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For several decades, the striking contradiction between the Huang diffuse scattering experiments,
resistivity recovery data, and predictions derived from density functional theory (DFT) remained
one of the mysteries of defect physics in molybdenum. Since the nineteen seventies, observations of
Huang X-ray diffuse scattering appeared to indicate that a self-interstitial atom (SIA) defect in Mo
adopts a 〈110〉 dumbbell configuration. However, the low temperature defect diffusion data sup-
ported the DFT prediction of a different, highly mobile 〈111〉 SIA defect structure in the same metal.
Using symmetry-unconstrained DFT simulations, we show that an SIA adopts a symmetry-broken
configuration in all the group 6 metals: chromium, molybdenum and tungsten. The symmetry-
broken defect structure, a 〈11ξ〉 dumbbell, where ξ is an irrational number, agrees with nudged
elastic band analyses of 〈110〉 to 〈111〉 transformations. Direct simulations of Huang diffuse scat-
tering by symmetry-broken defect configurations predicted by DFT explain why no zero intensity
lines were observed in experiment and resolve the long outstanding question about the structure of
defects in Mo and similar metals. A 〈11ξ〉 defect migrates on average one-dimensionally through
a sequence of three-dimensional non-planar [11ξ] to [ξ11] or [1ξ1] transitions. Barriers for defect
migration in non-magnetic Cr, anti-ferromagnetic Cr, Mo and W derived from DFT calculations,
0.052, 0.075, 0.064 and 0.040 eV are well correlated with the onset of defect migration temperatures
observed experimentally.

I. INTRODUCTION

The group 6 metals chromium, molybdenum and tung-
sten are elements of profound technological significance.
Cr is an indispensable component of stainless steels, pre-
venting corrosion through passivation. It also improves
the resistance to swelling of ferritic-martensitic steels ex-
posed to irradiation [1]. Mo, W, and their alloys are
refractory metals with high melting points, mechanically
stable at high temperature. They are used in a variety
of high temperature applications [2, 3], for example Mo-
25%Re alloys are materials for rocket engine components
[4]. Tungsten is a candidate material for divertor and
plasma-facing components of a fusion power plant [5, 6].

Mechanical properties of metals depend on their mi-
crostructure [7]. To model how the microstructure of Cr,
Mo, W and their alloys evolves under irradiation, it is es-
sential to know the structure and thermally activated mo-
bility parameters of self-interstitial atom (SIA) defects.
Huang scattering experiments [8, 9] appear to show that
an SIA in Mo adopts a 〈110〉 configuration, consistent
with a diffuse scattering pattern produced by a field of
displacements with orthorhombic symmetry. However,
this is at odds with density function theory (DFT) pre-
dictions that SIA defects in all the body-centre cubic
transition metals, with the exception of ferromagnetic
iron, adopt straight linear 〈111〉 dumbbell or crowdion
configurations [10–12].
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According to the resistivity recovery experiments on
electron irradiated materials [13, 14], the temperatures
TSIA
m of the onset of long range migration of SIA defects

in Cr, Mo and W are 40K, 35K, and 27K, respectively.
In many other BCC transition metals TSIA

m is below 6K,
which is the lowest temperature accessible to observa-
tions. If one assumes that a defect adopts a 〈110〉 con-
figuration then, irrespectively of whether its migration
follows a three-dimensional translation-rotation pathway
[15] or a two-dimensional pathway [16] (Fig. 1), in com-
parison with iron where TSIA

m = 120K, the experimen-
tally observed values of TSIA

m in group 6 metals are too
low. On the other hand, if an SIA adopted a linear
〈111〉 configuration and diffused one-dimensionally [17],
the corresponding temperatures TSIA

m would be signifi-
cantly lower than what is observed experimentally.

Fitzgerald and Nguyen-Manh [17] argued that the rel-
atively high values of TSIA

m in group 6 elements were
a consequence of the double peak structure of the 〈111〉
inter-atomic-string potential, affecting the Peierls barrier
for the motion of SIA defects. The argument was based
on solutions of a constrained one-dimensional Frenkel-
Kontorova model, parameterized using DFT calculations.
However, the study involved no direct DFT analysis of
SIA migration barriers or possible deviations from purely
one-dimensional diffusion.

A recent direct DFT nudged elastic band (NEB) study
shows that the barrier for one-dimensional diffusion of a
〈111〉 SIA dumbbell defect in tungsten is just 2 meV [18],
and that it has a simple single-peak structure. A straight
〈111〉 dumbbell moves from one equilibrium position to
another via a 〈111〉 crowdion saddle point configuration.
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FIG. 1. Sketch illustrating a two-dimensional transition path-
ways of migration of a 〈110〉 dumbbell proposed by Jacques
and Robrock [16].

In a classical transition state theory approximation [19]
the barrier of 2 meV corresponds to the temperature of
onset of SIA migration of 0.7K, as detailed in Section IV
below. Quantum transition state theory [18] that takes
zero-order atomic vibrations into account, predicts that
defects diffuse at even lower temperature. Neither clas-
sical nor quantum predictions agree with experimental
observations, and this is unusual given that DFT cal-
culations normally match experimental data fairly well
[15].

