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Abstract. Using a kinetic model for the ions and adiabatic electrons, we solve

a steady state, electron-repelling magnetic presheath in which a uniform magnetic

field makes a small angle α � 1 (in radians) with the wall. The presheath

characteristic thickness is the typical ion gyroradius ρi. The Debye length λD and

the collisional mean free path of an ion λmfp satisfy the ordering λD � ρi � αλmfp,

so a quasineutral and collisionless model is used. We assume that the electrostatic

potential is a function only of distance from the wall, and it varies over the scale ρi.

Using the expansion in α� 1, we derive an analytical expression for the ion density

that only depends on the ion distribution function at the entrance of the magnetic

presheath and the electrostatic potential profile. Importantly, we have added the

crucial contribution of the orbits in the region near the wall. By imposing the

quasineutrality equation, we derive a condition that the ion distribution function

must satisfy at the magnetic presheath entrance — the kinetic equivalent of the

Chodura condition. Using a boundary condition that satisfies the kinetic Chodura

condition, we find a numerical solution for the self-consistent electrostatic potential,

ion density and flow across the magnetic presheath for several values of α. Our

numerical results also include the distribution of ion velocities at the Debye sheath

entrance. We find that at small values of α there are substantially fewer ions

travelling with a large normal component of the velocity into the wall.

1. Introduction

In a typical fusion plasma device, the interaction between the confined plasma and the

wall of the device happens at specified locations called divertor or limiter targets [1].
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The magnetic field usually makes a small angle α � 1 with the target in order to

minimize the heat flux onto the wall materials [2]. Hence, an appropriate model of

plasma-wall interaction in a fusion device must accurately describe the effect of such

small angles. Such a model could be applicable to other areas where plasma-wall

interaction is important, such as thrusters [3], probes [4] and magnetic filters [5, 6].

When a steady-state plasma is in contact with a wall, a potential difference

between the “bulk” plasma and the wall develops which depends on the density

and temperature of the plasma and on the current flowing from the plasma to the

wall. This potential drop forms due to the difference in mobility between ions and

electrons, with the electrons usually reaching the wall faster and hence charging it

negatively. A thin layer of plasma called the “Debye sheath”, with a thickness of

several Debye lengths λD =
√
e2ne/ε0Te, charges positively because of the net loss

of electrons to the wall. Here e is the proton charge, ne is the number density of

electrons in the plasma, ε0 is the permittivity of free space and Te is the electron

temperature. The Debye sheath shields most of the wall potential from the bulk

plasma. The rest of the potential difference between wall and plasma occurs in a

quasineutral “presheath”, of size λps � λD. Usually λps � a, where a is the scale

of the device (for example, the minor radius of a tokamak), which implies that the

presheath can be treated as a thin boundary layer with respect to the bulk plasma

in the device.

We consider a presheath in which the ion collisional mean free path λmfp

projected in the direction normal to the wall, λmfp sinα ' αλmfp, is much larger

than the ion gyroradius ρi. Hence, we assume

λD � ρi � αλmfp. (1)

This is consistent with the value of these quantities near a divertor target: λD ∼
0.02mm, ρi ∼ 0.7mm, αλmfp ∼ 100mm [7]. With this scale separation, we can split

the boundary layer into three separate layers: a “collisional presheath” of size αλmfp,

a collisionless “magnetic presheath” of size ρi and a non-neutral Debye sheath [8].

The ion motion in the three layers has a very different nature: in the collisional

layer ions are magnetized in circular gyro-orbits and stream parallel to the magnetic

field, in the magnetic presheath ion gyro-orbits are distorted by increasingly strong

electric fields, and finally in the Debye sheath ions are accelerated towards the wall

by an electric force much larger than the magnetic force. A cartoon of the ion motion

across all boundary layers is shown in Figure 1.
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Figure 1. Cartoon of ion orbits in the neighbourhood of the divertor target of a

tokamak plasma, with λD � ρi � αλmfp. The orbits have a size ρi and are tied

to a dashed line representing the magnetic field B, which is inclined at an angle

α with the wall. The electric field E is shown as a dashed vertical line, and is

shaded darker nearer to the wall, where it is stronger. Highly distorted orbits in

the magnetic presheath are black, while circular orbits in the collisional presheath

are light grey.

In this paper we focus on the magnetic presheath, which was first studied by

Chodura [9]. By assuming that the ions were much colder than electrons, Chodura

could use fluid equations for the electrons and ions, and found a solution for the

electrostatic potential and ion flow across the magnetic presheath. Chodura also

found that the ion flow parallel to the magnetic field at the presheath entrance must

at least be equal to the Bohm speed

vB =

√
ZTe

mi

, (2)

which is known as Chodura’s condition [9, 10]. In equation (2), Z is the proton

number of the ion species, Te is the electron temperature and mi is the ion mass.

These results prepared the ground for several other studies of the magnetic presheath,

many of which also used fluid equations to model the ion species [10–13]. However,

the assumption that a fluid model is adequate for ions in the magnetic presheath

is not well motivated, because their Larmor orbits are highly distorted with a

characteristic radius equal to the characteristic thickness of the layer [14]. The

fluid model can only correctly describe cold ions with Ti � Te, where Ti is the ion

temperature, because such ions can be treated as mono-energetic. Treatments of the

magnetic presheath which take into account the kinetic nature of the ions are less

common and are mostly numerical [15–22], although some analytical contributions
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have been made [23–26]. In this paper, we extend the analytical work carried out

in [7] and we numerically solve a grazing angle collisionless magnetic presheath

assuming Boltzmann electrons and using a fully kinetic model for the ions.

As in references [7, 23, 27], we perform an asymptotic expansion in α of the ion

trajectories in the magnetic presheath. This approach is equivalent to a “gyrokinetic”

separation of timescales. Most of the time, an ion trajectory is well approximated to

lowest order by a non-circular periodic orbit with a fast gyration timescale ∼ 1/Ω.

Here, Ω = ZeB/mi is the typical ion gyrofrequency, e is the proton charge and B is

the magnitude of the magnetic field. To higher order, the trajectory is a sequence of

approximately “closed” orbits: it can be described by varying some of the parameters

of the periodic motion over the long characteristic time 1/αΩ. In reference [7] we

obtained an expression for the density of ions in approximately closed orbits in

the magnetic presheath. A short time ∼ 1/Ω before the ion reaches the wall, its

trajectory cannot be considered approximately periodic and is therefore an “open”

orbit. In this work, we show that the contribution to the density of ions in open

orbits is crucial and we derive an analytical expression for it.

Using the equations presented in this paper, we numerically find a self-consistent

solution for the electrostatic potential in the magnetic presheath. We rely on a

boundary condition at the magnetic presheath entrance that satisfies a condition,

derived herein, which is the kinetic generalization of Chodura’s condition [9]. The

numerical solution we obtain for the electrostatic potential is used to evaluate the ion

density and flow across the magnetic presheath. Moreover, we obtain the distribution

of ion velocities at the entrance of the Debye sheath, and find that the kinetic Bohm

condition [28] is satisfied, as we also predict analytically. The results of our model

indicate that the number of ions entering the Debye sheath travelling with a large

normal component of the velocity towards the wall is substantially reduced at smaller

values of the angle α.

This paper is structured as follows. In Section 2, we explain the orderings that

we use in our model. In Section 3, we expand the ion trajectories in the small

parameter α � 1. In Section 4 we obtain an expression for the density of ions

across the magnetic presheath in terms of their distribution function at the magnetic

presheath entrance, including the contribution of open orbits. We also obtain an

expression for the distribution function of ions reaching the Debye sheath entrance.

In Section 5 we analytically expand the quasineutrality equation near the magnetic

presheath entrance and near the Debye sheath entrance. One of the analytical results
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of these expansions is a solvability condition that the ion distribution function must

satisfy at the magnetic presheath entrance. In Section 6 we state the ion distribution

function used as an entrance boundary condition, explain the numerical procedure

used to solve the quasineutrality equation and present the numerical solutions. In

Section 7, we summarize our main results and make some concluding remarks.

2. Orderings and assumptions

In this work, we consider a steady state plasma at x > 0, which is magnetized by

a uniform and constant magnetic field B = B cosαẑ − B sinαx̂, where B = |B|,
k̂ = x̂, ŷ, ẑ is the unit vector along the k = x, y, z axis and α is a small angle (see [7]

for a discussion of when B can be assumed to be constant in time and space). The

coordinate system we use is shown in Figure 1. We assume no gradients in the two

directions parallel to the wall, y and z (note that in [7] we allowed for gradients in

y). Distances from the wall are ordered

x ∼ ρi =
vt,i

Ω
(3)

and ion velocities are ordered

|v| ∼ vt,i, (4)

where vt,i =
√

2Ti/mi and Ti is the ion temperature. The system is solved to

lowest order under the assumption in (1), which implies that x = 0 is the interface

between magnetic presheath and Debye sheath, λD � x � ρi, while x → ∞ is the

interface between the magnetic presheath and the collisional layer, ρi � x� αλmfp.

Splitting the boundary layer in different scale separated regions and using a matching

procedure to join them is common in studies of the plasma-wall boundary, and has

been justified in reference [29].

The fact that the magnetic field is assumed constant in time implies that the

electric field can be expressed in terms of the gradient of an electrostatic potential.

We define the electrostatic potential φ(x) such that φ → 0 at x → ∞ and order it

as large as the electron temperature Te (consistent with [9]),

φ (x) ∼ Te

e
. (5)
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The electric field is E = −φ′(x)x̂, with

φ′(x) ∼ Te

eρi

∼ vt,iB, (6)

where a prime ′ denotes differentiation with respect to x. The second ordering arises

because the ion and electron temperatures are ordered of similar sizes, Ti ∼ Te.

The angle α is ordered
√
me

mi

∼ 0.02� α� 1, (7)

where me is the electron mass and the estimate for the square root of mass ratio is

obtained using a Deuterium ion. We assume α�
√
me/mi to ensure that the wall is

electron-repelling [7], which justifies using a Boltzmann distribution for the electron

density,

ne (x) = ne∞ exp

(
eφ (x)

Te

)
. (8)

Here, ne∞ is the electron density at x → ∞ and Te is the electron temperature. In

practice, we obtain numerical results for a range of angles that satisfy α &
√
me/mi,

while assuming for simplicity that (8) holds even when α ∼
√
me/mi. Provided

that the wall remains electron-repelling, square root of mass ratio corrections can be

included by using the expression for the electron density derived in [30] instead of

equation (8).

3. Ion trajectories

Here, we exploit the smallness of α to asymptotically expand the ion trajectories.

The equations of motion for an ion moving in the collisionless magnetic presheath

are [7]

ẋ = vx, (9)

ẏ = vy, (10)

ż = vz, (11)
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v̇x = −Ω

B
φ′(x) + Ωvy cosα, (12)

v̇y = −Ωvx cosα− Ωvz sinα, (13)

v̇z = Ωvy sinα, (14)

where a dot ˙ denotes a time derivative, d/dt.

This section is structured as follows. Section 3.1 is devoted to obtaining the

constants of motion resulting from equations (9)-(14) with α = 0, which are called

orbit parameters. We express the ion velocity in terms of the instantaneous position

and the orbit parameters, using an “effective potential”. In Section 3.2 we introduce

two distinct types of effective potential curves. In Section 3.3 we study “closed”

orbits, which are periodic solutions to equations (9)-(14) with α = 0. Their

characteristic period is 1/Ω. The main effect of α 6= 0 is to break the exact periodicity

by making the orbit parameters vary over a characteristic time 1/αΩ� 1/Ω. A slow

variation of the parameters of periodic motion leads to the existence of an adiabatic

invariant µ, a quantity that the ion conserves to lowest order in α over the long

timescale 1/αΩ [7, 23]. In Section 3.4 we study the real ion trajectories, which

consist of a sequence of approximately closed orbits, quantify the variation of the

orbit parameters to first order in α and write the adiabatic invariant. A time ∼ 1/Ω

before the ion reaches the wall, the ion is considered in an “open” orbit. In Section

3.5, we define an open orbit and obtain the conditions that orbit parameters must

satisfy for an ion to be in an open orbit.

3.1. Orbit parameters

Setting α = 0, equations (12)-(14) become

v̇x = −Ω

B
φ′(x) + Ωvy, (15)

v̇y = −Ωvx, (16)

v̇z = 0. (17)
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Using (9), direct integration of (16) leads to

x̄ =
vy
Ω

+ x ∼ ρi, (18)

where x̄ is the constant of integration which represents the position of an ion orbit.

Multiplying (15) by vx and adding to (16) multiplied by vy we obtain U̇⊥ = 0, where

U⊥ =
1

2
v2
x +

1

2
v2
y +

Ωφ(x)

B
∼ v2

t,i (19)

is the perpendicular energy. From (17), the parallel velocity vz of the ion is a constant

of the motion. Adding the parallel kinetic energy v2
z/2 to the perpendicular energy

we obtain the total energy,

U =
1

2
v2
x +

1

2
v2
y +

1

2
v2
z +

Ωφ(x)

B
∼ v2

t,i. (20)

The quantities x̄, U⊥ and U constitute the three orbit parameters of ion motion.

When α = 0 they are exactly conserved, and when α � 1 they change slowly

(except for U which remains constant).

The ion velocity components vx, vy and vz can be expressed in terms of the

orbit parameters and the instantaneous ion position x. Inserting (18) into (19) and

rearranging, we get

vx = σxVx (x, x̄, U⊥) with Vx (x, x̄, U⊥) =
√

2 (U⊥ − χ (x, x̄)), (21)

where we introduced σx = ±1 to account for the two possible signs of vx, and an

effective potential function

χ (x, x̄) =
1

2
Ω2 (x− x̄)2 +

Ωφ(x)

B
. (22)

The y-component of the velocity is obtained by rearranging equation (18)

vy = Ω (x̄− x) . (23)

The z-component of the velocity is obtained by subtracting equation (19) from (20),

multiplying by 2 and taking a square root,

vz = σ‖V‖ (U⊥, U) with V‖ (U⊥, U) =
√

2 (U − U⊥), (24)

where σ‖ = ±1 is the sign of vz.
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Figure 2. The monotonic electrostatic potential profile φ(x) and its monotonic

first and second derivatives φ′(x) and φ′′(x).

3.2. Types of effective potential curves

By imposing that vx be real in equation (21), the allowed ion positions must satisfy

U⊥ > χ (x, x̄). A particle moves periodically if, for given values of U⊥ and x̄, it

is trapped around a minimum (with respect to x) of the effective potential curve.

