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Abstract. Using a kinetic model for the ions and adiabatic electrons, we solve

a steady state, electron-repelling magnetic presheath in which a uniform magnetic

field makes a small angle α � 1 (in radians) with the wall. The presheath

characteristic thickness is the typical ion gyroradius ρi. The Debye length λD and

the collisional mean free path of an ion λmfp satisfy the ordering λD � ρi � αλmfp,

so a quasineutral and collisionless model is used. We assume that the electrostatic

potential is a function only of distance from the wall, and it varies over the scale ρi.

Using the expansion in α� 1, we derive an analytical expression for the ion density

that only depends on the ion distribution function at the entrance of the magnetic

presheath and the electrostatic potential profile. Importantly, we have added the

crucial contribution of the orbits in the region near the wall. By imposing the

quasineutrality equation, we derive a condition that the ion distribution function

must satisfy at the magnetic presheath entrance — the kinetic equivalent of the

Chodura condition. Using a boundary condition that satisfies the kinetic Chodura

condition, we find a numerical solution for the self-consistent electrostatic potential,

ion density and flow across the magnetic presheath for several values of α. Our

numerical results also include the distribution of ion velocities at the Debye sheath

entrance. We find that at small values of α there are substantially fewer ions

travelling with a large normal component of the velocity into the wall.

1. Introduction

In a typical fusion plasma device, the interaction between the confined plasma and the

wall of the device happens at specified locations called divertor or limiter targets [1].
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The magnetic field usually makes a small angle α � 1 with the target in order to

minimize the heat flux onto the wall materials [2]. Hence, an appropriate model of

plasma-wall interaction in a fusion device must accurately describe the effect of such

small angles. Such a model could be applicable to other areas where plasma-wall

interaction is important, such as thrusters [3], probes [4] and magnetic filters [5, 6].

When a steady-state plasma is in contact with a wall, a potential difference

between the “bulk” plasma and the wall develops which depends on the density

and temperature of the plasma and on the current flowing from the plasma to the

wall. This potential drop forms due to the difference in mobility between ions and

electrons, with the electrons usually reaching the wall faster and hence charging it

negatively. A thin layer of plasma called the “Debye sheath”, with a thickness of

several Debye lengths λD =
√
e2ne/ε0Te, charges positively because of the net loss

of electrons to the wall. Here e is the proton charge, ne is the number density of

electrons in the plasma, ε0 is the permittivity of free space and Te is the electron

temperature. The Debye sheath shields most of the wall potential from the bulk

plasma. The rest of the potential difference between wall and plasma occurs in a

quasineutral “presheath”, of size λps � λD. Usually λps � a, where a is the scale

of the device (for example, the minor radius of a tokamak), which implies that the

presheath can be treated as a thin boundary layer with respect to the bulk plasma

in the device.

We consider a presheath in which the ion collisional mean free path λmfp

projected in the direction normal to the wall, λmfp sinα ' αλmfp, is much larger

than the ion gyroradius ρi. Hence, we assume

λD � ρi � αλmfp. (1)

This is consistent with the value of these quantities near a divertor target: λD ∼
0.02mm, ρi ∼ 0.7mm, αλmfp ∼ 100mm [7]. With this scale separation, we can split

the boundary layer into three separate layers: a “collisional presheath” of size αλmfp,

a collisionless “magnetic presheath” of size ρi and a non-neutral Debye sheath [8].

The ion motion in the three layers has a very different nature: in the collisional

layer ions are magnetized in circular gyro-orbits and stream parallel to the magnetic

field, in the magnetic presheath ion gyro-orbits are distorted by increasingly strong

electric fields, and finally in the Debye sheath ions are accelerated towards the wall

by an electric force much larger than the magnetic force. A cartoon of the ion motion

across all boundary layers is shown in Figure 1.
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Figure 1. Cartoon of ion orbits in the neighbourhood of the divertor target of a

tokamak plasma, with λD � ρi � αλmfp. The orbits have a size ρi and are tied

to a dashed line representing the magnetic field B, which is inclined at an angle

α with the wall. The electric field E is shown as a dashed vertical line, and is

shaded darker nearer to the wall, where it is stronger. Highly distorted orbits in

the magnetic presheath are black, while circular orbits in the collisional presheath

are light grey.

In this paper we focus on the magnetic presheath, which was first studied by

Chodura [9]. By assuming that the ions were much colder than electrons, Chodura

could use fluid equations for the electrons and ions, and found a solution for the

electrostatic potential and ion flow across the magnetic presheath. Chodura also

found that the ion flow parallel to the magnetic field at the presheath entrance must

at least be equal to the Bohm speed

vB =

√
ZTe

mi

, (2)

which is known as Chodura’s condition [9, 10]. In equation (2), Z is the proton

number of the ion species, Te is the electron temperature and mi is the ion mass.

These results prepared the ground for several other studies of the magnetic presheath,

many of which also used fluid equations to model the ion species [10–13]. However,

the assumption that a fluid model is adequate for ions in the magnetic presheath

is not well motivated, because their Larmor orbits are highly distorted with a

characteristic radius equal to the characteristic thickness of the layer [14]. The

fluid model can only correctly describe cold ions with Ti � Te, where Ti is the ion

temperature, because such ions can be treated as mono-energetic. Treatments of the

magnetic presheath which take into account the kinetic nature of the ions are less

common and are mostly numerical [15–22], although some analytical contributions
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have been made [23–26]. In this paper, we extend the analytical work carried out

in [7] and we numerically solve a grazing angle collisionless magnetic presheath

assuming Boltzmann electrons and using a fully kinetic model for the ions.

As in references [7, 23, 27], we perform an asymptotic expansion in α of the ion

trajectories in the magnetic presheath. This approach is equivalent to a “gyrokinetic”

separation of timescales. Most of the time, an ion trajectory is well approximated to

lowest order by a non-circular periodic orbit with a fast gyration timescale ∼ 1/Ω.

