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HALO: A full-orbit model of nonlinear 

interaction of fast particles with 

eigenmodes 

M. Fitzgerald, J. Buchanan, R.J. Akers, B.N. Breizman, S.E. Sharapov 

HALO (HAgis LOcust) solves the initial value Vlasov-Maxwell problem perturbatively for application to 

certain nonlinear wave-particle problems in tokamak plasmas. It uses the same basic approach as 

the HAGIS code (Pinches et al., 1998) for wave evolution but is built on the LOCUST-GPU full-orbit 

code (Akers et al., 2012) for the solution of the Hamiltonian fast particle motion in cylindrical 

coordinates.  The wave amplitude and particle evolution include all finite Larmour radius effects. We 

describe and benchmark the currently implemented Alfvén eigenmode workflow, demonstrating 

correct particle motion, linear and nonlinear power transfer. The formulation and numerical scheme 

are sufficiently general as to allow easy future implementation of different kinds of eigenmodes, such 

as modes close to the ion-cyclotron frequency. The code can model multiple eigenmodes and multiple 

fast ion species simultaneously, and supports the general form of the equilibrium distribution in 

constants of motion. 

Introduction 
For tokamaks to allow reactor relevant regimes of operation, a proportion of the confined plasma 

must necessarily be comprised of energetic ions. The anticipated abundance of non-Maxwellian 

alpha particles in the burning plasma regime on ITER would be both a key physics achievement and a 

new stability consideration. It is well understood, both from current experiments and significant 

theoretical study, that fast particles can resonantly destabilise wave eigenmodes in the bulk 

thermonuclear tokamak plasma, which can degrade performance and damage the plasma-facing 

components through energetic ion redistribution and loss.  

Existing experiments with neutral beam injection (NBI) and ion cyclotron resonant heating (ICRH) 

have confirmed the destabilization of predicted bulk plasma eigenmodes such as the toroidal Alfvén 

eigenmode (TAE) [1] or the reverse shear Alfvén eigenmode (RSAE)[2]. In addition to the well-

understood Alfvénic modes in the bulk plasma, wave activity in the ion-cyclotron range has also 

been observed, as well as lower frequency energetic particle modes (EPM) [3] which are thought to 

be large coherent motions of the fast-particles themselves interacting with a broad Alfvén 

continuum. A number of stability modelling strategies have been employed with varying levels of 

self-consistency and difficulty [4]. 

For the Alfvénic modes that have been identified as eigenmodes of the bulk plasma, very good 

agreement has been shown between the linear MHD theory and the observations [5]. This 

experimental fact is a powerful motivation for a general perturbative nonlinear predictive code for 

wave-particle interaction, where all the nonlinearity is assumed to be due to the perturbed fast ions 

rather than the bulk plasma. The perturbative approach is fundamentally the same as the nonlinear 

Landau damping solution given by O’Neil [6] and Mazitov [7] and later applied to Alfvén waves in the 

fusion context by Berk and Breizman[8], where particle orbits in tokamak geometry were computed 

using a guiding centre drift model with a simplified Alfvén wave expression [9].  The formulation of a 

Hamiltonian theory of guiding centre motion in realistic magnetic geometry [10] allowed similar 
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solutions of the drift-kinetic-Maxwell problem in codes such as ORBIT [11], FAC [12] and HAGIS [13]. 

All these codes relied on a delta-f scheme [14] , forcing the identically zero equilibrium contribution 

to the power transfer to be ignored in the marker population, improving Monte Carlo statistics in the 

remaining contribution coming from the perturbation. 

In this work, we present the new HALO (HAgis LOcust) code, which is a full orbit implementation of 

the perturbative delta-f approach, allowing nonlinear modelling of any bulk plasma eigenmode at 

arbitrary frequency using the Vlasov-Maxwell system of equations.   The high performance LOCUST-

GPU code [15] serves as the orbit following foundation for the wave-particle physics described in this 

paper. 

Physical model 
In this section, we rederive a perturbative wave-particle treatment for a general Vlasov-Maxwell 

system and an associated delta-f noise reduction scheme.  Our goal is to make the derivation 

sufficiently general to be useful to those working in both astrophysical and laboratory plasmas, as 

well as to make the orderings required for the perturbative approach as transparent as possible. We 

deviate from the usual variational approach [9] and instead start with Maxwell’s equations.  

Derivation of wave evolution equations 
Starting with the Fourier transformed wave-equation 

−
𝑐2

𝜔2
𝛁 × 𝛁 × 𝐄̃(𝐱, 𝜔) + 𝐄̃(𝐱, 𝜔) = −

𝑖𝜇0𝑐
2

𝜔
𝐉̃(𝐱, ω) (1) 

we identify a Hermitian linear response portion ∫𝑑𝒙′ 𝛔(𝒙, 𝒙′, 𝜔)𝐄̃(𝒙′, 𝜔) of the total current 

density, and separate it from the anti-Hermitian linear 𝐉̃𝜎̅(𝐱,ω), nonlinear 𝐉̃𝑵𝑳(𝐱, ω) and free current 

𝐉̃𝑓𝑟𝑒𝑒(𝐱, ω) 

−
𝑐2

𝜔2
𝛁 × 𝛁 × 𝐄̃(𝐱, 𝜔) + 𝐄̃(𝐱, 𝜔)

= −
𝑖𝜇0𝑐

2

𝜔
[∫𝑑𝒙′ 𝛔(𝒙, 𝒙′, 𝜔)𝐄̃(𝒙′, 𝜔) + 𝐉̃𝑵𝑳(𝐱, ω) + 𝐉̃𝑓𝑟𝑒𝑒(𝐱, ω) + 𝐉̃𝜎̅(𝐱,ω)] (2)

 

This rearrangement has been expressed a number of equivalent ways in the literature [16][17] 

such as  

𝐾(𝒙, 𝒙′, 𝜔) =
𝛜(𝒙, 𝒙′, 𝜔)

𝜖0
= (𝛿(𝒙 − 𝒙′)𝐈 +

𝑖𝜇0𝑐
2

𝜔
𝛔(𝒙, 𝒙′, 𝜔)) (3) 

Λ(𝒙, 𝒙′, 𝜔) = [−
𝑐2

𝜔2
𝛿(𝒙 − 𝒙′)𝛁 × 𝛁 × +𝐾(𝒙, 𝒙′, 𝜔)] (4) 

We will adopt the notation of Breizman et al. [18] making all terms have dimensions of current 

density 

𝑔 ≡ −
𝜔

𝑖𝜇0𝑐
2
Λ (5) 

 ∫ 𝑑𝒙′ g(𝒙, 𝒙′, 𝜔)𝐄̃(𝒙′, 𝜔) = (𝐉̃𝑵𝑳(𝐱, ω) + 𝐉̃𝑓𝑟𝑒𝑒(𝐱, ω) + 𝐉̃𝜎̅(𝐱,ω)) (6) 

Consider the linear homogeneous (undriven) MHD equation 

∫𝑑𝒙′ gMHD(𝒙, 𝒙
′, 𝜔)𝐄̃(𝐱′, 𝜔) = 0 (7) 



Page 3 of 24 
 

 

This formalism supports any Hermitian model for the plasma dielectric, so it is not restricted to just 

linear MHD.  However, given the examples in this paper deal with shear Alfvén waves, we will label 

the linear response with “MHD” for the purposes of this derivation, however we will drop the label 

outside this derivation in order to avoid the implication that it has to be MHD. 

The corresponding inhomogeneous (driven) MHD problem is 

∫𝑑𝒙′ gMHD(𝒙, 𝒙
′, 𝜔)𝐄̃(𝐱′, 𝜔) = 𝐉̃𝑓𝑟𝑒𝑒(𝐱, ω) (8) 

The free currents are independent of the electric field (by definition).  If the drive from free currents 

is sufficiently weak, then solutions to an externally driven inhomogeneous equation at 𝜔 near 𝜔′  

will resemble a homogeneous solution at ω′.  We thus assume |𝜔| ≫ |𝜔 − 𝜔′|  

gMHD(𝒙, 𝒙
′, 𝜔) ≈ gMHD(𝒙, 𝒙

′, 𝜔′) + 𝜖 [(𝜔 − 𝜔′)
𝜕

𝜕𝜔
] gMHD(𝒙, 𝒙

′, 𝜔′) (9) 

where we have introduced the formal small ordering parameter 𝜖 which is the ratio of driving 

current to the dielectric currents 

|𝜔 − 𝜔′|

|𝜔|
~

|𝐉̃𝑓𝑟𝑒𝑒(𝐱, ω)|

|∫ 𝑑𝒙′ gMHD(𝒙, 𝒙
′, 𝜔)𝐄̃(𝐱′, 𝜔)|

≪ 1 (10) 

We include 𝜖 simply as a label to remind the relative sizes of various terms, which should be set  𝜖 =

1 to obtain the physical formulas.  