Can an SIA defect adopt neither a straight 〈111〉 nor a
〈110〉 configuration? Olsson [20] noted that the energy of
a 〈221〉 dumbbell in Cr was lower than the energy of ei-
ther 〈111〉 or 〈110〉 defect structures. Han et al. [21] also
found that the energy of a canted 〈111〉 dumbbell in Mo,
computed using a relatively small cell, was slightly lower
than that of a straight 〈111〉 configuration. Recently,
Gharaee and Erhart [22] found that a lower symmetry
mixed self-interstitial defect involving a Ti, V, or Re so-
lute atom in W had lower energy than 〈111〉 or 〈110〉
dumbbells. They termed the resulting structure a bridge
interstitial. All the above studies [20–22] point to a pos-
sible occurrence of a lower symmetry defect configuration
in group 6 elements, different from either a simple linear
〈111〉 defect, or a 〈110〉 dumbbell. If this were indeed the
case, the mode of migration of the defect would deviate
from pure one-dimensional motion that is often assumed
in tungsten and other non-magnetic BCC metals.

Below, we resolve the controversy and explain the ori-
gin of disagreement between the Huang scattering and
resistivity recovery experimental results. We also explain
elastic after-effect observations and identify a deficiency
associated with earlier DFT calculations of defects in W,
Mo and Cr. We find that a canted 〈11ξ〉 SIA configura-
tion, where ξ is a irrational number, represents the low-
est energy defect structure in all the metals of group 6
in the Periodic table. A migrating defect follows a three-
dimensional translation-rotation pathway, where the av-
erage trajectory is parallel to a 〈111〉 crystallographic
direction. The barriers for migration predicted by DFT
calculations for all the three metals agree with the ob-

served temperatures of the onset of diffusion of SIA de-
fects.

Using elastic dipole tensors of 〈11ξ〉 defects, we sim-
ulate Huang diffuse X-ray scattering patterns and find
that the features, using which the defect structures were
classified in experiments performed in the nineteen sev-
enties [9], are surprisingly similar to those of a 〈110〉
dumbbell, despite the fact that the structures of defects
themselves are different. It is this unusual manifestation
of symmetry-breaking effect, occurring in a defect struc-
ture, that reconciles a number of seemingly contradictory
experimental observations, and resolves the inconsistency
between experiment and ab initio interpretation of data
that remained outstanding for several decades.

II. METHODOLOGY

All the ab initio calculations were performed using Vi-
enna Ab initio Simulation Package (VASP) [23–26] in
the generalized gradient approximation (GGA), using the
exchange-correlation functional by Perdew, Burke and
Ernzerhof (PBE) [27, 28]. Plane wave energy cutoff was
set at 450 eV. A simulation supercell involved 4 × 4 × 4
BCC unit cells. 5 × 5 × 5 k-points mesh was used in all
the calculations. To explore the cell size effect, we also
performed simulations using a larger supercell containing
5× 5× 5 BCC unit cells, with a 4× 4× 4 k-points mesh.
Reference perfect lattice cells were relaxed to a stress-free
condition. While keeping the cell size and shape the same
as in the perfect lattice case, simulation cells containing
various SIA configurations were created and ionic posi-
tions relaxed. The maximum residual force on an atom
in a fully relaxed defect configuration was smaller than
1× 10−3 eV/Å. Semi-core shells were treated as valence
electrons, and twelve valence electron per atoms were in-
cluded in every calculation of a defect structure in Cr,
Mo and W to achieve the sufficient accuracy of evalua-
tion of inter-atomic forces in the highly compressed core
region of the defect.

For Mo and W, only non-magnetic (NM) calculations
were performed. For Cr, we performed NM and collinear
magnetic calculations. Although the electronic ground
state of Cr is believed to have the form of a spin density
wave (SDW) [29], a collinear antiferromagnetic (AFM)
state was chosen for spin polarized calculations. This
AFM state has the energy very close to that of the SDW
within the margin of ab initio calculations [30]. An AFM
state was set up by initializing magnetic moments similar
to those of a perfect lattice configuration, but with mag-
nitudes set to zero near the highly compressed core of the
defect. The final ground state AFM magnetic structure
was determined from a self-consistent electronic structure
calculation.

The formation energy of a defect is

EF = Edef (Ndef )− Ndef

Nbulk
Ebulk(Nbulk)− Ecorr

el , (1)
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PBE C11 C12 C44 Ω0 a0

Cr/AFM 448.12 62.03 102.13 11.72 2.862

Cr/NM 509.67 144.27 105.73 11.49 2.843

Mo 469.07 157.72 99.71 15.77 3.160

W 518.26 199.77 142.09 16.14 3.184

Exp.

Cr 394.1 88.5 103.75 11.94 2.88

Mo 464.7 161.5 108.9 15.63 3.15

W 522.4 204.4 160.6 15.78 3.16

TABLE I. Elastic constants (in GPa units) evaluated using
the Le Page and Saxe [33] method for a 2-atom cell and
30×30×30 k-point mesh. Ω0 (Å3) and a0 (Å) are the atomic
volume and the lattice constant, respectively. Calculations
were performed using the GGA-PBE exchange-correlation
functional assuming non-magnetic (NM) or collinear antifer-
romagnetic (AFM) states of Cr, and non-magnetic states of
Mo and W. Experimental lattice constants are taken from
Ref. [34], elastic constants for Cr are from Ref. [35], and for
Mo and W are from Ref. [36].

where Nbulk and Ndef are the numbers of atoms in a ref-
erence cell and in a cell containing a defect, Edef is the
total energy of the cell containing a defect, Ebulk is the
energy of the reference cell, and Ecorr

el is the elastic cor-
rection energy that needs to be included given that cal-
culations were performed using periodic boundary con-
ditions, see Refs. [12, 31, 32] for further detail. Elastic
constant tensors Cijkl involved in the evaluation of Ecorr

el
were computed using the Le Page and Saxe method [33]
for a 2 atom simulation cell and a 30×30×30 k-point
mesh. The computed elastic constants are given in Table
I.