Then, the ion motion is confined between bounce points xb (bottom) and xt (top)

defined by

U⊥ = χ (xb, x̄) = χ (xt, x̄) with xb 6 xt. (25)

Throughout this work, we assume that the electrostatic potential across the magnetic

presheath is such that φ(x), φ′(x) and φ′′(x) are all monotonic (our numerical results

satisfy these conditions), as shown in Figure 2. Then, the curve χ (x, x̄) with a

stationary minimum for a given x̄ can be of two types [23]:

• a type I curve has one stationary minimum at xm, such that χm (x̄) ≡ χ (xm, x̄),

and no stationary maximum — however we consider the non-stationary local

maximum at position xM = 0 with χM (x̄) = χ (0, x̄);

• a type II curve has two stationary points: one at position xm which corresponds

to a minimum χm (x̄), and one at position xM which corresponds to a maximum

χM (x̄) ≡ χ (xM, x̄).
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χ(x)

x
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xm

χm(x̄)

χ(x)

x

U⊥

xb xt

χM(x̄)

xmxM
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Figure 3. Type I (left) and II (right) effective potential curves, both with a

stationary minimum at x = xm. A type II curve is characterized by a stationary

maximum at x = xM. These curves allow closed orbits for any value of U⊥ in the

range χm (x̄) 6 U⊥ 6 χM (x̄) with bottom and top bounce points at positions xb
and xt.

These two curve types are shown in Figure 3. We will refer to the ion trajectories

arising due to each curve type as type I and type II orbits.

We proceed to obtain the range of values of x̄ for which the effective potential

is of either type. Differentiating equation (22) we obtain

χ′(x, x̄) = Ω2(x− x̄) +
Ωφ′(x)

B
. (26)

For type I curves the gradient of the effective potential at x = 0 must be negative.

Hence, from equation (26), we obtain −Ω2x̄ + Ωφ′(0)/B < 0 which leads to the

requirement that x̄ > x̄m,I with

x̄m,I =
φ′(0)

ΩB
. (27)

Setting equation (26) to zero gives an equation for the stationary points of χ,

which can be rearranged to

φ′(x) = ΩB (x̄− x) . (28)

The stationary points are minima if the second derivative of χ is positive. This

condition is equivalent to the gradient of φ′(x) being larger than the gradient of the
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x̄c = x̄m,I

Figure 4. The stationary points of the effective potential satisfy equation (28),

φ′(x) = ΩB (x̄− x). In each of the four diagrams the solid curves represent φ′(x),

while the function ΩB (x̄− x) is the family of lines that are parallel to the oblique

lines. For a given value of x̄, equation (28) can have two solutions (dark grey region,

χ is type II), one solution (light grey region, χ is type I) or no solution (unshaded

region, χ has no minimum). The smallest value of x̄ for which a stationary point

exists, at position xc, is x̄c. The value of x̄ which corresponds to a stationary point

at x = 0 is x̄m,I.

line ΩB(x̄−x). By rearranging equation (28) to an equation for x̄ as a function of x

and then minimizing it with respect to x, we obtain the minimum value of the orbit

position for which the effective potential has a stationary point,

x̄c = min
x∈[0,∞]

(
x+

φ′(x)

ΩB

)
= xc +

φ′(xc)

ΩB
. (29)

From Figure 4, x̄c is the smallest value of x̄ for which the straight line ΩB (x̄− x)

touches the curve φ′(x), and xc is the value of x at which they intersect. From

Figure 4, x̄c and x̄m,I coincide if φ′′(0) > −ΩB. Then, all effective potential curves
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are type I for x̄ > x̄c = x̄m,I. If φ′′(0) < −ΩB, x̄ = x̄c is the orbit parameter

value corresponding to when the straight line ΩB(x̄ − x) touches the curve φ′(x)

tangentially. Then, for orbit parameter values in the range x̄c 6 x̄ 6 x̄m,I there

are two stationary points (a minimum in the region x > xc and a maximum in the

region 0 6 x < xc), corresponding to type II curves, while for x̄ > x̄m,I there is

only one stationary minimum, corresponding to type I curves. Summarizing these

observations with the aid of Figure 4:

• if φ′′(0) > −ΩB, χ is a type I curve for x̄ > x̄c = x̄m,I;

• if φ′′(0) < −ΩB, χ is a type II curve for x̄c < x̄ < x̄m,I and a type I curve for

x̄ > x̄m,I.

We will see in Sections 5 and 6 that our solution to the magnetic presheath

electrostatic potential is such that the electric field diverges at x = 0, φ′(0) →
∞. This behaviour is associated with type II effective potential curves because

x̄m,I = φ′(0)/ΩB → ∞ (see Figure 4, bottom right diagram). It is nonetheless

useful to consider also type I curves because we obtain our solution by iterating

over possible electrostatic potential profiles starting from the initial guess of a flat

potential, φ(x) = 0.

3.3. Closed orbits for α = 0

When the α = 0 motion of an ion is a closed orbit, we can write its position as a

function of a gyrophase angle which parameterizes the particular point of the orbit

in which the particle lies. The period of the orbit, 2π/Ω, where Ω is the generalized

gyrofrequency, is the integral of all the time elements dt = dx/vx over a whole orbit,

2π

Ω
= 2

∫ xt

xb

dx

Vx (x, x̄, U⊥)
. (30)

The gyrophase angle ϕ of the orbit is defined as Ωt, where t is defined in the interval

−π/Ω < t < π/Ω and is (when positive) the time elapsed since the particle last

reached the top bounce point,

ϕ = σxΩ

∫ x

xt

dx′

Vx (x′, x̄, U⊥)
. (31)
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It will be useful to define the gyroaveraging operation as an average over possible

values of gyrophase, or equivalently as an average over the period of a closed orbit,

〈. . .〉ϕ =
1

2π

∫ π

−π
(. . .) dϕ =

∑

σx=±1

Ω

2π

∫ xt

xb

(. . .) dx

Vx (x, x̄, U⊥)
. (32)

The second equality in (32) is obtained using (31). The closed orbit has an E × B

drift in the y direction (parallel to the wall), with drift velocity VE×B defined as the

gyroaverage of vy,

VE×B (x̄, U⊥) =
Ω

π

∫ xt

xb

Ω (x̄− x)

Vx (x, x̄, U⊥)
dx =

Ω

π

∫ xt

xb

φ′(x)/B

Vx (x, x̄, U⊥)
dx. (33)

The second equality in (33) comes from using equation (26) and the result
∫ xt

xb

χ′ (x, x̄)

Vx (x, x̄, U⊥)
dx = −

∫ xt

xb

V ′x (x, x̄, U⊥) dx = Vx (xb, x̄, U⊥)− Vx (xt, x̄, U⊥) = 0,

(34)

where we used Vx (xb, x̄, U⊥) = Vx (xt, x̄, U⊥) = 0.

3.4. Approximately closed orbits for α� 1

When α = 0 an ion moves in a closed orbit which E × B drifts in the y

direction (equation (33)) and streams parallel to the magnetic field in the z direction

(equation (24)). When α � 1, the motion is approximately periodic because the

orbit parameters vary over a timescale 1/αΩ that is much longer than the typical

gyroperiod 1/Ω. Differentiating (18) with respect to time and using (13), we find

˙̄x = −σ‖αV‖ (U⊥, U) +O
(
α2vt,i

)
. (35)

Physically, this represents the small component of the parallel motion which moves

the approximately closed ion orbit in the x direction when α 6= 0. Note that

U̇ = 0 (36)

is true to every order in α because energy is exactly conserved in the absence of

explicit time dependence. Differentiating (19) and using (12) and (13) we get

U̇⊥ = −σ‖αΩ2 (x̄− x)V‖ (U⊥, U) +O
(
α2Ωv2

t,i

)
, (37)
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x/⇢i

y/⇢i

z/⇢i

E
B

VE⇥B VE⇥B

Vk Vk

Figure 5. Two ion trajectories approaching the wall, represented as a grey surface

at x = 0, are shown as black lines. Most of the ion path is locally approximated by

closed orbits, represented as superimposed rings. Ions stream along the magnetic

field B at velocity V‖ (U⊥, U), and the strong electric field towards the wall causes

the approximately closed orbits to E × B drift at velocity VE×B (x̄, U⊥) in the y

direction. The increasing electric field as the orbits approach x = 0 causes the

E ×B velocity to noticeably increase (see equation (33)). Eventually the electric

force pushing the ion towards the wall becomes larger than the magnetic force

trying to turn it away from the wall.

which depends on the instantaneous particle position x and therefore on the

gyrophase ϕ. Since the orbit parameters are varying over the long timescale 1/αΩ,

they are approximately constant over a single orbit, hence the time derivative of U⊥
is approximately periodic at small timescales (because x is approximately periodic).

Then, the gyroaveraged time derivative of U⊥ is equivalent to the non-gyroaveraged

counterpart at long timescales. Exploiting (32) and (34), the gyroaverage of (37) is

〈
U̇⊥

〉
ϕ

= −σ‖αV‖ (U⊥, U)
Ω

π

∫ xt

xb

φ′(x)/B

Vx (x, x̄, U⊥)
dx+O

(
α2Ωv2

t,i

)
. (38)

Two ion trajectories, which were obtained by varying the orbit parameters according

to equations (35)-(37), are shown in Figure 5.

In a Hamiltonian system, when the parameters of periodic motion change over

a timescale much longer than the period of the motion, an adiabatic invariant exists.

Here, it is given by [7, 23]

µ = µgk (x̄, U⊥) ≡ 1

π

∫ xt

xb

Vx (x, x̄, U⊥) dx ∼ v2
t,i

Ω
. (39)
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Unlike x̄ and U⊥, the adiabatic invariant (39) is conserved to lowest order over the

much longer timescale 1/αΩ,

〈µ̇〉ϕ = O
(
α2v2

t,i

)
' 0. (40)

The picture that emerges of the ion trajectory in a grazing angle magnetic presheath

is that of a sequence of approximately closed orbits whose parallel streaming brings

them slowly towards the wall, as shown in Figure 5. The adiabatic invariant

µgk (x̄, U⊥) and total energy U are conserved as the ion traverses the magnetic

presheath.

In this work, we assume an electron-repelling wall, hence φ′ (x) > 0 in the

sheath-presheath system. Since the wall is absorbing, any ion present in the system

must be coming from x → ∞ and moving towards x = 0, therefore it has ˙̄x < 0

and σ‖ = +1. Then, from (38), U⊥ decreases as the ion moves across the magnetic

presheath with σ‖ = +1. The decrease in U⊥ is caused by the small component of

the electric field which is parallel to the magnetic field and therefore accelerates ions

in the parallel direction, such that V‖ (U⊥, U) increases as the particle approaches

the wall and σ‖ never changes sign. Hence, from here on we take σ‖ = +1 for all

ions.

3.5. Open orbits

The time that it takes for an ion to cross the magnetic presheath is ∼ 1/αΩ. During

this time the ion motion can be approximated by that of a periodic gyro-orbit with

period ∼ 1/Ω. The parameters of the periodic motion change over the slow timescale

1/αΩ. When the ion reaches values of the orbit parameters for which its lowest order

motion intersects the wall (and is therefore no longer periodic), it reaches the wall

and is lost from the system over the fast timescale 1/Ω (as we will show). In this

short period of time, the ion is in an open orbit. The number of ions in open orbits is

small (higher order in α) compared with the number of ions in closed orbits because

open orbits exist for a much shorter time. However, the number of ions in closed

orbits that cross a point arbitrarily close to the wall is small (or zero, if the electric

field diverges at x = 0) because of the constraint that the velocity of an ion in

such closed orbit be tangential to the wall. Therefore, it is essential to obtain the

contribution to the density due to ions in open orbits.



Solution to a collisionless magnetic presheath with kinetic ions 16

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

vx/vt,i

0.0

0.5

1.0

1.5

2.0

2.5

3.0
x/

r
i

�vx

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

vx/vt,i

0.0

0.5

1.0

1.5

2.0

2.5

3.0

x/
r

i

�vx

Figure 6. Two sets of phase space trajectories corresponding to type I and II orbits

are plotted on the left and right respectively. The dotted lines are trajectories of

motion with α = 0 when D = 0. The solid lines are trajectories calculated using

equations (35)-(37) with α = 0.05. The thick black lines are the open orbit pieces of

the trajectories, corresponding to DB = 0 (vx ' 0 during last bounce) and DX = 0

(vx ' 0 during crossing of xM). The type I trajectories on the left correspond to

the zero electric field case φ (x) = 0, while the type II trajectories on the right are

evaluated using the electrostatic potential solution of Section 6.

It is clear that an ion is in an open orbit when x 6 xM, because a closed orbit

cannot cross this region by definition. For the ion to reach x 6 xM, it must have

crossed the maximum from the region x > xM. The exact point x > xM at which

we consider its orbit to be open is arbitrary, but this arbitrariness does not matter

because the ion density for x > xM is dominated by closed orbits. We exploit this

to generalise the open orbit definition in a way that includes all ions at x 6 xM and

smoothly extends the open orbit density to x > xM. We consider an ion to be in an

open orbit if:

(i) at future times, its trajectory has no bounce points,

(ii) at past times, its trajectory has bounce points.

Figure 6 shows examples of pieces of ion trajectories that are considered open orbits

according to this definition, type I on the left and type II on the right. Note the

difference in shape between the two orbits: a type I open orbit is just a closed orbit



Solution to a collisionless magnetic presheath with kinetic ions 17

that intersects the wall, while a type II open orbit occurs when the electric force

pushing the ion towards the wall overcomes the magnetic force turning the ion away

from the wall.

