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Ray-tracing techniques are applied to filtered divertor imaging, a diagnostic that has long suffered from
artifacts due to the polluting effect of reflected light in metal walled fusion machines. A physically realistic
surface reflection model is developed from a Cook-Torrence micro-facet bi-directional, reflection distribution
function (BRDF) model. Camera calibration images of in-vessel point light sources in JET are used to fit
and benchmark a first wall material model. Forward models of the calibration images were rendered with the
fitted BRDF models and good quantitative agreement was obtained. Photo-realistic renderings of a number
of tokamak plasma emission scenarios are presented by coupling the first wall model with high fidelity plasma
fluid simulations. Finally, a ray-traced set of sensitivity matrices are produced for a JET divertor camera
that include reflection effects. These matrices are used to perform inversions on measured data and shown to
reduce the level of artifacts in inverted emission profiles.

I. INTRODUCTION

Accurate diagnosis of plasma characteristics in the di-
vertor is crucial for our understanding of detachment
physics, plasma-surface interactions, and ensuring the
technical success of the ITER and DEMO devices. Fil-
tered camera imaging is a useful technique for filling the
diagnostic gap that exists between the plasma core and
the scrape off layer (SOL).

The core plasmas of tokamaks are well diagnosed, bulk
plasma parameters can be measured with good spatial
resolution by diagnostics such as Thomson scattering and
charge exchange recombination spectroscopy1. Many of
the core plasma quantities are to a good approximation
flux functions, and hence measurement of 1D spatial pro-
files is often sufficient. In the SOL however, plasma pa-
rameters are no longer flux functions and become (at
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least) 2D. Langmuir probes embedded in the plasma
facing components provide good measurements at the
plasma-material interface and other regions with mea-
surable plasma interaction. However, there is a diag-
nostic gap between these two regions where it is diffi-
cult to achieve spatially resolved measurements of the
plasma species’ temperatures and densities. Line ratio
analysis of line integrated spectroscopy can yield localised
measurements2 but fails to provide the spatial resolution
we have come to expect from core diagnostics.

Filtered cameras can give the required spatial resolu-
tion and have been deployed with some success in car-
bon walled machines3. However utilising these for rou-
tine physics analysis in metal walled machines has proven
more challenging due to reflection effects4–6. The re-
flected light of bright plasma regions, such as the strike-
points or x-point, by wall features can lead to artifacts
in the measured images. Sometimes it is difficult to
discern which features in the image are due to direct
plasma emission and which are artifacts. It often pro-
hibits routine/automated analysis of such images. Miti-
gating techniques such as optical dumps or wall blacken-
ing cannot be used because of the wide field of view and
the need for wall protection. Reflection effects are there-
fore one of the main impediments to utilising advanced
spatially-resolved plasma diagnostics in the tokamak di-
vertor. These issues will become increasingly important
once experiments commence on ITER.



2

II. PREVIOUS WORK

Previous studies that address reflection effects in fil-
tered imaging have used two main techniques. The first
uses optical ray-tracing methods combined with a sim-
plified first wall model that is often an axisymmetric
surface5–7. The reflection properties of the wall in these
models are often approximated as linear combinations of
ideal specular and diffuse reflections. Whilst this is a
good first order approximation, the reflecting properties
of real physical materials have a wavelength dependence
and roughening effects that depart from this idealised
model8,9. In addition, the reflecting features observed
in filtered camera images are always non-axisymmetric5.
This is likely due to the fact that the as-manufactured
tokamak first walls are made from discrete tiles and ex-
hibit complicated 3D structures that break axisymmetry.
Both of these observations motivate the need to include
a realistic 3D wall geometry model and a more physi-
cally accurate reflection model in optical ray-tracing ap-
proaches.

