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Avoiding impurity accumulation is a requirement for steady-state stellarator operation. The accumulation
of impurities can be heavily affected by variations in their density on the flux-surface. Using recently de-
rived semi-analytic expressions for the transport of a collisional impurity species with high-Z and flux-surface
density-variation in the presence of a low-collisionality bulk ion species, we numerically optimize the im-
purity density-variation on the flux-surface to minimize the radial peaking-factor of the impurities. These
optimized density-variations can notably reduce the peaking-factor in the Large Helical Device (LHD) case
considered here, but have only a minor effect on the peaking-factor in a Wendelstein 7-X (W7-X) standard
configuration case, where the peaking-factor already is negative in the core plasma. On the other hand, when
the same procedure is used to find density-variations that maximize the peaking-factor, the peaking-factor is
notably increased compared to the case with no density-variation. This highlights the potential importance
of measuring and controlling these variations in experiments.
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I. INTRODUCTION

Highly-charged impurities can enter fusion plasmas
from the walls of the vessel. In any magnetic-confinement
fusion-reactor, these impurities must be prevented from
accumulating in the core of the plasma, where they radi-
ate strongly and lead to unsustainable energy losses.

Impurity accumulation is one of the major challenges
in stellarators, where accumulation of impurities is often
observed when the radial electric field points inwards1–3

— which is the predicted operational regime for future
reactors.

Such accumulation is also predicted theoretically,
based on collisional transport calculations with simpli-
fied pitch-angle scattering collision operators. However,
such simplified operators are not appropriate for treat-
ing highly-charged impurities with high collisionality4.
When an appropriate collision operator is used, the radial
transport of the heavy impurities becomes insensitive to
the radial electric field4–6. Additionally, if the bulk ions
are in a low-collisionality regime, impurity accumulation
can be avoided by having large temperature gradients4,6

– an effect known as temperature screening.
However, these results do not account for the ten-

dency of highly-charged impurities to develop density-
variations on the flux-surface7–9. Such variations oc-
cur when any plasma-species deviate from a flux-surface
Maxwell-Boltzmann distribution, and are strongest for
highly-charged species. When these variations are ac-
counted for, the radial electric field again affects the
transport of heavy-impurities10,11. In most scenarios,
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this leads to an accumulation of impurities10,11, but there
exist cases where the radial electric field is mildly bene-
ficial:

In Ref. 10, where the density variation is due to elec-
trostatic potential-variation from trapped-particles – cal-
culated with the Euterpe code – there exists a narrow
range of inward radial-electric fields that lead to an out-
ward impurity flux for one of the charge states (Z = 24,
the lowest charge state investigated).

In Ref. 11, where a model of a localized flux-surface
variation of impurities was considered, it was found that
an inward radial-electric field can lead to weak outward
transport if the amplitude of the localized variation is
small.

Furthermore, the outward transport of carbon impuri-
ties can be enhanced by electrostatic potential-variations
caused by fast, perpendicularly injected, neutral-beam
particles12.

Thus, it is in some cases possible for flux-surface den-
sity variations to reduce or prevent impurity accumu-
lation. The purpose of the present work is to explore
what beneficial impurity density variations look like, and
how much they reduce the impurity accumulation. We
do this by optimizing semi-analytical expressions for the
impurity-transport coefficients from Ref. 11 with respect
to the impurity density variation, to find variations that
lead to the least (or most) impurity accumulation.

The remainder of this paper is organized as follows:
in the next section, we present the mathematical formu-
lation of the problem and analytic expressions for the
impurity transport coefficients, radial flux and peaking-
factor. In Sec. II A, we show how the impurity density
variation is represented and optimized. In Sec. III, we
discuss the results of such optimization applied to a Wen-
delstein 7-X (W7-X) and a Large Helical Device (LHD)
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II MATHEMATICAL FORMULATION

case.

II. MATHEMATICAL FORMULATION

In this section, we describe the radial transport of a
highly-charged collisional impurity species (labeled “z”)
due to collisions with a bulk-ion species (labeled “i”).
Specifically, we consider a mixed-collisionality regime4

where the impurities are collisional and the bulk ions
are in the 1/ν regime. We here summarize results from
Ref. 11.