Here, Ω = ZeB/mi is the typical ion gyrofrequency, e is the proton charge and B is

the magnitude of the magnetic field. To higher order, the trajectory is a sequence of

approximately “closed” orbits: it can be described by varying some of the parameters

of the periodic motion over the long characteristic time 1/αΩ. In reference [7] we

obtained an expression for the density of ions in approximately closed orbits in

the magnetic presheath. A short time ∼ 1/Ω before the ion reaches the wall, its

trajectory cannot be considered approximately periodic and is therefore an “open”

orbit. In this work, we show that the contribution to the density of ions in open

orbits is crucial and we derive an analytical expression for it.

Using the equations presented in this paper, we numerically find a self-consistent

solution for the electrostatic potential in the magnetic presheath. We rely on a

boundary condition at the magnetic presheath entrance that satisfies a condition,

derived herein, which is the kinetic generalization of Chodura’s condition [9]. The

numerical solution we obtain for the electrostatic potential is used to evaluate the ion

density and flow across the magnetic presheath. Moreover, we obtain the distribution

of ion velocities at the entrance of the Debye sheath, and find that the kinetic Bohm

condition [28] is satisfied, as we also predict analytically. The results of our model

indicate that the number of ions entering the Debye sheath travelling with a large

normal component of the velocity towards the wall is substantially reduced at smaller

values of the angle α.

This paper is structured as follows. In Section 2, we explain the orderings that

we use in our model. In Section 3, we expand the ion trajectories in the small

parameter α � 1. In Section 4 we obtain an expression for the density of ions

across the magnetic presheath in terms of their distribution function at the magnetic

presheath entrance, including the contribution of open orbits. We also obtain an

expression for the distribution function of ions reaching the Debye sheath entrance.

In Section 5 we analytically expand the quasineutrality equation near the magnetic

presheath entrance and near the Debye sheath entrance. One of the analytical results
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of these expansions is a solvability condition that the ion distribution function must

satisfy at the magnetic presheath entrance. In Section 6 we state the ion distribution

function used as an entrance boundary condition, explain the numerical procedure

used to solve the quasineutrality equation and present the numerical solutions. In

Section 7, we summarize our main results and make some concluding remarks.

2. Orderings and assumptions

In this work, we consider a steady state plasma at x > 0, which is magnetized by

a uniform and constant magnetic field B = B cosαẑ − B sinαx̂, where B = |B|,
k̂ = x̂, ŷ, ẑ is the unit vector along the k = x, y, z axis and α is a small angle (see [7]

for a discussion of when B can be assumed to be constant in time and space). The

coordinate system we use is shown in Figure 1. We assume no gradients in the two

directions parallel to the wall, y and z (note that in [7] we allowed for gradients in

y). Distances from the wall are ordered

x ∼ ρi =
vt,i

Ω
(3)

and ion velocities are ordered

|v| ∼ vt,i, (4)

where vt,i =
√

2Ti/mi and Ti is the ion temperature. The system is solved to

lowest order under the assumption in (1), which implies that x = 0 is the interface

between magnetic presheath and Debye sheath, λD � x � ρi, while x → ∞ is the

interface between the magnetic presheath and the collisional layer, ρi � x� αλmfp.

Splitting the boundary layer in different scale separated regions and using a matching

procedure to join them is common in studies of the plasma-wall boundary, and has

been justified in reference [29].

The fact that the magnetic field is assumed constant in time implies that the

electric field can be expressed in terms of the gradient of an electrostatic potential.

We define the electrostatic potential φ(x) such that φ → 0 at x → ∞ and order it

as large as the electron temperature Te (consistent with [9]),

φ (x) ∼ Te

e
. (5)



Solution to a collisionless magnetic presheath with kinetic ions 6

The electric field is E = −φ′(x)x̂, with

φ′(x) ∼ Te

eρi

∼ vt,iB, (6)

where a prime ′ denotes differentiation with respect to x. The second ordering arises

because the ion and electron temperatures are ordered of similar sizes, Ti ∼ Te.

The angle α is ordered
√
me

mi

∼ 0.02� α� 1, (7)

where me is the electron mass and the estimate for the square root of mass ratio is

obtained using a Deuterium ion. We assume α�
√
me/mi to ensure that the wall is

electron-repelling [7], which justifies using a Boltzmann distribution for the electron

density,

ne (x) = ne∞ exp

(
eφ (x)

Te

)
. (8)

Here, ne∞ is the electron density at x → ∞ and Te is the electron temperature. In

practice, we obtain numerical results for a range of angles that satisfy α &
√
me/mi,

while assuming for simplicity that (8) holds even when α ∼
√
me/mi. Provided

that the wall remains electron-repelling, square root of mass ratio corrections can be

included by using the expression for the electron density derived in [30] instead of

equation (8).

3. Ion trajectories

Here, we exploit the smallness of α to asymptotically expand the ion trajectories.

The equations of motion for an ion moving in the collisionless magnetic presheath

are [7]

ẋ = vx, (9)

ẏ = vy, (10)

ż = vz, (11)
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v̇x = −Ω

B
φ′(x) + Ωvy cosα, (12)

v̇y = −Ωvx cosα− Ωvz sinα, (13)

v̇z = Ωvy sinα, (14)

where a dot ˙ denotes a time derivative, d/dt.

This section is structured as follows. Section 3.1 is devoted to obtaining the

constants of motion resulting from equations (9)-(14) with α = 0, which are called

orbit parameters. We express the ion velocity in terms of the instantaneous position

and the orbit parameters, using an “effective potential”. In Section 3.2 we introduce

two distinct types of effective potential curves. In Section 3.3 we study “closed”

orbits, which are periodic solutions to equations (9)-(14) with α = 0. Their

characteristic period is 1/Ω. The main effect of α 6= 0 is to break the exact periodicity

by making the orbit parameters vary over a characteristic time 1/αΩ� 1/Ω. A slow

variation of the parameters of periodic motion leads to the existence of an adiabatic

invariant µ, a quantity that the ion conserves to lowest order in α over the long

timescale 1/αΩ [7, 23]. In Section 3.4 we study the real ion trajectories, which

consist of a sequence of approximately closed orbits, quantify the variation of the

orbit parameters to first order in α and write the adiabatic invariant. A time ∼ 1/Ω

before the ion reaches the wall, the ion is considered in an “open” orbit. In Section

3.5, we define an open orbit and obtain the conditions that orbit parameters must

satisfy for an ion to be in an open orbit.