The most advanced previous ray-tracing study that at-
tempted to include non-axisymmetric wall features was
undertaken at the COMPASS tokamak6. An image of
the vessel under diffuse background light captured all the
asymmetric reflectivity patterns (e.g. diagnostic ports
and limiters) and was used to mask a toroidally symmet-
ric reflection model. This approach yeilded significantly
improved results over the normal axisymmetric model6.
However, the challenge with this technique is to achieve a
background light source that sufficiently resembles what
would be present in a real tokamak experiment. In some
machines this may be difficult or even impossible.

The other main technique is to treat the reflected
light as an undesired piece of information from the back-
ground, i.e. an offset of the primary data. In this type of
analysis an iterative algorithm might be used to converge
to a self consistent “reflection corrected” image5. Other-
wise, the reflected signal is modelled as a polluting noise
source in a Bayesian framework such as MINERVA10,11.
Both of these techniques have shown promise but would
not be as effective as a more realistic forward model
where local geometry information and material proper-
ties can provide a powerful constraint on the reflection
behaviour. However, this does not preclude a possible
hybrid ray-tracing Bayesian approach in future work.

Reflection effects are also a major issue with spectro-
scopic diagnostics on ITER where reflected light could
contaminate spectral signals and jeopardise the useful-
ness of measurements12–18. Some of these studies utilised
LightTools19, a commercially available ray-tracer, for
simulating the magnitude of reflected light and to test
possible mitigation strategies. These simulations were
capable of using the full engineering models for the ITER
first wall and more advanced reflection models15,16,18.
They also demonstrated the ability to pre-compute reflec-
tion response matrices to obviate the need for on demand
ray-tracing16. However, being a commercial ray-tracer,

FIG. 1. Outgoing light emission from a surface is described in
terms of the sum of the local surface emission and the integral
of all incoming emission redistributed into the observation
path, geometry for equations 3 and 4.

LightTools does not provide a suitable interface to Toka-
mak plasma simulations. Instead the plasma emission
was approximated by a set of cylinders of uniform emis-
sivity derived from the source plasma simulation. Whilst
being suitable for the diagnostic applications explored,
such a reduced representation might not scale well to
more general studies.

III. SCOPE OF THE WORK

In this work we develop a state-of-the-art forward
model for divertor filtered camera imaging using the
CHERAB code20–22. CHERAB is a software framework
developed with support from the EUROfusion JET23

and Medium Sized Tokamak (MST)24 science programs
for modelling spectroscopic diagnostics with the Raysect
ray-tracing package25. The CHERAB code was config-
ured to model scrape off layer line emission from plasma
fluid simulations in SOLPS26 and EDGE2D-EIRENE27.
Realistic wall reflections are included by incorporating
the 3D engineering geometry and physically motivated
reflection models with fitted coefficients. Finally, high
fidelity camera inversions including reflection effects are
demonstrated by generating a set of sensitivity matrices,
negating the need for on demand ray-tracing. The de-
gree of uncertainty introduced by neglecting reflections
in standard inversion techniques is quantified.

IV. LIGHTING EQUATIONS AND MATERIAL MODELS

The total power (radiant flux) arriving on a surface is
given by the integral of the incident emission over the
collecting solid angle Ω and surface area A.

Φ =

∫
A

∫
Ω

∫
Li(x, ω, λ)× cos(θ)dλdωdA (1)

Here, Li(x, ω, λ) is the incident radiance arriving at
a given point x and incident compound angle ω on the
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observing surface. The cos(θ) = |~ω ·~n| term is a geometry
factor describing the increase in effective observing area
as the incident rays become increasingly parallel to the
surface.

The combination of the observing point x and incident
compound angle ω defines a geometrical path known as
a ray in the ray-tracing literature. In this work we follow
the literature conventions by considering the ray paths
in the reverse direction, i.e. the ray’s origin is actually
the physical terminating point and the ray’s terminat-
ing surface, the point where the ray first intersects with
an object surface, would be the physical origin of that
optical ray path. Geometric optics are reversible and
the reverse formulation is computationally more efficient
when the observer is small with respect to the emitter8.