The parallel momentum equation of a collisional im-
purity species is

T∇‖nz = −Zenz∇‖Φ +Rz‖, (1)

where T is the impurity temperature, which is the same
as the main-ion temperature Ti = T ; ∇‖ denotes the gra-
dient projected onto the magnetic field direction; nz is
the impurity density, which varies along the flux-surface;
Ze is the charge of the impurity, Φ the electrostatic po-
tential; and Rz‖ the parallel friction force. Under most
conditions, the friction force is smaller than the other

terms in this equation, which results in

nz = Nz(rN ) exp

(
−ZeΦ̃

T

)
, (2)

where rN is a flux-surface label (in this paper, rN =√
ψt/ψt,LCFS, where ψt is the toroidal flux and ψt,LCFS

the toroidal flux at the last-closed flux-surface); Nz is

a flux-function known as the pseudo-density ; and Φ̃ is
the deviation of Φ from its flux-surface average. The
Boltzmann-response to the electrostatic potential, (2),
commonly occurs as the collisional equilibrium density
in confined plasma. If all species in the plasma would
obey (2), quasi-neutrality would force Φ to be a flux-
function, and all densities would be constant along the
flux-surface. However, if any species deviate from (2),
Φ will vary on the flux-surface, which can cause species
with high Z to develop significant density-variations on
the flux-surface.

Assuming that (2) holds for the impurities – regard-
less of the mechanism that causes the Φ variation – the
collisional radial transport of the impurities in the mixed-
collisionality regime can be written as

〈Γz · ∇rN〉
〈nz〉

=−DNz
[nz]

1

Z

d lnNz
drN

+DΦ[nz]
e

T

d〈Φ〉
drN

−Dni
[nz]

d lnni
drN

−DTi
[nz]

d lnT

drN
,

(3)
where the transport coefficients DX [nz] depend on the
impurity-variation on the flux-surface, as indicated by
the square-brackets. Specifically,

DNz

D
=
〈
nzw

2B2
〉
−
〈
nzwB

2
〉 〈wB2

〉
〈B2〉

+

〈nzwB
2〉

〈B2〉

〈
B2

nz

〉
−
〈
wB2

〉〈
B2

nz
(1− c4α)

〉 〈
(1− c4α)wB2

〉
+

〈
nz|∇rN |2

B2

〉
, (4)

Dni

D
=−

〈
nzwuB

2
〉

+
〈
nzwB

2
〉 〈uB2

〉
〈B2〉

−
〈nzwB

2〉
〈B2〉

〈
B2

nz

〉
−
〈
wB2

〉〈
B2

nz
(1− c4α)

〉 (
c2 +

〈
uB2

〉
[c1 + 1]

)
−
〈
nz|∇rN |2

B2

〉
, (5)

DTi

D
=

1

2

〈
nzwuB

2
〉
− 1

2

〈
nzwB

2
〉 〈uB2

〉
〈B2〉

−
〈nzwB

2〉
〈B2〉

〈
B2

nz

〉
−
〈
wB2

〉〈
B2

nz
(1− c4α)

〉 (
c3 −

3

2
c2 −

〈
uB2

〉 [
c1(η − 1) +

1

2

])
(6)

+
1

2

〈
nz|∇rN |2

B2

〉
,

DΦ =−Dni −DNz , (7)

where D = miniTi

Ze2〈nz〉nzτiz
; α = Z2nz/ni; c1 to c4 are flux-

surface constants that depend on the magnetic geometry

and nz, defined in the Appendix A–C of Ref. 11; and

B · ∇u = −B ×∇ψ · ∇B−2, (8)

B · ∇(nzw) = −B ×∇ψ · ∇(nzB
−2). (9)
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A Optimization II MATHEMATICAL FORMULATION

The functions u, w are evaluated numerically from the
magnetic geometry and nz, and the flux-surface con-
stants c1 to c4 are integrated numerically.

From (3), we obtain the peaking-factor ofNz by solving
for the − 1

Z
d lnNz

drN
that gives 〈Γz · ∇rN〉 = 0. Denoting

this peaking-factor by P, we obtain

P =− DΦ

DNz

e

T

d〈Φ〉
drN

+
Dni

DNz

d lnni
drN

+
DTi

DNz

d lnT

drN

=

(
1 +

Dni

DNz

)
e

T

d〈Φ〉
drN

+
Dni

DNz

d lnni
drN

+
DTi

DNz

d lnT

drN
.

