ
1
|v‖|

1
〈 1
|v‖|
〉
〉〈h(θ) ∂

∂θ

(
1
|v‖|

)
〉

〉. (14)

We can show that I2 vanishes automatically, independently of h(θ). To evaluate the integral I
over λ , we introduce

k2 = 2
r
R

λB0

1−λB0(1− r
R)

; v‖ = vu(θ); u =

√
1− k2 sin2(θ/2) (15)

Although h(θ) can be quite a general periodic function of θ , we first consider the two explicit298

cases: case (a), h(θ) = cosθ which is up-down symmetric; and case (b), h(θ) = sinθ , which299

is in-out symmetric.300

4.3. Case (a) h(θ) = cosθ301

We obtain302

I =
4
π

√
2r
R

∫ 1

0

k2(2r
R + k2

(
1− r

R

))5/2

[(
1− 2

k2

)
K(k)− 2

k2 E(k)− π2

2E(k)

(
1− 2

k2

)]

+
4
π

√
2r
R

∫
∞

0

k2(2r
R + k2

(
1− r

R

))5/2
1
k

[(
3− 4

k2

)
K(

1
k
)−2E

(
1
k

)]
(16)

where K and E are the complete elliptic integrals of the first and second kind, respectively303

[38]. One can take the limit r/R→ 0 and still obtain a convergent integral.304

While the first term requires numerical integration, yielding−0.086
√

(2r/R), the second
can again be calculated analytically using properties of the complete elliptic integrals [39],
which yields −20/9π

√
(2r/R) =−0.707

√
(2r/R). Consequently

δ jbs = 0.42
√

r
R

qR
(Te +Ti)

B0

d
dr

(n0(r)γ(r)) . (17)
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4.4. Case (b): h(θ) = sinθ305

Here Î1 vanishes exactly. The trapped region contribution also vanishes. Consequently, jbs = 0
for case (b). Because Î1 vanishes for h(θ) = sinθ , a corollary is that for a sinusoidal variation
of h(θ) centred on an arbitrary angle, θ = β ,

δ jbs = 2.54
√

r
R

qR
(Te +Ti)

B0

d
dr

(n0(r)γ(r))cosβ . (18)

4.5. Case (c): h(θ) = δ (θ −α).306

In this case we set h(θ) = δ (θ −α), where α is the poloidal angle of the neutral influx, to307

calculate the incremental bootstrap current. We can calculate the integral I1 in eqn. (12) for308

passing particles without difficulty. (The term arising from the azimuthal drift gives rise to309

derivatives of the δ -function, but these lie under double integrals and do not pose a problem,310

yielding a contribution which is in fact smaller than the one arising from the radial drift in311

the steep pedestal gradient.) However, employing the previous method is problematic for312

the trapped particle contribution. This is because the deeply trapped particles only respond313

to a limited range of pitch angles, depending on the angle α . The end-point contribution314

in the integration by parts in λ that arises from the maximum value of λ , λMax, which315

is no longer at λ = 1
BMin

, does not vanish it is, in fact, singular, and is cancelled by a316

corresponding contribution from the integral term. It is therefore more convenient to calculate317

the contribution to the bootstrap current from trapped particles directly, as a straightforward318

integration over λ , rather than employing the integration by parts. This approach requires the319

distribution function g in the trapped region, which is a constant, and was not needed for the320

integration by parts method. In fact, g = 0 in the trapped region, to satisfy continuity at λMax.321

Of course, this needs to be accompanied by a boundary contribution evaluated at the trapped-322

passing boundary, to compensate for the integration by parts over passing particles which it323

is still convenient to retain. This boundary term dominates the integral one by a factor 1/2ε ,324

as can be readily understood physically: while the trapped particle pitch angle integration325

over k introduces a factor (2ε)1/2, another from the trapped particle current, which involves326

the banana width, ∼ (2ε)1/2a , and the typical trapped particle velocity v‖ ∼ (2ε)1/2vthe as327

a third. Thus, this contribution can be neglected, leaving to a simpler calculation of just the328

trapped passing boundary term, Ib(α) . We define329

G(α,k) =
[
E−E

(
α

2
,k
)
/2
]
, 0 < α < π, (19)

G(α,k) = E
(

π− α

2
,k
)
/2, π < α < 2, (20)

with E(α/2,k) the incomplete elliptic integral of the second kind [38]. Thus

I1(α) =

√
2r
R

∫ 1

0
dk

sinα(
1− k2 sin2 (α

2

))3/2

[
1− α

2π
− G(α,k)