The amount of incident radiance that arrives along a
given ray path is given by the sum of the outgoing emis-
sion on the ray’s terminating surface and the integral of
all volumetric emission over the intermediate distance. If
we label the path origin at the observer as x1 and first
surface intersection point as x2, the equation for incident
radiance can be expressed as

Li(x1, ωi, λ) = Lo(x2, ωo, λ) +

∫ x2

x1

Le(x, ωr, λ)

dx
dx. (2)

The subscripts i and o are used on variables to denote
the incoming and outgoing vector quantities respectively.
Le(x, ωr, λ) is the local emission function from a given
point of space due to volumetric emission. In the case
of anisotropic volumetric emission, ωr provides the ray
angle in global coordinates. Lo(x2, ωo, λ) is the outgoing
radiance from the ray’s terminating surface.

These equations can be extended to form the funda-
mental lighting equations by considering how incident
light is redistributed spectrally at a given surface through
its material response function8,28. The amount of light
that leaves a surface along a given outgoing angle, ωo, at
point x on an object is given by the sum of the light emit-
ted at the object’s surface and the total light reflected
from all other sources.

Lo(x, ωo, λ) = Le(x, ωo, λ) + Lr(x, ωo, λ) (3)

Le(x, ωo, λ) and Lr(x, ωo, λ) are the local contributions
from surface emission and reflection respectively at sur-
face point x along angle ωo. The reflected light contri-
bution can be in turn calculated by the integral over all
incoming spectral radiance weighted by the surface re-
sponse function,

Lr(x, ωo, λ) =

∫
Ω

Li(x, ωi, λ)× fr(ωi, ωo, λ)× cos(θi)dωi.

(4)
This equation is similar to equation 1 with the ad-

dition of the bidirectional reflectance distribution func-
tion (BRDF) term fr(ωi, ωo, λ)8,9,28. The BRDF is a

weighting function that describes the redistribution of
incident light into outgoing reflections, Lr, and trans-
mission/absorption inside the material.

The two ideal limits of fr are specular (fs) and dif-
fuse/Lambertian (fd) behaviour. Ideal specular reflec-
tion behaves like a mirror surface where the incoming
light is perfectly reflected into one specular angle, ωs.
This specular angle can be defined with respect to the
incoming light angle and surface normal n̂ as

ωs = 2(ωi · n̂)n̂− ωi. (5)

In the limit of perfect mirror like behaviour, specular
reflection behaves like a vector delta function,

fs(ωi, ωo) = ρs(ωi)δ(ωo − ωs). (6)

Here ρs(ωi) is the specular reflection coefficient.
At the other limit, an ideal diffuse surface (matte pa-

per for example) will evenly redistribute incident light
across all directions and hence has no angular depen-
dence, fd(ωi, ωo) = ρd/π. With ρd being the diffuse re-
flection coefficient.

A common approximation used in many of the previ-
ous studies is to model the BRDF function as a linear
combination of the two ideal limits5–7,15,18,

fr(ωi, ωo, λ) = ρsδ(ωi, ωo) + ρd/π. (7)

To ensure conservation of energy, ρs + ρd ≤ 1. The spec-
ular and diffuse coefficients, ρs and ρd, are often fitted to
measured data or justified from reference material studies
in the literature.