3.1. Orbit parameters

Setting α = 0, equations (12)-(14) become

v̇x = −Ω

B
φ′(x) + Ωvy, (15)

v̇y = −Ωvx, (16)

v̇z = 0. (17)
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Using (9), direct integration of (16) leads to

x̄ =
vy
Ω

+ x ∼ ρi, (18)

where x̄ is the constant of integration which represents the position of an ion orbit.

Multiplying (15) by vx and adding to (16) multiplied by vy we obtain U̇⊥ = 0, where

U⊥ =
1

2
v2
x +

1

2
v2
y +

Ωφ(x)

B
∼ v2

t,i (19)

is the perpendicular energy. From (17), the parallel velocity vz of the ion is a constant

of the motion. Adding the parallel kinetic energy v2
z/2 to the perpendicular energy

we obtain the total energy,

U =
1

2
v2
x +

1

2
v2
y +

1

2
v2
z +

Ωφ(x)

B
∼ v2

t,i. (20)

The quantities x̄, U⊥ and U constitute the three orbit parameters of ion motion.

When α = 0 they are exactly conserved, and when α � 1 they change slowly

(except for U which remains constant).

The ion velocity components vx, vy and vz can be expressed in terms of the

orbit parameters and the instantaneous ion position x. Inserting (18) into (19) and

rearranging, we get

vx = σxVx (x, x̄, U⊥) with Vx (x, x̄, U⊥) =
√

2 (U⊥ − χ (x, x̄)), (21)

where we introduced σx = ±1 to account for the two possible signs of vx, and an

effective potential function

χ (x, x̄) =
1

2
Ω2 (x− x̄)2 +

Ωφ(x)

B
. (22)

The y-component of the velocity is obtained by rearranging equation (18)

vy = Ω (x̄− x) . (23)

The z-component of the velocity is obtained by subtracting equation (19) from (20),

multiplying by 2 and taking a square root,

vz = σ‖V‖ (U⊥, U) with V‖ (U⊥, U) =
√

2 (U − U⊥), (24)

where σ‖ = ±1 is the sign of vz.
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Figure 2. The monotonic electrostatic potential profile φ(x) and its monotonic

first and second derivatives φ′(x) and φ′′(x).

3.2. Types of effective potential curves

By imposing that vx be real in equation (21), the allowed ion positions must satisfy

U⊥ > χ (x, x̄). A particle moves periodically if, for given values of U⊥ and x̄, it

is trapped around a minimum (with respect to x) of the effective potential curve.

Then, the ion motion is confined between bounce points xb (bottom) and xt (top)

defined by

U⊥ = χ (xb, x̄) = χ (xt, x̄) with xb 6 xt. (25)

Throughout this work, we assume that the electrostatic potential across the magnetic

presheath is such that φ(x), φ′(x) and φ′′(x) are all monotonic (our numerical results

satisfy these conditions), as shown in Figure 2. Then, the curve χ (x, x̄) with a

stationary minimum for a given x̄ can be of two types [23]:

• a type I curve has one stationary minimum at xm, such that χm (x̄) ≡ χ (xm, x̄),

and no stationary maximum — however we consider the non-stationary local

maximum at position xM = 0 with χM (x̄) = χ (0, x̄);

• a type II curve has two stationary points: one at position xm which corresponds

to a minimum χm (x̄), and one at position xM which corresponds to a maximum

χM (x̄) ≡ χ (xM, x̄).
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χ(x)

x
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xm

χm(x̄)

χ(x)

x

U⊥

xb xt

χM(x̄)

xmxM
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Figure 3. Type I (left) and II (right) effective potential curves, both with a

stationary minimum at x = xm. A type II curve is characterized by a stationary

maximum at x = xM. These curves allow closed orbits for any value of U⊥ in the

range χm (x̄) 6 U⊥ 6 χM (x̄) with bottom and top bounce points at positions xb
and xt.

These two curve types are shown in Figure 3. We will refer to the ion trajectories

arising due to each curve type as type I and type II orbits.

We proceed to obtain the range of values of x̄ for which the effective potential

is of either type. Differentiating equation (22) we obtain

χ′(x, x̄) = Ω2(x− x̄) +
Ωφ′(x)

B
. (26)

For type I curves the gradient of the effective potential at x = 0 must be negative.

Hence, from equation (26), we obtain −Ω2x̄ + Ωφ′(0)/B < 0 which leads to the

requirement that x̄ > x̄m,I with

x̄m,I =
φ′(0)

ΩB
. (27)

Setting equation (26) to zero gives an equation for the stationary points of χ,

which can be rearranged to

φ′(x) = ΩB (x̄− x) . (28)

The stationary points are minima if the second derivative of χ is positive. This

condition is equivalent to the gradient of φ′(x) being larger than the gradient of the
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x̄c = x̄m,I

Figure 4. The stationary points of the effective potential satisfy equation (28),

φ′(x) = ΩB (x̄− x). In each of the four diagrams the solid curves represent φ′(x),

while the function ΩB (x̄− x) is the family of lines that are parallel to the oblique

lines. For a given value of x̄, equation (28) can have two solutions (dark grey region,

χ is type II), one solution (light grey region, χ is type I) or no solution (unshaded

region, χ has no minimum). The smallest value of x̄ for which a stationary point

exists, at position xc, is x̄c. The value of x̄ which corresponds to a stationary point

at x = 0 is x̄m,I.

line ΩB(x̄−x). By rearranging equation (28) to an equation for x̄ as a function of x

and then minimizing it with respect to x, we obtain the minimum value of the orbit

position for which the effective potential has a stationary point,

x̄c = min
x∈[0,∞]

(
x+

φ′(x)

ΩB

)
= xc +

φ′(xc)

ΩB
. (29)

From Figure 4, x̄c is the smallest value of x̄ for which the straight line ΩB (x̄− x)

touches the curve φ′(x), and xc is the value of x at which they intersect. From

Figure 4, x̄c and x̄m,I coincide if φ′′(0) > −ΩB. Then, all effective potential curves
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are type I for x̄ > x̄c = x̄m,I. If φ′′(0) < −ΩB, x̄ = x̄c is the orbit parameter

value corresponding to when the straight line ΩB(x̄ − x) touches the curve φ′(x)

tangentially. Then, for orbit parameter values in the range x̄c 6 x̄ 6 x̄m,I there

are two stationary points (a minimum in the region x > xc and a maximum in the

region 0 6 x < xc), corresponding to type II curves, while for x̄ > x̄m,I there is

only one stationary minimum, corresponding to type I curves. Summarizing these

observations with the aid of Figure 4:

• if φ′′(0) > −ΩB, χ is a type I curve for x̄ > x̄c = x̄m,I;

• if φ′′(0) < −ΩB, χ is a type II curve for x̄c < x̄ < x̄m,I and a type I curve for

x̄ > x̄m,I.