Migration energy EM of a defect was computed using
the NEB method [37, 38], where EM is defined as the
maximum variation of the formation energy along a tran-
sition pathway linking two equilibrium configurations.
Each NEB calculation involved eleven images, where the
residual force on an atom in each image was lower than
0.01 eV/Å. At each point on a transition pathway the
formation energy of a defect was corrected for the elas-
tic effects associated with the use of periodic boundary
conditions [12, 31, 32].

III. FORMATION ENERGY OF SIA DEFECTS
IN CR, MO AND W

DFT calculations of various SIA configurations were
performed using a simulation cell containing 4 × 4 × 4
BCC unit cells. The defect configurations included in the
study were 〈111〉 dumbbell, 〈111〉 crowdion, 〈110〉 dumb-
bell, tetrahedral site interstitial, 〈100〉 dumbbell, and an
octahedral site interstitial. For completeness, we have
also computed the formation energy of a mono-vacancy.
The formation energies of defects are given in Table II.

4× 4× 4 Cr/AFM Cr/NM Mo W

〈11ξ〉d 6.361 6.074 7.399 10.249

〈111〉d 6.617 6.247 7.475 10.287

〈111〉c 6.555 6.243 7.479 10.289

〈110〉d 6.515 6.218 7.580 10.576

Tetra 6.918 6.889 8.358 11.717

〈100〉d 7.275 7.256 8.890 12.196

Octa 7.354 7.307 8.916 12.265

Vac 3.004 2.875 2.787 3.223

ξ 0.355 0.405 0.468 0.526

TABLE II. Formation energies EF of point defects in
Cr/AFM, Cr/NM, Mo and W evaluated using the GGA-PBE
exchange-correlation functional. Calculations were performed
using simulation cells containing 4 × 4 × 4 BCC unit cells.
A 〈11ξ〉 dumbbell has the lowest energy among all the SIA
configurations explored in this study. Vacancy data are also
included for completeness. All the energies are given in eVs.
The value of parameter ξ depends on the material and, where
applicable, on its magnetic structure.

5× 5× 5 Cr/AFM Cr/NM Mo W

〈11ξ〉d 6.453 5.919 7.448 10.256

〈111〉d 6.644 6.095 7.519 10.306

〈110〉d 6.548 6.060 7.628 10.579

ξ 0.356 0.397 0.447 0.482

TABLE III. Formation energies of selected point defects in
Cr/AFM, Cr/NM, Mo and W evaluated using a cell contain-
ing 5×5×5 BCC unit cells. A 〈11ξ〉 dumbbell still represents
the lowest energy configuration in all the three metals.

Calculations show that the formation energies of a 〈110〉
dumbbell, 〈111〉 dumbbell and 〈111〉 crowdion are sim-
ilar. These results are compatible with previous DFT
studies [10, 11, 20, 39] showing that a 〈110〉 dumbbell
has lower energy in Cr, whereas a 〈111〉 dumbbell has
lower energy in Mo and W.

Bearing in mind studies by Olsson [20], Han et al. [21],
and Gharaee and Erhart [22], we have also explored if
there were an even more stable SIA configuration, inter-
mediate between a 〈110〉 dumbbell and a 〈111〉 dumbbell.
To investigate this, we have carried out NEB calculations,
simulating pathways of rotation of an SIA dumbbell from
a [110] to a [111] configuration in various metals. Fig. 2
shows how the formation energy of a defect varies as a
function of the reaction coordinate. We find a well de-
fined minimum in all the three metals of group 6, cor-
responding to the orientation of the axis of the defect
intermediate between the [110] and [111] directions. No
minimum is found in BCC metals of group 5, where the
curve is monotonic, as illustrated by the curve for nio-
bium, which in the Periodic table occupies a position next
to molybdenum.
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FIG. 2. (Color online) Results of nudged elastic band calcu-
lations illustrating how the formation energy of a SIA dumb-
bell varies as a function of the orientation of the axis of the
defect. The orientation changes from being collinear to the
[110] direction (the left edge of the diagram) to being collinear
to the [111] direction (the right edge of the diagram). The
curves were computed taking into account the elastic correc-
tion associated with the use of periodic boundary conditions
[12, 31, 32]. Note that the only curve in the Figure that is
monotonic refers to Nb, which is a group 5 metal.
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FIG. 3. (Color online) The elastic correction Ecorr
el part of

the formation energy of defects corresponding to the curves
shown in Fig. 2.

The intermediate between [110] and [111] configuration
of the defect is stabilized by electronic chemical bond-
ing effects and not by the effects of elastic interaction
between periodically translated images of defects associ-
ated with the use of periodic boundary conditions. To
prove this, we have computed the energy of elastic inter-
action Ecorr

el following Refs. [12, 31, 32] and plotted it
as a function of the NEB reaction coordinate in Fig. 3.
The elastic correction varies monotonically as a function

of the reaction coordinate, and the shape of the curve in
Fig. 3 exhibits no correlation with the variation of the
formation energy of defects shown in Fig. 2.