To study open orbits, it will be useful to consider the difference between the

perpendicular energy and the effective potential maximum as a separate quantity D,

D = U⊥ − χM (x̄) . (41)

The velocity component vx, given by equation (21), is

vx = σxVx (x, x̄,D + χM (x̄)) = σx
√

2 (D + χM (x̄)− χ (x, x̄)). (42)

When x = xM is reached from x > xM, the velocity is given by vx = −
√

2D, hence

only ions with D > 0 cross the effective potential maximum and reach x 6 xM. To

obtain the rate of change of D, we calculate the rate of change of χM (x̄),

χ̇M (x̄) =
∂χ

∂x̄
(xM, x̄) ˙̄x+ χ′ (xM, x̄)

∂xM

∂x̄
˙̄x. (43)

For both type I and type II orbits, the second term in (43) vanishes (type I curves

have ∂xM/∂x̄ = 0, while type II curves have χ′ (xM, x̄) = 0) and, using (35), we find

χ̇M (x̄) = σ‖αΩ2V‖ (U⊥, U) (xM − x̄) +O
(
α2Ωv2

t,i

)
. (44)

Combining (44) with the result for U̇⊥ in (37), we get

Ḋ = αΩ2V‖(χM(x̄), U) (x− xM) +O
(
α2Ωv2

t,i

)
. (45)

Consider an ion that reaches U⊥ = χM(x̄) at a position x′ > xM and is travelling

towards the maximum (σx = −1). Assuming that the difference between U⊥ and

χM(x̄) stays small during the subsequent trajectory (which we will show), we use

U⊥ ' χM (x̄) and the relationship

dt =
dx

vx
' dx

σxVx (x, x̄, U⊥)
(46)

to estimate the time taken for the ion to reach the effective potential maximum,

δtM =

∫
dt =

∫ x′

xM

ds

Vx (s, x̄, U⊥)
. (47)
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If the effective potential curve is of type I, δtIM ∼ 1/Ω, whereas for type II curves

δtIIM diverges according to equation (47). We show this by expanding Vx (x, x̄, χM (x̄))

near x ' xM with a type II curve and defining χ′′M ≡ χ′′ (xM, x̄), to obtain

V II
x (x, x̄, χM (x̄)) '

√
|χ′′M| (x− xM) . (48)

The time δtIIM is then

δtIIM '
∫ x′

xM

ds√
|χ′′M| (s− xM)

→∞. (49)

Despite this apparent divergence, the variation of D during the time δtM can be

evaluated using (46) because equations (45) and (48) imply that Ḋ/Vx (x, x̄, χM(x̄))

is not divergent at x = xM. Then, using

D =

∫
Ḋdt ' αΩ2V‖(χM(x̄), U)

∫ x′

xM

s− xM

Vx (s, x̄, χM (x̄))
ds, (50)

we expect D ∼ αv2
t,i for both orbit types, justifying U⊥ ' χM(x̄) a posteriori. Using

this ordering and U⊥ = χM(x̄) + D, equation (47) can be used to obtain the more

accurate estimate δtIIM ∼ ln (1/α) /Ω. Putting together the estimates for both orbit

types, we have

ΩδtM ∼
{

1 for type I orbits,

ln
(

1
α

)
for type II orbits.

(51)

We proceed to find the possible values of D which satisfy the open orbit criteria

we defined. If x < xM the particle has already crossed the effective potential

maximum and we have to integrate backwards in time to obtain the value of D

at the moment xM was crossed, denoted DX, and further back to obtain the value of

D during the last bounce from the bottom bounce point xb ' xM, denoted DB. If

x > xM, we must integrate Ḋ forwards in time to obtain DX (because by definition

the particle trajectory must cross xM when it next reaches it, otherwise it would not

be an open orbit), and backwards in time to obtain DB.

We first obtain DX −D in terms of x, x̄ and U . If x > xM we integrate Ḋ > 0

forwards in time (so dt > 0) and if x < xM we integrate Ḋ < 0 backwards in time
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(so dt < 0), hence we expect a positive quantity in both cases. From equation (50),

such quantity is approximately

∆+ (x, x̄, U) = αΩ2V‖(χM(x̄), U)

[∫ x

xM

(s− xM)

Vx (x, x̄, χM (x̄))
ds

]
∼ αv2

t,i, (52)

therefore DX is

DX = D + ∆+ (x, x̄, U) +O
(
α1+pv2

t,i

)
. (53)

The power p used to quantify the error is given by

p =

{
1 for type I orbits,
1
2

for type II orbits.
(54)

The enhanced error from type II orbits comes from the fact that D 6= 0 is not

included in the estimate of vx used in equation (46). Estimating |vx| more accurately

in the region near the maximum, we have

V II
x (x, x̄, χM (x̄) +D) '

√
|χ′′M| (x− xM)2 + 2D. (55)

Hence, there is a region of size |x − xM| ∼ α1/2ρi in which the estimate (48) is

incorrect. The contribution from this region to the integrals (50) and (52) can be

calculated by multiplying the size of the region by the size of the integrand, which

gives α3/2v2
t,i.

We proceed to obtain DB − DX by integrating Ḋ > 0 backwards in time (so

dt < 0) from the point at which the maximum is crossed. The result is a negative

quantity of magnitude ∆M, which is an integral from the bottom bounce point

xb ' xM to the top bounce point xt ' xt,M and back, where xt,M is the top bounce

point corresponding to U⊥ = χM(x̄). The backwards integration is identical to the

forwards one, hence this quantity is, from equation (50),

∆M (x̄, U) = 2αΩ2V‖(χM(x̄), U)

[∫ xt,M

xM

(s− xM)

Vx (x, x̄, χM (x̄))
ds

]
∼ 2παv2

t,i. (56)

The factor of 2π in the final scaling of (56) is due to having integrated in time over

a gyroperiod, ∼ 2π/Ω. Then, DB is

DB = DX −∆M (x̄, U) +O
(
α1+pv2

t,i

)
. (57)
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From the criteria defining an open orbit, the value of D for an allowed open

orbit at position x, orbit position x̄, and energy U must be such that

(i) DX > O
(
α1+pv2

t,i

)
and (ii) DB < O

(
α1+pv2

t,i

)
. (58)

The limited accuracy in the evaluation of DX and DB leads to the O
(
α1+pv2

t,i

)
error

in the inequality. Using conditions (58) and equations (53) and (57), we have the

inequality

−∆+ (x, x̄, U) +O
(
α1+pv2

t,i

)
< D < ∆M (x̄, U)−∆+ (x, x̄, U) +O

(
α1+pv2

t,i

)
. (59)

From equation (42) this means that there is a range of possible particle velocities vx,

with maximum given by −Vx+ (x, x̄, U), where

Vx+ (x, x̄, U) =
√

2 (−∆+ (x, x̄, U) + χM (x̄)− χ (x, x̄)) +O
(
α1+pv2

t,i

)
, (60)

and with range of values given by

∆vx =
√

2 (∆M (x̄, U)−∆+ (x, x̄, U) + χM (x̄)− χ (x, x̄)) +O
(
α1+pv2

t,i

)
(61)

−
√

2 (−∆+ (x, x̄, U) + χM (x̄)− χ (x, x̄)) +O
(
α1+pv2

t,i

)
, (62)

such that

−Vx+ (x, x̄, U)−∆vx < vx 6 −Vx+ (x, x̄, U) . (63)

The value of ∆vx is labelled for the open orbits crossing x = 0 in Figure 6.

4. Ion distribution function and density

Suppose that the plasma entering the magnetic presheath, at x → ∞, has an ion

species whose distribution function is f∞ (vx, vy, vz). This function is re-expressed

in terms of the variables µ and U by applying the change of variables (vx, vy, vz)→
(ϕ, µ, U) at x→∞. The distribution function must be independent of gyrophase ϕ

to lowest order in α [7], hence the result of the change of variables is a function of µ

and U only,

Fcl (µ, U) ' f∞ (vx, vy, vz) . (64)
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The subscript “cl” in equation (64) is short for “closed”, because Fcl refers to the

distribution function of approximately closed orbits. Using conservation of the two

invariant quantities µ and U , the distribution function of ions in the magnetic

presheath is Fcl(µ, U) to lowest order in α [7, 23]. In this section, we obtain

expressions for the density of ions in approximately closed and open orbits in terms

of this distribution function.

4.1. Closed orbit ion density

Using equation (39) for µgk (x̄, U⊥), and equations (18), (19) and (20) for the change

of variables (vx, vy, vz) → (x̄, U⊥, U), we obtain the distribution function of ions in

approximately closed orbits,

fcl(x, vx, vy, vz) ' Fcl (µgk (x̄, U⊥) , U) Θ ((x− xb) (xt − x)) , (65)

where Θ is the Heaviside step function,

Θ(y) =

{
1 for y > 0,

0 for y < 0.
(66)

The density of ions crossing position x in approximately closed orbits is an integral

in velocity space of the distribution function (65),

ni,closed(x) =

∫
dvy

∫
dvx

∫
fcl(x, vx, vy, vz)dvz. (67)

Changing to the set of variables (U⊥, x̄, U) [7], we obtain

ni,closed(x) '
∫ ∞

x̄m(x)

Ωdx̄

∫ χM(x̄)

χ(x,x̄)

2dU⊥√
2 (U⊥ − χ (x, x̄))

∫ ∞

U⊥

Fcl (µgk (x̄, U⊥) , U)√
2 (U − U⊥)

dU .

(68)

In (68), the lower limit of integration x̄m (x) is related to the fact that an ion

in a closed orbit must be in the region enclosed by the largest possible orbit,

xM 6 x 6 xt,M. Therefore, the region of integration is x̄ > x̄m (x) [7], with

x̄m (x) = min
s∈[0,x)

{
1

2
(x+ s) +

φ(x)− φ(s)

ΩB (x− s)

}
. (69)
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It is worth noting that ni,closed(0) = 0, because for type I orbits χM(x̄) = χ(0, x̄)

while for type II orbits x < xM. The fact that ni,closed(0) = 0 means that we

cannot naively impose quasineutrality with only the approximately closed orbit

contribution to the ion density. An attempt to impose Zni,closed(0) = ne (0) leads to

ne (0) = ne∞ exp (eφ(0)/Te) = 0 and therefore φ(0) = −∞. This is an unphysical

result which stems from the fact that we have not kept the dominant contribution

to the ion density at (and near) the wall, which comes from ions in open orbits.

4.2. Open orbit ion density

Consider an ion at position x in an open orbit, when U⊥ = χM (x̄) +D and D lies in

the range (59). The ion transitioned from being in a closed orbit to being in an open

orbit a time ∼ δtM before the moment we consider. At this time, the orbit position

differed from x̄ by O (αΩδtMρi), which is small. To lowest order, the ion conserved

its adiabatic invariant up to the point where U⊥ = χM(x̄). Using U⊥ ' χM (x̄),

the adiabatic invariant of the ion was µgk (x̄, χM (x̄)) + O (αΩδtMvt,iρi). Hence, the

distribution function is Fcl (µgk (x̄, χM (x̄)) , U) to lowest order, independent of the

value of D.

For an ion in an open orbit to be at position x, the range of possible values of

x̄ (to lowest order) is determined by two constraints. A time ∼ δtM before being

in an open orbit, the ion must have been in an approximately closed orbit whose

existence depends on the presence of an effective potential minimum. Hence, we

require a stationary point to exist, which implies that x̄ > x̄c is necessary. Moreover,

we require that x < xt,M. For x < xc, it is impossible for an ion to be in the region

x > xt,M because xc 6 xm 6 xt,M, therefore x̄ > x̄c is the necessary and sufficient

condition for an open orbit crossing position x in this case. For x > xc, we use the

fact that xM < xc to conclude that the ion must be in the region xM < x < xt,M;

the criterion for an open orbit crossing position x is therefore identical to that of a

closed orbit crossing position x, x̄ > x̄m(x). Therefore, the condition for an ion in

an open orbit to be present at position x is x̄ > x̄m,o (x), where

x̄m,o(x) =

{
x̄c for x < xc

x̄m(x) for x > xc.
(70)

Two examples of how the constraint x̄ > x̄m,o (x) arises are shown in Figure 7. This

constraint is valid to lowest order in αΩδtM. For any such x̄, the component vy of the
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Figure 7. Type I and II effective potential curves are shown on the left and

right respectively. The dashed curves correspond to an orbit position x̄ = x̄m,o (x),

which is the minimum value of x̄ above which open orbits crossing the position x

(vertical line) exist. The solid effective potential curves are the ones corresponding

to x̄ > x̄m,o(x). The horizontal lines correspond to U⊥ = χM (x̄), which is the

lowest order perpendicular energy of an ion in an open orbit. The dotted curves

correspond to x̄ < x̄m,o (x): no open orbits crossing position x exist for such values

of x̄ because there are no closed orbits at s > x.

velocity is given by (23). The ion’s total energy has to be larger than the effective

potential maximum, U > χM (x̄), and we can approximate the z component of the

velocity as V‖ (χM (x̄) , U). In order to relate values of vy and vz to lowest order

values of x̄ and U for ions in open orbits, in what follows we will refer extensively to

equations (18) and

U = χM (x̄) +
1

2
v2
z +O

(
αv2

t,i

)
, (71)

where the latter equation is obtained by rearranging the equation vz '
V‖ (χM (x̄) , U).

The velocity component vx lies in the range (61), which is obtained from the

range of values of D for given values of x, x̄, and U . For the evaluation of the

distribution function and density of ions in open orbits, the value of ∆vx is crucial

because at a given x, x̄ and U it gives the small range of values of vx in which the

distribution function is non-zero. The exact value of the maximum and minimum vx
only needs to be known to lowest order. Hence, we can shift Vx+ (x, x̄, U) by a small

amount provided we preserve the same value of ∆vx.
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With this in mind, we proceed to obtain simpler expressions for Vx+ (x, x̄, U) and

∆vx. We need to distinguish two regions: |x−xM| ∼ ρi where χM(x̄)−χ(x, x̄) ∼ v2
t,i,

and |x−xM| ∼ αpρi where χM(x̄)−χ(x, x̄) ∼ αv2
t,i (with p defined in equation (54)).

In the region |x− xM| ∼ αpρi, we have the scalings

∆vx ∼ Vx+ ∼ α1/2vt,i, (72)

∆+ ∼ α2p+1/2v2
t,i . α1+pv2

t,i � ∆M ∼ χM − χ ∼ αv2
t,i (73)

hence the term ∆+ can be neglected in the expressions for Vx+ and for ∆vx, with an

error O(αp+1/2vt,i). This error comes from the O
(
α1+pv2

t,i

)
error in evaluating DX

and DB (equations (53) and (57)), which for type I orbits (p = 1) is larger than

∆+ ∼ α2p+1/2, and for type II orbits (p = 1/2) is as large as ∆+.

In the region |x− xM| ∼ ρi, we have

∆vx ∼ αvt,i � Vx+ ∼ vt,i, (74)

and we can expand the expressions for ∆vx and Vx+ by using

α1+pv2
t,i � ∆M ∼ ∆+ ∼ αv2

t,i � χM(x̄)− χ(x, x̄) ∼ v2
t,i. (75)

When we expand the term ∆+ ∼ αv2
t,i out of the square root in equation (60) for

Vx+, we can neglect it to obtain

Vx+ (x, x̄, U) = Vx (x, x̄, χM (x̄)) +O (αvt,i) . (76)

Note that for type I orbits in the region |x − xM| ∼ αρi the error in Vx+ is, from

the earlier discussion, O(α3/2vt,i), but the error arising in the region |x− xM| ∼ ρi is

O (αvt,i); therefore equation (76) and its associated error are correct in both regions.