 The weakly driven MHD problem becomes 

∫𝑑𝒙′ [gMHD(𝒙, 𝒙
′, 𝜔′) + 𝜖 [(𝜔 − 𝜔′)

𝜕gMHD(𝒙, 𝒙
′, 𝜔′)

𝜕𝜔
]] 𝐄̃(𝐱′, 𝜔)

= 𝜖𝐉̃𝑓𝑟𝑒𝑒(𝐱, ω) (11)

 

The weakly driven MHD problem outlined above is analogous to certain classes of wave-particle 

problems where the currents are not free.  In these problems, the plasma response currents are 

dominated by a linear Hermitian operator whose eigenfunctions are known, and the remaining 

nonlinear and anti-Hermitian response currents are deemed much smaller in comparison  

∫𝑑𝒙′ [gMHD(𝒙, 𝒙
′, 𝜔′) + 𝜖 [(𝜔 − 𝜔′)

𝜕

𝜕𝜔
] gMHD(𝒙, 𝒙

′, 𝜔′)] 𝐄̃(𝐱′, 𝜔)  

= 𝜖𝐉̃𝑵𝑳(𝐱,ω) +    𝜖𝐉̃𝜎̅(𝐱,ω) 
(12) 

|𝜔 − 𝜔′|

|𝜔|
∼

|𝐉̃𝜎̅(𝐱,ω)|

|∫ 𝑑𝒙′ gMHD(𝒙, 𝒙
′, 𝜔)𝐄̃(𝐱′, 𝜔)|

∼
|𝐉̃𝑵𝑳(𝐱,ω)|

|∫ 𝑑𝒙′ gMHD(𝒙, 𝒙
′, 𝜔)𝐄̃(𝐱′, 𝜔)|

≪ 1 (13) 

These orderings must be motivated by the specific wave phenomena being studied (see appendix for 

TAE discussion).  The weak current sources depend on the electric field, so to form a closed system 

for the electric field, the relationship between the current sources and the electric field must be 

known.   

We now seek to solve the wave equation for the nonlinear interaction of resonant fast particles. We 

combine the source currents into one term 𝐉̃𝒇𝒂𝒔𝒕(𝐱, ω)  



Page 4 of 24 
 

∫𝑑𝒙′ [gMHD(𝒙, 𝒙
′, 𝜔′) + 𝜖 [(𝜔 − 𝜔′)

𝜕

𝜕𝜔
] gMHD(𝒙, 𝒙

′, 𝜔′)] 𝐄̃(𝐱′, 𝜔) 

= 𝜖𝐉̃𝒇𝒂𝒔𝒕(𝐱,ω)

(14)

 

Note the subtle difference between demanding that the fast particle contribution be small and the 

weaker assumption that the resonant and nonlinear contribution be small. It is well known that 

MHD is not sufficient to describe the Hermitian motion of fast particles, since particles can drift from 

flux surfaces. Care must be taken not to double count Hermitian current contributions in any choice 

of bulk plasma model. This so-called ‘adiabatic’ contribution is discussed in the appendix.  

Exploiting the property that ∫𝑑𝒙′ gMHD(𝒙, 𝒙
′, 𝜔′) is a Hermitian operator with electric field 

eigenmodes 𝒆(𝒙,𝜔′; 𝜔𝑗), we may multiply by any adjoint eigenmode 𝒆†(𝒙,𝜔′; 𝜔𝑗) 

∫𝑑𝒙∫𝑑𝒙′ 𝒆†(𝒙′; 𝜔𝑗)𝛿(𝜔
′ −𝜔𝑗 )  [(𝜔 − 𝜔

′)
𝜕

𝜕𝜔
] gMHD(𝒙, 𝒙

′, 𝜔′)𝐄̃(𝐱′, 𝜔) 

= 𝛿(𝜔′ −𝜔𝑗 )  ∫ 𝑑𝒙𝒆
†(𝒙;𝜔𝑗)𝐉̃𝒇𝒂𝒔𝒕(𝐱,ω) (15)

 

 

Integrating and performing the inverse transform  

∫𝑑𝒙∫𝑑𝒙′ 𝒆†(𝒙′; 𝜔𝑗) [
𝜕gMHD(𝒙, 𝒙

′, 𝜔𝑗)

𝜕𝜔
(
𝜕𝐄̃(𝐱′, 𝑡)

∂t
+ 𝑖𝜔𝑗𝐄̃(𝐱′, 𝑡))] = −𝑖 ∫𝑑𝒙𝒆

†(𝒙;𝜔𝑗)𝐉̃𝒇𝒂𝒔𝒕(𝐱, t)(16) 

 

Using the completely general simplifying form 𝐄̃(𝒙′, 𝑡) = A(t;𝜔𝑗)𝐄̃(𝒙′)𝒆
−𝒊𝜔𝑗t 

∫𝑑𝒙∫𝑑𝒙′ 𝒆†(𝒙′;𝜔𝑗)𝑖
𝜕gMHD(𝒙, 𝒙

′, 𝜔𝑗)

𝜕𝜔
𝐄̃(𝒙′) 𝐴̇(𝑡; 𝜔𝑗) =  ∫𝑑𝒙𝒆

𝒊𝜔𝑗t𝒆†(𝒙;𝜔𝑗)𝐉̃𝒇𝒂𝒔𝒕(𝐱, t) (17) 

 

The unknown mode structure 𝑬(𝒙) can always be represented by a linear combination of 

eigenmodes because they form a complete orthogonal basis. By exploiting the orthogonality of the 

eigenfunctions, we obtain an ordinary differential equation for the amplitude and phase of an 

eigenmode normalised to the mode energy 

𝐴̇(𝑡; 𝜔𝑗) = −
1

2𝛿𝑊𝑀𝐻𝐷
𝒆𝒊𝜔𝑗t  ∫𝑑𝒙𝒆†(𝒙;𝜔𝑗)𝐉̃𝒇𝒂𝒔𝒕(𝒙, t) (18) 

𝛿𝑊𝑀𝐻𝐷 = −
𝑖

2
∫𝑑𝒙𝑑𝒙′ 𝒆†(𝒙;𝜔𝑗)

𝜕gMHD(𝒙, 𝒙′, 𝜔𝑗)

𝜕𝜔
 𝒆(𝒙′; 𝜔𝑗) (19) 

This equation relates the linear growth of the wave energy with the instantaneous power transfer to 

the particles 

A(𝑡; 𝜔𝑗) = 𝐶𝑒
(γ−iΔ𝜔)𝑡 , ℜ𝑒 {

𝐴̇

𝐴
} = 𝛾𝐿 + 𝛾𝑁𝐿(𝑡) (20) 

𝑃 ≡ 𝕽𝑒 {𝐴∗𝒆𝒊𝜔𝑗t  ∫𝑑𝒙 (𝒆†(𝒙;𝜔𝑗)𝐉̃𝒇𝒂𝒔𝒕(𝒙, t))} (21) 

giving the well-known linear relationship when 𝛾𝑁𝐿(𝑡) = 0 

𝛾𝐿 = −
𝑃

2𝐴2𝛿𝑊𝑀𝐻𝐷
(22) 

The solution of the wave-particle problem is thus reduced to choosing the most relevant 

eigenmodes of the bulk plasma 𝒆(𝒙;𝜔𝑗), computing the motion of the resonant particle population 
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𝐉̃𝒇𝒂𝒔𝒕(𝒙, t) in the presence of those eigenmodes, and evolving the amplitude and phase of those 

modes A(t; 𝜔𝑗) in response to the normalized power transfer ∫𝑑𝒓 (𝒆𝒊𝜔𝑗t𝒆†(𝒙;𝜔𝑗)𝐉̃𝒇𝒂𝒔𝒕(𝒙, t))  in 

inverse proportion to the mode energy 𝛿𝑊𝑀𝐻𝐷. 

