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The fusion reaction between deuterium and tritium, D(T,n)4He is the main source of energy in future 

thermonuclear reactors. Charged fusion-products of this reaction, α-particles (4He-ions), are born with 

an average energy of 3.5MeV. Transferring energy to the thermal plasma during their slowing down, 

they should provide the self-sustained D-T plasma burn. Adequate confinement of α-particles is 

essential to provide efficient heating of the bulk plasma and steady burning of a reactor plasma. That is 

why the fusion-born α-particle studies have been a priority task for the second D-T experiments (DTE2) 

on JET to understand the main mechanisms of their slowing down, redistribution and losses and to 

develop optimal plasma scenarios. JET with the ITER-like wall (Be-wall and W-divertor) , improved 

energetic-particle diagnostic capabilities and 

enhanced auxiliary heating systems producing 

significant population of α-particles provided a 

great opportunity to study the α-particle 

behaviour giving a stepladder approach for 

modelling and extrapolating to ITER. Several 

new results of α-particle studies in DTE2 will be 

presented in this paper. 

Alpha-particle diagnostics. The first full scale 

D-T experiment on JET in 1997 (DTE1) has 

shown that direct measurements of alphas are 

very difficult. Alpha-particle studies require a 

significant development of dedicated diagnostics. 

In order to make such measurements, JET has 

been equipped with a set of fast α-particle 

diagnostics for operation at the high neutron and 

γ-ray fluxes in D-T experiments: neutron/γ-ray 

spectrometers; 2D neutron/γ-ray camera for 

tomographic reconstruction of the α-particle 

Figure 1. (a) and (b) - waveforms of the D-T JET pulses; (c) and (d) –  

the deuterium JET pulses (the waveforms were shifted in time to align 

both NBI afterglow periods). The panels show waveforms of central 
electron temperatures, Te(0), and measured neutron rates, where the 

dash line is marking the start of the NBI afterglow period. 

https://iopscience.iop.org/article/10.1088/1741-4326/ac47b4/pdf
https://iopscience.iop.org/article/10.1088/1741-4326/ac47b4/pdf
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source and the temporal evolution of its spatial profile; a fast ion loss detector (FILD) with energy and 

pitch-angle resolution and a set of the lost α-particle collectors (Faraday Cups) with poloidal, radial and 

energy resolution. These diagnostics provided novel α-particle observations in DTE2.  

Alpha-particle heating. A direct evidence of α-particle self-heating plasma effect is identified in the 

NBI afterglow of the high-performance discharges. It was found that α-particles continue transferring 

their kinetic energy to plasma electrons during slowing-down after   the removal of applied NBI. During 

the NBI afterglow period, the total neutron rate (substantially D-T neutrons) is decreasing while the 

plasma core electron temperature, Te(0), is still increasing for a short period. This evolution is in a 

contrast to the reference high-performance deuterium discharges, in which both Te and D-D neutron 

rate are decreasing during the NBI-afterglow. The α-particle self-heating effect was observed in both 

the so-named hybrid-scenario discharges as well as in discharges with ITB. A comparison of some D-

T and deuterium discharges with NBI cuts are presented in figure 1. Transport modelling of the relevant 

D-T and deuterium-discharges is consistent with the α-particle heating observation.  

Alpha-particle losses.  (A). In the high-performance discharges with NBI-only heating, a zoo of low-

frequency MHD modes were observed before and during the NBI-afterglow period. Alpha-particle 

losses associated with these modes are observed with FILD and Faraday Cups. In the afterglow phase 

of the discharges, a sharp and massive expulsion of 3.5-MeV α-particles was detected. It was identified 

that these α-particles are coming from the plasma core causing Te drop. We observe a loss spike, which 

is characterized by very high rate relative to classical first orbit rate detected, which could be linked to 

core α-particle redistribution triggering ELMs. Modelling with the TRANSP+ORBIT codes is ongoing. 

(B). It was found that α-particle losses are coherent with fishbones (figure 2) & long-lasting modes in 

the baseline and hybrid scenario discharges. Similar effects have been observed and modelled in DD-

plasmas, where losses of fusion-products, protons/tritons, were analysed [Kiptily et al 2018 NF 58 

014003].   

(C). The high-energy α-particle loss-spikes 

correlated to ELMs were found. The orbit 

calculations shows that the related α-particles are 

lost at the passing-trapped boundary. These α-

particle losses were observed with FILD and 

Faraday Cups.  

(D). Anomalous D-T α-particle losses have been 

observed in a novel heating scheme – 3-ion ICRF 

heating of 9Be-impurity (could be used in ITER). 

The pitch-angle distribution of α-particle losses 

shows some surprises. Whereas in most of the 

cases a single maximum is found, two maxima at 

different angles are detected in dedicated 

toroidal current-scans. The physics reason 

behind this feature is being investigated. 

(E). T-T α-particle losses in T-plasmas were measure with FILD – energy vs pitch-angle and FCs –  

poloidal distribution; It was found the losses coherent with n=2 mode [Bonofiglo et al RSI 93, 093527 

(2022)] . 

Novel fusion γ-ray measurements. 17-MeV γ-rays of D(T,γ)4He were measured – could be used as an 

additional tool for D-T fusion-rate monitoring [Kiptily et al PPCF 48 (2006) R59]. Also, 20-MeV γ-

rays from T(H,γ)4He reaction were measured in the H-minority heating in T-plasmas. Gammas from 

T(p,γ)4He and D(T,γ)4He reactions together are important for monitoring of the fuel-ratio and 

temperature in the reactor plasma core. [Kiptily et al NF 50 (2010) 084001; NF 55 (2015) 023008]. 

Conclusions. DTE2 experiments provided unique information on α-particle behaviour in ITER 

relevant scenarios. It gives opportunity for the detailed analysis and modelling that could enrich our 

knowledge on the α-particle physics in fusion reactors.  

 

Figure 2. Magnetics and FILD spectrograms show that α-particle 

losses correlated with fishbones. 