E(k)

]
(21)

I1(α) is invariant under the substitution α → 2π−α , so is symmetric about α = π (i.e., it is
up-down symmetric, as is to be expected). There is also a contribution from the trapped region
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Figure 7. The variation with localisation angle, α , of the integral I(α) = I(α)/
√

2r/R for the
δ -function, case (c). The dashed line is the dominant trapped particle contribution

and, as discussed above, this is dominated by the contribution from the flux-surface-averaged,
trapped particle current density evaluated at the trapped - passing boundary. Calculating this
from f 0 as given by eqn. (8) with g = 0, requires the evaluation of

Ib(α) = 4

√
2r
R
〈
∫

θ

θ0

dθδ (θ −α)
∂

∂θ
(u1/2)− 1

〈u−1/2〉

∫
θ

θ0

dθu−1/2〈δ (θ −α)
∂

∂θ
(u1/2)〉〉|k=1

(22)
on the range −π < α < π . this can be evaluated to yield

Îb(α) =− 1
2π

√
2r
R

[
θ2−α− (θ2 +θ1)

2

]
=

1
π

√
2r
R

sin(α/2)α, (23)

since θ2 = −θ1; this contribution is also symmetric about α = π , in the range 0 < α < 2π .
Therefore, combining the result of a numerical evaluation of eqn. (21) and the analytic
expression (23):

I(α) =

√
2r
R

∫ 1

0
dk

(1− α

2π
− G(α,k)

E(k) )sinα

(1− k2 sin2(α/2))3/2
+F(α)

 , (24)

F(α) =
1
π

α sin(
α

2
), 0 < α < π, F(α) =

1
π
(2π−α)sin(

α

2
), π < α < 2π. (25)

We notice that this remains finite at α = π , the bounce point for just trapped particles, although330

the distribution function f 0 vanishes there; this is because the magnetic drift is singular there331

and the integration over θ with h(θ) = δ (θ −α) remains finite in the limit α → π . (This can332

be seen more clearly by taking this limit after the integration the integration.)333
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A plot of I(α) = I(α)/
√
(2r/R) against α is shown in Fig. 7. I(α) vanishes at α = 0

and 2π , peaking at α = π; in between it spans the range 0 < I(α) <
√
(2r/R). Finally, we

have

δ jbs =
3
8
(Te +Ti)

Bθ

d
dr

(n0(r)γ(r))I(α). (26)

Although this result is itself significant, the bootstrap current response to the δ -function334

source also provides a Green’s function for a general poloidal density perturbation specified335

by γ(r)h(θ).336

4.6. Green’s Function337

A consequence of modifying the approach to calculating the bootstrap current that we adopted
in the case of the δ -function source was that calculating the trapped particle contribution could
be achieved more simply for a general h(θ) by just considering the trapped particle current
density at the trapped-passing boundary, rather than requiring an integration over trapped
values of k. Thus, both passing and trapped contributions involve integrations over the full
range of θ : 0 < θ < 2π , rather than the limited range sampled by the trapped particles.
This facilitates the demonstration of a Green’s function approach based on our solution for
the δ -function case, since, as we shall see, the integrations over α and δ that are involved,
commute, so one can readily change the orders of these integrations. Thus, we see that the
δ -function source provides a Green’s function for a poloidal density perturbation specified by
h(θ) = δ (θ −α), where we utilise the replacement

h(θ)→
∮

dαh(α) (27)

in eqns. (12), (13) and (14).338

4.7. General axisymmetric, toroidal geometry.339

We introduce an axisymmetric toroidal co-ordinate system, ψ,θ ,φ , where ψ is the poloidal
flux, θ is a poloidal angle such that the magnetic field lines are straight, and φ is the toroidal
angle. The magnetic field is given by

B = I(ψ)∇φ +∇φ ×∇ψ, (28)

We now define the operator 〈〉 by 〈A〉 =
∮

R2dθA/
∮

R2dθ . Because of these relations, the340

solution for f 0, given in eqn. (8), still pertains, provided we use the new definition for 〈〉,341

as does the solution for g. From the current continuity equation ∇. j = 0, it follows that342

the appropriate object to consider in general geometry is the flux-surface average quantity343

〈δ jbs/B〉 and we obtain344

〈δ jbs

B
〉=−3

8
I(Te +Ti)

qBMax

d
dψ

(n0(ψ)γ(ψ,θ))I, (29)
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We follow a parallel set of steps to those used for the large aspect case to obtain a passing
contribution