Mode energy for TAE problems 
For a cold plasma in the MHD ordering, the linear shear Alfvén response manifests as a polarization 

drift of ions on an equilibrium magnetic field and 𝐸∥ = 0 

𝒗𝒑(𝒙, 𝑡) =
𝑑

𝑑𝑡
(
𝑬⊥(𝒙, 𝑡)

𝑩(𝒙)Ω𝑐(𝒙)
) =

𝑚𝑖
𝑒𝑖𝑩

𝟐(𝒙)

𝑑𝑬⊥(𝒙, 𝑡)

𝑑𝑡
(23) 

Staying within the linear approximation, we use the equilibrium density 

𝑛𝑖(𝒙)𝒗𝒑(𝒙, 𝑡) =
𝑛𝑖(𝒙)𝑚𝑖
𝑒𝑩𝟐(𝒙)

𝑑𝑬⊥(𝒙, 𝑡)

𝑑𝑡
(24) 

 

Fourier transforming and identifying the Alfvén speed 𝑣𝐴 =
𝐵

√𝜇0𝑚𝑖𝑛𝑖
, we obtain the appropriate 

generalized Ohm’s law for the TAE 

𝑱𝑻𝑨𝑬(𝒙,𝜔) = ∫𝑑𝒙
′ (−𝑖𝜔

1

𝜇0
𝛿(𝒙′ − 𝒙)

1

𝑣𝐴
2(𝒙′)

𝑬⊥(𝒙
′, 𝜔)) (25) 

 

𝜎𝑇𝐴𝐸(𝒙, 𝒙
′, 𝜔) = −𝑖𝜔

1

𝜇0
𝛿(𝒙′ − 𝒙)

1

𝑣𝐴
2(𝒙′)

(26) 

Using the definition of the wave equation 

𝜕gTAE(𝒙, 𝒙
′, 𝜔)

𝜕𝜔
=

2𝑖

𝜇0𝑐
2
𝛿(𝒙 − 𝒙′) +

2𝑖

𝜇0
𝛿(𝒙′ − 𝒙)

1

𝑣𝐴
2(𝒙′)

(27) 

The first term on the right-hand side of equation 27  corresponds to the displacement current which 

is smaller than the second term by 
𝑣𝐴
2

𝑐2
  and is neglected. Thus, we obtain the mode energy for the 

Shear Alfvén wave [19] 

𝛿𝑊𝑇𝐴𝐸 =
1

𝜇0
∫𝑑𝒙

𝒆†(𝒙;𝜔𝑗)𝒆(𝒙;𝜔𝑗)

𝑣𝐴
2(𝒙)

(28) 

delta-f model for the fast current 
Solving for the electric field in Maxwell’s wave equation requires an evolution equation for the 

currents in self-consistent response to the field. Most of the current in the perturbative model is due 

to the linear dielectric currents of the non-resonant oscillatory plasma. For the TAE problem, this 

Hermitian current is calculated from the closed linear MHD equations.  

The remaining fast current is responsible for resonant drive and damping of the mode. The fast 

current for a particle of charge Z𝑒 is obtained from the distribution function 

𝐉̃𝒇𝒂𝒔𝒕(𝒙, t) = ∫𝑑𝒑𝑓(𝒙, 𝒑, 𝑡)𝑍𝑒𝒗 (29) 

The motion of the fast particles is assumed satisfy a Hamiltonian 𝐻(𝒙, 𝒑, 𝑡)  with a distribution that 

evolves according to a collisionless kinetic equation 
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𝜕𝑓(𝒙, 𝒑, 𝑡)

𝜕𝑡
+
𝜕

𝜕𝒙
⋅ (
𝜕𝐻

𝜕𝒑
 𝑓(𝒙, 𝒑, 𝑡)) −

𝜕

𝜕𝒑
⋅ (
𝜕𝐻

𝜕𝒙
𝑓(𝒙, 𝒑, 𝑡)) = 0 (30) 

 

𝒙̇ =
𝜕𝐻

𝜕𝒑
, 𝒑̇ = −

𝜕𝐻

𝜕𝒙
(31) 

It is useful to separate the distribution function and trajectories into equilibrium and perturbed 

components. Letting 𝑓 = 𝐹0 + 𝛿𝑓, 𝐻 = 𝐻0 + 𝛿𝐻 

𝜕(𝐹0 + 𝛿𝑓)

𝜕𝑡
+
𝜕

𝜕𝒙
(
𝜕(𝐻 + 𝛿𝐻)

𝜕𝒑
(𝐹0 + 𝛿𝑓)) −

𝜕

𝜕𝒑
(
𝜕(𝐻 + 𝛿𝐻)

𝜕𝒙
(𝐹0 + 𝛿𝑓)) = 0 (32) 

We assume the fast particles to be in equilibrium in the absence of waves  

𝜕

𝜕𝒙
(
𝜕𝐻0
𝜕𝒑

𝐹0) −
𝜕

𝜕𝒑
(
𝜕𝐻0
𝜕𝒙

𝐹0) = 0 (33) 

Since the equilibrium is known, we seek an evolution equation for the unknown perturbed 

distribution 𝛿𝑓, arriving at  

𝜕𝛿𝑓

𝜕𝑡
+
𝜕

𝜕𝒙

𝜕(𝐻0 + 𝛿𝐻)

𝜕𝒑
𝛿𝑓 −

𝜕

𝜕𝒑

𝜕(𝐻0 + 𝛿𝐻)

𝜕𝒙
𝛿𝑓 =

𝜕

𝜕𝒑

𝜕𝛿𝐻

𝜕𝒙
𝐹0 −

𝜕

𝜕𝒙

𝜕𝛿𝐻

𝜕𝒑
𝐹0 (34) 

The left-hand side is the time derivative of the perturbed distribution taken along perturbed 

Hamiltonian trajectories. The right-hand side is the source term that depends only on the perturbed 

forces and the initial equilibrium. The linear version of the initial value problem is recovered by 

following unperturbed orbits on the left-hand side of equation 34, retaining the perturbed 

Hamiltonian only in the source term on the right-hand side. 

The perturbed forces are calculated from the wave equation forming a closed system of equations 

for the waves and the perturbed fast current. 

Numerical method 

delta-f scheme marker evolution 
Using the discrete representation, the 𝑖𝑡ℎ marker is associated with a unique initial position in phase 

space (𝑥𝑖, 𝑝𝑖)  

𝜕𝐹0
𝜕𝒙
(𝒙, 𝒑, 𝑡) ≈∑𝛿(𝒙 − 𝒙(𝑡; 𝒙𝒊, 𝒑𝒊))𝛿(𝒑 − 𝑝(𝑡; 𝒙𝒊, 𝒑𝒊))

𝜕𝐹0
𝜕𝒙
(𝒙, 𝒑)Δ3𝑥𝑖Δ

3𝑝𝑖
𝑖

(35) 

𝜕𝐹0
𝜕𝒑
(𝒙, 𝒑, 𝑡) ≈∑𝛿(𝒙 − 𝒙(𝑡; 𝒙𝒊, 𝒑𝒊))𝛿(𝒑 − 𝑝(𝑡; 𝒙𝒊, 𝒑𝒊))

𝜕𝐹0
𝜕𝒑

(𝒙, 𝒑)Δ3𝑥𝑖Δ
3𝑝𝑖

𝑖

(36) 

𝛿𝑓(𝒙, 𝒑, 𝑡) ≡∑𝛿(𝒙 − 𝒙(𝑡; 𝒙𝒊, 𝒑𝑖))𝛿(𝒑 − 𝑝(𝑡; 𝒙𝑖, 𝒑𝒊))𝛿𝑓(𝒙, 𝒑, 𝑡)Δ
3𝑥𝑖Δ

3𝑝𝑖
𝑖

(37) 

The volume spanned by a marker  Δ3𝑥𝑖Δ
3𝑝𝑖 is defined as the product of lengths taken from half-way 

between one adjacent marker to another adjacent marker at their initial positions in phase space. 

The volume is a constant of the motion due to the Hamiltonian nature of the orbits. 

Inserting into the delta-f equation and integrating, we find 

𝛿𝑓̇(𝑡; 𝒙𝒊, 𝒑𝒊)

= −
𝜕𝛿𝐻

𝜕𝒑
(𝑡; 𝒙𝒊, 𝒑𝒊) ⋅

𝜕𝐹0
𝜕𝒙
(𝒙(𝑡; 𝒙𝒊, 𝒑𝒊), 𝒑(𝑡; 𝒙𝒊, 𝒑𝒊)) +

𝜕𝛿𝐻

𝜕𝒙
(𝑡; 𝒙𝒊, 𝒑𝒊) ⋅

𝜕𝐹0
𝜕𝒑

(𝒙(𝑡; 𝒙𝒊, 𝒑𝒊), 𝒑(𝑡; 𝒙𝒊, 𝒑𝒊))(38)
 

we simplify the notation re-writing equation  38 as 
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𝛿𝑓𝑖̇(𝑡) = −𝛿𝒙̇𝒊(𝑡) ⋅ (
𝜕𝐹0
𝜕𝒙
)
𝑝
(𝒙𝒊(𝑡), 𝒑𝒊(𝑡)) − 𝛿𝒑̇𝒊(𝑡) ⋅ (

𝜕𝐹0
𝜕𝒑
)
𝑥

(𝒙𝒊(𝑡), 𝒑𝒊(𝑡)) (39) 

For the Maxwell-Vlasov system in HALO, we transform to more convenient variables(𝑥, 𝑣) found in 

the Vlasov equation. The Jacobian between coordinate systems is a constant 

|
𝜕(𝒙, 𝒑)