For type II orbits, the error in equation (76) has the same size in both regions. When

we expand the term ∆+ out of the square root in equation (61) for ∆vx using the

ordering (75), the terms proportional to ∆+ cancel to first order. Even though we

could expand ∆M out of the square root we don’t because the equation

∆vx =
[√

2 (∆M (x̄, U) + χM (x̄)− χ (x, x̄))

−
√

2 (χM (x̄)− χ (x, x̄))
]

(1 +O (αp)) (77)
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Figure 8. The scaling for ∆vx, and its behaviour as a function of x at fixed values

of x̄ and U , is shown schematically. Note that ∆vx has a “spike” at x = xM.

also holds in the region |x− xM | ∼ αpρi, where ∆+ could be neglected. The error in

equation (77) is the same for both regions, and originates from the O
(
α1+pv2

t,i

)
error

in evaluating DX and DB.

From (77) and the scaling in (56), we obtain the scaling

2παvt,i . ∆vx .
√

2παvt,i, (78)

where ∆vx ∼
√

2παvt,i holds in the neighbourhood of the effective potential

maximum xM and the top bounce point xt,M (although the open orbit density is not

correct near xt,M), while ∆vx ∼ 2παvt,i holds everywhere else, as shown in Figure 8.

The range of velocities in (63) reduces, using equations (76) and (77), to

−Vx (x, x̄, χM (x̄))−∆vx < vx < −Vx (x, x̄, χM) . (79)

Note that a major simplification has occurred: equations (76) and (77), and therefore

the range (79), are now independent of ∆+. The “open orbit integral”

I(x̄) =

∫ xt,M

xM

(s− xM)

Vx (x, x̄, χM (x̄))
ds (80)
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is a function of x̄ only. Using I(x̄) we can re-express ∆M, defined in equation (56),

as ∆M (x̄, U) = 2αΩ2V‖(χM(x̄), U)I(x̄).

Equation (79) gives the range of values for which the distribution function of

open orbits is non-zero, therefore

fop(x, vx, vy, vz) 'Fcl (µgk (x̄, χM (x̄)) , U)

× Π̂ (vx,−Vx (x, x̄, χM)−∆vx,−Vx (x, x̄, χM)) Θ (xt,M − x) , (81)

where we can use (18) and (71) to re-express x̄ and U in terms of x, vy and vz. The

subscript “op” stands for “open”. In (81), we introduced the top hat function

Π̂ (r, l1, l2) =

{
1 if l1 6 r < l2,

0 else.
(82)

The density of ions in open orbits is an integral of the distribution function in velocity

space at fixed x, hence

ni,op (x) =

∫
fop (x,v) d3v. (83)

Changing variables in the integral using equations (18) and (71) we get

ni,op (x) =

∫ ∞

x̄m,o

Ωdx̄

∫ ∞

χM (x̄)

Fcl (µgk(x̄, χM(x̄)), U)√
2 (U − χM (x̄))

∆vxdU [1 +O (αp)] . (84)

From equations (78) and (84), the characteristic size of the open orbit density is

α1/2ne∞ . ni,op(x) . αne∞. (85)

5. Quasineutrality

The previous section provides the equations from which the ion distribution function

and density can be obtained across the magnetic presheath if the electrostatic

potential profile and the distribution function at x → ∞ are known. However,

the electrostatic potential is not known a priori, but has to be determined by the

quasineutrality equation. With the electron density given by (8) and the closed and

open orbit ion densities given by (68) and (84), quasineutrality is

ne∞ exp

(
eφ (x)

Te

)
= Zni (x) ≡ Z (ni,cl(x) + ni,op(x)) . (86)
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In this section, we expand the quasineutrality equation (86) near the magnetic

presheath entrance x → ∞ and then near the Debye sheath entrance x = 0. These

expansions are useful to gain analytical insight into the system, and from a more

practical point of view they make the task of finding the numerical solution easier.

From the expansion near x→∞, we deduce:

• a solvability condition for the distribution function at the magnetic presheath

entrance, with which we choose a realistic boundary condition for the ion

distribution function at x→∞;

• the form of the electrostatic potential near x → ∞, with which we obtain a

boundary condition for our numerically determined electrostatic potential at

large x.

From the expansion near x = 0, we deduce:

• that the self-consistent solution of the system requires the ion distribution

function at x = 0 to marginally satisfy the kinetic Bohm condition, with which

we can check the numerically determined distribution function;

• the self-consistent form of the potential near x = 0, with which we choose a

suitable numerical discretization for the system.

5.1. Expansion of quasineutrality near x→∞

At sufficiently large values of x, the electrostatic potential must be small, such that

φ̂ =
e |φ (x)|
Te

� 1. (87)

In this subsection we also assume that the length scale of changes in the electrostatic

potential is very large at sufficiently large x, such that

ε =
ρiφ
′ (x)

φ (x)
� 1. (88)

Our assumption (88) is not the most general one, as ε can be of order unity, but it

is useful because it is correct for the boundary condition at x→∞ that we choose.

In general,

φ̂ . ε2 . 1. (89)
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Near x → ∞, the open orbit density is higher order in α than the closed orbit

density. Moreover, if the distribution function is exponentially decaying with energy,

like the one we use, the open orbit density near x→∞ is exponentially small because

only very large orbits with very large energies can extend all the way from the wall

x = 0 to points near x → ∞. Using ni,open(x) = 0, the closed orbit density is

obtained by expanding the near-circular ion orbits about circular orbits, as shown in

Appendix A, to obtain

ni,closed (x) =

(
1 +

φ′′(x)

ΩB

)∫ π

−π
dϕ

∫ ∞

0

Ωdµ

{∫ ∞

Ωµ

Fcl(µ, U
′)√

2 (U − µΩ)
dU

−
√

2δU⊥Fcl(µ, µΩ)− δU⊥
∫ ∞

Ωµ

∂Fcl (µ, U) /∂U√
2 (U − µΩ)

dU

+
1

3
(2δU⊥)3/2 ∂Fcl

∂U
(µ, µΩ) +

1

2
δU2
⊥

∫ ∞

Ωµ

∂2Fcl(µ, U)/∂U2

√
2 (U − µΩ)

dU

}

+O
(
φ̂ε3ne∞, φ̂

2ε2ne∞, φ̂
3ne∞

)
, (90)

where

δU⊥ = −Ωφ (x)

B
+

Ωφ′ (x)

B

√
2µ

Ω
cosϕ− 1

2
µ
φ′′ (x)

B

(
1 + 2 cos2 ϕ

)

+O
(
φ̂ε3v2

t,i, φ̂
2ε2v2

t,i

)
. (91)

Note that equations (90) and (91) are derived to lowest order in α� 1. The quantity

δU⊥ is defined such that U⊥ = Ωµ − δU⊥, and therefore captures the difference

between U⊥ and Ωµ as the ion travels into the magnetic presheath. Outside of

the magnetic presheath, at x → ∞, ion orbits are circular and U⊥ = Ωµ (using

φ(∞) = φ′(∞) = φ′′(∞) = 0).

The electron density in (8) is expanded in φ̂� 1 near x→∞,

ne (x) = ne∞ + ne∞
eφ(x)

Te

+
1

2
ne∞

(
eφ(x)

Te

)2

+O
(
φ̂3ne∞

)
. (92)

Substituting (90) and (92) in (86), and using that ni,open (x) = 0, we obtain the



Solution to a collisionless magnetic presheath with kinetic ions 29

quasineutrality equation expanded in φ̂ and ε,

ne∞ + ne∞
eφ(x)

Te

+
1

2
ne∞

(
eφ(x)

Te

)2

= Z

(
1 +

φ′′(x)

ΩB

)∫ π

−π
dϕ

∫ ∞

0

Ωdµ

×
{∫ ∞

Ωµ

Fcl(µ, U)√
2 (U − µΩ)

dU −
√

2δU⊥Fcl(µ, µΩ)− δU⊥
∫ ∞

Ωµ

∂Fcl(µ, U)/∂U√
2 (U − µΩ)

dU

+
1

3
(2δU⊥)3/2 ∂Fcl

∂U
(µ, µΩ) +

1

2
δU2
⊥

∫ ∞

Ωµ

∂2Fcl(µ, U)/∂U2

√
2 (U − µΩ)

dU

}
(93)

+O
(
φ̂ε3ne∞, φ̂

2ε2ne∞, φ̂
3ne∞

)
. (94)

To zeroth order in φ̂, equation (93) gives

Z

∫ π

−π
dϕ

∫ ∞

0

Ωdµ

∫ ∞

Ωµ

Fcl(µ, U)√
2 (U − Ωµ)

dU = ne∞. (95)

This is the quasineutrality equation evaluated exactly at x → ∞, where we have

vz =
√

2 (U − Ωµ). The next order correction to (95) is a term of order φ̂1/2, giving

−Z
∫ π

−π
dϕ

∫ ∞

0

Ωdµ
√

2δU⊥Fcl(µ,Ωµ) = 0. (96)

The distribution function Fcl (µ, U) must be non-negative, so the only way by which

the integral in (96) is zero is if Fcl(µ,Ωµ) = 0 for all possible values of µ. We expect

this for an electron-repelling sheath where no ions come back from the magnetic

presheath, so f∞ (vx, vy, vz) = 0 at vz < 0 and therefore Fcl (µ,Ωµ) = f∞ (vx, vy, 0) =

0.

To next order, φ̂, we collect all terms in (93) which are proportional to φ (x) or

one of its derivatives. Integrating by parts and using Fcl (µ,Ωµ) = 0, we have the

result
∫ ∞

µΩ

∂Fcl(µ, U)/∂U√
2 (U − µΩ)

dU =

∫ ∞

µΩ

Fcl(µ, U)

(2 (U − µΩ))3/2
dU . (97)

With this result, the order φ̂ piece of (93) is, keeping terms up to O
(
φ̂ε2
)

,

φ′′ (x) = k1φ (x) +O
(
φ̂ε3
)

, (98)
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where we define k1, a quantity with dimensions of (1/length)2, as

k1 =
Ω2mi

ZTe

ne∞ − 2πZ
2Te
mi

∫∞
0

Ωdµ
∫∞
µΩ

Fcl(µ,U)dU

(2(U−µΩ))3/2

ne∞ + 2πZ
∫∞

0
Ω2µdµ

∫∞
µΩ

Fcl(µ,U)dU

(2(U−µΩ))3/2

. (99)

From equation (98) and using the boundary condition φ = 0 at x → ∞, we find

φ ∝ exp
(
−
√
k1x
)
. Consequently,

√
|k1|ρi ∼ ε and assumption (88) is true only if

k1, defined in equation (99), is sufficiently small. If this is not the case, we expect

φ ∝ exp (−λx), but the value of λ would have to be determined by carrying out the

more general expansion of the quasineutrality equation in φ̂� 1 with ε ∼ 1.

With the knowledge that equations (98) and (99) are valid in the neighbourhood

of k1 = 0 (which is where k1 changes sign), we can obtain conditions for k1 to be

positive or negative. In order to impose that φ (∞) = 0 we require a non-oscillating

potential profile at x → ∞, which gives k1 > 0 as a solvability condition. The

numerator of k1 determines its sign because the denominator is always positive,

hence we obtain the condition

2πZv2
B

∫ ∞

0

Ωdµ

∫ ∞

µΩ

Fcl(µ, U)dU

(2 (U − µΩ))3/2
6 ne∞, (100)

where the Bohm velocity vB is defined in equation (2). We can use equation (24)

and the equation

2π

∫ ∞

0

Ωdµ

∫ ∞

µΩ

Fcl(µ, U)dU√
2 (U − µΩ)

=

∫
f∞ (v) d3v, (101)

to re-express the solvability condition as

Zv2
B

∫
f∞ (v)

v2
z

d3v 6 ne∞. (102)

The solvability condition (102) generalizes Chodura’s condition for the magnetic

presheath entrance [9] to include the effect of kinetic ions at small α. In Appendix

B, we show that the cold ion limit of our generalized condition recovers the cold ion

limit of Chodura’s original condition to lowest order in α.

It is believed that solvability conditions such as (100) are usually satisfied

marginally [28]. This means that equation (100) is expected to hold in the equality

form, which justifies considering k1 = 0 and hence justifies our initial assumption
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that ε � 1. When k1 = 0, terms of size φ̂3/2 in the expansion of quasineutrality

become important. From considering terms of this order in (93), we obtain

φ′′ (x) = −k3/2 (−φ (x))3/2 , (103)

where k3/2 has dimensions (charge)1/2 / (energy)1/2 (length)2 and is given by

k3/2 =

√
e

Te

(
Ω

vB

)2 2
√

2
3

2π
∫∞

0
Ωv3

B
∂Fcl

∂U
(µ,Ωµ)dµ

ne∞ + 2πZ
∫∞

0
Ω2µdµ

∫∞
Ωµ

Fcl(µ,U)

(2(U−Ωµ))3/2
dU

> 0. (104)

The numerator of (104) is positive because Fcl(µ, U) = 0 for U 6 Ωµ and hence

∂Fcl(µ,Ωµ)/∂U > 0 for all values of µ. Moreover, both terms in the denominator

of (104) are explicitly positive, so the inequality in (104) follows. The case k3/2 = 0

only arises if ∂Fcl(µ,Ωµ)/∂U = 0 for all µ. Note that this condition corresponds

to (1/vz)∂f∞ (vx, vy, 0) /∂vz = 0 for all values of vx and vy, which is a very flat

ion distribution function near vz = 0. One example of such a flat ion distribution

function is a Dirac delta function, which is used to model cold ions in Appendix B.

Equation (103) is solved by multiplying by φ′ (x) then integrating once and using

the boundary condition φ′ (x) = 0 when φ (x) = 0 to get

φ′ (x)2 =
4k3/2

5
(−φ (x))5/2 . (105)

Taking the square root and integrating again, the potential profile is

φ (x) = − 400

k2
3/2

1

(x+ C3/2)4
, (106)

where C3/2 is a constant to be determined numerically. Equation (106) implies that

ε ∼ φ̂1/4 � φ̂. The boundary condition that we use to obtain our numerical results

(see Section 6.1) has k3/2 6= 0, so equation (106) is the form of the electrostatic

potential to which we must match our numerical solution at large x.