From the NEB calculations, we took the lowest en-
ergy image and performed further ionic relaxation. In
all the group 6 metals, the defect relaxed into a 〈11ξ〉
dumbbell with the formation energy and orientation pa-
rameter ξ given in Table II. We find that ξ is an ir-
rational number depending on the material and, where
applicable, its magnetic state. The configuration that a
SIA defect adopts in group 6 metals is different from a
linear 〈111〉 configuration of the defect in vanadium, nio-
bium and tantalum [10]. It is also significantly different
from the 〈110〉 dumbbell configuration that a SIA defect
adopts in iron [15], where its structure is stabilized by
magnetic effects. A sketch of the symmetry-broken 〈11ξ〉
defect structure in Mo is shown in Fig. 4.

To verify that the observed symmetry-broken defect
configuration is not an artifact of the finite simulation
cell size, we have also carried out simulations using a
larger cell containing 5×5×5 BCC unit cells. The simu-
lations were performed for 〈11ξ〉, 〈111〉 and 〈110〉 dumb-
bells. Their formation energies are given in Table III.
Although the absolute values differ slightly from those
given in Table II, the conclusion that the 〈11ξ〉 dumbbell
is the most stable SIA configuration, remains unchanged.
We have also performed calculations for Mo using a non-
cubic simulation cell, containing 4×4×5 BCC unit cells.
The formation energy of a 〈11ξ〉 SIA defect in this cell is
7.400 eV, which is close to the value of 7.399 eV found
using a 4 × 4 × 4 cubic simulation cell. This eliminates
any possible remaining concern about the effect of the
finite simulation cell size, or its non-cubic symmetry.

To understand the origin of symmetry breaking at the
centre of the defect, we have calculated the local density
of electronic states (LDOS) projected onto one of the
atoms at the centre of 〈111〉 and 〈11ξ〉 dumbbell configu-
rations in Mo. LDOS plots for the two defect structures
are shown in Fig. 5. To achieve sufficient accuracy of
calculation of DOS, we used a 9 × 9 × 9 k-point mesh.
Calculations involved relaxed defect configurations sim-
ulated using a 4× 4× 4 cell and 5× 5× 5 k-point mesh.
LDOS computed for a perfect BCC lattice 128 atom cell
is shown for comparison. We see that the DOS for the
two defect structures is only slightly higher at the Fermi
energy (corresponding to the origin of the horizontal axis
and indicated by a dashed vertical line), suggesting that
the stabilization of the 〈11ξ〉 dumbbell defect structure is
not related to the changes in electronic structure near the
Fermi energy εF . On the other hand, the DOS for the
〈11ξ〉 defect increases significantly at the lower edge of
the band, explaining why the energy of the 〈11ξ〉 dumb-
bell configuration is lower than the energy of the 〈111〉
configuration.

Fig. 6 shows distances between successive atoms in
atomic strings containing an extra atom in Cr/AFM,
Cr/NM, Mo and W, for a straight 〈111〉 defect configu-
ration (top) and a symmetry-broken 〈11ξ〉 configuration
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FIG. 4. (Color online) Atomic structure of a symmetry-broken 〈11ξ〉 SIA dumbbell defect in Mo, simulated using a supercell
containing 5 × 5 × 5 BCC unit cells. Symmetry breaking in the core of the defect gives rise to buckling of the central [111]
atomic string containing an extra atom. Buckling can occurs in one of the three {110} atomic planes equivalent by symmetry
with respect to the straight linear 〈111〉 configuration of the defect.
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FIG. 5. (Color online) The local density of states (DOS) for
one of the two atoms at the center of 〈111〉 and 〈11ξ〉 dumbbell
configurations in Mo. A plot showing the DOS computed for
perfect BCC lattice is shown for comparison. The position of
the Fermi energy for all the three structures corresponds to
the origin of the horizontal axis and is indicated by a dashed
vertical line.

(bottom). The curves differ at the centre of the defect,
whereas a few lattice parameters away from the core the
structure of the defects appear similar. The two atoms at
the centre of the symmetry-broken 〈11ξ〉 dumbbell con-
figuration are situated closer together than in a straight
〈111〉 dumbbell configuration.

In Fig. 7, we plot the Voronoi volume of atoms

in the central 〈111〉 string, containing an extra atom.
The Voronoi volume of an atom is computed using the
Voro++ program [40]. Atoms at the centre of a 〈11ξ〉
dumbbell configuration occupy smaller volumes than in
a straight 〈111〉 dumbbell configuration. In general,
a symmetry-broken 〈11ξ〉 dumbbell defect configuration
appears more compact than a straight linear 〈111〉 con-
figuration, and the difference is more pronounced in the
case of Cr than in Mo or W.

A somewhat deeper insight into the nature of inter-
atomic bonding at the core of defects can be gained from
a comparison of charge difference plots shown in Figs.
8 and 9. The plot shown in Fig. 8 illustrates the ef-
fect of deformation of electron charge density due to the
buckling of a straight linear 〈111〉 defect configuration.
A precursor of symmetry breaking is already visible at
the centre of the 〈111〉 defect, where the symmetry of
the charge density distribution is different from that of
atoms in the surrounding perfect lattice.