𝜕(𝒙, 𝒗)
| = 𝑚3 (40) 

Thus, we may immediately rescale our distribution functions to those found in the Vlasov equation 

and perform a point transformation. The right-hand side is a dot product of a tangent vector with a 

gradient.  Such a product is covariant with respect to arbitrary changes in coordinate basis, thus we 

may rewrite 

𝛿𝑓𝑖̇(𝑡) = −𝛿𝒙̇𝒊(𝑡) ⋅ (
𝜕𝐹0
𝜕𝒙
)
𝒗
(𝒙𝒊(𝑡), 𝒗𝒊(𝑡)) − 𝛿𝒗𝒊̇ (𝑡) ⋅ (

𝜕𝐹0
𝜕𝒗
)
𝒙
(𝒙𝒊(𝑡), 𝒗𝒊(𝑡)) (41) 

 

It is straightforward to explicitly obtain 𝛿𝑥̇(𝑥, 𝑣, 𝑡) and 𝛿𝑣̇(𝑥, 𝑣, 𝑡) from the phase-space Lagrangian 

of full-orbit particle motion 

𝐿(𝒙, 𝒗, 𝒙̇, 𝒗̇, 𝑡) = (𝑚𝒗 + 𝑒𝑨𝟎 + 𝑒𝜹𝑨) ⋅ 𝒙̇ − (𝑒Φ0 + 𝑒𝛿Φ +
𝑚

2
𝒗 ⋅ 𝒗) (42) 

The Euler-Lagrange equations give the perturbed portion of the force in phase space 

𝛿𝒙̇(𝒙, 𝒗, 𝑡) = 0 (43) 

𝛿𝒗̇(𝒙, 𝒗, 𝑡) =
𝑒

𝑚
(𝒗 × 𝛿𝑩 + 𝛿𝑬) (44) 

The general form of the 2D equilibrium distribution function assuming no equilibrium electric field is 

𝐹0 = ∑ 𝐹(𝐸, 𝜇, 𝑃𝜙; 𝑠𝑔𝑛(𝑣∥))

𝑠𝑔𝑛(𝑣∥)

(45) 

𝑛(𝒙) = ∑ ∫𝑑𝒗𝐹(𝐸, 𝜇, 𝑃𝜙; 𝑠𝑔𝑛(𝑣∥))

𝑠𝑔𝑛(𝑣∥)

(46) 

where the invariants of motion energy 𝐸, gyroinvariant 𝜇 and toroidal canonical momentum 𝑃𝜙 and 

𝑠𝑔𝑛(𝑣∥) label each possible equilibrium orbit. The nature of an equilibrium is that it is a function of 

the unperturbed field and unperturbed particle orbits. Therefore, the coordinate mapping we 

require is from the space (𝑥, 𝑣, 𝑡) to the space of invariants of the unperturbed motion.  Perturbed 

fields do not appear in these equilibrium invariants, it is only the trajectories that are perturbed. 

𝐹0 = 𝐹(𝐸(𝒙𝒊(𝑡), 𝒗𝒊(𝑡)), 𝜇(𝒙𝒊(𝑡), 𝒗𝒊(𝑡)), 𝑃𝜙(𝒙𝒊(𝑡), 𝒗𝒊(𝑡)); 𝑠𝑔𝑛(𝑣∥(0))) (47) 

𝑃𝜙(𝒙, 𝒗) = 𝑚𝑅𝑣𝜙 + 𝑍𝑒𝜓0(𝑥) (48) 

𝐸(𝒙, 𝒗) =
1

2
𝑚𝑣2 (49) 

𝜇(𝒙, 𝒗) =

1
2𝑚𝑣⊥

2

𝐵0(𝒙)
+ 𝑂 (

𝜌

𝐿
) (50) 

where we have written only the lowest order in gyroradius expansion  
𝜌

𝐿
  for the gyroinvariant. 

Applying the chain rule to the equilibrium equation we arrive at our delta-f scheme in cylindrical 

coordinates 

𝛿𝑓𝑖̇(𝑡) = −𝛿𝑣̇𝑅 [𝑚𝑣𝑅 (
𝜕𝐹0
𝜕𝐸
)
𝜇,𝑃𝜙

+
𝜕𝜇

𝜕𝑣𝑅
(
𝜕𝐹0
𝜕𝜇
)
𝐸,𝑃𝜙

] 
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−𝛿𝑣̇𝑍 [𝑚𝑣𝑍 (
𝜕𝐹0
𝜕𝐸
)
𝜇,𝑃𝜙

+
𝜕𝜇

𝜕𝑣𝑍
(
𝜕𝐹0
𝜕𝜇
)
𝐸,𝑃𝜙

]

−𝛿𝑣̇𝜙 [𝑚𝑣𝜙  (
𝜕𝐹0
𝜕𝐸
)
𝜇,𝑃𝜙

+𝑚𝑅(
𝜕𝐹0
𝜕𝑃𝜙

)
𝜇,𝐸

+
𝜕𝜇

𝜕𝑣𝜙
(
𝜕𝐹0
𝜕𝜇
)
𝐸,𝑃𝜙

] (51)

 

with all quantities understood to be measured along a marker trajectory (𝒙𝒊(𝑡), 𝒗𝒊(𝑡)). When  
𝜔

Ω
≪ 1 

as expected for low-n shear Alfvén waves, the gyro-invariant 𝜇 contributions to 𝛿𝑓 are assumed zero 

and we may set terms containing 
𝜕

𝜕𝜇
≈ 0 and 𝜇(𝑡) = 𝜇(0). 

Now we obtain an explicit expression for the work done by the wave on the delta f markers 

𝑓(𝒙, 𝒗, 𝑡) ≈∑𝛿(𝒙 − 𝒙𝒊(𝑡))

𝑖

𝛿(𝒗 − 𝒗𝒊(𝑡))(𝐹0(𝒙, 𝒗) + 𝛿𝑓𝑖(𝑡))Δ
3𝑥𝑖Δ

3𝑣𝑖 (52) 

𝐉̃𝒇𝒂𝒔𝒕(𝒙, t) = 𝑒∑𝒗𝒊𝛿(𝒙 − 𝒙𝒊(𝑡))(𝐹0(𝒙, 𝒗𝒊) + 𝛿𝑓𝑖(𝑡))Δ
3𝑥𝑖Δ

3𝑣𝑖
𝑖

(53) 

𝐴̇(𝑡; 𝜔𝑗) = −
1

𝛿𝑊𝑇𝐴𝐸
𝑒𝑖𝜔𝑗t 𝑒∑𝒆†(𝒙𝒊(𝑡); 𝜔𝑗) ⋅ 𝒗𝑖[𝐹0(𝒙𝒊(𝑡), 𝒗𝒊(𝑡)) + 𝛿𝑓𝑖(𝑡)] Δ

3𝑥𝑖Δ
3𝑣𝑖

𝑖

(54) 

In a 2-D equilibrium, the function 𝐹0(𝑥, 𝑣) is axisymmetric, which implies that we have contributions 

from the equilibrium proportional to ∫𝑑𝜙𝑐𝑜𝑠𝑛𝜙 which vanish identically. Dropping the equilibrium 

contribution therefore reduces the noise significantly, owing to the smallness of 𝛿𝑓 when compared 

with 𝐹0.   

𝐴̇(𝑡; 𝜔𝑗) = −
1

2𝛿𝑊
𝑒𝑖𝜔𝑗t 𝑒∑𝒆†(𝒙𝒊(𝑡); 𝜔𝑗)𝒗𝑖𝛿𝑓𝑖(𝑡) Δ

3𝑥𝑖Δ
3𝑣𝑖

𝑖

(55) 

𝛿𝑬(𝒙, 𝑡; 𝜔𝑗) = 𝐴(𝑡;𝜔𝑗)𝒆(𝒙;𝜔𝑗)𝑒
−𝑖𝜔𝑗𝑡 (56) 
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Applications  

MHD eigenmodes from MISHKA for TAE studies 
 

 

Figure 1: Alfvénic workflow currently implemented in HALO 

 

The Alfvénic eigenmode workflow currently implemented in HALO is shown schematically in Figure 1 

and is the basis for the examples presented in the rest of this paper. A solution to the Grad-

Shafranov equation in cylindrical coordinates is first obtained either via a reconstruction process 

from experiment via EFIT [20], by prediction, or by postulate.  In particular, the profiles 𝑝(𝜓) and 

𝐹𝐹(𝜓) and the location of the boundary is required. With the equilibrium profiles and boundary 

known, a second solution of the Grad-Shafranov equation must be obtained in a straight-field line 

coordinate system using the HELENA [21] code. This solution produces a high-fidelity equilibrium 

reconstruction suitable for linear MHD analysis, as well as a coordinate mapping between the 

cylindrical and straight field line coordinate systems. The high-fidelity equilibrium is provided to the 

MISHKA [22] linear MHD code and a set of eigenmodes of interest are computed.  