Real physical materials exhibit a complex combination
of both specular and diffuse behaviours in addition to
transmission and absorption. For this work, the BRDFs
of fusion relevant materials were modelled with the Cook-
Torrance BRDF9,29, which was parameterised in terms of
the Fresnel equations and the GGX micro-facet surface
model30,

fr(ωi, ωo, λ) =
F (n, k)

4
∗ D(ωi, ωo)G(ωi, ωo)

cos(ωi) cos(ωo)
. (8)

A similar model was used by Banerjee et al. with a
simplified wall model for modelling spectral diagnostic
reflections in Textor and ITER12. The Fresnel term,
F (n, k), is the analytic solution to Maxwells equations
for reflections from a smooth surface29–31. There are two
sets of Fresnel equations, one for dielectric materials and
the other for conductors. For each of these cases, there
are two solutions depending on the polarisation of the
incident light. The Raysect ray-tracer currently does not
support polarisation, so here we have used the common
approximation that light is unpolarised, i.e. randomly
oriented with respect to the incoming ray direction. Un-
der this assumption, the Fresnel reflectance is given by
the average of the squares of the parallel and perpen-
dicularly polarised light8. For the real and imaginary
refractive index terms, n and k, we used measured data
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FIG. 2. Refractive index n and extinction coefficient k data
for the main ITER relevant first wall materials, Tungsten and
Beryllium33.

FIG. 3. A graphical representation of a micro-facet redistri-
bution model which includes self-shadowing, internal reflec-
tions and absorption. As the surface becomes rougher, there
is a bigger spread in the distribution of facet normals nf with
respect to the surface normal n.

for relevant fusion materials published in the open liter-
ature, as shown in Figure 2.

The rest of the right hand side in equation 8 is a purely
geometrical term. D(ωi, ωo) is the GGX distribution30, a
micro-facet distribution function that gives a statistical
approximation to the distribution of micro-facets at the
surface. The micro-facets reflect specularly, and hence
the bulk surface behaviour is approximated as a statisti-
cal distribution of many small mirror-like surfaces. See
Figure 3 for a graphical representation of the micro-facet
model.
G(ωi, ωo) is a geometric attenuation factor that ex-

presses the ratio of light that is occluded due to self
masking and shadowing of micro-facets9. Both D(ωi, ωo)
and G(ωi, ωo) share a roughness parameter, r ∈ (0, 1).
Increasing r corresponds to an increase in the distribu-
tion of facet normals. In the limit of r = 0 equation 8
goes to the specular Fresnel equation result for a per-
fectly smooth surface. As r → 1 equation 8 models a
maximally rough surface, which tends towards an ideal
Lambertian.

V. MONTE-CARLO INTEGRATION

The lighting equation presented in equation 3 is exact
but very difficult to evaluate analytically. The standard
practice is to evaluate these functions with Monte Carlo
importance sampling, which approximates the integral
with a weighted average8,32. The Monte Carlo integral
estimator for a given function f is given by the weighted
sum

I ≈ 1

N

N∑
j=1

f(xj)

p(xj)
. (9)

Here the function f(x) is evaluated at N sample points
xj . These sample points are drawn from a probability
density function,

p(xj) =
q(xj)∫
q(x)dx

, (10)

where q(x) is the weight function for cases with non-
uniform sample distributions.

The most natural way to discretise the lighting equa-
tion is in terms of Nr sample rays, constructed from 2D
sample points xj on pixel area Ad and sample vectors ωj
on the unit hemisphere Ω. Under this scheme, the power
collected on a given pixel surface area, as expressed in
equation 1, would take the Monte Carlo form

Φ ≈ 1

Nr

Nr∑
j=1

Li(xj, ωj) cos(θj)

pA(xj)pΩ(ωj)
. (11)

Here pA(xj) and pΩ(ωj) are the probability density func-
tions for the 2D sample points and ray vectors respec-
tively. For every ray launched that reaches a material
surface, a second calculation is needed to evaluate the
reflected light from that surface. Using the Monte Carlo
ray-tracing integration scheme, the reflected spectral ra-
diance from a surface at point x (equation 4) can be
expressed as

Lr(x, ωo) ≈
1

NrΩfrac

Nr∑
j=1

Li(x, ωj)× fr(ωj , ωo)× cos(θj)

pΩ(ωj)
.