IV. MIGRATION OF A SIA DEFECT

Symmetry breaking also has implications for the mi-
gration of 〈11ξ〉 SIA defects. The defects no longer mi-
grate purely one-dimensionally, retaining their straight
〈111〉 structure, as was assumed in Ref. [17]. It is in-
structive to compare the case with that of magnetic BCC
iron, where a SIA defect adopts a 〈110〉 dumbbell config-
uration. In iron, a migrating SIA defect follows a three
dimensional translation-rotation pathway. DFT calcula-
tions show that a [110] dumbbell transforms into a [011]
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FIG. 6. (Color online) Distances between successive atoms i
and j = i + 1 in a 〈111〉 atomic string containing an extra
atom. (Top) data for a 〈111〉 dumbbell and (bottom) data
for a 〈11ξ〉 configuration in Cr/AFM, Cr/NM, Mo and W.
Positions of atoms were computed using the GGA-PBE func-
tional.

dumbbell located in an adjacent cell, and that the energy
barrier for migration of the defect is close to 0.34 eV [15].
The predicted value is close to the experimentally mea-
sured migration energy of 0.30 eV and is compatible with
the relatively high observed temperature of the onset of
defect migration of 120K [13].

Bearing in mind that the experimentally observed
SIA defect migration temperatures in Cr, Mo and W
are 40K, 35K and 27K [13], respectively, we propose
that a symmetry-broken SIA defect migrates though a
translation-rotation pathway similar to that of a defect
in Fe. A 〈11ξ〉 dumbbell is a structure intermediate be-
tween a 〈111〉 and a 〈110〉 configuration. A possible mi-
gration pathway therefore might involve a transition from
a [11ξ] dumbbell structure to a [ξ11] dumbbell structure
situated in an adjacent BCC unit cell. Symmetry con-
siderations suggest that a [11ξ] dumbbell can also jump
to a [1ξ1] configuration. For any 〈11ξ〉 dumbbell, there
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FIG. 7. (Color online) Voronoi volumes of atoms belonging to
a 〈111〉 atomic string containing an extra atom. (Top) data
for a 〈111〉 dumbbell and (bottom) data for a 〈11ξ〉 configu-
ration of a defect in Cr/AFM, Cr/NM, Mo and W. All the
calculations were performed using the GGA-PBE functional.

are two equivalent forward and two backward migration
pathways along the 〈111〉 direction. A sketch illustrating
the pathway of migration of a defect is shown in Fig. 10.

The pattern of migration above does not involve large
non-elastic relaxation, and is compatible with the elastic
after-effect experimental observations performed in Mo
at 4.2K [16]. Although there is some reorientation of
the SIA during its migration, it is relatively small if one
compares it with the translation-rotation migration of a
〈110〉 SIA in Fe. In addition, although every migration
step is twice degenerate (a [11ξ] defect can transform into
adjacent [ξ11] or [1ξ1] configurations), each step involves
a transformation similar to the one proposed by Jacques
and Robrock [16] and illustrated schematically in Fig.
1. Still, the overall pattern of thermal migration of a
defect is not two-dimensional, but one-dimensional, since
on average a defect diffuses in a 〈111〉 direction closest
to the orientation of the axis of the defect.

NEB data for trajectories of migration of a defect from
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FIG. 8. (Color online) Two-dimensional plots of electron charge density difference computed for a 〈11ξ〉 dumbbell configuration
in the (11̄0) plane in Cr/AFM, Cr/NM, Mo and W. Calculations were performed using the GGA-PBE functional. Electron
charge density difference is defined as the self-consistent electron density minus a superposition of atomic charge densities.

FIG. 9. (Color online) Two-dimensional plots of electron charge density difference computed for a 〈111〉 dumbbell configuration
in the (11̄0) plane in Cr/AFM, Cr/NM, Mo and W. Calculations were performed using the GGA-PBE functional. Electron
charge density difference is defined as the self-consistent electron density minus a superposition of atomic charge densities.
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FIG. 10. Schematic diagram illustrating the migration path-
way of an SIA defect from a [11ξ] to a [ξ11] dumbbell config-
uration. Values of parameter ξ for Group 6 metals are listed
in Table II and III. Note that the initial and final configu-
rations of the defect are associated with symmetry-breaking
occurring in two different {110} planes.
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FIG. 11. (Color online) Migration energy barriers computed
using the nudged elastic band method, and corresponding
to the trajectory of migration of a symmetry-broken [11ξ]
SIA dumbbell to an adjacent cell, as illustrated in Fig. 10.
Calculations were performed using the GGA-PBE exchange-
correlation functional.

Metal Em (eV) est. Tm (K) exp. Tm (K)

Cr/AFM 0.052 18.7 40

Cr/NM 0.075 27.0 40

Mo 0.064 23.5 35

W 0.040 14.7 27

TABLE IV. Barriers for defect migration in Group 6 met-
als, the estimated transition state theory onset of migration
temperatures, and the onset of migration temperatures ob-
served in electron irradiated metals using the resistivity re-
covery technique [13].
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FIG. 12. (Color online) Energy contribution due to the elastic
correction Ecorr

el corresponding to the trajectory of migration
shown in Figs. 10 and 11.

a [11ξ] to a [ξ11] dumbbell configuration in Group 6 met-
als are illustrated in Fig. 11. The corresponding values
of elastic correction energy associated with the use of
periodic boundary conditions are shown in Fig. 12. The
barrier for defect migration is defined as the difference be-
tween the energies of the saddle and equilibrium points.
The energy barrier for migration of a defect in Cr/AFM
is 0.052eV, in Cr/NM it is 0.075eV, in Mo it is 0.064 eV
and in W it is 0.040eV, as summarized in Table IV.

In the transition state approximation [19] the jump
frequency equals

ν = ν0 exp(−Em/kBT ), (2)

where ν0 is the attempt frequency. In transition state
theory it is often assumed that the attempt frequency
is proportional to the Debye frequency, and hence the
Debye temperature θ of the material.