The MISHKA eigenmodes are represented with the perturbed fluid velocity in the straight field-line 

coordinates(𝑠, 𝜃, 𝜑). For ideal modes, MISHKA outputs two variables (𝑣1, 𝑣2) where 𝑣1 is related to 

the contravariant radial (𝑠) component of the perturbed flow velocity 𝑉̃ and 𝑣2 is related to 𝑉̂2 =

[𝑉̃ × 𝐵0]1  

𝑣1(𝑠, 𝜃, 𝜑) = 𝑒
𝜆𝑡𝑒𝑖𝑛𝜑∑𝑒𝑖𝑚𝜃

𝑚

∑(𝑣𝑚,𝑖
1 𝐻1(𝑠) + 𝑑𝑣𝑚,𝑖

1 𝐻2(𝑠))

𝑁

𝑖=1

(57) 

𝑣2(𝑠, 𝜃, 𝜑) = 𝑒
𝜆𝑡𝑒𝑖𝑛𝜑∑𝑒𝑖𝑚𝜃

𝑚

∑(𝑣𝑚,𝑖
2 ℎ1(𝑠) + 𝑑𝑣𝑚,𝑖

2 ℎ2(𝑠))

𝑁

𝑖=1

(58) 
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where the second summation is over radial grid points. The radial dependence is represented using 

Hermite polynomial basis functions of which there are two per radial grid point. For reasons of 

pollution avoidance 𝑣1 is expressed in terms of cubic Hermite polynomials 𝐻1(𝑠) and 𝐻2(𝑠) whereas 

𝑣2 is expressed in terms of quadratic polynomials ℎ1(𝑠) and ℎ2(𝑠) [21].  

The non-zero covariant components of the vector potential relate to the velocity components and 

in-turn the electric and magnetic fields in straight-field line coordinates 

𝐽 =
𝑑𝜓

𝑑𝑠

𝑞𝑅2

𝑅𝐵𝜙
(59) 

𝐴1 =
−𝑖𝑣2
𝜆

(60) 

𝑑𝜓

𝑑𝑠
𝑞𝐴̂2 = −

𝑣1
𝜆

(61) 

 

𝐴̂2 ≡ [𝑨 × 𝑩𝟎]
1/𝑩𝟎

2. (62) 

𝐽𝛿𝐵1 = −𝑖 (𝑚(
𝑑𝜓

𝑑𝑠
𝐴̂2) + 𝑛 (

𝑑𝜓

𝑑𝑠
𝑞𝐴̂2)) (63) (64) 

𝐽𝛿𝐵2 = 𝑖𝑛𝐴1 +
𝜕

𝜕𝑠
(
𝑑𝜓

𝑑𝑠
𝐴̂2) (65) 

𝐽𝛿𝐵3 =
𝜕

𝜕𝑠
(
𝑑𝜓

𝑑𝑠
𝑞𝐴̂2) − 𝑖𝑚𝐴1 (66) 

𝛿𝐸𝑖 = −
𝜆𝐴𝑖
𝑐

(67) 

The straight field line representation of the eigenmode is then transformed to conventional 

cylindrical coordinates using the mapping and metric tensor provided from HELENA. Note that the 

variables used in MISHKA as repeated above are expressed in cgs Gaussian units, whereas in the rest 

of the paper we have employed S.I. units. 

Benchmark case: alpha particle driven TAE 
For benchmarking and demonstration purposes, an alpha-particle-driven unstable TAE test case was 

contrived based on a circular equilibrium, with parameters comparable to existing large tokamak 

experiments.  

Parameter Value 

𝜖 = 𝑎/𝑅0  0.25 

𝑣𝐴/2𝑎Ωc  0.03 

𝑅0  3.0m 

𝐵0  3.0T 

D:T (%) 50:50 

𝑞0  1.82 

𝑞95  3.31 

𝑇𝑒  20keV 

𝑇𝑖  20keV 

𝑛𝛼(0) /𝑛𝑒(0)  1%  
 

Table 1: Parameters chosen for alpha particle driven TAE case 
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For simplicity, equilibrium flux functions were polynomials adjusted by hand in HELENA to give a 

monotonic q-profile with an 𝑛 = 6 TAE found with MISHKA at 𝑠 ≈ 0.5, and temperature and density 

profiles were assumed flat.  

Although HALO supports input of arbitrary fast ion distribution functions of the equilibrium form 

𝐹(𝐸, 𝜇, 𝑃𝜙; 𝑠𝑔𝑛(𝑣∥)), the alpha particle distribution was taken to be 𝐹 = 𝛼(𝐸)𝛾(𝑃𝜙) with 

polynomial 𝛾(𝑃𝜙) ∝ (1 − 𝑃𝜙̅̅̅̅
2
)
10

 and slowing down distribution [23][12] 

𝛼(𝐸) ∝
1

𝑣3 + 𝑣𝑐
3 Erfc [

𝐸 − 3.5MeV

106 × 103√𝑇𝑖[keV]
]

𝑣𝑐 ≡ (3√𝜋
𝑚𝑒𝑍1
4
)

1
3
√
2𝑇𝑒
𝑚𝑒

𝑍1 =
0.5

2𝑚𝑝
+
0.5

3𝑚𝑝
(68)

 

Particle orbit test: wave-particle trapping of resonant orbits comparison with HAGIS 
To solve the coupled Maxwell-Vlasov system, the fast particle response to the waves must be 

faithfully represented. The fields must satisfy Maxwell’s equations, and the particles must move 

according to the Lorentz force law. Equivalently, particles must be shown to move according to the 

phase-space Lagrangian Equation 42. 

 

Figure 2: Comparison of Poincaré plots produced by HALO (top) and HAGIS (bottom).  Resonant orbits at critical locations 
become trapped in the wave forming islands. 

To test the fast particle response to the eigenmodes, a set of alpha particle markers at different 

radial locations were launched in the presence of the benchmark 𝑛 = 6 TAE with a fixed mode 

amplitude 
𝑑𝐵𝑟

𝐵0
= 3 × 10−3. All particles were loaded as deeply co-passing 𝜇 = 0 and with the same 

velocity matching the Alfvén speed at the magnetic axis.  Both HAGIS and HALO were run recording 

particle position and wave phase over many orbits, to identify resonantly trapped alpha particle 

islands in phase space. The comparison of orbits given by the two codes is given in Figure 2and 

shows excellent qualitative agreement. 



Page 12 of 24 
 

A more quantitative test comes from conserving the 

invariant

𝐾 = 𝐸 −
𝜔

𝑛
𝑃𝜙 (69) 

This is a particularly stringent test that particles follow orbits derived from the Lagrangian Equation 

42  because it relates the time and spatial derivatives of the perturbing fields to each other through 

𝑑

𝑑𝑡
𝐸 = −

𝜕𝐿

𝜕𝑡
(70) 

𝑑

𝑑𝑡
𝑃𝜙 =

𝜕𝐿

𝜕𝜙
(71) 

The radial excursions shown in Figure 2 imply a corresponding change in toroidal canonical 

momentum due to a breaking of axisymmetry.  Figure 3 shows that although the mode is varying the 

test particle canonical momentum by up to 10%, the invariant is found to be conserved to better 

than 
Δ𝐾

𝐾
~1 × 10−5. 

 

  

 

Figure 3: Variation in toroidal canonical momentum for test particle orbits 
(left) and the preservation of wave invariant K (right). 
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Stability test: linear growth-rate comparison with HAGIS 

 

Figure 4: Comparison of linear growth rates between HAGIS and HALO, varying the mode frequency 

Spatial gradients in the particle distributions are a source of free energy for TAEs that propagate in 

the fast ion-diamagnetic direction due to a universal instability drive [24], with drive occurring if 

𝜔 < 𝑛𝜔∗ = 𝑛
𝜕𝐹/𝜕𝑃𝜙

𝜕𝐹/𝜕𝐸 
(72) 

The temporal evolution of the TAE is characterised initially by a linear phase where the mode is 

governed by exponential growth. In this phase, the mode energy is small when compared with the 

free energy in the gradients.  Moreover, the fields of the mode are sufficiently small as to not 

significantly perturb the equilibrium orbits of the resonant particles.   