(12)
Note that the wavelength dependence λ of Lr, Li and
fr has been dropped in equations 11 and 12 for brevity.
The sum here is over Nr new rays launched from the
ray-surface intersection point.

Although it is possible to evaluate equations 11 and
12 directly, this is rarely done in practice because of the
computational intensity of the problem8. For example,
in a metallic walled tokamak light from a brightly radi-
ating point in a divertor strike-point can undergo multi-
ple metallic wall reflections before reaching the observing
camera. Because the strike point radiators can be a few
orders of magnitude brighter than the bulk plasma, this
means that contributions from multiply reflected rays can
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be significant. Using a naive implementation with Nr
rays per surface evaluation (equation 12) leads to expo-
nential growth in the number of rays required, becoming
an intractable calculation method. To circumvent these
problems and make the computations tractable, two fur-
ther techniques are required, path-tracing and multiple
importance sampling8.

Instead, path-tracing estimates the incoming radiance
on ray i at the observer, Li(xj, ωj), as the sum of path
contributions along a sampled path. Starting from the
first intersection of the ith camera ray with the scene, we
incrementally sample new path segments. The last path
segment in the chain is determined by either intersecting
a light source or by reaching a Russian roulette termina-
tion criterion. The paths are therefore generated in the
physically reverse direction, but evaluated in the forward
direction.

In the case of Russian roulette path termination, at
each new path segment we evaluate whether the path has
terminated based on a configurable termination proba-
bility. The Russian roulette technique allows us to sam-
ple paths that are computationally expensive but make
a small contribution to the final result. The path termi-
nation probability is tuned based on the expected contri-
butions from longer multiple reflection light paths in the
scene being studied.

Let us say for example that ray i has a total of Np
path segments. The radiance from the path segment
xk → xk−1 is given by the sum of all previous path con-
tributions, the emitted radiance at the path segment’s
origin point and the integral of all emission along the
path segment,

Lp(xk → xk−1) =

(
Lp(xk+1 → xk) + Le(xk, ωk)

+

∫
dLe(xk → xk+1)

dl
dl

)
× f(ωk, ωk−1) cos θk−1

pΩ(ωk−1)Ωfrac
(13)

This formula can be evaluated in a iterative fashion from
the ray source point all the way back to the observer.
This technique achieves good numerical efficiency when
paired with an appropriate path sampling technique,
such as Multiple Importance Sampling8,32. Importance
sampling exploits the fact that the Monte-Carlo estima-
tor converges fastest when samples are taken from a dis-
tribution p(x) that is similar to the function f(x) in the
integrand, i.e. the sample points have a higher density
in the regions where the integrand is largest.

Some suitable candidate distributions include the
cosine distribution, lighting distribution and material
BRDF distribution8. The cosine distribution is advan-
tageous because of the cosine weighting in the lighting
equations. It is typically more efficient than a uniform
hemisphere distribution since its distribution is weighted
proportional to cos(θ) and has a higher sample density at
the top of the hemisphere. The lighting distribution gen-
erates vectors toward light sources in proportion to their
emitting power. The material distribution draws samples
proportional to the material response, as in Eqn. 8.

It is difficult to construct a single sampling distribu-
tion that represents a physically relevant scene. Instead,
the integrand of the lighting equations can be approxi-
mated as sums and products of the underlying features in
a scene. For example, consider a scene consisting of two
light sources (fL1(x), fL2(x))), a single reflecting mate-
rial (fBRDF (x)) and a detector with a known sampling
function (fd(x)). The lighting equation integrand could
be approximated as

f(x) = (fL1(x) + fL2(x)) ∗ fBRDF (x) ∗ fd(x). (14)

Ideally we would sample all candidate distributions
in a physical scene. Multiple Importance Sampling is
a generalisation of the importance sampling equation
(eqn. 9) which allows us to evaluate the lighting equa-
tions by simultaneously sampling multiple important
distributions32. When using Multiple Importance Sam-
pling the estimator becomes