Using Fe as a benchmark, where θFe = 470K [34], and

assuming ν = 1 s−1, we find Tm = 124.3K, where the
migration energy of a 〈110〉 dumbbell is taken as Em =
0.34eV [15]. This estimate compares well with the onset
of migration temperature of SIA defects of 120K observed
in experiment [13].

Similarly, using the Debye temperatures θCr = 630K,
θMo = 450K and θW = 400K taken from Ref. [34],
we find the temperatures characterizing the onset of mi-
gration of SIA defects TSIA

m of 18.7K, 27.0K, 23.5K,
and 14.7K in Cr/AFM, Cr/NM, Mo and W, respec-
tively. These values compare well with the values derived
from electron irradiated resistivity recovery experiments
of 40K, 35K and 27K in Cr, Mo and W [13]. The compar-
ison is particularly informative given that the migration
barrier for a non-symmetry-broken linear SIA defect in
W is just 2 meV [18], and this corresponds to the onset of
defect migration temperature of just 0.7K, which is more
than an order of magnitude lower than what is observed
experimentally.
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At higher temperatures, more complex migration path-
ways could be realized, involving for example a transfor-
mation of a 〈11ξ〉 dumbbell into a 〈111〉 dumbbell, which
then performs a purely one-dimensional migration step,
followed by the formation of another symmetry broken
defect configuration. The difference between the forma-
tion energies of a 〈11ξ〉 and a 〈111〉 SIA in Mo and W
are 0.071 eV and 0.050 eV, respectively. These values are
not too dissimilar from the migration energy associated
with the transformation of a SIA defect from a [11ξ] to
a [ξ11] configuration.

V. INTERPRETATION OF HUANG X-RAY
DIFFUSE SCATTERING PATTERNS

In the preceding sections, we showed that an SIA de-
fect in Cr, Mo, and W adopts a symmetry broken 〈11ξ〉
configuration, and its migration follows a translation-
rotation pseudo-one-dimensional pathway that on aver-
age is collinear with a 〈111〉 crystallographic direction.
This reconciles predictions derived from DFT calcula-
tions, resistivity recovery experiments and observations
of elastic after-effect. The remaining outstanding ques-
tion concerns the interpretation of Huang X-ray diffuse
scattering observations that, according to Ehrhart [9], in-
dicate that a SIA defect in molybdenum adopts a 〈110〉
configuration.

If the concentration of point defects in a material is
small, the symmetry of the long range strain field of such
defects can be determined from Huang diffuse scattering
patterns. Huang diffuse scattering intensities, produced
by randomly distributed defects adopting all the possi-
ble symmetry-equivalent orientations, are characterized
by the momentum transfer K = h + q, where h is a
chosen reciprocal lattice vector. The scattered intensity
distribution has the form [8],

SH(K) = Ndeff
2
h

h2

q2
1

V 2
uc

(γ1π1 + γ2π2 + γ3π3) . (3)

This formula, derived in the kinematic scattering approx-
imation, shows that the cross-section of scattering is pro-
portional to the total number of defects Ndef in the sam-
ple. In the above equation, fh is the atomic scattering
form factor, Vuc = a30 is the volume of a unit cell, h
is a reciprocal lattice vector, and q is a measure of de-
viation from the Bragg reflection. In equation (3) it is
assumed that |q| is small in comparison with |h|. Below,
the values of K, h and q are given in 2π/a0 units. Pa-
rameters γ1, γ2, and γ3 depend on h and q, and also on
the anisotropic elastic constants of the material, where

γ1 =
1

3

(∑
i

Tii

)2

, (4)

γ2 =
1

3

∑
i>j

(Tii − Tjj)2 , (5)

γ3 =
1

2

∑
i>j

(Tij + Tji)
2
, (6)

and

Tij =
∑
l

ĥlgli(q̂)q̂j . (7)

Introducing unit vectors ĥ = h/h and q̂ = q/q, we write
the matrix function gli(q̂) as

gij(q̂) =

(∑
kl

Cikjlq̂kq̂l

)−1
, (8)

where Cijkl is the elastic constant tensor. Parameters π1,
π2, and π3 depend only on the matrix elements of elastic
dipole tensor Pij of the defect, computed for a particular
orientation, where

π1 =
1

3

(∑
i

Pii

)2

, (9)

π2 =
1

6

∑
i>j

(Pii − Pjj)
2
, (10)

π3 =
2

3

∑
i>j

P 2
ij . (11)

Symmetry properties of π1, π2, and π3 are such that the
same values are obtained for any orientation of the defect
that is related to its original orientation by symmetry
operations pertinent to the underlying crystal lattice.

The dipole tensor of a localized defect object can be
computed from macro-stresses developing in a simulation
box due to the presence of a defect in it [31, 32, 41, 42],

Pij = Vcell(Cijklε
app
kl − σ̄ij), (12)

where

σ̄ij =
1

Vcell

∫
Vcell

σijdV (13)

is the average macroscopic stress in the simulation box,
and εappkl is the external applied stress. In this study, since
we are using simulation boxes of the same size and shape
as the reference perfect lattice, εappkl = 0. Dipole tensors
Pij of defects in Cr/AFM, Cr/NM, Mo and W computed
using equation (12) are given in Tables V to VIII. The
tables also contain the computed values of parameters
π1, π2, and π3.