I(α) = 2vBMax
∂

∂α

(
1
|v‖|

[∫ 2π

α
dθR2∮

dθR2 −
∫ 2π

α
dθR2|v‖|∮

dθR2|v‖|

]
.(30)

For the trapped contribution we find

I(α) = F(α) = 4
BMax

v
∂

∂α
(
v‖
B
)|λ=BMax

[∫ 2π

α
dθR2∮

dθR2

]
,0 < α < π, (31)

I(α) = F(2π−α), π < α < 2π. (32)

In the following section we need to extend the collision model to include electron-electron345

collisions, but this is only completely justified in the limit of a small number of trapped346

particles, so the general equilibria discussed above are then constrained to satisfy this347

condition.348

4.8. The effect of a poloidal variation in the temperature349

If the perturbed pressure is to vanish on a flux surface as required by MHD equilibrium, then

δ p = (Te +Ti)δn+n0(δTe +δTi) = 0 (33)

assuming quasi-neutrality. We also assume equipartition between ion and electron
temperatures,

Ti = Te, δTe = δTi ≡ δT, so δT =
δn
n0

Te. (34)

Alternatively, rapid parallel electron thermal transport removes the electron temperature
perturbation requiring the ion temperature perturbation to facilitate pressure balance, when

δTe = 0; δTi = (Te +Ti)
δn
n0

(35)

If the plasma density source is sufficient to prevent equalisation of pressure a more complex
equilibrium must be considered. The analogous results to those for the large aspect ratio
case will be equivalent to those for the usual calculation of the bootstrap current driven by
equilibrium gradients across constant density flux surfaces with a Lorentz collision operator,
apart from the effect of the geometrical factor I. The same situation will be true if we consider
the effects of δT with like-particle collisions and energy-dependent collision frequencies,
when we can exploit the corresponding results given in Ref. [37]. These calculations give

jbs =−1.46(
r
R
)1/2 n0Te

Bθ

[(
1+

Ti

Te

)
1
n0

dne

dr
+

1
Te

dTe

dr
− 0.17

Te

dTi

dr

]
(36)

for the Lorentz model and

jbs =−1.46(
r
R
)1/2 n0Te

Bθ

[
1.66

(
1+

Ti

Te

)
1
n0

dne

dr
+

0.47
Te

dTe

dr
− 0.29

Te

dTi

dr

]
(37)
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when electron-electron collisions and the energy dependence of the collisions are included.
Now the effective density gradient term in the case of the Lorentz colllsion model must be
multiplied by a factor 1.66 and expressions (33) and (34) or (35) used for the temperature
gradient contributions. Thus, in the first case for example, we obtain

δ jbs = 2.36
n0Te

Bθ

(
1+

Ti

Te

)
1
n0

dn0γ

dr
I (38)

where we note I = −
√

(2r/R)c , with the constant c depending on the function h(θ)350

describing the poloidal variation of the plasma density.351

4.9. Conclusions352

We have investigated the effect of poloidal variations of the plasma density, δn = γh(θ)n0,353

on the bootstrap current in a large aspect ratio tokamak equilibrium, such as might arise354

in gas-puffing experiments, recycling neutral influxes or as a result of toroidal rotation.355

The calculation has assumed that the lowest order distribution function is Maxwellian for356

simplicity, although it may be distorted from a simple Maxwellian in reality. A more realistic357

distribution function might produce additional effects on the bootstrap current, but it would be358

much more difficult to obtain this function and calculate the consequences. The effect of the359

poloidal temperature variations resulting from this density variation has also been addressed,360

as has the generalisation to an arbitrary axisymmetric toroidal geometry. Three explicit cases361

for the density variation have been considered: case (a) which is sinusoidal and up-down362

symmetric and is also relevant to the effect of toroidal rotation; case (b) which is sinusoidal363

and symmetric in the inboard-outboard direction (the effect of sinusoidal symmetry about any364

other poloidal angle could be deduced simply from decomposing it into a combination of the365

cases (a) and (b)), and case (c) which is a very localised poloidal variation, approximated by366

a δ -function in poloidal angle. In case (b) we find the incremental current vanishes exactly,367

while for case (c) the results naturally depend on the poloidal angle α , describing the location368

of the neutral influx. We find that the largest effect in this case does occur for localisations369

near the inboard side of the plasma column. Whether and by how much the bootstrap current370

increases or decreases depends on both the magnitude and sign of an integral, I, specific to371

each poloidal density variation, h(θ), and the amplitude and sign γ , of this variation.372