I ≈
Nj∑
j=1

nl∑
l=1

wj(xj,l)f(xj,l)

nlp(xj,l)
. (15)

Here, the index pair j, l is used to indicate the lth sam-
ple from the jth distribution. In the example case above
we had four relevant distributions (Nj = 4) each with
their associated sampling strategies (fL1(x), fL2(x)),
fBRDF (x) and fd(x)). Essentially we would draw nl sam-
ples from each of the important distributions and evalu-
ate the standard importance sampling equation (eqn. 9).
The samples from the different distributions were com-
bined through the balancing heuristic weight function32,

wj(x) =
Njpj(x)∑
l nlpl(x)

. (16)

Parameters for the individual distributions can be indi-
vidually adjusted during ray-tracing based on the mate-
rials and lighting distributions encountered along a ray’s
path and the observation geometry. In this work we
used the plasma emission source locations and metal tile
BRDFs as the importance sampling distributions.

VI. JET CALIBRATION PHOTOS

In order to implement these techniques for real toka-
maks we need a good estimate of the BRDF function,
fr(ωi, ωo), for the materials used. Ideally, one would have
tabulated gonioreflectometer measurements for each type
of first wall tile. In the absence of such suitable measure-
ments, we developed a method for estimating the first
wall BRDF function from a series of photographs of point
light sources. These techniques are demonstrated on JET
as a case study but the method is generally applicable to
other machines.

Tokamak first walls are often constructed from a mix
of different materials since different parts of the wall will
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FIG. 4. Rendered image of the JET ITER-Like Wall with the
first wall tiles colour coded by their material composition.

have differing needs in terms of exhaust power handling,
accessibility, etc. Carbon graphite tiles are a common
choice for the first wall material in fusion experiments
because of their relatively low cost, weight and resilience
under high exhaust power loads. However, as we move
into the ITER era, many machines are moving to metal
walls to be tritium campatable and to enable experiments
in ITER relevant plasma regimes, e.g. JET-ILW, AUG,
EAST and WEST.

Fig. 4 shows a rendering of the JET ITER-like wall
with protective tiles colour coded by their material com-
position. Bulk Tungsten tiles are only used for a limited
range of divertor tiles where the exhaust power loading
demands are highest. Tungsten coated Carbon Fibre
Composite (CFC) tiles are used for the rest of the di-
vertor tiles, whilst pure Beryllium or Beryllium coated
CFC are used for the majority of the limiter tiles.

It is possible to estimate the BRDF from a series of
photos of a point light source providing the light po-
sitions and camera configuration are accurately known.
Consider for example the in-vessel photograph of a point
light source in Fig. 5 top. Each pixel in the image corre-
sponds to a single incoming and outgoing vector combi-
nation in the BRDF coordinate space at the intersection
point. If contributions from multiple reflection paths can
be neglected to first order, then the variation in the rel-
ative intensities of each pixel will correspond to the pro-
portional BRDF changes in the material’s BRDF space.
Because of the toroidal (or cylindrical) shape of Toka-
mak first walls, the pixels in a single image can span a
large amount of the BRDF parameter space. And hence,
through changing the point light position across a num-
ber of images, the set of photos can provide a powerful
fitting constraint on a given material’s BRDF function in
lieu of direct measurements.

At JET, there are eight in-vessel lights spaced equally

FIG. 5. Measured (top) and simulated (bottom) JET IVIS
light images for calibration and benchmarking of material
BRDF properties. The regions of interest marked in orange
(top) are identified for later discussion.

FIG. 6. A plot of the individual pixels from the measured
images re-mapped into the Tungsten tile material BRDF co-
ordinate space (ωi, ωo) → (θi, θo, φ). Any pixels that did
not correspond to an intersection with a Tungsten tile were
discarded. The pixels are colour coded by their source pho-
tograph, indicating the JET octant in which the point light
source was located.
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FIG. 7. An example of the fitted roughness parameter for the
JET Beryllium limiters. At each roughness value, the mean
squared error between the measured and simulated images
was computed.