We will see in Sections 5 and 6 that our solution to the magnetic presheath

electrostatic potential is such that the electric field diverges at x = 0, φ′(0) →
∞. This behaviour is associated with type II effective potential curves because

x̄m,I = φ′(0)/ΩB → ∞ (see Figure 4, bottom right diagram). It is nonetheless

useful to consider also type I curves because we obtain our solution by iterating

over possible electrostatic potential profiles starting from the initial guess of a flat

potential, φ(x) = 0.

3.3. Closed orbits for α = 0

When the α = 0 motion of an ion is a closed orbit, we can write its position as a

function of a gyrophase angle which parameterizes the particular point of the orbit

in which the particle lies. The period of the orbit, 2π/Ω, where Ω is the generalized

gyrofrequency, is the integral of all the time elements dt = dx/vx over a whole orbit,

2π

Ω
= 2

∫ xt

xb

dx

Vx (x, x̄, U⊥)
. (30)

The gyrophase angle ϕ of the orbit is defined as Ωt, where t is defined in the interval

−π/Ω < t < π/Ω and is (when positive) the time elapsed since the particle last

reached the top bounce point,

ϕ = σxΩ

∫ x

xt

dx′

Vx (x′, x̄, U⊥)
. (31)
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It will be useful to define the gyroaveraging operation as an average over possible

values of gyrophase, or equivalently as an average over the period of a closed orbit,

〈. . .〉ϕ =
1

2π

∫ π

−π
(. . .) dϕ =

∑

σx=±1

Ω

2π

∫ xt

xb

(. . .) dx

Vx (x, x̄, U⊥)
. (32)

The second equality in (32) is obtained using (31). The closed orbit has an E × B

drift in the y direction (parallel to the wall), with drift velocity VE×B defined as the

gyroaverage of vy,

VE×B (x̄, U⊥) =
Ω

π

∫ xt

xb

Ω (x̄− x)

Vx (x, x̄, U⊥)
dx =

Ω

π

∫ xt

xb

φ′(x)/B

Vx (x, x̄, U⊥)
dx. (33)

The second equality in (33) comes from using equation (26) and the result
∫ xt

xb

χ′ (x, x̄)

Vx (x, x̄, U⊥)
dx = −

∫ xt

xb

V ′x (x, x̄, U⊥) dx = Vx (xb, x̄, U⊥)− Vx (xt, x̄, U⊥) = 0,

(34)

where we used Vx (xb, x̄, U⊥) = Vx (xt, x̄, U⊥) = 0.

3.4. Approximately closed orbits for α� 1

When α = 0 an ion moves in a closed orbit which E × B drifts in the y

direction (equation (33)) and streams parallel to the magnetic field in the z direction

(equation (24)). When α � 1, the motion is approximately periodic because the

orbit parameters vary over a timescale 1/αΩ that is much longer than the typical

gyroperiod 1/Ω. Differentiating (18) with respect to time and using (13), we find

˙̄x = −σ‖αV‖ (U⊥, U) +O
(
α2vt,i

)
. (35)

Physically, this represents the small component of the parallel motion which moves

the approximately closed ion orbit in the x direction when α 6= 0. Note that

U̇ = 0 (36)

is true to every order in α because energy is exactly conserved in the absence of

explicit time dependence. Differentiating (19) and using (12) and (13) we get

U̇⊥ = −σ‖αΩ2 (x̄− x)V‖ (U⊥, U) +O
(
α2Ωv2

t,i

)
, (37)
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x/⇢i

y/⇢i

z/⇢i

E
B

VE⇥B VE⇥B

Vk Vk

Figure 5. Two ion trajectories approaching the wall, represented as a grey surface

at x = 0, are shown as black lines. Most of the ion path is locally approximated by

closed orbits, represented as superimposed rings. Ions stream along the magnetic

field B at velocity V‖ (U⊥, U), and the strong electric field towards the wall causes

the approximately closed orbits to E × B drift at velocity VE×B (x̄, U⊥) in the y

direction. The increasing electric field as the orbits approach x = 0 causes the

E ×B velocity to noticeably increase (see equation (33)). Eventually the electric

force pushing the ion towards the wall becomes larger than the magnetic force

trying to turn it away from the wall.

which depends on the instantaneous particle position x and therefore on the

gyrophase ϕ. Since the orbit parameters are varying over the long timescale 1/αΩ,

they are approximately constant over a single orbit, hence the time derivative of U⊥
is approximately periodic at small timescales (because x is approximately periodic).

Then, the gyroaveraged time derivative of U⊥ is equivalent to the non-gyroaveraged

counterpart at long timescales. Exploiting (32) and (34), the gyroaverage of (37) is

〈
U̇⊥

〉
ϕ

= −σ‖αV‖ (U⊥, U)
Ω

π

∫ xt

xb

φ′(x)/B

Vx (x, x̄, U⊥)
dx+O

(
α2Ωv2

t,i

)
. (38)

Two ion trajectories, which were obtained by varying the orbit parameters according

to equations (35)-(37), are shown in Figure 5.

In a Hamiltonian system, when the parameters of periodic motion change over

a timescale much longer than the period of the motion, an adiabatic invariant exists.