The result for case (c) also serves as a Green’s function for calculating the bootstrap373

current response to an arbitrary poloidal distribution for the density perturbation numerically374

by a simple quadrature; it also clearly demonstrates why the current vanishes in case (b), or375

indeed in any up-down symmetric case. Furthermore, it facilitates the treatment of a general,376

axisymmetric toroidal geometry, albeit requiring there to be only a small number of trapped377

particles to justify the use of the simple pitch-angle collision operator. We also limit ourselves378

to up-down symmetric equilibria to simplify the calculation. Although we employed a Lorentz379

collision operator, appropriate to electron-ion collisions, we demonstrate that our results can380

be readily adapted to allow for the effects of electron-electron collisions, energy-dependent381

collisions and the poloidally varying electron and ion temperature perturbations, δTe,i(θ), that382
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(a) q profile (b) p profile

Figure 8. Pressure and safety factor profiles for the current driven mode.

would ensure pressure remains constant on a flux surface (and restores the usual poloidally383

varying Pfirsch-Schluter current as a consequence).384

One can expect this poloidal density variation to be linked to the location of any neutral385

influx or, perhaps, gas-puffing. Thus, an up-down symmetric case may be related to case (a),386

while symmetric vertical locations near upper and lower X-points may relate to case (b). Case387

(c) appears to provide a good representation of the results of gas-puffing experiments388

The differences in the magnitude and sign of the incremental bootstrap current caused by389

the nature of the poloidal density variations may have implications for Type 1 ELMs and their390

control, since their onset is believed to be triggered when peeling-ballooning modes, whose391

stability is affected by edge plasma currents, become unstable.392

5. QH mode393

5.1. VMEC equilibrium modelling394

Candidate modes which may explain the QH-mode are investigated using the VMEC [40]395

non-axisymmetric equilibrium code and the linear ballooning stability code COBRAVMEC396

[41, 42]. Previous work has investigated how such a saturated MHD mode may appear at the397

plasma edge [15]. It has been shown that such a mode can appear due to the q profile being398

just below a rational value at the plasma edge. This is the external kink mode, see Fig. 8(a)399

showing the q profile. VMEC models the plasma as a current carrying plasma column with400

a vacuum region outside. This allows the q value at the plasma edge to be well defined. In401

reality these are diverted plasmas and so formally the q will go to infinity at the plasma edge.402

This would mean that external kink modes are unlikely to form. However, error fields and403

other non-axisymmetric fields may well create a stochatic layer at the plasma edge so that404

there is a maximum edge q. An improved understanding of the physics of the separatrix and405

external kink modes is required.406

A saturated MHD mode can also appear as a result of a pressure driven mode and a407
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(a) q profile (b) p profile

Figure 9. Pressure and safety factor profiles for the pressure driven mode.

(a) Parallel current for pressure drive mode (b) Parallel current for current drive mode

Figure 10. Parallel current for the current and pressure driven modes. A much broader current
ribbon appears for the current driven mode than for the pressure driven mode.

flattening of the q profile which is caused by the bootstrap current, see figure 9(a) showing the408

q profile for this mode. Note that the q profile is above four at the edge which removes drive for409

the current driven mode. We call this second type of mode the exfernal mode (after Brunetti410

[43]). We expect this pressure driven mode to appear at low collisionality as it requires a411

significant bootstrap current to flatten the q profile at the edge.412

We investigate the differences between the external kink mode and the exfernal mode to413

help to understand which of these modes we see experimentally. It has been noted by Solano414

et al [13] that in JET a current ribbon appears at the plasma edge. We have processed the415

external kink mode and exfernal mode equilibria to see if a current ribbon is in evidence.416

Figure 10 shows the parallel current for the external kink mode and the exfernal mode. We417

see that the external kink mode has a current ribbon in the pedestal region while the exfernal418

mode only has a current perturbation at the very edge of the plasma.419
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(a) Ballooning mode growth rate for the pressure
driven mode

(b) Ballooning mode growth rate for the current
driven mode

Figure 11. Linear ballooning mode growth rates for the external kink and pressure driven
modes.