If ∂F (µ,Ωµ) /∂U = 0, then k3/2 = 0 and we must go to higher order in φ̂ to

solve for the electrostatic potential at large x. Note that k3/2 = 0 is a case that we

do not numerically study in this paper, but we carry out the following analysis for

completeness. For ∂F (µ,Ωµ) /∂U = 0, we can integrate by parts twice the term

with ∂2F (µ,Ωµ) /∂U2 to get
∫ ∞

Ωµ

∂2Fcl (µ, U) /∂U2

√
2 (U − Ωµ)

dU = 3

∫ ∞

Ωµ

Fcl (µ, U)

(2 (U − Ωµ))5/2
dU . (107)
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Balancing the term of order φ̂ε2 with terms of order φ̂2 in (93), we get

φ′′ (x) = −k2φ (x)2 , (108)

where k2 is given by

k2 =
Ω2e

2v2
BTe

6πZ
∫∞

0
Ωdµ

∫∞
Ωµ

Fcl(µ,U)v4B
(2(U−Ωµ))5/2

dU − ne∞
ne∞ + 2πZ

∫∞
0

Ω2µdµ
∫∞

Ωµ
Fcl(µ,U)

(2(U−Ωµ))3/2
dU

> 0. (109)

Both terms in the denominator of (109) are positive, therefore the inequality on the

right hand side is the result of the numerator being positive, which is demonstrated

in Appendix C. Equation (108) is solved in the same way as equation (103), and the

result is

φ (x) = − 6

k2

1

(x+ C2)2
. (110)

The fact that k2 is positive and k2ρ
2
iTe/e ∼ 1 implies that we do not need to carry

out the expansion of (93) any further, because the order φ̂2 term is guaranteed to be

non-zero if the solvability condition is marginally satisfied. Hence, ε & φ̂1/2 as stated

in equation (89).

5.2. Expansion of quasineutrality near x = 0

Here we expand the quasineutrality equation near the Debye sheath entrance, x = 0.

We define the normalized electrostatic potential relative to x = 0,

δφ̂ =
eδφ

Te

=
e

Te

(φ(x)− φ(0))� 1. (111)

Each term of the quasineutrality equation (86) can be expanded in δφ̂� 1 separately,

order by order. Denoting the electron density at x = 0 as ne0, such that

ne0 = n∞ exp

(
eφ(0)

Te

)
, (112)

the electron density near x = 0 is

ne(x) = ne0 exp

(
eδφ

Te

)
. (113)
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The lowest order of the quasineutrality equation expanded near x = 0 is the

quasineutrality equation at x = 0. Using the result ni,cl(0) = 0 and equation (86),

we have

ne0 = Zni,op(0) =

∫ ∞

x̄m,o(0)

Ωdx̄

∫ ∞

χM(x̄)

Fcl(µgk(x̄, χM), U)√
2 (U − χM(x̄))

∆vx0dU , (114)

where

∆vx0 = ∆vx|x=0 =
√

2 (∆M(x̄, U) + χM(x̄)− χ(0, x̄))−
√

2 (χM(x̄)− χ(0, x̄)).

(115)

Subtracting equation (114) from equation (86), we obtain the perturbed

quasineutrality equation near x = 0,

ne(x)− ne0 = Z (ni,cl(x) + ni,op(x)− ni,op(0)) . (116)

We proceed to obtain the term ni,cl(x) in equation (116) to leading order.

Firstly, we observe that a closed orbit near x = 0 must lie at a position x such

that 0 6 xM 6 x, with χ(x, x̄) ' χM(x̄). Remembering that for a closed orbit

the perpendicular energy lies in the range χ(x, x̄) 6 U⊥ 6 χM(x̄), we can take the

integral over U⊥ in (68) by approximating

Fcl (µgk(x̄, U⊥), U) ' Fcl (µgk(x̄, χM(x̄)), U) (117)

and
√

2 (U − U⊥) '
√

2 (U − χM(x̄)). The integral gives

ni,cl(x) '2

∫ ∞

x̄m(x)

Ω
√

2 (χM(x̄)− χ(x, x̄))dx̄

×
∫ ∞

χM(x̄)

Fcl (µgk (x̄, χM (x̄)) , U)√
2 (U − χM(x̄))

dU . (118)

The contributions to ni,cl(x) of type I and type II closed orbits have a different size.

Introducing the small quantity

δχ = χ(0, x̄)− χ(x, x̄) ' −Ωδφ

B
+ Ω2x̄x, (119)
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where we neglected the term proportional to x2, the closed orbit density of equation

(68) is dominated by type I closed orbits (which have χM(x̄) = χ(0, x̄)), whose leading

order density is given by

ni,cl(x) ' 2

∫ ∞

x̄m,I

Ω
√

2δχdx̄

∫ ∞

χM

Fcl (µgk (x̄, χM (x̄)) , U)√
2 (U − χM(x̄))

dU . (120)

Note that the correction to x̄m(x) ' x̄m(0) = x̄m,I is expected to be proportional to

x, therefore subdominant compared to the term proportional to
√

2δχ. The reason

for neglecting the contribution to the density of type II closed orbits is that the

contribution from ions with xM > 0 is smaller, as shown explicitly in Appendix D.

We now obtain the term ni,op(x) − ni,op(0) to leading order. First, we observe

that ∆vx near x = 0 can be expressed as

∆vx =
√

2 (∆M(x̄, U) + χM(x̄)− χ(0, x̄) + δχ)−
√

2 (χM(x̄)− χ(0, x̄) + δχ). (121)

For small δχ the dominant contribution to ni,op(x)−ni,op(0) comes from type I open

orbits which have χM(x̄) = χ(0, x̄), because the second term in equation (121) is of

order

√
δ̂φ. The minimum value of x̄ for which type I open orbits are present near

x = 0 is approximately x̄m,I, hence

ni,op(x)− ni,op(0) ' −
∫ ∞

x̄m,I

√
2δχΩdx̄

∫ ∞

χM(x̄)

Fcl(µ, U)√
2 (U − χM(x̄))

dU . (122)

From equation (113), we see that there is no term in the expansion of the

electron density that has a size

√
δ̂φ. Hence, the dominant terms in the perturbed

quasineutrality equation (116) for small x are obtained by adding equations (118)

and (122) and setting to zero,

0 = Z

∫ ∞

x̄m,I

√
2δχΩdx̄

∫ ∞

χM(x̄)

Fcl(µ, U)√
2 (U − χM)

dU . (123)

Equation (123) implies that x̄m,I →∞, which from equation (27) implies a divergent

electric field at x = 0, φ′(0)→∞.

The fact that x̄m,I → ∞ means that only type II orbits are present in the

magnetic presheath. Then, we expect ni,cl(x) to be exponentially small as argued in

Appendix D. Therefore, we consider ni,cl(x) ' 0 in equation (116) and focus on the
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perturbed open orbit density ni,op(x)− ni,op(0). When δχ� χM(x̄)−χ(0, x̄) we can

Taylor expand both terms in equation (121) to obtain

∆vx ' ∆vx0 −∆

[
1

vx0

]
δχ+

1

2
∆

[
1

v3
x0

]
δχ2, (124)

where we introduced the positive quantities

∆

[
1

vx0

]
=

1√
2 (χM(x̄)− χ(0, x̄))

− 1√
2 (∆M(x̄, U) + χM(x̄)− χ(0, x̄))

, (125)

and

∆

[
1

v3
x0

]
=

1

(2 (χM(x̄)− χ(0, x̄)))3/2
− 1

(2 (∆M(x̄, U) + χM(x̄)− χ(0, x̄)))3/2
. (126)

With type I orbits absent, the effective potential maximum lies at xM 6= 0, hence

χM(x̄) 6= χ(0, x̄). Taking x̄→∞ corresponds to xM → 0, therefore

lim
x̄→∞

χM(x̄) = χ(0, x̄) ' 1

2
Ω2x̄2. (127)

If the distribution function Fcl decays exponentially at large energies, it is

exponentially small in the region of the integral where χM(x̄)− χ(0, x̄) ∼ δχ (which

corresponds to x̄ being large). This is because, according to equation (127), U⊥ '
χM(x̄) is very large in that region. As a consequence, we expect an exponentially

small number of open orbits with small values of vx =
√

2 (D + χM(x̄)− χ(x, x̄)).

Moreover, δχ � χM(x̄) − χ(0, x̄) for values of x̄ where the distribution function is

not exponentially small. Hence we can expand the open orbit density (84) using

equation (124) for the expansion of ∆vx, obtaining

ni,op(x)− ni,op(0) '−
∫ ∞

x̄m,o(0)

δχΩdx̄

∫ ∞

χM(x̄)

Fcl(µgk(x̄, χM), U)√
2 (U − χM(x̄))

∆

[
1

vx0

]
dU

+
1

2

∫ ∞

x̄m,o(0)

δχ2Ωdx̄

∫ ∞

χM(x̄)

Fcl(µgk(x̄, χM), U)√
2 (U − χM(x̄))

∆

[
1

v3
x0

]
dU .

(128)

Expanding the electron density (113) we get

ne(x)− ne0 '
eδφ

Te

+
1

2

(
eδφ

Te

)2

. (129)
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The perturbed quasineutrality equation (116), to order δφ̂, then implies that

ne0
eδφ

Te

=
Ωδφ

B
Z

∫ ∞

x̄m,o(0)

Ωdx̄

∫ ∞

χM(x̄)

Fcl(µ, U)√
2 (U − χM)

∆

[
1

vx

]
dU

−xΩZ

∫ ∞

x̄m,o(0)

Ω2x̄dx̄

∫ ∞

χM(x̄)

Fcl(µ, U)√
2 (U − χM)

∆

[
1

vx

]
dU . (130)

This can be rearranged to obtain

δφ = φ(x)− φ(0) = q1x
−1, (131)

where q1 has dimensions [charge× length/energy] and is given by

q1 =
e

ΩTe

Zv2
B

∫∞
x̄m,o(0)

Ωdx̄
∫∞
χM(x̄)

Fcl(µ,U)√
2(U−χM)

∆
[

1
vx

]
dU − ne0

Z
∫∞
x̄m,o(0)

Ω2x̄dx̄
∫∞
χM(x̄)

Fcl(µ,U)√
2(U−χM)

∆
[

1
vx

]
dU

. (132)

Equation (131) implies that φ′(0) = q−1
1 . The magnetic presheath is driven towards

q1 = 0 because φ′(0) → ∞ is required from equation (123) and the discussion

following it. Hence, the numerator of q1 must be zero,

Zv2
B

∫ ∞

x̄m,o(0)

Ωdx̄

∫ ∞

χM(x̄)

Fcl(µgk(x̄, χM), U)√
2 (U − χM)

∆

[
1

vx0

]
dU = ne0. (133)

We proceed to show that equation (133) is equivalent to the marginal form of

the kinetic Bohm condition [28,31,32],

Zv2
B

∫
f0(v)

v2
x

d3v = ne0. (134)

From (81), the distribution function at x = 0 is

f0(v) = fopen(0,v)

' Fcl (µgk (x̄, χM (x̄)) , U) Π̂ (vx,−Vx (0, x̄, χM)−∆vx0,−Vx (0, x̄, χM)) . (135)

Using the definition (135) and the change of variables (x̄, U) → (vy, vz) (equations
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(18) and (71)) at x = 0, we can re-express the integral in the numerator to obtain

∫ ∞

x̄m,o(0)

Ωdx̄

∫ ∞

χM(x̄)

Fcl (µgk (x̄, χM (x̄)) , U)√
2 (U − χM(x̄))

∆

[
1

vx0

]
dU

=

∫ ∞

x̄m,o(0)

Ωdx̄

∫ ∞

χM(x̄)

Fcl (µgk (x̄, χM (x̄)) , U)√
2 (U − χM(x̄))

dU

×
∫ ∞

−∞

1

v2
x

Π̂ (vx,−Vx (0, x̄, χM)−∆vx0,−Vx (0, x̄, χM)) dvx

=

∫
f0(v)

v2
x

d3v. (136)

This shows that equations (133) and (134) are equivalent. Hence, our system is

driven to marginally satisfying the kinetic Bohm condition (134).

Because q1 = 0, we must to consider terms of size ∼ δφ̂2 in equation (116) in

order to balance the left hand side of equation (131). Using equations (128) and

(129), we obtain

1

2
ne0

(
eδφ

Te

)2

= Zx

∫ ∞

x̄m,o

Ω3x̄dx̄

∫ ∞

χM(x̄)

Fcl(µ, U)√
2 (U − χM)

∆

[
1

vx

]
dU (137)

+ Zδφ2

∫ ∞

x̄m,o

Ωdx̄

∫ ∞

χM(x̄)

Fcl(µ, U)√
2 (U − χM)

∆

[
1

v3
x

]
dU . (138)

This leads to

δφ = φ(x)− φ(0) = q
−1/2
2 x1/2, (139)

where

q2 =
1

2

(
e

Te

)2 3c4
s

∫
Ωdx̄

∫ Fcl(µ,U)√
2(U−χM(x̄))

dU∆
[

1
v3x

]
− ne0

Z

Z
∫∞
x̄m,I

Ω2x̄dx̄
∫∞
χM(x̄)

Fcl(µ,U)√
2(U−χM)

∆
[

1
vx

]
dU

> 0 (140)

has dimensions
[
length× (charge/energy)2]. In Appendix C we show that q2 is

always positive and never small. Therefore, equation (139) is the scaling of the

electrostatic potential we expect to observe in our numerical results.
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6. Numerical solution

In this section, we present the numerical method we used to solve (86) and our results.

We first introduce, in Section 6.1, the ion distribution function that we assume as a

boundary condition at x→∞. We then explain, in Section 6.2, the iteration scheme

that was used to find the self-consistent solution of the potential φ(x). In Section

6.3, we present the numerical results.

6.1. Incoming ion distribution function
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∞

/
v B
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Figure 9. The distribution function in (141) is shown as a function of the

parallel velocity vz only, f∞z (vz) =
∫ ∫

f∞ (v) dvxdvy. This distribution function

marginally satisfies (100), hence
∫
dvzf∞z (vz) /v

2
z = n∞/v2B. Its first moment is

uz∞ = (1/n∞)
∫
dvzvzf∞z (vz) ' 1.60vB.