(10)
To find the nz that minimizes impurity accumulation,

we can minimize P which, according to (10), is equiv-
alent to minimizing a weighted sum of Dni/DNz and
DTi/DNz . This picture can be further simplified, by
noting that DTi = − 1

2Dni for nz that are constant on
the flux-surface. In fact, here and in Ref. 11, we find
DTi ≈ −0.5Dni to within a few percent in many cases.
With this approximation,

P ≈ e
T

d〈Φ〉
drN

+
Dni

DNz

(
e

T

d〈Φ〉
drN

+
d lnni
drN

− 0.5
d lnT

drN

)
,

(11)
thus minimizing the peaking-factor becomes equivalent
to either maximizing or minimizing Dni

/DNz
, depend-

ing on the sign of the expression in the parenthesis in
(11). Thus, when this expression, which we denote by
X, is far from zero, we expect the nz that optimizes the
peaking-factor to be insensitive to the radial gradients –
provided that the above approximation holds. Note that
while the optimized nz is insensitive to the gradients, the
actual value of the peaking-factor evaluated at this nz is
sensitive to the gradients.

A. Optimization

To avoid impurity accumulation, we seek to find an
impurity density nz that minimizes (10). We restrict
the problem to a finite number of degrees of freedom by
expressing nz in terms of a truncated Fourier-expansion

nz(θ, ζ) =a00f00(θ, ζ) +

N∑
n=1

[an0fn0(θ, ζ) + bn0gn0(θ, ζ)]

+

N∑
n=−N

M∑
m=1

[anmfnm(θ, ζ) + bnmgnm(θ, ζ)],

(12)
where the basis functions

fnm(θ, ζ) = 1 + ε+ cos (mθ −Npnζ), (13)

gnm(θ, ζ) = 1 + ε+ sin (mθ −Npnζ), (14)

are chosen to be strictly positive (ε > 0, here ε = 10−6) as
the transport coefficients in (4)–(7) diverge for nz = 0.
Here, θ (ζ) is the poloidal (toroidal) Boozer angle13,14,
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FIG. 1: Profile gradients of the W7-X (solid line) and
LHD (dashed) case under consideration. Here X, refers

to the expression in the parenthesis of (11). As X is
positive, minimizing the peaking-factor should

correspond to minimizing Dni
/DNz

.

with Np the number of toroidal periods of the stellara-
tor. Thus, we restrict ourselves to impurity densities that
have the same discrete rotational symmetry as the mag-
netic field. To avoid unrealistically sharp variation in nz
and to limit the dimensionality of the problem, we re-
strict ourselves to N = M = 3, which corresponds to 49
Fourier coefficients to optimize.

We eliminate one of the degrees of freedom, the m =
n = 0 mode, by specifying 〈nz〉 on the flux-surface. The
state-vector of the problem thus consists of the 48 un-
constrained Fourier-modes. We furthermore require that
nz > d > 0, which imposes a non-linear constraint on
the Fourier-coefficients. The value of d can be tuned to
restrict nz to a realistic range of values; the effect of
changing d is investigated in appendix A.

The optimization proceeds from an initial state-vector
from which we find a local optimimum by applying the
gradient-based method-of-moving-asymptotes15, as im-
plemented in the python version of the non-linear op-
timization package NLopt16.
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FIG. 2: Magnetic field strength B for a W7-X standard
configuration vacuum case.

FIG. 3: Magnetic field strength B for the LHD
case17,18.

III. RESULTS

We optimize nz for a W7-X1 and an LHD equilibrium2,
with the logarithmic gradients shown in Fig. 1 and mag-
netic geometry in Fig. 2 and Fig. 3. From the last subfig-

ure in Fig. 1, we see that ( eT
d〈Φ〉
drN

+ d lnni

drN
−0.5d lnT

drN
) > 0,

which suggests that optimizing nz to minimize either the
peaking-factor P or Dni/DNz are approximately equiv-
alent. The optimizations start from an initially homoge-
neous nz, and we restrict the flux-surface variations to
nz > 0.75〈nz〉.