A scan of frequency for the TAE benchmark case was run in both the HALO and HAGIS codes, and a 

comparison of the measured linear growth rates is shown in Figure 4. The linear growth rates in 

HALO show roughly a factor 2 reduction in drive compared with the HAGIS drift calculation.  The 

difference in drive between HAGIS and HALO lies in the drift approximation for the power transfer 

evaluating the electric field at the average guiding centre rather than the rapidly varying 

instantaneous particle location 

𝐴̇𝑯𝑨𝑮𝑰𝑺(𝑡; 𝜔𝑗) = −
1

2𝛿𝑊
𝑒𝑖𝜔𝑗t 𝑒∑𝒆†(𝑿𝒊(𝑡); 𝜔𝑗)𝑽𝑖𝛿𝑓𝑖(𝑡) Δ

3𝑥𝑖Δ
3𝑣𝑖

𝑖

𝒙 ≡ 𝑿 + 𝝆

𝑽 ≡ 𝑿̇ (73)

 

The drift-kinetic,  gyrokinetic [25][26] and quasi-linear [27] theories can be obtained by 

gyroaveraging the Vlasov equation over the rapid gyration timescales, resulting in equations in terms 

of the guiding centre position.  Although the guiding centre drift velocity is a good approximation to 

the average motion of the particles, the field evaluated at the guiding centre is not a good 

approximation for the average field. At frequencies much lower than the cyclotron frequency, both 

the gyrokinetic and quasi-linear equations for the perturbed distribution function include terms 

lacking in the drift theory proportional to 𝐽0(𝑘⊥𝜌) which captures the finite Larmor radius (FLR) 

effect of the decreased average electric field experienced by the particle.   A simple calculation 

shows that such a decrease in drive is to be expected for the benchmark case;  𝑘⊥ ≈
𝑚

𝑟
≈
12.5

0.4
 , and 

at the Alfvén speed 𝜌 ≈ 0.045𝑚 giving 𝐽0(𝑘⊥𝜌) =0.57.   
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For the sole purpose of comparison with the linear HAGIS results, a “drift-order” mode in HALO was 

implemented, where the electric field in the power transfer Equation 55 was modified to be 

evaluated at the guiding centre position  

𝒆†(𝒙𝒊(𝒕);𝜔𝑗) → 𝒆
†(𝑿𝒊(𝑡); 𝜔𝑗) (74) 

 

giving good agreement in Figure 4.   

Note that before any attempt is made to include this finite Larmor radius correction in a drift-kinetic 

code such as HAGIS, a technical point worth mentioning here is that the drift velocity 𝑽𝑖  in guiding 

centre codes should be computed to one-higher order in Larmor radius for the resulting power 

transfer to be consistent with the 1st order drift-kinetic equation, owing to the charge of the particle 

appearing in the fast particle power transfer 𝛿𝐸 ⋅ 𝛿𝑗 [28]. This technical point is the reason for 

traditional drift-kinetic power calculations being formulated through the pressure rather than the 

electric field.  

 

Nonlinear tests: mode saturation and frequency chirping due to phase space holes 

and clumps 
The long-term nonlinear behaviour of the wave-particle system relies on solving the initial value 

problem for both wave evolution and particle evolution. The verification of linear growth rate 

implies that the power transfer between waves and particles is correct in the linear phase. We have 

also shown that test particle orbits are correctly perturbed by a finite mode and are resonantly 

trapped in the wave.  

What remains to be shown is that there is sufficient temporal and spatial resolution in order to 

faithfully compute the wave power transfer in the nonlinear phase, conserving total energy. 

 

 

 

Figure 5: Nonlinear growth and saturation of the TAE (right) , and comparison between change in wave energy and sum of 
change in particle energy (left). 
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The long-term nonlinear behaviour of the TAE alpha-particle benchmark is given in Figure 5, showing 

the classic growth and saturation expected, and the conservation of energy between waves and 

particles. As the field grows, particle orbits deviate significantly from equilibrium orbits and can 

become resonantly trapped within the wave potential. The field energy grows as 𝐴2, whereas the 

region in phase space that can supply energy grows approximately as 𝐴3/2.  When the two energies 

become comparable, the exponential growth slows until saturation when the gradients in the 

distribution are removed via phase-mixing of trapped orbits on a timescale comparable with the 

nonlinear bounce frequency [6].  

A further test of nonlinear evolution is the creation of Bernstein-Greene-Kruskal (BGK) nonlinear 

waves that chirp in frequency. These holes and clumps in phase-space result from the shearing of 

trapped particle islands as the amplitude of the saturated state is modulated by damping [29][30].  

A marginally unstable version of the TAE benchmark was created by considering an additional source 

current in the wave equation 

𝐴̇(𝑡; 𝜔𝑗) = −
1

2𝛿𝑊
𝒆𝒊𝜔𝑗t  ∫𝑑𝒙𝒆†(𝒙;𝜔𝑗)[𝐉̃𝒇𝒂𝒔𝒕(𝒙, t) + 𝐉̃𝒅(𝒙, t)] (75) 

this can be rewritten as an equation for the time varying growth-rate  

𝐴̇(𝑡; 𝜔𝑗) = (γfast(t) − iΔ𝜔𝑓𝑎𝑠𝑡(𝑡) )𝐴(𝑡; 𝜔𝑗)  +

(γ𝑑(t) − iΔ𝜔𝑑(𝑡))𝐴(𝑡; 𝜔𝑗) (76)
 

 

To produce nonlinear chirping, we assume a linear damping contribution γ𝑑(t) = γ𝑑 , Δ𝜔𝑑(𝑡) = 0 

𝐴̇(𝑡; 𝜔𝑗) = −
1

2𝛿𝑊
𝒆𝒊𝜔𝑗t  ∫ 𝑑𝒙𝒆†(𝒙;𝜔𝑗)𝐉̃𝒇𝒂𝒔𝒕(𝒙, t) + γ𝑑𝐴(𝑡;𝜔𝑗) (77) 

 

The nonlinear TAE benchmark described earlier was repeated with a linear damping term included 

such that 
𝛾𝑑

𝛾𝐿
= 0.9.  Figure 6 gives the amplitude and frequency evolution of the marginally unstable 

evolution. The rapid amplitude modulation is typical of marginally stable TAE simulations performed 

with HAGIS [31]  and with other codes [32].  Also evident is the expected steady production of BGK 

modes sweeping in frequency symmetrically above and below the eigenfrequency as expected from 

the bump-on-tail theory [33] and observed in previous TAE calculations [34] and has been observed 

in experiment [35].  
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Figure 6: Amplitude (above) and Fourier spectrogram (below) of the TAE benchmark made marginally unstable. 

 

Conserved quantities and convergence 
 

The full-orbit motion of 𝛿𝑓 markers is described by the trajectories obtained from the Lagrangian  

given by Eqn. 42 as solved using the orbit-following portions of the LOCUST-GPU code [15] with 

either of the phase-volume preserving Boris or Strang particle orbit integrators [36].   

For fully self-consistent HALO solutions, equations 51 and 55, as well as the particle trajectories 

specified by equation 42 are integrated simultaneously in time as an initial value problem. Particles 

are loaded in 5D phase space using a quasi-random Hammersley sequence [37] in order to reduce 

noise in the power transfer integral. Gyroangle is ignored in the loading scheme as it was expected 

that phase mixing would rapidly fill the remaining dimension. The rapid variation in the quantity 

𝒆†(𝒙𝒊(𝑡); 𝜔𝑗)𝒗𝑖 governs the power transfer timescale, with only the drift contribution having any 

consequence for Alfvénic modes which oscillate on an 𝜔 ≈ 𝑘∥𝑣𝐴 timescale. Slower still is the growth 

time of 𝐴̇ as dictated by the perturbative model.  In order to integrate the rapidly varying power 

transfer between infrequent wave amplitude updates, a 6th order finite difference scheme was used. 

The numerical scheme for coupled wave-particle solution has been tested for convergence in 

temporal and spatial integration and the results for the benchmark case are given in Figure 7.  A time 

step of 1 × 10−9𝑠 in the benchmark problem corresponds to ≈
2𝜋

Ω𝑐

1

40
 which is enough to solve the 

perturbed motion of the particles and conserve orbit invariant 𝐾 , but appears insufficient in the 

continual time integration of power transfer 𝒆†(𝒙𝒊(𝑡); 𝜔𝑗)𝒗𝑖.  Halving the timestep to ≈
2𝜋

Ω𝑐

1

80
 for the 

6th order scheme gives a dramatic improvement, with diminishing returns for further reductions.  We 

have so far only attempted running LOCUST-GPU with simulations below 12 million particles, 

however we obtain convergence in global energy conservation at around 1 million particles.  

 

Note the complete absence of any slowly growing or slowly decaying amplitude in the converged 

solution, which has been a stubborn feature in some other delta-f based results but one that we 

have been able to eliminate with high-order integration and sufficient statistics. 
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Also related to global energy conservation is the total particle conservation in the delta-f scheme. 