An atomic scattering form factor may be approximated
by a sum of Gaussian functions of the form [43]:

fκ =

4∑
i=1

ai exp

[
−bi

( κ
4π

)2]
+ c, (14)

where ai, bi and c for Cr, Mo and W are listed in Table
IX. The atomic form factor is a constant for a particular
reflection h.
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Cr/AFM P11 P22 P33 P12 P23 P31 π1 π2 π3 π2/π1 π3/π1

〈11ξ〉d 18.389 18.389 21.882 4.040 2.058 2.058 1147.0 4.067 16.528 0.00355 0.01441

〈111〉d 18.728 18.728 18.728 4.617 4.617 4.617 1052.2 0.000 42.635 0.00000 0.04052

〈110〉d 20.530 20.530 18.955 4.790 0.000 0.000 1200.6 0.827 15.299 0.00069 0.01274

TABLE V. Elements of dipole tensor Pij (in eV units) and parameters π1, π2, and π3 computed for 〈11ξ〉, 〈111〉, and 〈110〉
dumbbells in Cr/AFM. Ab initio calculations were performed using simulation cells containing 4× 4× 4 BCC unit cells.

Cr/NM P11 P22 P33 P12 P23 P31 π1 π2 π3 π2/π1 π3/π1

〈11ξ〉d 27.410 27.410 32.365 4.417 2.662 2.662 2533.8 8.181 22.455 0.00323 0.00886

〈111〉d 28.816 28.816 28.816 5.222 5.222 5.222 2491.0 0.000 54.543 0.00000 0.02190

〈110〉d 28.806 28.806 30.494 4.594 0.000 0.000 2587.6 0.950 14.071 0.00037 0.00544

TABLE VI. Elements of dipole tensor Pij (in eV units) and parameters π1, π2, and π3 computed for 〈11ξ〉, 〈111〉, and 〈110〉
dumbbells in Cr/NM. Ab initio calculations were performed using simulation cells containing 4× 4× 4 BCC unit cells.

Figs. 13 to 16 show patterns of Huang diffuse scat-
tering computed for randomly distributed 〈100〉, 〈111〉,
〈110〉, and 〈11ξ〉 SIA defects in Mo. Since the scattering
intensity is linear in Ndef , it is normalized to the num-
ber of defects in all the calculations. The cross-section
of Huang scattering SH(K) diverges at q = 0, and in nu-
merical calculations we impose a maximum cutoff value
of intensity of 1× 107. In choosing the Bragg reflections
h and the range of q we follow Dederichs [8] and Ehrhart
[9]. We simulate Huang scattering patterns for h=[200],
[222] and [022], and take q in the p = (011̄) plane in
reciprocal space. We also investigate the case h = [022]
and p = (100).

In the case of a 〈100〉 dumbbell, we find zero inten-
sity lines for h = [200] & p = (011̄) and h = [022] &
p = (011̄). In the case of a 〈111〉 dumbbell, only the
h = [022] & p = (100) plot exhibits a zero intensity line.
In the case of 〈110〉 and 〈11ξ〉 dumbbells, none of the
plots exhibit zero intensity lines. In Fig. 17, we plot a
Huang scattering pattern simulated over a smaller range
of values of q, for the better identification of zero inten-
sity lines. All the patterns corresponding to the 〈100〉,
〈111〉, and 〈110〉 dumbbells are in agreement with calcu-
lations by Dederichs [8] and Ehrhart [9].

Our analysis shows that the key limiting factor in the
studies by Ehrhart [9] was the fact that only the 〈100〉,
〈111〉, and 〈110〉 dumbbells were included as possible can-
didate structures of SIA defects. The computed Huang
diffuse scattering patterns in Figs. 13, 14, 15 and 16 show
that it is impossible to tell apart the scattering patterns
corresponding to the 〈110〉 and 〈11ξ〉 defect structures.
Bearing in mind the compelling evidence for the 〈11ξ〉
dumbbell as the lowest energy SIA structure in molyb-
denum, we conclude that it is this structure that was
mistakenly interpreted as the 〈110〉 defect structure in
experiments by Ehrhart [9]. Indeed, none of the val-
ues of π1, π2 and π3 vanish for either the 〈110〉 or 〈11ξ〉
defect, which is the reason why in a Huang diffuse scat-

tering experiment one cannot distinguish these two SIA
configurations.

VI. CONCLUSION

We show that a symmetry-broken 〈11ξ〉 dumbbell rep-
resents the most stable defect configuration of a self-
interstitial atom defect in all the Group 6 metals of the
Periodic table. Parameter ξ is an irrational number, de-
pending on the material and its magnetic state. Defects
migration follows a rotation-translation pathway, which
on average appears similar to one-dimensional diffusion
in a 〈111〉 crystallographic direction. Barriers for the
migration of defects are significantly larger than those
predicted by a purely one-dimensional migration model.
They are 52 meV in antiferromagnetic Cr, 75 meV in
non-magnetic Cr, 64 meV in Mo and 40 meV in W. These
values correlate well with the temperatures characteriz-
ing the onset of migration of defects in various metals
observed experimentally. Huang diffuse scattering pat-
ters computed using the DFT data show that on the ba-
sis of experimental data Ref. [9] and other studies it is
not possible to distinguish between 〈110〉 and 〈11ξ〉 con-
figurations, and conclusively identify a defect structure
from observations. Defect configurations predicted by
symmetry-unconstrained ab initio simulations in Group
6 metals resolve the controversy associated with the in-
terpretation of experimental data, and reconcile observa-
tions with fundamental theory.
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Mo P11 P22 P33 P12 P23 P31 π1 π2 π3 π2/π1 π3/π1

〈11ξ〉d 38.614 38.614 43.538 6.675 4.631 4.631 4861.4 8.082 58.301 0.00166 0.01441

〈111〉d 39.601 39.601 39.601 7.609 7.609 7.609 4704.6 0.000 115.789 0.00000 0.04052

〈110〉d 39.944 39.944 42.470 6.757 0.000 0.000 4990.4 2.128 30.438 0.00043 0.01274

Exp. 0.05±0.02 0.04± 0.02

TABLE VII. Elements of dipole tensor Pij (in eV units) and parameters π1, π2, and π3 computed for 〈11ξ〉, 〈111〉, and 〈110〉
dumbbells in Mo. Ab initio calculations were performed using simulation cells containing 4×4×4 BCC unit cells. Experimental
values are taken from the study by Ehrhart [9] where Mo samples were exposed to electron irradiation at very low temperature.