The ordering (1) has allowed us to assume that the collisional layer only affects

boundary conditions at x→∞. A solution of the collisional layer would be required

to obtain the correct form of f∞ (v). Alternatively, a drift-kinetic or gyrokinetic

code [33] of the scrape-off layer could be used to obtain such a distribution function.

Here, we assume the following form for the lowest order ion distribution function at

the magnetic presheath entrance,

f∞ (v) =
4

π3/2
n∞

(
mi

2Ti

)5/2

v2
z exp

(
−mi|v|2

2Ti

)
. (141)
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Figure 10. The distribution function entering the magnetic presheath is shown

as a function of the co-ordinates (vx, vy, vz). We define f∞x(vx) =
∫
f∞(v)dvydvz

and f∞yz(vy, vz) =
∫
f∞(v)dvx. For comparison with the distribution function

f0 (v) leaving the magnetic presheath, the box delimited by the white lines and

the top right corner in the top diagram has the same size as Figure 18, and the

region to the left of the dashed line in the bottom diagram is the domain of Figure

17.

Changing to variables µ and U , the distribution function (141) is

Fcl (µ, U) =
8

π3/2
n∞

(
mi

2Ti

)5/2

(U − Ωµ) exp

(
−miU

Ti

)
, (142)

which is constant throughout the magnetic presheath to lowest order in α. This form

was used in other studies, for example [22], and it is plotted in Figures 9 and 10.

We assume a singly charged ion species, Z = 1, hence the ion and electron densities

at x → ∞ are equal and denoted n∞. We assume Te = Ti = T , so the ion thermal
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velocity is vt,i =
√

2T/mi and the sound speed is vB =
√
T/mi = vt,i/

√
2. With

these assumptions, the distribution function (141) marginally satisfies the solvability

condition (100), and the coefficient k3/2 can be computed from (104), obtaining

√
Te

e

1

ρ2
i

k3/2 =
8

3
√
π
' 1.50. (143)

The average ion velocity in the z direction at the magnetic presheath entrance is

uz∞ =
1

n∞

∫
f∞ (v) vzd

3v = 2

√
2

π
vB ' 1.60vB. (144)

6.2. Numerical method

We discretize the potential on a grid xη (labelled by the index η)

xη
ρi

=

{
(0.05η)2 for 0 6 η < 10,

0.25 + 0.1 (η − 10) for 10 6 η < η2 = 129,
(145)

We numerically calculate the ion density profile ni (xη) in the region 0 6 xη 6 xη1 =

6.15ρi (η1 = 69). The domain in x is larger than [0, xη1 ] because the potential

profile in the region xη1 < x 6 xη2 = 12.15ρi is necessary to correctly evaluate the

ion density at xη1 and in its neighbourhood. The electron density profile ne (xη)

is evaluated by inserting φ (xη) into equation (8). We iterate over electrostatic

potential functions φν (xη), where ν is an index labelling the iteration number. The

problem of solving (86) is equivalent to finding, after N iterations, a φN (xη) for

which ne,N (xη) ' Zni,N (xη) in the region 0 6 x 6 xη1 .

Near x = 0, the grid (145) that we use to discretize all functions of x has

evenly spaced values of
√
x/ρi ranging from 0 to 0.5 in intervals of 0.05. The

reason for this is that the self-consistent solution of the electrostatic potential is

expected to be proportional to
√
x near x = 0, as in equation (139). This behaviour

of the electrostatic potential is captured by our grid as shown in Figure 11. For√
x/ρi > 0.5, corresponding to x/ρi > 0.25, our grid has evenly spaced values of

x/ρi, ranging from 0.25 to 12.15 in intervals of 0.1.

The density integrals in equations (68) and (84) are evaluated numerically at

every point xη by employing the trapezoidal rule. In order to evaluate those integrals,
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Figure 11. An example solution for the electrostatic potential profile (for

α = 0.05) is plotted on the grid of equation (145). Initially φ increases linearly

with
√
x, which justifies our choice of grid.

we first evaluate the integrands. We introduce a grid of positions x̄γ (labelled with

the index γ),

x̄γ
ρi

= 0.01γ for 0 6 γ < 1200. (146)

Then, we evaluate the function χ (xη, x̄γ) at all possible values of xη and x̄γ. We

find the location of the effective potential maximum xM corresponding to the index

ηM (γ) that satisfies either of the two conditions

χ
(
xηM(γ), x̄γ

)
> χ

(
xηM(γ)+1, x̄γ

)
for ηM (γ) = 0 (type I),

χ
(
xηM(γ)−1, x̄γ

)
< χ

(
xηM(γ), x̄γ

)
> χ

(
xηM(γ)+1, x̄γ

)
for ηM (γ) > 1 (type II), (147)

and the location of the effective potential minimum xm corresponding to the index

ηm (γ) that satisfies

χ
(
xηm(γ)−1, x̄γ

)
> χ

(
xηm(γ), x̄γ

)
< χ

(
xηm(γ)+1, x̄γ

)
for ηm (γ) > 1. (148)

At every value of the orbit parameter x̄γ, we obtain a grid of possible values of

perpendicular energy U⊥,γκ, indexed with γ and κ,

U⊥,γκ = χ
(
xκ+ηM(γ), x̄γ

)
for 0 6 κ 6 ηm (γ)− ηM (γ) . (149)
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Figure 12. The values of U⊥,γκ corresponding to different values of κ are

shown with horizontal lines on top of the effective potential curve χ (xη, x̄γ), for a

particular value of γ. Here, κ ranges from κ = 0 (top line) to κ = 12 (bottom line).

This grid is shown in Figure 12. For all possible x̄γ and U⊥,γκ, we evaluate the

adiabatic invariant by performing the integral (39) using the trapezoidal rule, to

obtain the function µgk (x̄γ, U⊥,γκ). Similarly, for all possible values of x̄γ we evaluate

the integral I (x̄γ) in (80) using the trapezoidal rule. For all values of γ and κ, the

total energy is labelled by the index ι,

2Uγκι
v2

t,i

=
2U⊥,γκ
v2

t,i

+ (0.2ι)2 for 0 6 ι < ιmax, (150)

where ιmax is such that 2U/v2
t,i < 15.0 and 7.5v2

t,i is a cutoff energy above which

the distribution function is essentially zero. The distribution function Fcl(µ, U)

of equation (142) is defined on a square grid of values of 2µΩ/v2
t,i and 2U/v2

t,i

which lie between 0 and 15.0 in intervals of 0.05, and bilinearly interpolated at

every integration point. The integrals over U and over U⊥ in equations (68) and

(84) are, for numerical convenience, evaluated over vz =
√

2 (Uγκι − U⊥,γκ) and

vx =
√

2 (U⊥,γκ − χ(xη, x̄γ)) respectively (for this reason Uγκι is defined such that

linear increments in ι correspond to linear increments in vz). Where necessary, the

values of the integrands and of the integration limits of equations (39), (80), (68)

and (84) are found by linear interpolation.
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The iteration scheme we used hinges on imposing

ne,ν+1 (xη) = wZni,ν (xη) + (1− w)ne,ν (xη) (151)

at every (ν + 1)th iteration. Here, w is a weight whose value lies in the range

0 < w 6 1. From (151), φν+1 (xη) is obtained by inverting the Boltzmann relation for

ne,ν+1 (xη), and the new guess for the potential profile is thus obtained for 0 6 η 6 η1.

For values of η in the interval η1 + 1 6 η 6 η2, the electrostatic potential φν+1 (xη)

is completed by matching to the appropriate functional form for φ (x) near x→∞.

With our choice of distribution function marginally satisfying the Chodura condition

(100), k1 = 0 (numerically k1 ≈ 0) and the non-zero value of k3/2 is calculated

numerically and coincides (to within a numerical error of 2%) with equation (143).

The value of C3/2 is then obtained by imposing φν+1 (xη1) = −400k−2
3/2(xη1 + C3/2)−4

to get

C3/2 =

√
20

k3/2

[−φν+1 (xη1)]
−1/4 − xη1 . (152)

The new guess for the electrostatic potential is then

φν+1 (xη) =





Te
e

ln
(
wZniν(xη)

ne∞
+ (1− w) neν(xη)

ne∞

)
for 0 6 η 6 η1,

− 400
k2
3/2

(xη+C3/2)4
for η1 + 1 6 η 6 η2.

(153)

This can be used to evaluate ni,ν+1(xη) in the region 0 6 η 6 η1 and continue the

iteration. The first potential guess we use is a flat potential profile (φ0(xη) = 0 for

all η). After N iterations, a numerical solution φN (xη) which satisfies ne,N(xη) '
ni,N(xη) for all η is found. The deviation of φν (xη) from the exact solution (which

satisfies ni (xη) = ne (xη)) is measured by calculating the quantity

ñν (xη) = 1− ni,ν (xη)

ne,ν (xη)
. (154)

Convergence to an acceptable solution is given the criterion that the root mean

square value of ñν (xη) be less than 0.007,

[
η1∑

η=0

1

η1 + 1
ñ2
ν (xη)

]1/2

< 0.007. (155)
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Figure 13. An example of an effective potential χ (xη, x̄γ) in which our algorithm

for generating the grid U⊥,γκ fails, because it does not take into account the

possibility of finding multiple effective potential minima (marked with circles) and

maxima (marked with squares) for a given γ.

It turns out that the method we use can give a non-smooth numerical second

derivative of the potential φν (xη). The numerical noise in the second derivative is

problematic because the algorithm fails to take into account the possibility of more

than one maximum or minimum of the effective potential existing for some value of x̄.

If at some point during the iteration the function φν (xη) is such that, for some value

of γ, the function χ(xγ, x̄γ) has more than one index ηM(γ) that satisfies (147) (and

more than one index ηm(γ) that satisfies (148)), a more sophisticated analysis than

the one we presented is necessary to obtain the grid of values of U⊥. The appearance

of multiple maxima and minima, shown in Figure 13, can be due to the numerical

second derivative of φ (xη) having pronounced oscillations, even when φ (xη) looks

smooth to the eye. To avoid the appearance of multiple maxima and minima, in

this work we perform a smoothing operation on the second derivative of φν (x) (with

respect to
√
x) before iteration number ν+1, for a certain number of iterations until

the densities obtained using φν(x) are close to satisfying criterion (155). After that,

we carry out the last few iterations without smoothing. In our iterations, w = 0.6

when the smoothing operation is performed, while w = 0.2 when it is not.

From here on, we omit all indices associated with quantities and functions
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evaluated numerically.

6.3. Results and discussion
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Figure 14. The electrostatic potential profile is plotted for a range of angles α,

which are indicated next to the corresponding curve. Near x = 0, φ(x)−φ(0) ∝ √x.

The normalized electrostatic potential eφ(x)/Te is shown in Figure 14 for a

range of angles α. A general property of the potential curves is that they rise very

steeply near x = 0, with the scaling φ(x) − φ(0) ∝ √x in that region (as can be

seen explicitly in Figure 11). We have shown that this behaviour of φ(x) is expected,

and connected with the marginal kinetic Bohm condition (134) being satisfied. The

value of q2 that we numerically calculate, using equation (140), from the distribution

function at x = 0 is consistent with the behaviour of the electrostatic potential near

x = 0 given in equation (139).

The ion density profiles for α = 0.02 and α = 0.1 are shown in Figure 15. The

open orbit density can be seen to initially increase and then quickly decrease with

distance from the wall, as expected if the open orbits are mostly type II. The reason

for this non-monotonic behaviour is that ions spend more time in the region near

the effective potential maximum xM > 0 where they travel more slowly. This initial

“bump” in density is intimately connected with the “spike” in the typical value ∆vx
associated with type II orbits (see Figure 8). The open orbit density is clearly the
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Figure 15. The ion density for α = 0.02 and α = 0.1 is shown with the

contributions from the closed ion orbits and the open orbits clearly marked. The

open orbits clearly dominate in a very small region near x = 0, then there

is an overlap region in which the open orbit contribution and the closed orbit

contribution have a similar size, while at larger values of x the closed orbit density

dominates.

dominant contribution to the density in the neighbourhood of x = 0, while for large

x approximately closed orbits are the largest contribution to the density.

The flow velocity of ions across the magnetic presheath is another way to

compare our results with results of fluid models. Here we calculate the flow by

using the ion continuity equation. The ion flux towards the wall across the magnetic

presheath (which has no ion sources in our model) must be constant for steady state

particle conservation,

∂

∂x
(ni (x)ux (x)) = 0, (156)

where ux (x) is the average velocity of ions in the x direction. At the magnetic

presheath entrance x → ∞, the flow towards the wall is obtained from the average

over the distribution function of the gyroaveraged motion, given by ˙̄x, of ions towards

the wall (note that, due to distortion of the orbits, this does not remain true across

the magnetic presheath). Using equations (24) and (35), the flow in the z direction,

uz∞, is related to the flow in the x direction, ux∞, via ux∞ = −αuz∞. This is

equivalent to the boundary condition of flow being parallel to the magnetic field at

x → ∞ [10]. The flow uz∞ is obtained as a moment of the incoming distribution
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Figure 16. The average ion velocity in the direction normal to the wall is shown

at various angles α (labelled next to the corresponding curve). The flow velocity

obtained via the integral (159) is shown with a black circle at x = 0, which to

lowest order coincides with the value we calculate from continuity. The usual cold

ion Bohm limit is indicated with the line |ux|/vB = 1. The ion flow lies above the

cold ion Bohm limit at x = 0 because the ions are “warm” (Ti 6= 0). However, at

small angles α . 0.05, the ion flow at x = 0 approaches the cold ion Bohm limit.

function

uz∞ =
1

n∞

∫
f∞(v)vzd

3v. (157)

The flux of ions towards the wall is conserved and therefore given by ni (x)ux (x) =

ni∞ux,∞ = −αni∞uz∞. The average lowest order ion flow velocity towards the wall

at a general position x is therefore

ux (x) ' −αn∞uz∞
ni (x)

. (158)

The function (158) evaluated at x = 0 can be checked, for consistency, against the

appropriate integral of the distribution function (135),

ux0 =
1

ni (0)

∫
f0x (vx) vxdvx. (159)
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In Figure 16, we plot the average ion velocity profile ux (x), obtained using

equation (158), for a range of angles α. The magnetic presheath acceleration turns

the ion flow from being (super)sonic in the direction parallel to the magnetic field to

being (super)sonic in the x direction normal to the wall. At x = 0, the flow velocity

is calculated in an alternative way, by taking the integral of the distribution function

as in equation (159). The value thus obtained is marked on the curves for each value

of α, and it is consistent with the value obtained by using equation (158).
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Figure 17. The distribution function f0x (vx) =
∫
f0 (vx, vy, vz) dvydvz for a range

of angles α, marked next to the corresponding curve.