5.2. Linear ballooning stability420

We now investigate the local linear ballooning stability using the COBRAVMEC code. This421

calculates the growth rate of the local ballooning mode on a given fieldline. It can also be422

thought of as the infinite-n ballooning mode. This is of interest because it captures some of423

the instability drive of the kinetic ballooning mode (KBM). The KBM is thought to drive424

particle transport, rather than heat transport, which is an important element of the QH-mode425

[44]. We first calculated ballooning stability for axisymmetric sister equilibria for the cases426

that are unstable to external kink mode and exfernal mode. Ballooning modes are found to427

be stable to these axisymmetric equilibria. In contrast, for the 3D equilibria corresponding to428

the external kink saturated state, strong ballooning instability is found over a large fraction of429

the edge region, see Fig. 11. The 3D equilibria corresponding to the exfernal mode saturated430

state is only weakly unstable to ballooning modes, and only very near the edge. Ideal MHD431

infinite n ballooning instability in the external kinked 3D equilibria could imply ballooning432

related, or KBM related, density transport433

This result may have been expected since it is well known from the physics of resonant434

magnetic perturbation (RMP) ELM suppression and mitigation that density pump out is only435

seen when the plasma response is external kink like (i.e. largest around the X-point) rather436

than ballooning-like [45](where ballooning-like in this context means pressure driven exfernal437

like). In RMP cases we would not expect to see the current ribbon at the plasma edge as this438

effectively comes from the coils around the plasma.439

5.3. Conclusions440

We examined two types of MHD mode which can produce saturated free boundary states: an441

external kink mode and a pressure driven, exfernal, mode. We have shown that the external442

kink mode produces a perturbed current ribbon at the plasma edge in line with experimental443
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observations. We have also calculated the linear local ballooning stability of these saturated444

modes. The external kink mode significantly destabilizes the ballooning modes while the445

pressure driven mode does not. This result matches expectations from the results of RMP446

ELM control experiments which show that density pump out only occurs for plasmas with447

an external kink mode response. The hypothesis is that the KBM produces sufficient partical448

transport such that the pedestal never reaches the peeling ballooning boundary and so no449

ELMs occur.450

6. Summary and Directions for future work451

We have completed various strands of work to improve our understanding of reactor relevant452

pedestals. While we have some understanding of what sets the pedestal height and width453

there is still much to understand. We have investigated how to improve the EPED model by454

trying to remove assumptions about the density. We have tried to determine if a gyrokinetic455

calculation of the heat flux could help us to determine the density profile. Unfortunately, the456

linear gyrokinetic results (and probably the nonlinear results too) are not able to discriminate457

between differing pairs of density and temperature profiles. We believe that this comes from458

the pedestal transport criterion assumed in EPED. This assumption should be relaxed in future459

work. It has been observed that density is not a flux surface function in many plasmas460

due to, for example, plasma rotation or plasma fuelling. We have calculated the effect of461

non flux surface density on the bootstrap current analytically in this paper and numerical462

investigations using ELMFIRE have also been completed [9]. This changed bootstrap current463

will also change the stability of the peeling ballooning modes and thus the ELM stability. We464

have calculated the effect of non flux surface density using JOREK within the project. This465

indicated that the low n modes became more unstable and the high n modes were unaffected.466

This was preliminary work and further confidence in the equilibrium is needed before this can467

be regarded as a final result. Indeed improving our understanding and measurements of the468

bootstrap current is still an important topic of research. The effect of plasma turbulence on469

the bootstrap current is yet to be determined and will require a code such as ELMFIRE to be470

resolved.471

Type I ELMs will not be allowable in reactors due to the damage they will cause to472

plasma facing components. We will therefore need to develop our confidence in small and473

no ELM regimes. We investigated the QH-mode using the non-axisymmetric equilibrium474

code VMEC. In this paper we built on work looking at current and pressure driven modes.475

Linear ballooning stability analysis indicates that the QH-mode is a saturated external kink476

mode rather than a pressure driven mode. A gyrokinetic analysis of these equilibria would477

allow us to understand the effect on transport of non-axisymmetric saturated instabilities.478

This would also be an important step in understanding RMP ELM control experiments. Work479

was carried out on other small ELM regimes within this collaboration which will be reported480

elsewhere. There are lots of avenue for further work including use of the gyro-landau-fluid481

model implemented in BOUT++ to model I-mode.482

A final aspect of this collaboration is the use of neural networks to produce fast surrogate483
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models. This will be important if we hope to use these models to design reactors and to scan484

large regions of parameter space for favourable reactor relevant conditions.485
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