W P11 P22 P33 P12 P23 P31 π1 π2 π3 π2/π1 π3/π1

〈11ξ〉d 50.921 50.921 57.883 11.925 9.136 9.136 8503.9 16.157 206.078 0.00190 0.01441

〈111〉d 52.754 52.754 52.754 13.128 13.128 13.128 8348.9 0.000 344.712 0.00000 0.04052

〈110〉d 52.557 52.557 56.960 11.277 0.000 0.000 8756.0 6.462 84.777 0.00074 0.01274

TABLE VIII. Elements of dipole tensor Pij (in eV units) and parameters π1, π2, and π3 computed for 〈11ξ〉, 〈111〉, and 〈110〉
dumbbells in W. Ab initio calculations were performed using simulation cells containing 4× 4× 4 BCC unit cells.

FIG. 13. Patterns of Huang diffuse scattering produced by an ensemble of randomly distributed and average over equivalent
crystallographic orientations 〈100〉 dumbbells.
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FIG. 14. Patterns of Huang diffuse scattering produced by randomly distributed and average over equivalent crystallographic
orientations 〈111〉 dumbbells.

Element a1 b1 (Å2) a2 b2 (Å2) a3 b3 (Å2) a4 b4 (Å2) c

Cr 10.6406 6.1038 7.3537 0.392 3.324 20.2626 1.4922 98.7399 1.1832

Mo 3.7025 0.2772 17.2356 1.0958 12.8876 11.004 3.7429 61.6584 4.3875

W 29.0818 1.72029 15.43 9.2259 14.4327 0.321703 5.11982 57.056 9.8875

TABLE IX. Parameters used for the evaluation of atomic form factors, see Ref. [43] for further detail.
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FIG. 15. Patterns of Huang diffuse scattering produced by randomly distributed and average over equivalent crystallographic
orientations 〈110〉 dumbbells.
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[31] Céline Varvenne, Fabien Bruneval, Mihai-Cosmin
Marinica, and Emmanuel Clouet, “Point defect mod-
eling in materials: Coupling ab initio and elasticity ap-
proaches,” Phys. Rev. B 88, 134102 (2013).

[32] S. L. Dudarev and Pui-Wai Ma, “Elastic fields, dipole
tensors, and interaction between self-interstitial atom de-
fects in bcc transition metals,” Phys. Rev. Materials 2,

033602 (2018).
[33] Yvon Le Page and Paul Saxe, “Symmetry–general least–

squares extraction of elastic data for strained materials
from ab initio calculations of stress,” Phys. Rev. B 65,
104104 (2002).

[34] Charles Kittel, Introduction to Solid State Physics, 8th
ed. (John Wiley & Sons, Inc., New York, 2004).

[35] S. B. Palmer and E. W. Lee, “The elastic constants of
chromium,” The Philosophical Magazine: A Journal of
Theoretical Experimental and Applied Physics 24, 311–
318 (1971).

[36] M. W. Finnis and J. E. Sinclair, “A simple empirical
N–body potential for transition metals,” Philosophical
Magazine A 50, 45–55 (1984).

[37] Gregory Mills, Hannes Jnsson, and Gregory K. Schen-
ter, “Reversible work transition state theory: application
to dissociative adsorption of hydrogen,” Surface Science
324, 305 – 337 (1995).

[38] Hannes Jónsson, Greg Mills, and Karsten W. Jacob-
sen, “Nudged elastic band method for finding minimum
energy paths of transitions,” in Classical and Quantum
Dynamics in Condensed Phase Simulations (World Sci-
entific, 1998) pp. 385–404.

[39] Pär Olsson, Christophe Domain, and Janne Wallenius,
“Ab initio study of Cr interactions with point defects in
bcc Fe,” Phys. Rev. B 75, 014110 (2007).

[40] Chris H. Rycroft, “VORO++: A three-dimensional
Voronoi cell library in C++,” Chaos: An Interdisci-
plinary Journal of Nonlinear Science 19, 041111 (2009).

[41] Emmanuel Clouet, Sbastien Garruchet, Hoang Nguyen,
Michel Perez, and Charlotte S. Becquart, “Dislocation
interaction with C in α-Fe: A comparison between atomic
simulations and elasticity theory,” Acta Materialia 56,
3450 – 3460 (2008).
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FIG. 17. Patterns of Huang diffuse scattering by 〈111〉, 〈110〉
and 〈11ξ〉 randomly distributed and average over the equiv-
alent crystallographic orientations dumbbell configurations
computed for a [022] reflection in the (100) plane in recip-
rocal space. Only the 〈111〉 dumbbell configurations produce
zero intensity lines parallel to the [01̄1] direction in reciprocal
space.