Here, it is given by [7, 23]

µ = µgk (x̄, U⊥) ≡ 1

π

∫ xt

xb

Vx (x, x̄, U⊥) dx ∼ v2
t,i

Ω
. (39)



Solution to a collisionless magnetic presheath with kinetic ions 15

Unlike x̄ and U⊥, the adiabatic invariant (39) is conserved to lowest order over the

much longer timescale 1/αΩ,

〈µ̇〉ϕ = O
(
α2v2

t,i

)
' 0. (40)

The picture that emerges of the ion trajectory in a grazing angle magnetic presheath

is that of a sequence of approximately closed orbits whose parallel streaming brings

them slowly towards the wall, as shown in Figure 5. The adiabatic invariant

µgk (x̄, U⊥) and total energy U are conserved as the ion traverses the magnetic

presheath.

In this work, we assume an electron-repelling wall, hence φ′ (x) > 0 in the

sheath-presheath system. Since the wall is absorbing, any ion present in the system

must be coming from x → ∞ and moving towards x = 0, therefore it has ˙̄x < 0

and σ‖ = +1. Then, from (38), U⊥ decreases as the ion moves across the magnetic

presheath with σ‖ = +1. The decrease in U⊥ is caused by the small component of

the electric field which is parallel to the magnetic field and therefore accelerates ions

in the parallel direction, such that V‖ (U⊥, U) increases as the particle approaches

the wall and σ‖ never changes sign. Hence, from here on we take σ‖ = +1 for all

ions.

3.5. Open orbits

The time that it takes for an ion to cross the magnetic presheath is ∼ 1/αΩ. During

this time the ion motion can be approximated by that of a periodic gyro-orbit with

period ∼ 1/Ω. The parameters of the periodic motion change over the slow timescale

1/αΩ. When the ion reaches values of the orbit parameters for which its lowest order

motion intersects the wall (and is therefore no longer periodic), it reaches the wall

and is lost from the system over the fast timescale 1/Ω (as we will show). In this

short period of time, the ion is in an open orbit. The number of ions in open orbits is

small (higher order in α) compared with the number of ions in closed orbits because

open orbits exist for a much shorter time. However, the number of ions in closed

orbits that cross a point arbitrarily close to the wall is small (or zero, if the electric

field diverges at x = 0) because of the constraint that the velocity of an ion in

such closed orbit be tangential to the wall. Therefore, it is essential to obtain the

contribution to the density due to ions in open orbits.
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Figure 6. Two sets of phase space trajectories corresponding to type I and II orbits

are plotted on the left and right respectively. The dotted lines are trajectories of

motion with α = 0 when D = 0. The solid lines are trajectories calculated using

equations (35)-(37) with α = 0.05. The thick black lines are the open orbit pieces of

the trajectories, corresponding to DB = 0 (vx ' 0 during last bounce) and DX = 0

(vx ' 0 during crossing of xM). The type I trajectories on the left correspond to

the zero electric field case φ (x) = 0, while the type II trajectories on the right are

evaluated using the electrostatic potential solution of Section 6.

It is clear that an ion is in an open orbit when x 6 xM, because a closed orbit

cannot cross this region by definition. For the ion to reach x 6 xM, it must have

crossed the maximum from the region x > xM. The exact point x > xM at which

we consider its orbit to be open is arbitrary, but this arbitrariness does not matter

because the ion density for x > xM is dominated by closed orbits. We exploit this

to generalise the open orbit definition in a way that includes all ions at x 6 xM and

smoothly extends the open orbit density to x > xM. We consider an ion to be in an

open orbit if:

(i) at future times, its trajectory has no bounce points,

(ii) at past times, its trajectory has bounce points.

Figure 6 shows examples of pieces of ion trajectories that are considered open orbits

according to this definition, type I on the left and type II on the right. Note the

difference in shape between the two orbits: a type I open orbit is just a closed orbit
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that intersects the wall, while a type II open orbit occurs when the electric force

pushing the ion towards the wall overcomes the magnetic force turning the ion away

from the wall.

To study open orbits, it will be useful to consider the difference between the

perpendicular energy and the effective potential maximum as a separate quantity D,

D = U⊥ − χM (x̄) . (41)

The velocity component vx, given by equation (21), is

vx = σxVx (x, x̄,D + χM (x̄)) = σx
√

2 (D + χM (x̄)− χ (x, x̄)). (42)

When x = xM is reached from x > xM, the velocity is given by vx = −
√

2D, hence

only ions with D > 0 cross the effective potential maximum and reach x 6 xM. To

obtain the rate of change of D, we calculate the rate of change of χM (x̄),

χ̇M (x̄) =
∂χ

∂x̄
(xM, x̄) ˙̄x+ χ′ (xM, x̄)

∂xM

∂x̄
˙̄x. (43)

For both type I and type II orbits, the second term in (43) vanishes (type I curves

have ∂xM/∂x̄ = 0, while type II curves have χ′ (xM, x̄) = 0) and, using (35), we find

χ̇M (x̄) = σ‖αΩ2V‖ (U⊥, U) (xM − x̄) +O
(
α2Ωv2

t,i

)
. (44)

Combining (44) with the result for U̇⊥ in (37), we get

Ḋ = αΩ2V‖(χM(x̄), U) (x− xM) +O
(
α2Ωv2

t,i

)
. (45)

Consider an ion that reaches U⊥ = χM(x̄) at a position x′ > xM and is travelling

towards the maximum (σx = −1). Assuming that the difference between U⊥ and

χM(x̄) stays small during the subsequent trajectory (which we will show), we use

U⊥ ' χM (x̄) and the relationship

dt =
dx

vx
' dx

σxVx (x, x̄, U⊥)
(46)

to estimate the time taken for the ion to reach the effective potential maximum,

δtM =

∫
dt =

∫ x′

xM

ds

Vx (s, x̄, U⊥)
. (47)
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If the effective potential curve is of type I, δtIM ∼ 1/Ω, whereas for type II curves

δtIIM diverges according to equation (47). We show this by expanding Vx (x, x̄, χM (x̄))

near x ' xM with a type II curve and defining χ′′M ≡ χ′′ (xM, x̄), to obtain

V II
x (x, x̄, χM (x̄)) '

√
|χ′′M| (x− xM) . (48)

The time δtIIM is then

δtIIM '
∫ x′

xM

ds√
|χ′′M| (s− xM)

→∞. (49)

Despite this apparent divergence, the variation of D during the time δtM can be

evaluated using (46) because equations (45) and (48) imply that Ḋ/Vx (x, x̄, χM(x̄))

is not divergent at x = xM. Then, using

D =

∫
Ḋdt ' αΩ2V‖(χM(x̄), U)

∫ x′

xM

s− xM

Vx (s, x̄, χM (x̄))
ds, (50)

we expect D ∼ αv2
t,i for both orbit types, justifying U⊥ ' χM(x̄) a posteriori. Using

this ordering and U⊥ = χM(x̄) + D, equation (47) can be used to obtain the more

accurate estimate δtIIM ∼ ln (1/α) /Ω. Putting together the estimates for both orbit

types, we have

ΩδtM ∼
{

1 for type I orbits,

ln
(

1
α

)
for type II orbits.