The results of such an optimization for three different
radii are shown in Fig. 4 and Fig. 5, for the W7-X case
and the LHD case, respectively. We see that the ampli-
tude of the optimized nz tends to increase radially, as the
amplitude of B variations increase. For the W7-X case,

FIG. 4: nz optimized for minimum peaking-factor, for
the W7-X cases in Fig. 2. The contours visualize the

magnetic field at each flux-surface.

1 W7-X standard configuration available at (Verified 2018-11-19)
https://github.com/landreman/sfincs/blob/master/

equilibria/w7x-sc1.bc
2 LHD magnetic field taken from discharge #113208 at t =

4.64 s17,18.

FIG. 5: Figure corresponding to Fig. 4, but for the
LHD case.
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FIG. 6: a: Peaking-factor and a largest nz variations
on the flux-surface for the W7-X case. b: the maximum

deviation in nz/〈nz〉.

the shape of the optimized nz are qualitatively different
below and above rN ≈ 0.7. The corresponding potential
variations are presented in appendix B. In both the LHD
and W7-X for rN < 0.7, the optimized nz are larger along
the ridges of the maximum B, and peaking some distance
away from the maximum value of B – sometimes with a
second peak at the maximum of B.

To evaluate the usefulness of targeting these optima,
we need to know how much they reduce the peaking-
factor. This is shown in Fig. 6a and Fig. 7a, for the W7-
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FIG. 7: Figure corresponding to Fig. 6, for the LHD
case.
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III RESULTS

X and LHD cases. As seen in Fig. 6a, the optimization
only slightly reduces the peaking-factor (red curve) com-
pared to the homogeneous case (black) in the W7-X case.
For the LHD case, the optimization has a larger effect,
which suggests that the core impurity density could be
reduced by modifying the impurity distribution on the
flux-surface. In both cases, an unoptimized nz can re-
sult in a more peaked impurity profile, as seen from the
pessimized curves in Fig. 6a and Fig. 7a – which were
obtained by maximizing, rather than minimizing, the
peaking-factor, where again we start from an initially ho-
mogeneous nz. This appears consistent with the findings
in Refs.10,18,19, where the transport of impurities tends to
be more inwards when the effect of nz variation (through
the electrostatic potential variation) is accounted for. It
may also be consistent with Ref. 12, where a beneficial
effect of flux-surface variation is observed in simulations
of the LHD.

In Fig. 6b and Fig. 7b, we show the maximum devia-
tions of nz from the flux-surface value

∆nz = max
ζ,θ

(∣∣∣∣nz(ζ, θ)〈nz〉
− 1

∣∣∣∣) , (15)

which again illustrates that the amplitude of nz increases
with radius, and that the nature of the optimized nz
changes for rN ≈ 0.7 in the W7-X case. Despite the
transition to a larger nz amplitude, there is no great
change in the peaking-factor in this case, which shows
that large nz variation can exist without severely im-
pacting the peaking-factor. That being said, in both the
W7-X and LHD case, the pessimized nz tends to have
larger variations.

A. Influence of small-amplitude modes

For the optimized nz to be reasonable targets in an
experiment, they must be robust to small changes. We
investigate this by considering how many of the 48 un-
constrained Fourier modes actually contribute to lower-
ing the peaking-factor.

We investigate this by zeroing out Fourier-coefficients
below a threshold value in our representation of nz, (12).
The resulting change in peaking-factor and the number
of retained unconstrained modes is shown in Fig. 8 and
Fig. 9, for the W7-X and LHD case at two different radii,
which are representative of the behaviour in the core and
the edge. Note that the constrained m = 0, n = 0 cosine
mode is always retained, and is set by the other modes
to ensure that 〈nz〉 is held constant. Also note the linear
scale in the number of retained modes below 10 in Fig. 8
and Fig. 9, and the logarithmic scale when more than 10
modes are retained. For all cases, less than 10 modes ac-
tually contribute to visibly reducing the peaking-factor,
as seen by the constant peaking-factor for low values of
the zeroing-threshold. In fact, the sharpest increase in
the peaking-factor occurs only when the last one or two
unconstrained modes are zeroed out. In the core, this
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FIG. 8: The effects of zeroing out coefficients below a
threshold value on the peaking-factor P in the W7-X

case.
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FIG. 9: Figure corresponding to Fig. 8 for the LHD
case.

sharp increase occurs when the last (last two) uncon-
strained mode is zeroed, in the W7-X (LHD) case; in the
edge, it occurs at two (one) modes in the W7-X (LHD)
case. This implies that only one or two dominant uncon-
strained modes are needed for most of the optimization.