The perturbed distribution function 𝛿𝑓 represents the deviation of the distribution function from 

equilibrium and must therefore contain both positive and negative values as particles are moved 

from one area of phase space to another. Thus, exact particle number conservation would require 

that 

∫𝑑𝒙𝑑𝒗𝛿𝑓 =  ∑𝛿𝑓𝑖 Δ
3𝑥𝑖Δ

3𝑣𝑖 = 0 (78) 

 The total number of particles in the system includes the unperturbed particles as well as the 

perturbed particles and the fractional error in the total particle conservation is 

∫𝑑𝒙𝑑𝒗𝛿𝑓/∫𝑑𝒙𝑑𝒗 𝐹0, however such a test is rather insensitive by virtue of the small proportion of 

particles involved in driving the mode, i.e. 𝛿𝑓 ≪ 𝐹0. A more stringent test ∫𝑑𝒙𝑑𝒗𝛿𝑓/∫𝑑𝒙𝑑𝒗 |𝛿𝑓| is 

presented instead, which is a more direct measure of the error in the code as it computes wave-

particle power transfer. The relative conservation of perturbed particles in Figure 7 implies a random 

fluctuation in the computed wave growth of the order of 1% with no systematic drift evident.  

 

Figure 7: Convergence properties of the coupled wave-particle system. Plots of convergence with timestep (a) and number 
of markers (b) are shown, as well as the global conservation of particles in the delta-f scheme (c). 

 

Conclusion and further work 
We have presented the theory and validation of a new wave-particle code HALO which 

perturbatively solves the Maxwell-Vlasov problem when the nonlinearity is dominated by particle 

(a) (b) 

(c) 
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currents that do not play a large role in the structure and frequency of the eigenmode. The approach 

generalizes the HAGIS code by allowing arbitrary particle motion in arbitrary geometry, interacting 

with eigenmodes whose frequencies are limited only by the particle integration timescale.  The 

workflow currently implemented pertains to the TAE problem in tokamaks, however our 

presentation has been deliberately general so that this approach can be replicated easily for other 

kinds of bulk plasma modes. 

For our TAE workflow, we have presented benchmarks against the drift-kinetic code HAGIS, with and 

without the new FLR corrections provided by HALO. The FLR corrections were found to be significant 

for an invented benchmark case with parameters that resemble current large tokamak experiments. 

We plan to extend HALO to support workflows for modes other than the well-studied TAE problem, 

such as those located in the ion-cyclotron and ion-acoustic range of frequencies. It is likely that we 

will use the two-fluid extension to MISHKA, MISHKA3 [38], which includes the Hall-term required in 

the ion-cyclotron range of frequencies (see appendix), and for modes at low frequencies, viscous and 

heat flow effects. 

The robustness of this method has undoubtedly been due in part to the Hamiltonian nature of the 

equations assumed. However it is well understood that the nonlinear evolution of TAEs seen in 

experiment requires collisions and sources/sinks to be modelled in order to reproduce all of the 

experimentally observed behaviour, including asymmetric frequency chirping [39]. Collisions have 

been implemented in various hybrid and gyrokinetic codes [40][41], but a fully consistent delta-f set 

of equations that includes collisions appears to be far from straightforward. This will likely be the 

focus of future work to complete the TAE model implemented in HALO. 
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Appendix A: Applicability to the TAE problem versus the EPM problem 
TAE stability in a tokamak is a good example of a problem where the orderings used in HALO are 

valid. The weak currents not captured in the Hermitian MHD operator include the drive provided by 

fast particles, the linear damping provided by thermal ions, the linear damping provided by crossing 

of the continuum, and the nonlinear response.   TAEs are discrete modes which exist in gaps in the 

Shear Alfvén continuum. They are weakly driven and damped and there is good experimental 

evidence for their mode structure resembling MHD solutions [5]. 

We turn our attention to the non-resonant nonlinear currents. The fluid current associated with the 

TAE mode is given by the polarization drift of ions 

𝒗𝒑(𝒙, 𝑡) =
𝑑

𝑑𝑡
(
𝑬⊥(𝒙, 𝑡)

𝑩(𝒙)Ω𝑐(𝒙)
) =

𝑚𝑖
𝑒𝑖𝑩

𝟐(𝒙)

𝑑𝑬⊥(𝒙, 𝑡)

𝑑𝑡
(𝐴1) 



Page 19 of 24 
 

𝒗𝒑(𝒙, 𝑡) =
𝑚𝑖

𝑒𝑖|𝑩 + 𝛿𝑩|
2

𝑑𝑬⊥
𝑑𝑡

≈
𝑚𝑖

𝑒𝑖(𝐵
𝟐 + 𝛿𝐵𝟐)

𝑑𝑬⊥
𝑑𝑡

(𝐴2) 

𝒗𝒑(𝒙, 𝑡) =
𝑚𝑖
𝑒𝑖

𝑑𝑬⊥
𝑑𝑡

(
1

𝐵2
−
𝛿𝐵2

𝐵4
+⋯) (𝐴3) 

The polarization drift is almost completely compressionless, so the polarization current depends on 

equilibrium ion density 

𝑱𝒑(𝒙, 𝑡) = 𝜌(𝒙)
𝑑𝑬⊥
𝑑𝑡

(
1

𝐵2
−
𝛿𝐵2

𝐵4
+⋯) (𝐴4) 

Identifying the linear and nonlinear responses 

|𝐉̃𝑵𝑳|

|gMHD𝐄̃|
=
𝛿𝐵2

𝐵2
+⋯ (𝐴5) 

A fast particle driven TAE has a linear fast particle driven growth rate 
𝛾

𝜔
≈1% with a corresponding 

saturation amplitude of  
𝛿𝑩

𝑩
≈ 0.1%.   The perturbative approach which assumes a fixed mode 

structure is clearly a good approximation in such a regime and the fast particle nonlinearity is the 

dominant nonlinearity at least until mode saturation.   

Conversely, energetic particle modes (EPMs) do not satisfy the perturbative orderings by 

definition[42][43] and are not valid modes to be considered self-consistently with HALO; specifically, 

the distribution function in the vicinity of the resonant velocity has strong gradients which produce 

currents that are responsible both for the drive of the modes as well as the modes’ very existence. 

The coherent motion of the fast current does not merely provide an external drive, but rather, the 

coherent motion is the EPM 

|𝐉̃𝑵𝑳|

|gMHD𝐄̃|
~1 (𝐴6) 

EPMs such as fishbones can also occur at low frequencies where strong damping interactions with 

the Alfvén continuum produce large response currents 

|𝐉̃𝜎̅|

|gMHD𝐄̃|
~1 (𝐴7) 

The strong continuum damping implies a low-quality linear plasma response at the fishbone 

frequency. With such a broad bulk plasma response, discussion of a bulk plasma linear “mode” is 

meaningless. 

 

Appendix B: Mode energy of modes in the ion-cyclotron range 
Although this paper has focused on the TAE, HALO is sufficiently general to allow study of arbitrary 

perturbative eigenmodes. Here we give the derivation of  
𝜕𝑔𝐶𝑂𝐿𝐷

𝜕𝜔
 required for 𝑑𝑊𝐶𝑂𝐿𝐷 which is valid 

for any cold plasma eigenmode below the electron cyclotron frequency. 

 The general cold plasma displacement velocity for a given particle species is [17] 

  
𝒗(𝒙, 𝜔) = 𝑖

𝑒

𝑚

𝜔

𝜔2−Ωc(𝐱)
2 (𝑬(𝒙,𝜔) −

Ωc
2(𝒙)

𝜔2
𝐸∥(𝒙, 𝜔)𝒃̂(𝒙))

−
Ωc(𝐱)

2

𝜔2−Ωc(𝐱)
2

𝑬(𝒙,𝜔)×𝒃̂

𝐵0
(𝐴8)

 

Looking first at the electron current, for frequencies well below the electron cyclotron frequency  
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𝒋𝒆(𝒙,𝜔) = 𝑖
𝑛𝑒𝑒

2

𝑚𝑒𝜔
𝐸∥(𝒙, 𝜔)𝒃̂(𝒙) − 𝑛𝑒

𝑬(𝒙,𝜔) × 𝒃̂(𝒙)

𝐵0
(𝐴9) 

 

and for ions of charge 𝑍𝑒 and cyclotron frequency Ωc 

𝒋𝒊(𝒙,𝜔) = 𝑖
𝑛𝑖𝑍

2𝑒2

𝑚𝑖

𝜔

𝜔2 − Ωc(𝐱)
2
(𝑬(𝒙,𝜔) −

Ωc
2(𝒙)

𝜔2
𝐸∥(𝒙,𝜔)𝒃̂(𝒙))

−𝑛𝑖𝑍𝑒
Ωc(𝐱)

2

𝜔2 − Ωc(𝐱)
2

𝑬(𝒙,𝜔) × 𝒃̂

𝐵0
(𝐴10)

 

Using quasi-neutrality we find, after some manipulation, that the total current is 

𝒋(𝒙, 𝜔) = −𝑖𝜔
𝑛𝑖𝑚𝑖

𝐵0
2

Ωc
2

Ωc
2 − 𝜔2

𝑬⊥(𝒙, 𝜔) + (
𝑛𝑖𝑍

2𝑒2

𝑚𝑖𝜔
+
𝑛𝑒2

𝑚𝑒𝜔
) 𝑖𝐸∥(𝒙, 𝜔)𝒃̂(𝒙)

+
𝜔2

Ωc
2 − 𝜔2

𝑛𝑒

𝐵0
 𝑬⊥(𝒙, 𝜔) × 𝒃̂(𝒙) (𝐴11)

 

We can clearly identify a binormal Hall current which is out of phase with the polarization current. 