(51)

We proceed to find the possible values of D which satisfy the open orbit criteria

we defined. If x < xM the particle has already crossed the effective potential

maximum and we have to integrate backwards in time to obtain the value of D

at the moment xM was crossed, denoted DX, and further back to obtain the value of

D during the last bounce from the bottom bounce point xb ' xM, denoted DB. If

x > xM, we must integrate Ḋ forwards in time to obtain DX (because by definition

the particle trajectory must cross xM when it next reaches it, otherwise it would not

be an open orbit), and backwards in time to obtain DB.

We first obtain DX −D in terms of x, x̄ and U . If x > xM we integrate Ḋ > 0

forwards in time (so dt > 0) and if x < xM we integrate Ḋ < 0 backwards in time
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(so dt < 0), hence we expect a positive quantity in both cases. From equation (50),

such quantity is approximately

∆+ (x, x̄, U) = αΩ2V‖(χM(x̄), U)

[∫ x

xM

(s− xM)

Vx (x, x̄, χM (x̄))
ds

]
∼ αv2

t,i, (52)

therefore DX is

DX = D + ∆+ (x, x̄, U) +O
(
α1+pv2

t,i

)
. (53)

The power p used to quantify the error is given by

p =

{
1 for type I orbits,
1
2

for type II orbits.
(54)

The enhanced error from type II orbits comes from the fact that D 6= 0 is not

included in the estimate of vx used in equation (46). Estimating |vx| more accurately

in the region near the maximum, we have

V II
x (x, x̄, χM (x̄) +D) '

√
|χ′′M| (x− xM)2 + 2D. (55)

Hence, there is a region of size |x − xM| ∼ α1/2ρi in which the estimate (48) is

incorrect. The contribution from this region to the integrals (50) and (52) can be

calculated by multiplying the size of the region by the size of the integrand, which

gives α3/2v2
t,i.

We proceed to obtain DB − DX by integrating Ḋ > 0 backwards in time (so

dt < 0) from the point at which the maximum is crossed. The result is a negative

quantity of magnitude ∆M, which is an integral from the bottom bounce point

xb ' xM to the top bounce point xt ' xt,M and back, where xt,M is the top bounce

point corresponding to U⊥ = χM(x̄). The backwards integration is identical to the

forwards one, hence this quantity is, from equation (50),

∆M (x̄, U) = 2αΩ2V‖(χM(x̄), U)

[∫ xt,M

xM

(s− xM)

Vx (x, x̄, χM (x̄))
ds

]
∼ 2παv2

t,i. (56)

The factor of 2π in the final scaling of (56) is due to having integrated in time over

a gyroperiod, ∼ 2π/Ω. Then, DB is

DB = DX −∆M (x̄, U) +O
(
α1+pv2

t,i

)
. (57)
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From the criteria defining an open orbit, the value of D for an allowed open

orbit at position x, orbit position x̄, and energy U must be such that

(i) DX > O
(
α1+pv2

t,i

)
and (ii) DB < O

(
α1+pv2

t,i

)
. (58)

The limited accuracy in the evaluation of DX and DB leads to the O
(
α1+pv2

t,i

)
error

in the inequality. Using conditions (58) and equations (53) and (57), we have the

inequality

−∆+ (x, x̄, U) +O
(
α1+pv2

t,i

)
< D < ∆M (x̄, U)−∆+ (x, x̄, U) +O

(
α1+pv2

t,i

)
. (59)

From equation (42) this means that there is a range of possible particle velocities vx,

with maximum given by −Vx+ (x, x̄, U), where

Vx+ (x, x̄, U) =
√

2 (−∆+ (x, x̄, U) + χM (x̄)− χ (x, x̄)) +O
(
α1+pv2

t,i

)
, (60)

and with range of values given by

∆vx =
√

2 (∆M (x̄, U)−∆+ (x, x̄, U) + χM (x̄)− χ (x, x̄)) +O
(
α1+pv2

t,i

)
(61)

−
√

2 (−∆+ (x, x̄, U) + χM (x̄)− χ (x, x̄)) +O
(
α1+pv2

t,i

)
, (62)

such that

−Vx+ (x, x̄, U)−∆vx < vx 6 −Vx+ (x, x̄, U) . (63)

The value of ∆vx is labelled for the open orbits crossing x = 0 in Figure 6.

4. Ion distribution function and density

Suppose that the plasma entering the magnetic presheath, at x → ∞, has an ion

species whose distribution function is f∞ (vx, vy, vz). This function is re-expressed

in terms of the variables µ and U by applying the change of variables (vx, vy, vz)→
(ϕ, µ, U) at x→∞. The distribution function must be independent of gyrophase ϕ

to lowest order in α [7], hence the result of the change of variables is a function of µ

and U only,

Fcl (µ, U) ' f∞ (vx, vy, vz) . (64)
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The subscript “cl” in equation (64) is short for “closed”, because Fcl refers to the

distribution function of approximately closed orbits. Using conservation of the two

invariant quantities µ and U , the distribution function of ions in the magnetic

presheath is Fcl(µ, U) to lowest order in α [7, 23]. In this section, we obtain

expressions for the density of ions in approximately closed and open orbits in terms

of this distribution function.