To illustrate which two modes are the dominant ones,
we plot the amplitude of the relevant modes against ra-
dius in Fig. 10, alongside the constrained m = 0, n = 0
mode. From the W7-X subfigure in Fig. 10, we clearly
see that the nature of the optimized nz changes for
0.75 < rN < 0.95, as previously observed, but it tran-
sitions back for rN ≈ 0.95. In the LHD case, the
m = 1, n = 0 cosine mode is the dominant unconstrained
mode at low rN , but the m = 2, n = 1 cosine mode
overtakes it at rN ≈ 0.66.

By restricting our attention only to the two dominant
modes, we can visualize the entire optimization land-
scape to identify the globally optimal amplitudes for
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FIG. 10: Dominant modes for the different radii in the
W7-X and LHD cases. Modes with negative amplitudes

are marked with a “−” in the legend.

FIG. 11: The differential peaking-factor P − Phomo at
each point in an amplitude scan of the two dominant

modes at low rN in the W7-X optimization. Note that
these two modes are not dominant in the optimum
found at rN around 0.8, see the W7-X subfigure of
Fig. 10. The red dot indicates the location of the
minimum, and the green dot a homogeneous nz.

these modes. For this purpose, we perform a two di-
mensional scan in the amplitudes of the dominant modes
for the W7-X and LHD cases. For the W7-X case, we
restrict our attention to the two dominant modes at low
rN .

The peaking-factor for each point in the scan is illus-
trated in Fig. 11 and Fig. 12, for the W7-X and LHD
case, respectively. The contour lines represent the limit
imposed by the optimization requiring nz/〈nz〉 > 0.75.

FIG. 12: A figure corresponding to Fig. 11, for the
LHD case.

From these figures, we see that the optimum (red dot)
tends to higher amplitudes for higher rN , and also that
it is the local optimum starting from an initially homo-
geneous nz (green dot). In both W7-X and LHD, the
optimum is relatively narrow in the amplitude of the
m = 1, n = 0 cosine mode (x-axis), but broadens for
higher rN . Regardless of how narrow the optimum is,
it is always beneficial to have an m = 1, n = 0 cosine
mode of moderate amplitude, compared to the homo-
geneous case, but the peaking-factor rapidly increases
when the amplitude becomes too large. The peaking-
factor is less sensitive to the amplitude of the other mode
(n = −1,m = 1 in W7X, n = 1,m = 2 in LHD), but the
minima in these broader basins nevertheless tend towards
larger amplitudes at higher rN . For the LHD case, the
amplitude of the minima becomes sufficiently large to
hit the nz > 0.75〈nz〉 constraint, which we imposed to
exclude unphysically large nz variation. This may indi-
cate that this optimum nz may be difficult to achieve in
reality. However, as there are still points with realistic
amplitudes with peaking-factors lower than in the homo-
geneous case, nz optimization may still be worthwhile
within the boundaries of realistic variations.

IV. SUMMARY & CONCLUSIONS

We have performed numerical optimizations of the
impurity density variation on the flux-surface, nz(ζ, θ),
to minimize a semi-analytical expression for the impu-
rity pseudo-density peaking-factor, valid in the mixed-
collisionality regime with a collisional impurity and a
low-collisionality bulk-ion species. In order to con-
strain nz to a realistic range of variations, we have only
performed local optimizations of nz around a homoge-
neous initial value, using a gradient-based minimization
method to minimize the peaking-factor. To further con-
strain nz, we have imposed nz > 0.75〈nz〉, as the opti-
mization otherwise can produce unrealistically large nz
variations on the flux-surface.

The results show that there is a potential to lower the
collisional peaking-factor by controlling nz in the LHD
case considered here, while the optimization in the W7-X
case yields peaking-factors very close to those of a homo-
geneous nz. On the other hand, we find that there are
flux surface variations that lead to a notable increase in
the impurity peaking factor in both the W7-X and LHD
case.