This Hall current is the additional physics required in 𝑑𝑊𝐶𝑂𝐿𝐷  that is ignored for Alfvénic modes. 

Decomposing the electric field along the orthogonal directions  𝑒̂1, 𝑒̂2, 𝑏̂  we obtain the dielectric 

tensor 𝜎(𝒙, 𝒙′, 𝜔) (cf. Shafranov [17]) defined through the generalized Ohm’s law expression 

𝒋(𝒙, 𝜔) = ∫𝜎(𝒙, 𝒙′, 𝜔) (

𝐸1
𝐸2
𝐸∥

) 𝑑3𝒙′ (𝐴12) 

 

𝜎𝐶𝑂𝐿𝐷(𝒙, 𝒙
′, 𝜔) = 𝛿(𝒙 − 𝒙′)(

𝐴(𝒙, 𝜔) 𝑖𝐻(𝒙, 𝜔) 0

−𝑖𝐻(𝒙, 𝜔) 𝐴(𝒙, 𝜔) 0

0 0 𝑃(𝒙, 𝜔)
) (𝐴13) 

where 

𝐴(𝒙, 𝜔) = −𝑖𝜔
𝑛𝑖𝑚𝑖

𝐵0
2

Ωc
2

Ωc
2 − 𝜔2

(𝐴14) 

 

𝑖𝐻(𝒙, 𝜔) =
𝜔2

Ωc
2 − 𝜔2

𝑛𝑒

𝐵0
(𝐴15) 

 

𝑃(𝒙, 𝜔) = 𝑖(
𝑛𝑖𝑍

2𝑒2

𝑚𝑖𝜔
+
𝑛𝑒2

𝑚𝑒𝜔
) (𝐴16) 

 

Again, neglecting the displacement current means 𝑔 = −𝜎. Taking the derivative of equation 𝐴13 

gives  
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𝜕𝑔𝐶𝑂𝐿𝐷
𝜕𝜔

(𝒙, 𝒙′, 𝜔) = 𝛿(𝒙 − 𝒙′)

(

 
 
 
 
 
𝑖
1

𝜇
0

1

𝑣𝐴
2

Ωc
2(Ωc

2 + 𝜔2)

(Ωc
2 − 𝜔2)2

−
2Ωc

2𝜔

(Ωc
2 − 𝜔2)2

𝑛𝑒

𝐵0
0

2Ωc
2𝜔

(Ωc
2 − 𝜔2)2

𝑛𝑒

𝐵0
𝑖
1

𝜇
0

1

𝑣𝐴
2

Ωc
2(Ωc

2 + 𝜔2)

(Ωc
2 − 𝜔2)2

0

0 0 𝑖(
𝑛𝑖𝑍

2𝑒2

𝑚𝑖𝜔
2
+
𝑛𝑒2

𝑚𝑒𝜔
2
)
)

 
 
 
 
 

(𝐴17) 

 

In the MHD limit 𝜔 ≪ Ω𝑐, the off-diagonal Hall 𝐻(𝒙, 𝜔) contributions to the mode energy vanish 

leaving only the diagonal polarization drift found in Eqn. 28 for the perpendicular field. 

 

Appendix C: The adiabatic contribution and the HAGIS and FAC expressions 
In HALO, the perturbed distribution in Eqn. 55 contains both the real and imaginary components of 

the correction to frequency. The linear real contribution to the frequency from the imaginary power 

transfer is also known as the “fluid”, “incompressible” or “adiabatic” part of 𝛿𝑓 [24]  

𝑑

𝑑𝑡
𝛿𝑓𝑎𝑑𝑖𝑎𝑏𝑎𝑡𝑖𝑐(𝑡) =

 𝑑𝛿𝑃𝜙

𝑑𝑡

𝜕𝐹

𝜕𝑃𝜙
+ 𝑒

𝑑𝛿𝛷

𝑑𝑡

𝜕𝐹

𝜕𝐸
−
𝑑

𝑑𝑡
(𝜇
𝛿𝐵

𝐵
)
𝜕𝐹

𝜕𝜇
(𝐴18) 

𝑑

𝑑𝑡
𝛿𝑓(𝑡) =  

𝑑

𝑑𝑡
𝛿𝑓𝑎𝑑𝑖𝑎𝑏𝑎𝑡𝑖𝑐(𝑡) +

𝑑

𝑑𝑡
ℎ(𝑡) (𝐴19) 

where ℎ(𝑡) is the usual label for the non-adiabatic contribution. 

Both the HAGIS and FAC codes (as well as the linear CASTOR-K  code [44] ) explicitly ignore adiabatic 

contributions to the mode frequency and focus instead on computing the growth rate due to real 

power transfer. By using MHD for the mode structure, this implies that these codes are ignoring the 

fast particle pressure contributions to the mode structure and frequency.  More recently, there has 

been work in combining the LIGKA code with HAGIS to weaken this assumption both linearly and 

nonlinearly [45].  

We can re-obtain the non-adiabatic HAGIS/FAC evolution equations Eqn. 21 in [13]  and Eqn. 29 in 

[12] by considering a low- 𝛽 MHD approximation for an Alfvén eigenmode 

∇ ×∑𝛼𝑚
𝑚

𝑩𝟎 = 𝛿𝑩 (𝐴20) 

 

𝛼𝑚 =
𝑘∥𝑚δΦm
𝐵0𝜔

(𝐴21) 

The power transfer term in Eqn. 55 is then proportional to 

𝑒𝑖𝜔𝑗t𝒆†(𝒙𝒊(𝑡); 𝜔𝑗)𝒗 = −∑(𝒗 ⋅ ∇δΦm
∗ 𝑒𝑖𝜔𝑗t + 𝒗 ⋅

∂

∂t
𝛼𝑚
∗ 𝑒𝑖𝜔𝑗t𝑩𝟎)

𝑚

= −𝑒𝑖𝜔𝑗t∑(𝒗 ⋅ ∇δΦm
∗ + 𝑖𝜔𝑣∥

𝑘∥𝑚δΦm
∗

𝐵0𝜔
𝑩𝟎)

𝑚

(𝐴22)

 

Ignoring the adiabatic contribution implies 

𝑑δΦm
∗

𝑑𝑡
=
𝜕δΦm

∗

𝜕𝑡
+ 𝒗 ⋅ ∇δΦm

∗ = 0 (𝐴23) 

Giving immediately the HAGIS/FAC results (in their notation) 
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𝐴(𝑡; 𝜔𝑗) ≡ 𝑋(𝑡;𝜔𝑗) − 𝑖𝑌(𝑡;𝜔𝑗) (𝐴24) 

𝑆𝑖𝑗𝑚 = ℑ𝑚 {𝑒
𝑖(𝑘𝑚⋅𝑥−𝜔𝑗t)Φm} (𝐴25) 

 

𝐶𝑖𝑗𝑚 ≡ ℜ𝑒 {𝑒
𝑖(𝑘𝑚⋅𝑥−𝜔𝑗t)Φm} (𝐴26) 

 

𝑋̇(𝑡; 𝜔𝑗) =
1

2𝛿𝑊
𝑒∑∑(𝑘∥𝑚(𝒙𝒊(𝑡))𝑣∥𝑖(𝑡) − 𝜔𝑗)𝑆𝑖𝑗𝑚𝛿𝑓𝑖(𝑡) Δ

3𝑥𝑖Δ
3𝑣𝑖

𝑖𝑚

(𝐴27) 

𝑌̇(𝑡; 𝜔𝑗) = −
1

2𝛿𝑊
𝑒∑∑(𝑘∥𝑚(𝒙𝒊(𝑡))𝑣∥𝑖(𝑡) − 𝜔𝑗)𝐶𝑖𝑗𝑚𝛿𝑓𝑖(𝑡) Δ

3𝑥𝑖Δ
3𝑣𝑖

𝑖𝑚

(𝐴28) 
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