4.1. Closed orbit ion density

Using equation (39) for µgk (x̄, U⊥), and equations (18), (19) and (20) for the change

of variables (vx, vy, vz) → (x̄, U⊥, U), we obtain the distribution function of ions in

approximately closed orbits,

fcl(x, vx, vy, vz) ' Fcl (µgk (x̄, U⊥) , U) Θ ((x− xb) (xt − x)) , (65)

where Θ is the Heaviside step function,

Θ(y) =

{
1 for y > 0,

0 for y < 0.
(66)

The density of ions crossing position x in approximately closed orbits is an integral

in velocity space of the distribution function (65),

ni,closed(x) =

∫
dvy

∫
dvx

∫
fcl(x, vx, vy, vz)dvz. (67)

Changing to the set of variables (U⊥, x̄, U) [7], we obtain

ni,closed(x) '
∫ ∞

x̄m(x)

Ωdx̄

∫ χM(x̄)

χ(x,x̄)

2dU⊥√
2 (U⊥ − χ (x, x̄))

∫ ∞

U⊥

Fcl (µgk (x̄, U⊥) , U)√
2 (U − U⊥)

dU .

(68)

In (68), the lower limit of integration x̄m (x) is related to the fact that an ion

in a closed orbit must be in the region enclosed by the largest possible orbit,

xM 6 x 6 xt,M. Therefore, the region of integration is x̄ > x̄m (x) [7], with

x̄m (x) = min
s∈[0,x)

{
1

2
(x+ s) +

φ(x)− φ(s)

ΩB (x− s)

}
. (69)
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It is worth noting that ni,closed(0) = 0, because for type I orbits χM(x̄) = χ(0, x̄)

while for type II orbits x < xM. The fact that ni,closed(0) = 0 means that we

cannot naively impose quasineutrality with only the approximately closed orbit

contribution to the ion density. An attempt to impose Zni,closed(0) = ne (0) leads to

ne (0) = ne∞ exp (eφ(0)/Te) = 0 and therefore φ(0) = −∞. This is an unphysical

result which stems from the fact that we have not kept the dominant contribution

to the ion density at (and near) the wall, which comes from ions in open orbits.

4.2. Open orbit ion density

Consider an ion at position x in an open orbit, when U⊥ = χM (x̄) +D and D lies in

the range (59). The ion transitioned from being in a closed orbit to being in an open

orbit a time ∼ δtM before the moment we consider. At this time, the orbit position

differed from x̄ by O (αΩδtMρi), which is small. To lowest order, the ion conserved

its adiabatic invariant up to the point where U⊥ = χM(x̄). Using U⊥ ' χM (x̄),

the adiabatic invariant of the ion was µgk (x̄, χM (x̄)) + O (αΩδtMvt,iρi). Hence, the

distribution function is Fcl (µgk (x̄, χM (x̄)) , U) to lowest order, independent of the

value of D.

For an ion in an open orbit to be at position x, the range of possible values of

x̄ (to lowest order) is determined by two constraints. A time ∼ δtM before being

in an open orbit, the ion must have been in an approximately closed orbit whose

existence depends on the presence of an effective potential minimum. Hence, we

require a stationary point to exist, which implies that x̄ > x̄c is necessary. Moreover,

we require that x < xt,M. For x < xc, it is impossible for an ion to be in the region

x > xt,M because xc 6 xm 6 xt,M, therefore x̄ > x̄c is the necessary and sufficient

condition for an open orbit crossing position x in this case. For x > xc, we use the

fact that xM < xc to conclude that the ion must be in the region xM < x < xt,M;

the criterion for an open orbit crossing position x is therefore identical to that of a

closed orbit crossing position x, x̄ > x̄m(x). Therefore, the condition for an ion in

an open orbit to be present at position x is x̄ > x̄m,o (x), where

x̄m,o(x) =

{
x̄c for x < xc

x̄m(x) for x > xc.
(70)

Two examples of how the constraint x̄ > x̄m,o (x) arises are shown in Figure 7. This

constraint is valid to lowest order in αΩδtM. For any such x̄, the component vy of the
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Figure 7. Type I and II effective potential curves are shown on the left and

right respectively. The dashed curves correspond to an orbit position x̄ = x̄m,o (x),

which is the minimum value of x̄ above which open orbits crossing the position x

(vertical line) exist. The solid effective potential curves are the ones corresponding

to x̄ > x̄m,o(x). The horizontal lines correspond to U⊥ = χM (x̄), which is the

lowest order perpendicular energy of an ion in an open orbit. The dotted curves

correspond to x̄ < x̄m,o (x): no open orbits crossing position x exist for such values

of x̄ because there are no closed orbits at s > x.

velocity is given by (23). The ion’s total energy has to be larger than the effective

potential maximum, U > χM (x̄), and we can approximate the z component of the

velocity as V‖ (χM (x̄) , U). In order to relate values of vy and vz to lowest order

values of x̄ and U for ions in open orbits, in what follows we will refer extensively to

equations (18) and

U = χM (x̄) +
1

2
v2
z +O

(
αv2

t,i

)
, (71)

where the latter equation is obtained by rearranging the equation vz '
V‖ (χM (x̄) , U).

The velocity component vx lies in the range (61), which is obtained from the

range of values of D for given values of x, x̄, and U . For the evaluation of the

distribution function and density of ions in open orbits, the value of ∆vx is crucial

because at a given x, x̄ and U it gives the small range of values of vx in which the

distribution function is non-zero. The exact value of the maximum and minimum vx
only needs to be known to lowest order. Hence, we can shift Vx+ (x, x̄, U) by a small

amount provided we preserve the same value of ∆vx.
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With this in mind, we proceed to obtain simpler expressions for Vx+ (x, x̄, U) and

∆vx. We need to distinguish two regions: |x−xM| ∼ ρi where χM(x̄)−χ(x, x̄) ∼ v2
t,i,

and |x−xM| ∼ αpρi where χM(x̄)−χ(x, x̄) ∼ αv2
t,i (with p defined in equation (54)).

In the region |x− xM| ∼ αpρi, we have the scalings

∆vx ∼ Vx+ ∼ α1/2vt,i, (72)

∆+ ∼ α2p+1/2v2
t,i . α1+pv2

t,i � ∆M ∼ χM − χ ∼ αv2
t,i (73)

hence the term ∆+ can be neglected in the expressions for Vx+ and for ∆vx, with an

error O(αp+1/2vt,i). This error comes from the O
(
α1+pv2

t,i

)
error in evaluating DX

and DB (equations (53) and (57)), which for type I orbits (p = 1) is larger than

∆+ ∼ α2p+1/2, and for type II orbits (p = 1/2) is as large as ∆+.