As a conclusion, it may be worthwhile to experiment
with nz variation to produce more hollow impurity pro-
files in LHD, as observed in Ref. 12. In particular, it
appears that m = 1, n = 0 cosine modes of moderate
amplitudes (up to −0.05〈nz〉 to −0.2〈nz〉, with larger
amplitudes at larger radius) are beneficial in the case
considered here. For the W7-X standard configuration,
a homogeneous nz is close to optimal, and from this per-
spective, it may thus be wise to avoid nz variations. On
the other hand, there exist nz variations with large ampli-
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B CORRESPONDING POTENTIAL VARIATION

a

b

FIG. 13: a: nz optimized for minimum peaking-factor
with nz > 0, for the W7-X cases in Fig. 2. The contours
visualize the magnetic field at each flux-surface. b: ∆nz

for each flux-surface.

tudes and slightly-better than homogeneous performance
in W7-X, so nz variations are not intrinsically harmful.
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Appendix A: Effects of changing the minimum nz value

In the bulk of this paper, we optimized nz given the
constraint nz > 0.75〈nz〉. Here, we show the effects of
lifting that constraint, to demonstrate why such a con-
straint is necessary.

In Fig. 13a and Fig. 14a, we show the optimized nz
obtained for the flux-surfaces in Fig. 2 and Fig. 3, by
the optimization procedure described in Sec. II A starting
from an initially homogeneous nz and only requiring nz >
0 everywhere on the flux-surface.

From these figures, we see that the amplitude of the op-
timized nz initially increases with radii, while the shape
remains similar. At some radius, the amplitudes “acces-
sible” in the local optimization become large enough for
the algorithm to find a new kind of local minimum, with
radically different shape and unrealistically large ampli-
tude. This occurs at rN ≈ 0.70 in the W7-X case, and at

a

b

FIG. 14: Figure corresponding to Fig. 13, but for the
LHD case.

rN ≈ 0.75 in the LHD case – although a similar optimum
is also found at rN = 0.66 in this LHD case, as seen from
Fig. 14b.

Thus, without specifying a lowest allowed value for nz,
even optimizations starting from a homogeneous initial
nz cannot be guaranteed to display reasonable nz varia-
tions. The shape of the optima found at the outer radii
in Fig. 13a is in fact very similar to a “global” optimum
obtained by stochastic optimization where several initial
nz are randomly generated and the lowest local optimum
resulting from performing local optimization from these
initial nz’s is taken as an upper bound for the global min-
imum. The result of this process for rN = 0.6 in W7-X
is shown in Fig. 15. The situation in the W7-X case may
thus be illustrated as in Fig. 16, where there always exist
local minima unrealistically far from a homogeneous nz
that are more optimal than those obtained from starting
the local optimization at a homogeneous nz.

This is the reason for optimizing on a more restric-
tive function-space, for example by specifying nz > d for
some d. A better approach would be to restrict nz to
a function-space of “reasonable” impurity density varia-
tions based on the physical modeling of the phenomena
causing the flux-surface variation, but this is outside the
scope of this work.

Appendix B: Corresponding potential variation

In this work, we calculate nz that optimize the im-
purity peaking-factor, with little regard for the physical
mechanisms that set nz. However, physics-based calcu-
lation of nz often calculate flux-surface variation of the
electrostatic potential, from which nz is obtained through
(2). To connect our results to previous theoretical stud-

ies, we thus invert (2) to obtain Φ̃’s corresponding to our
optimized nz

ZeΦ̃

T
= − log nz + C, (B1)
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FIG. 15: Optimized nz resulting from stochastic
optimization in the W7-X case at rN = 0.6.
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FIG. 16: Illustration of the local optimization
landscape in the W7-X case, for two different radii. At
higher rN , a local optimizer starting at a uniform nz
finds an optimum that was inaccessible but existed at
lower rN ; as revealed by the stochastic optimization.

The differences in Peaking-factor is here exaggerated for
the purpose of illustration.

where C is a constant calculated to make 〈Φ̃〉 = 0. The

resulting ZeΦ̃/T for the W7-X and LHD cases are dis-
played in Fig. 17 and Fig. 18.
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