By asymptotic matching, (135) is the distribution function entering the Debye

sheath. In the Debye sheath, electrostatic forces normal to the wall dominate over

magnetic forces, hence vx is the only velocity component that changes significantly

[28]. Therefore, knowledge of f0x (vx) =
∫ ∫

f0 (v) dvydvz allows to solve for the

electrostatic potential in the Debye sheath. We obtain the function f0x(vx) by

integrating f0 (vx, vy, vz) in vy and vz,

f0x (vx) =

∫
dvy

∫
dvzf0 (vx, vy, vz)

'
∫ ∞

x̄m,o

Ωdx̄

∫ ∞

χM(x̄)

Fcl (µgk (x̄, χM (x̄)) , U)

V‖ (χM (x̄) , U)

× Π̂ (vx,−Vx (0, x̄, χM)−∆vx,−Vx (0, x̄, χM)) dU . (160)
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Figure 18. The distribution function f0yz (vy, vz) =
∫
f0 (vx, vy, vz) dvx for a

range of angles α, marked on each panel.

The distribution function (135) integrated in vx is given by

f0yz (vy, vz) =

∫
f0 (vx, vy, vz) dvx ' Fcl (µgk (x̄, χM (x̄)) , U) ∆vx. (161)

where (18) and (71) can be used to re-express x̄ and U in terms of vy and vz.

The distribution f0x (vx) is shown in Figure 17 for a range of angles α. A

general feature of this function is that it is very close to zero near vx = 0. This

is expected from the discussion in Section 5.2, where we concluded that there is an

exponentially small number of ions with small values of vx if the distribution function

Fcl exponentially decays at large energy U . Another pronounced feature of Figure 17

is that the distribution function becomes narrower with decreasing α. For the cases

α = 0.01 and α = 0.02, the distribution function is thin, approximately symmetric

and centred at the sonic speed vB. For all angles α, the marginal form of the kinetic

Bohm condition (134) is found to be satisfied, as we predicted in Section 5.2, with

an error of . 2%. The distribution function being thin is connected with the fact

that it is centred at the sonic speed. If the ions entering the Debye sheath have a

narrow velocity distribution, this can be approximated by a Dirac delta function,
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f0x (vx) ' δDirac (vx − ux0). Substituting this approximation into (134), we obtain

the “fluid” marginal Bohm condition ux0 = vB.

The broadening of the distribution function f0x (vx) at larger values of α is

due to typical values of ∆vx, given in equation (61), becoming larger. The scaling

∆vx ∼
√

2παvt,i gives ∆vx ∼ vt,i for α ∼ 0.1. Our expansion relies on ∆vx being

small, so one might question the validity of our results when ∆vx ∼ vt,i. While it

is true that the accuracy of our expansion may to some extent be compromised at

such large values of ∆vx, the broadening of the distribution function is expected to

be physical.

In Figure 18 we show a contour plot of f0yz (vy, vz), defined in equation (161).

Comparing with the distribution function at the magnetic presheath entrance (shown

in Figure 10), we see that the distribution function at x = 0 is narrower (it occupies

a smaller area in the vy−vz plane of phase space) and that it has shifted to larger vz
and to very large and positive vy. The net motion of the ions in the y direction can

be explained by the fact that they acquire very large E×B velocities in the magnetic

presheath (see Figure 5). From Figures 17 and 18, we infer that ions entering the

Debye sheath travel with a typical speed of ∼ 3vB, making an angle of 15− 30◦ with

the plane parallel to the wall. There are many more ions that reach the Debye sheath

travelling at angles above 30◦ when α & 0.05. The ion speed and the angle that the

ion trajectory makes to the wall are expected to increase in the Debye sheath as the

electric field accelerates the ion in the x-direction.

The electrostatic potential drop across the magnetic presheath is shown in Figure

19. At small angles, eφ(0)/T converges to the function

h (α) = ln

(
αuz∞
vB

)
, (162)

which is depicted using a dashed line in Figure 19. The reason is the following.

At x = 0, the flow into the wall is dominated by open orbits. The ion density is

given, via quasineutrality, by the electron density, therefore the flux through x = 0 is

n∞ exp (eφ (0) /T ) |ux0|. Equating this to the flux through x→∞, equal to αn∞uz∞,

and rearranging, we obtain an expression for the potential drop in terms of the ion

flow into and out of the magnetic presheath,

eφ (0)

T
= ln

(
αuz∞
|ux0|

)
. (163)
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Figure 19. The total electrostatic potential drop across the magnetic presheath

at a range of angles α is shown with squares. The dashed line represents the

potential drop expected if the ions entering the Debye sheath are cold and the

Bohm condition is marginally satisfied, h(α) = ln (αuz∞/vB). For α . 0.05, our

results converge to the dashed line.

Moreover, we previously found by looking at the distribution function in Figure

17 that for α . 0.05 the cold ion Bohm condition is almost marginally satisfied,

|ux0| ' vB. Then, the potential drop across the magnetic presheath can be predicted

using equation (163) with ux0 = vB, which is equation (162), therefore the potential

drop converges to the dashed line in Figure 19.

7. Conclusion

We solved a collisionless and quasineutral magnetic presheath of characteristic

thickness ρi by expanding the ion trajectories for small α and obtaining the ion

distribution function. The contribution to the ion density due to ions in open orbits

was shown to be crucial and calculated. The quasineutrality equation (86), with the

closed and open orbit pieces of the ion density given by equations (68) and (84),

was solved numerically for a number of angles α with the ion distribution function

(141). The method of solution is valid for any distribution function at the magnetic

presheath entrance, provided it marginally satisfies the solvability condition (100)
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that we derived by expanding the quasineutrality equation at the magnetic presheath

entrance. This condition is the generalization of Chodura’s condition, first derived

in reference [9], to include the effect of kinetic ions.

Our numerical results for electrostatic potential, ion density and flow are

qualitatively consistent with the picture of the magnetic presheath that emerges using

fluid equations [9]. We find a decrease in density as the ions approach the wall (Figure

15), and a corresponding increase in the ion fluid velocity towards the wall (Figure

16). The fluid velocity ux is equal to or exceeds the Bohm limit vB at the entrance of

the Debye sheath (x = 0), as expected. In addition, our kinetic treatment provides

the tools to explain certain details of the potential and flow profiles by observing

how the ion distribution function has changed across the magnetic presheath. For

example, we numerically observe a scaling φ (x)−φ (0) ∝ √x near x = 0 (see Figures

11 and 14) and find that the distribution of ion velocities at x = 0 marginally satisfies

the kinetic Bohm condition. We demonstrate that these two features of the numerical

results are necessary for a self-consistent solution of the system, and that they are

analytically connected (Section 5.2). Moreover, we observe the distribution f0x(vx)

of the component of the velocity normal to the wall (Figure 17) to be substantially

narrower at smaller values of α. As a consequence, for small α the “fluid” velocity

tends to the Bohm limit at the Debye sheath entrance (as observed in Figure 16),

which can be used to predict the potential drop across the magnetic presheath using

equation (162). This is confirmed by the potential drop converging to the dashed

line, given by equation (162), for α . 0.05 ' 3◦ in Figure 19.

By providing the equations and a numerical procedure to obtain the velocity

distribution of ions entering the Debye sheath after travelling through the magnetic

presheath, this work is a step towards advancing our knowledge of how energy is

deposited by ions onto divertor targets in the fusion-relevant regime α � 1. The

Debye sheath equations [28] can be solved using our magnetic presheath results to

obtain the velocity distribution of ions reaching the target. Knowledge of how damage

to the target material depends on the projectile velocity and angle of incidence [34]

could, together with the tools provided here, help to quantitatively predict the

damage made by ions to divertor targets of a fusion device. An important general

conclusion that we can make is that there are substantially fewer ions reaching the

Debye sheath with a large component of the velocity normal to the wall when α is

small.
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Appendix A. Drift-kinetic expansion of the ion density near x→∞

Here we derive equation (90) in the following steps. First, in Appendix A.1 we expand

the adiabatic invariant as a function of x̄ and U⊥ for small electrostatic potential,

eφ(x)/Te � 1, and small gradients of the electrostatic potential, ε = ρiφ
′(x)/φ(x)�

1. Then, in Appendix A.2 we expand equation (31) to obtain an expression for x̄ as

a function of ϕ, x and µ. We also obtain an expression for U⊥ as a function of ϕ,

x and µ. Then, by making the change of variables (x, x̄, U⊥, U) → (x, ϕ, µ, U), we

obtain an expression for the ion density in Appendix A.3. Finally, this is carefully

expanded in Appendix A.4. The results of this appendix are valid to lowest order in

α.

Appendix A.1. Adiabatic invariant expansion

We proceed to derive an expression for µ as a function of x̄ and U⊥ by expanding

equation (39) near x → ∞, where eφ(x)/Te � 1. In addition, we assume that the

length scale of changes in the electrostatic potential is much larger than the ion

gyroradius ρi, defining the small parameter ε of equation (87). We first expand the

expression inside the square root of equation (21) to second order in ε, obtaining

vx = σxVx (x, x̄, U⊥) = σx
√

2

[
U⊥ −

1

2
Ω2 (x− x̄)2 − Ω

φ (x̄)

B

−Ω
φ′ (x̄)

B
(x− x̄)− Ω

φ′′ (x̄)

2B
(x− x̄)2 +O

(
ε3φ̂v2

t,i

)]1/2

. (A.1)
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Completing the square in the square root and dropping small terms gives

Vx (x, x̄, U⊥) =AΩ

√
1 +

φ′′ (x̄)

ΩB

×
√

1− 1

A2

[
x− x̄+

φ′ (x̄)

ΩB

]2

+O
(
φ̂ε3, φ̂2ε2

)
, (A.2)

where we have defined the orbit amplitude

A =
1

Ω

√
2U⊥ −

2Ωφ (x̄)

B
+O

(
φ̂ε3ρi, φ̂

2ε2ρi

)
. (A.3)

The bounce points of the closed orbit are obtained by solving Vx (x, x̄, U⊥) = 0,

leading to

xb,t = x̄− φ′ (x̄)

ΩB
± A, (A.4)

where the − and + signs correspond to the “bottom” (xb) and “top” (xt) bounce

points respectively. By substituting (A.2) into equation (30) and using (A.4) for the

integration limits, we have

π

Ω
=

∫ xt

xb


Ω

√
1 +

φ′′ (x̄)

ΩB
A

√
1− 1

A2

[
x− x̄+

φ′ (x̄)

ΩB

]2


−1

dx

+O

(
φ̂ε3

1

Ω
, φ̂2ε2

1

Ω

)
, (A.5)

which leads to the modified gyrofrequency

Ω = Ω

√
1 +

φ′′ (x̄)

ΩB
+O

(
φ̂ε3Ω, φ̂2ε2Ω

)
= Ω

(
1 +

φ′′ (x̄)

2ΩB
+O

(
φ̂ε3, φ̂2ε2

))
. (A.6)

We exploit (A.6) to simplify equation (A.2),

Vx (x, x̄, U⊥) = ΩA

√
1− 1

A2

[
x− x̄+

φ′ (x̄)

ΩB

]2

+O
(
φ̂ε3, φ̂2ε2

)
. (A.7)

By inserting (A.7) into expression (39) for the adiabatic invariant we have

µ =
1

π

∫ xt

xb

ΩA

√
1− 1

A2

[
x− x̄+

φ′ (x̄)

ΩB

]2

dx+O

(
φ̂ε3

v2
t,i

Ω
, φ̂2ε2

v2
t,i

Ω

)
, (A.8)
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which evaluates to

µ =
1

2
ΩA2 +O

(
φ̂ε3ρivt,i, φ̂

2ε2ρivt,i

)

=
1

Ω

(
U⊥ −

Zeφ (x̄)

mi

)
+O

(
φ̂ε3ρivt,i, φ̂

2ε2ρivt,i

)
. (A.9)

Rearranging equation (A.9) and using (A.6), we obtain

U⊥ = Ωµ+
Ωφ (x̄)

B
+O

(
φ̂ε3

v2
t,i

Ω
, φ̂2ε2

v2
t,i

Ω

)

= Ωµ+
Ωφ (x̄)

B
+

1

2
µ
φ′′ (x̄)

B
+O

(
φ̂ε3

v2
t,i

Ω
, φ̂2ε2

v2
t,i

Ω

)
. (A.10)

Note that we require U⊥ as a function of µ, ϕ and x. To obtain it, we need an

equation for x̄ as a function of µ, ϕ and x, which we derive in the next subsection.

Appendix A.2. Gyrophase expansion

We obtain an equation in terms of the gyrophase ϕ by inserting (A.7) into (31) and

using the top bounce point in (A.4) as the lower integration limit,

ϕ = σx

∫ x

xt


A

√
1− 1

A2

[
x′ − x̄+

φ′ (x̄)

ΩB

]2


−1

dx′ +O
(
φ̂ε3, φ̂2ε2

)
. (A.11)

Note that ϕ > 0 when σx = −1. Using equation (A.11) and A =
√

2µ/Ω (from

equation (A.9)) we obtain the relation

x− x̄+
φ′ (x̄)

ΩB
=

√
2µ

Ω
cosϕ+O

(
φ̂ε3ρi, φ̂

2ε2ρi

)
. (A.12)

Then, we expand equation (A.12) around the lowest order x̄ = x−
√

2µ/Ω cosϕ to

obtain

x̄ = x−
(

1 +
Ωφ′′(x)

2B

)√
2µ

Ω
cosϕ+

φ′(x)

ΩB
+O

(
φ̂ε3ρi, φ̂

2ε2ρi

)
. (A.13)

Similarly, we expand equation (A.10) around x̄ = x−
√

2µ/Ω cosϕ to obtain

U⊥ = Ωµ+
Ωφ (x)

B
− Ωφ′ (x)

B

√
2µ

Ω
cosϕ+

1

2
µ
φ′′ (x)

B

(
1 + 2 cos2 ϕ

)

+O
(
φ̂ε3v2

t,i, φ̂
2ε2v2

t,i

)
. (A.14)
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00

Figure A1. The integration domain in (x̄, U⊥) of equation (A.15) consists of both

shaded regions on the left hand side drawing. When we exchange the integration

order, the integration limits (bold arrows) are picked such that the integration

domain coincides in the dark grey region but not in the light grey one. The light

grey region satisfies U⊥ > χM(x/2) = Ω2x2/8 � v2t,i near x → ∞, and at such

large energies we expect the distribution function to be exponentially small. Thus,

the contribution to the integral from this region of phase space is negligible and

the limits of integration of equation (A.17) are appropriate.