In the region |x− xM| ∼ ρi, we have

∆vx ∼ αvt,i � Vx+ ∼ vt,i, (74)

and we can expand the expressions for ∆vx and Vx+ by using

α1+pv2
t,i � ∆M ∼ ∆+ ∼ αv2

t,i � χM(x̄)− χ(x, x̄) ∼ v2
t,i. (75)

When we expand the term ∆+ ∼ αv2
t,i out of the square root in equation (60) for

Vx+, we can neglect it to obtain

Vx+ (x, x̄, U) = Vx (x, x̄, χM (x̄)) +O (αvt,i) . (76)

Note that for type I orbits in the region |x − xM| ∼ αρi the error in Vx+ is, from

the earlier discussion, O(α3/2vt,i), but the error arising in the region |x− xM| ∼ ρi is

O (αvt,i); therefore equation (76) and its associated error are correct in both regions.

For type II orbits, the error in equation (76) has the same size in both regions. When

we expand the term ∆+ out of the square root in equation (61) for ∆vx using the

ordering (75), the terms proportional to ∆+ cancel to first order. Even though we

could expand ∆M out of the square root we don’t because the equation

∆vx =
[√

2 (∆M (x̄, U) + χM (x̄)− χ (x, x̄))

−
√

2 (χM (x̄)− χ (x, x̄))
]

(1 +O (αp)) (77)
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Figure 8. The scaling for ∆vx, and its behaviour as a function of x at fixed values

of x̄ and U , is shown schematically. Note that ∆vx has a “spike” at x = xM.

also holds in the region |x− xM | ∼ αpρi, where ∆+ could be neglected. The error in

equation (77) is the same for both regions, and originates from the O
(
α1+pv2

t,i

)
error

in evaluating DX and DB.

From (77) and the scaling in (56), we obtain the scaling

2παvt,i . ∆vx .
√

2παvt,i, (78)

where ∆vx ∼
√

2παvt,i holds in the neighbourhood of the effective potential

maximum xM and the top bounce point xt,M (although the open orbit density is not

correct near xt,M), while ∆vx ∼ 2παvt,i holds everywhere else, as shown in Figure 8.

The range of velocities in (63) reduces, using equations (76) and (77), to

−Vx (x, x̄, χM (x̄))−∆vx < vx < −Vx (x, x̄, χM) . (79)

Note that a major simplification has occurred: equations (76) and (77), and therefore

the range (79), are now independent of ∆+. The “open orbit integral”

I(x̄) =

∫ xt,M

xM

(s− xM)

Vx (x, x̄, χM (x̄))
ds (80)
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is a function of x̄ only. Using I(x̄) we can re-express ∆M, defined in equation (56),

as ∆M (x̄, U) = 2αΩ2V‖(χM(x̄), U)I(x̄).

Equation (79) gives the range of values for which the distribution function of

open orbits is non-zero, therefore

fop(x, vx, vy, vz) 'Fcl (µgk (x̄, χM (x̄)) , U)

× Π̂ (vx,−Vx (x, x̄, χM)−∆vx,−Vx (x, x̄, χM)) Θ (xt,M − x) , (81)

where we can use (18) and (71) to re-express x̄ and U in terms of x, vy and vz. The

subscript “op” stands for “open”. In (81), we introduced the top hat function

Π̂ (r, l1, l2) =

{
1 if l1 6 r < l2,

0 else.
(82)

The density of ions in open orbits is an integral of the distribution function in velocity

space at fixed x, hence

ni,op (x) =

∫
fop (x,v) d3v. (83)

Changing variables in the integral using equations (18) and (71) we get

ni,op (x) =

∫ ∞

x̄m,o

Ωdx̄

∫ ∞

χM (x̄)

Fcl (µgk(x̄, χM(x̄)), U)√
2 (U − χM (x̄))

∆vxdU [1 +O (αp)] . (84)

From equations (78) and (84), the characteristic size of the open orbit density is

α1/2ne∞ . ni,op(x) . αne∞. (85)

5. Quasineutrality

The previous section provides the equations from which the ion distribution function

and density can be obtained across the magnetic presheath if the electrostatic

potential profile and the distribution function at x → ∞ are known. However,

the electrostatic potential is not known a priori, but has to be determined by the

quasineutrality equation. With the electron density given by (8) and the closed and

open orbit ion densities given by (68) and (84), quasineutrality is

ne∞ exp

(
eφ (x)

Te

)
= Zni (x) ≡ Z (ni,cl(x) + ni,op(x)) . (86)



Solution to a collisionless magnetic presheath with kinetic ions 27

In this section, we expand the quasineutrality equation (86) near the magnetic

presheath entrance x → ∞ and then near the Debye sheath entrance x = 0. These

expansions are useful to gain analytical insight into the system, and from a more

practical point of view they make the task of finding the numerical solution easier.

From the expansion near x→∞, we deduce:

• a solvability condition for the distribution function at the magnetic presheath

entrance, with which we choose a realistic boundary condition for the ion

distribution function at x→∞;

• the form of the electrostatic potential near x → ∞, with which we obtain a

boundary condition for our numerically determined electrostatic potential at

large x.

From the expansion near x = 0, we deduce:

• that the self-consistent solution of the system requires the ion distribution

function at x = 0 to marginally satisfy the kinetic Bohm condition, with which

we can check the numerically determined distribution function;

• the self-consistent form of the potential near x = 0, with which we choose a

suitable numerical discretization for the system.

5.1. Expansion of quasineutrality near x→∞

At sufficiently large values of x, the electrostatic potential must be small, such that

φ̂ =
e |φ (x)|
Te

� 1. (87)

In this subsection we also assume that the length scale of changes in the electrostatic

potential is very large at sufficiently large x, such that

ε =
ρiφ
′ (x)

φ (x)
� 1. (88)

Our assumption (88) is not the most general one, as ε can be of order unity, but it

is useful because it is correct for the boundary condition at x→∞ that we choose.

In general,

φ̂ . ε2 . 1. (89)














































