Appendix A.3. Change of variables in the ion density integral

Sufficiently close to x → ∞, the open orbit density is zero and the closed orbit

density in (68) is

ni,closed(x) '
∫ ∞

x̄m(x)

Ωdx̄

∫ χM(x̄)

χ(x,x̄)

2dU⊥√
2 (U⊥ − χ (x, x̄))

∫ ∞

U⊥

Fcl (µgk (x̄, U⊥) , U)√
2 (U − U⊥)

dU .

(A.15)

The value of x̄m(x) is given by equation (69) evaluated near x→∞,

x̄m(x) ' 1

2
x, (A.16)
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The effective potential maximum at large x̄ is, from equation (127), χM(x̄) ' Ω2x̄2/2.

We can exchange the integrals over x̄ and U⊥ to get

ni,closed(x) '
∫ ∞

0

dU⊥

∫ x̄t

x̄b

2Ωdx̄√
2 (U⊥ − χ(x, x̄))

∫ ∞

U⊥

Fcl (µgk (x̄, U⊥) , U)√
2 (U − U⊥)

dU . (A.17)

The change in the integration limits is explained in Figure A1. Equations (A.13)

and (A.14) can be used to make the change of variables (x, x̄, U⊥, U) → (x, ϕ, µ, U)

in equation (A.17), obtaining

ni,closed (x) =

(
1 +

φ′′(x)

ΩB

)∫ π

−π
dϕ

∫ ∞

0

Ωdµ

∫ ∞

Ωµ

Fcl(µ, U)√
2 (U − µΩ + δU⊥)

dU

+O
(
φ̂ε3n∞, φ̂

2ε2n∞

)
, (A.18)

where δU⊥ is defined in equation (91) exploiting equation (A.14). Note that we

changed the lower limit of the integral over U from U⊥ to Ωµ in going from equation

(A.17) to (A.18). The distribution function is zero for U < Ωµ. Therefore, the

integrand is zero in the region U⊥ < U < Ωµ and both integration limits are

equivalent.

Appendix A.4. Expansion of the integral over U in equation (A.18)

We begin by changing variables from U to U? = U − µΩ + δU⊥
∫ ∞

Ωµ

Fcl(µ, U)dU√
2 (U − Ωµ+ δU⊥)

=

∫ ∞

δU⊥

Fcl(µ, U? + µΩ− δU⊥)√
2U?

dU?. (A.19)

Note that δU⊥ > 0. We Taylor expand the distribution function

∫ ∞

δU⊥

Fcl(µ, U? + µΩ− δU⊥)√
2U?

dU? =

∫ ∞

δU⊥

Fcl(µ, U? + Ωµ)√
2U?

dU?

−
∫ ∞

δU⊥

δU⊥√
2U?

∂Fcl

∂U
(µ, U? + Ωµ) dU? +

1

2

∫ ∞

δU⊥

δU2
⊥√

2U?

∂2Fcl

∂U2
(µ, U? + Ωµ)dU? + . . . .

(A.20)
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Each of the terms of equation (A.20) can then be split into two separate integrals

over U?

ni(x) =

∫ ∞

0

dU?√
2U?

(
Fcl(µ, U? + Ωµ)− δU⊥

∂Fcl

∂U
(µ, U? + Ωµ)

+
1

2
δU2
⊥
∂2Fcl

∂U2
(µ, U? + Ωµ)

)
−
∫ δU⊥

0

dU?√
2U?

(Fcl(µ, U? + Ωµ)

−δU⊥
∂Fcl

∂U
(µ, U? + Ωµ)

)
+ . . . . (A.21)

Then, for small δU⊥, we Taylor expand the distribution function near U? = 0 in the

integrals between 0 and δU⊥ (and we neglect terms of order δU
5/2
⊥ )

ni(x) =

∫ ∞

0

dU?√
2U?

(
Fcl(µ, U? + Ωµ)− ∂Fcl

∂U
(µ, U? + Ωµ)δU⊥

+
1

2

∂2Fcl

∂U2
(µ, U? + Ωµ)δU2

⊥

)
−
∫ δU⊥

0

dU?√
2U?

(Fcl(µ,Ωµ)

+ (U? − δU⊥)
∂Fcl

∂U
(µ,Ωµ)

)
+ . . . (A.22)

Carrying out the integrals between 0 and δU⊥, we obtain

ni(x) =

∫ ∞

0

dU?√
2U?

(
Fcl(µ, U? + Ωµ)− ∂Fcl

∂U
(µ, U? + Ωµ)δU⊥

+
1

2

∂2Fcl

∂U2
(µ, U? + Ωµ)δU2

⊥

)
−
√

2δU⊥Fcl(µ,Ωµ)

+
1

3
(2δU⊥)3/2 ∂Fcl

∂U
(µ,Ωµ) + . . . . (A.23)

Then, inserting (A.23) into equation (A.18) and changing the dummy integration

variable to U = U? + Ωµ, we are left with the result of equation (90).

Appendix B. Cold ion limit and fluid Chodura condition

In the cold ion limit, Ti = 0, our quasineutrality equation (86) must have the same

solution as the set of fluid equations used by Chodura in reference [9]. We show here

that equations (100) and (110) are consistent with two of the main results found in

Chodura’s paper [9] when we take Ti = 0.
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Setting Ti = 0, we expect the ion distribution function at the magnetic presheath

entrance to be

f∞,cold (v) =
ne∞

Z
δDirac (vx) δDirac (vy) δDirac (vz − uz) , (B.1)

where δDirac is the Dirac delta function. With the distribution function (B.1), the

solvability condition (100) is

ne∞

Zv2
B

>
∫
f∞,cold (v)

v2
z

d3v, (B.2)

which leads to

uz > vB. (B.3)

Therefore, the incoming ion flow must be at least sonic in the +z direction, which

to lowest order is the direction parallel to the magnetic field towards the wall.

We recognize this as the small-α limit of the condition derived by Chodura in

reference [9].

When the incoming distribution is given by equation (B.1), the term

∂Fcold (µ,Ωµ) /∂U that appears in the numerator of k3/2 is equal to zero, which

means that k3/2 = 0 and the correct form of the potential at x → ∞ is given by

equation (110). The value of k2 in the cold ion limit, k2,cold, is obtained from (109) re-

expressed using the set of variables (vx, vy, vz). From the results µ =
(
v2
x + v2

y

)
/2Ω,

vz =
√

2 (U − Ωµ), and

2π

∫ ∞

0

Ωdµ

∫ ∞

Ωµ

F (µ, U)√
2 (U − Ωµ)

dU =

∫
f∞(v)d3v, (B.4)

the integrals in equation (109) become

k2,cold =
Ω2e

2v2
BTe

3v4
B

∫ f∞,cold(v)

v4z
d3v − ne∞

Z

ne∞
Z

+
∫
f∞,cold (v)

v2x+v2y
2v2z

d3v
. (B.5)

Using (B.1), the second term in the denominator evaluates to zero and the first term

in the numerator is evaluated using the result

v4
B

∫
f∞,cold (v)

v4
z

d3v =
ne∞
Z

. (B.6)
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Inserting equation (B.6) into (B.5), we obtain

k2,cold =
Ω2e

v2
BTe

. (B.7)

Inserting (B.7) into equation (110), the electrostatic potential near x → ∞ in the

cold ion limit is

eφ (x)

Te

= − 6v2
B/Ω

2

(x+ C2,cold)2 . (B.8)

At sufficiently large x, C2,cold can be neglected and Chodura’s result for the scaling

of the potential at the magnetic presheath entrance x→∞ is recovered (this scaling

is obtained from Chodura’s paper [9] by combining equations (22), (23), and the

equation immediately after (24), and noting that Chodura’s notation is ψ = 90◦−α
and his derivation is valid for general ψ).

Appendix C. Proof that k2 > 0 and q2 > 0

In order to show that k2 > 0, we argued that it is sufficient to show that

6π

∫ ∞

0

Ωdµ

∫ ∞

Ωµ

Fcold(µ, U)v4
B

(2 (U − Ωµ))5/2
dU − ne∞

Z
> 0. (C.1)

Remembering vz =
√

2 (U − Ωµ) and equation (B.4), the integral in the first term

can be recast as

2π

∫ ∞

0

Ωdµ

∫ ∞

0

Fcold(µ, U)dU

(2 (U − Ωµ))5/2
=

∫ ∞

0

f∞z (vz)

v4
z

dvz, (C.2)

where

f∞z (vz) =

∫
f∞ (v) dvxdvy. (C.3)

The marginal form of Chodura’s condition (100) can be expressed, using (C.3),

as

ne∞ = Zv2
B

∫ ∞

0

f∞z (vz)

v2
z

dvz. (C.4)
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Then, by application of Schwarz’s inequality we have the relationship

∫ ∞

0

f∞z (vz)

v4
z

dvz

∫ ∞

0

f∞z (vz) dvz >

(∫ ∞

0

f∞z (vz)

v2
z

dvz

)2

, (C.5)

and from quasineutrality we have

Z

∫ ∞

0

f∞z (vz) dvz = ne∞. (C.6)

Substituting (C.4) and (C.6) in (C.5), we obtain

Zv4
B

∫ ∞

0

f∞z (vz)

v4
z

dvz > ne∞. (C.7)

Re-expressing the left hand side of the inequality in terms of F (µ, U) and U by using

(C.2), we obtain

2π

∫ ∞

0

Ωdµ

∫ ∞

Ωµ

Fcl(µ, U)v4
B

(2 (U − Ωµ))5/2
dU >

ne∞
Z

. (C.8)

From (C.8) we see that

6π

∫ ∞

0

Ωdµ

∫ ∞

Ωµ

Fcl(µ, U)v4
B

(2 (U − Ωµ))5/2
dU − ne∞

Z
>

2ne∞
Z

> 0, (C.9)

from which (C.1) immediately follows.

This proof can be straightforwardly adapted to show that q2 > 0, where q2 is

defined in equation (140). Again, it suffices to show that the numerator of equation

(140) is positive,

3v4
B

∫ ∞

x̄m,o(0)

Ωdx̄

∫ ∞

χM(x̄)

Fcl (µgk (x̄, χM (x̄)) , U)√
2 (U − χM(x̄))

∆

[
1

v3
x0

]
dU − ne0

Z
> 0. (C.10)
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The integral can be re-expressed as
∫ ∞

x̄m,o(0)

Ωdx̄

∫ ∞

χM(x̄)

Fcl (µgk (x̄, χM (x̄)) , U)√
2 (U − χM(x̄))

∆

[
1

v3
x0

]
dU

=

∫ ∞

x̄m,o(0)

Ωdx̄

∫ ∞

χM(x̄)

Fcl (µgk (x̄, χM (x̄)) , U)√
2 (U − χM(x̄))

dU

×
∫ 0

−∞

1

v4
x

Π̂ (vx,−Vx (0, x̄, χM)−∆vx0,−Vx (0, x̄, χM)) dvx

=

∫
f0(v)

v4
x

d3v

=

∫
f0x(vx)

v4
x

dvx. (C.11)

The marginal form of Bohm’s condition is

Zv2
B

∫
f0x(vx)

v4
x

dvx = ne0 (C.12)

and quasineutrality is

Z

∫
f0x(vx)dvx = ne0. (C.13)

Proceeding in an analogous way to the previous derivation, we conclude that

3v4
B

∫
Ωdx̄

∫
Fcl (µ, U)√

2 (U − χM(x̄))
dU∆

[
1

v3
x

]
− ne0

Z
>

2ne0

Z
> 0, (C.14)

from which (C.10) immediately follows.

Appendix D. Neglecting the contribution of type II closed orbits near

x = 0

The expansion of the closed orbit density near x = 0 relies on distinguishing type I

and type II effective potential curves. In Section 5.2 we omitted the contribution of

closed orbits associated with type II curves, denoted ni,cl,II(x). From equation (118),

we use the expansion (48) of Vx near the stationary maximum xM to obtain

ni,cl,II(x) ' 2

∫ x̄m,I

x̄c

Ω
√
|χ′′M| |x− xM|Θ(x− xM)dx̄

×
∫ ∞

χM(x̄)

F (µgk (x̄, χM) , U)√
2 (U − χM(x̄))

dU . (D.1)
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In equation (D.1) we integrate over all possible values of x̄ for which χ is a type II

curve, and explicitly include the Heaviside function that is present in the definition

of fcl in equation (65). From Section 3.2 we expect xc 6= 0 and, for sufficiently small

x, x < xc < xt,M, therefore Θ ((x− xM)(xt,M − x)) = Θ(x− xM).

It is easier to express the integral in (D.1) by changing variables from x̄ to xM.

The Jacobian of this change of variables can be obtained using the equation for a

stationary maximum, which is χ′(xM, x̄) = 0. Rearranging equation (28) evaluated

at the stationary point xM, we have

x̄ = xM +
φ′(xM)

ΩB
. (D.2)

Differentiating this equation with respect to xM, we obtain |∂x̄/∂xM| = |χ′′M|/Ω2.

Then, the integral (D.1) can be written in terms of xM. The integration limit x̄ = x̄m,I

corresponds to xM = 0, while the integration limit x̄ = x̄c corresponds to xM = xc

(where xc is the point of inflexion of the effective potential curve). For small x, the

only non-zero piece of the integrand is, due to the Heaviside function, the small one

for xM < x, which implies that we can Taylor expand the integrand near x̄ = x̄m,I

(which corresponds to xM = 0) and retain only the leading order,

ni,cl,II(x) '2

∫ x

0

(x− xM)
|χ′′(0, x̄m,I)|3/2

Ω
dxM

×
∫ ∞

χM(x̄)

Fcl (µgk (x̄m,I, χM (x̄m,I)) , U)√
2 (U − χM(x̄m,I)

dU

'x2 |χ′′(0, x̄m,I)|3/2
Ω

∫ ∞

χM

Fcl (µgk (x̄m,I, χM (x̄m,I)) , U)√
2 (U − χM(x̄m,I)

dU . (D.3)

Hence, the contribution from type II closed orbits near x = 0 is proportional to

x2 and therefore subdominant compared to x, making it negligible. In fact, when

x̄m,I → ∞, we expect the contribution to be even smaller than (D.3) because the

distribution function is exponentially small near x̄→∞.
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