Material Roughness parameter r

Beryllium limiters 0.257

Tungsten divertor 0.291

TABLE I. Fitted roughness parameters for the Beryllium and
Tungsten tiles in the JET ITER-like wall.

around the top of the machine. A Nikon D3X SLR cam-
era was mounted on the in vessel robotic manipulator
to provide a wide field of view. The camera position and
distortion matrix were fitted with the Calcam camera cal-
ibration code38. All other light sources were turned off,
while each in-vessel light was illuminated in turn provid-
ing a set of eight photographs. A single example photo-
graph from the set is shown in Fig. 5 top.

The pixels in each photograph were ray-traced to de-
termine their intersection point in the vessel. Any inter-
sections that don’t have a clear sight-line to a light source
were eliminated. The remaining pixels were grouped by
their intersecting material and mapped to a point in the
material’s BRDF parameter space. At any given wave-
length the BRDF function fr(ωi, ωo) is parameterised in
terms of the incoming and outgoing ray vectors, ωi and
ωo respectively. If fr(ωi, ωo) is isotropic these two vec-
tors can be described by two polar angles, θi and θo, and
the azimuthal angle φ between ωi and ωo. Hence, each
remaining pixel can be mapped to a point in (θi, θo, φ).

Fig. 6 illustrates an example of the BRDF parameter
space coverage from the six point light locations that
were used. Two of the light positions were not used in
the analysis because they were on the occluded side of
the machine and hence had poor direct coupling to the
camera pixels.

For each measured image, a set of simulated images
were ray-traced with Raysect using the refractive index
data shown in Fig. 2 and a variable roughness parameter

from Eqn. 8. The roughness parameter was scanned over
the range 0 < r < 0.5 in each set of simulated images. For
each individual roughness value, the mean squared error
between the measured images and simulated images was
calculated for each material. A polynomial was fitted
to the resulting χ2 surface for each material, with the
minimum determining the best fit roughness parameter.
An example fit to the JET Beryllium limiter tiles is given
in Fig. 7, with the best fit values displayed in Table I.

Good quantitative agreement was achieved, as demon-
strated by the comparison of a calibration image and the
companion simulation image in Fig. 5 bottom. The re-
gions of greatest disagreement in Fig. 5 tend to be in
the vicinity of the coated tile groups. These materials
have an anisotropic BRDF response function that could
not be captured in the material model used and were
approximated as Lambertian.

VII. FORWARD MODELLING FILTERED CAMERAS

Having quantitatively fitted the JET first-wall mate-
rial reflection properties, it is thereby possible to generate
synthetic photo-realistic images of the interior of fusion
devices. The utility of such synthetic images lies in our
ability to: study the diagnostic capabilities of filtered
visible cameras, assessing their ability to make certain
measurements; predicting their diagnostic capabilities on
future devices; and performing direct comparisons of sim-
ulations with measured camera images.

The emission of a visible spectral line, εi→j , at the
plasma edge is given by the population number density
of ions in the upper state multiplied by the spontaneous
emission coefficient for the transition36. The emissiv-
ity coefficients can be obtained by relating the emission
to the excitation processes through a collisional-radiative
model. The three dominant processes that can lead to
an ion being in an excited state are: excitation of the
ion through electron impact; free electron recombina-
tion onto the parent ion; and through charge exchange
recombination36. Therefore, for a given plasma ion with
charge z the intensity of the line emission can be ex-
pressed as

εi→j = nen
z+
i σ

(exc)
i→j + n

(z+1)+
i

(
neσ

(rec)
i→j + ndσ

(cx)
i→j

)
,

(17)

where σ
(exc)
i→j , σ

(rec)
i→j and σ

(cx)
i→j are the respective photon

emissivity coefficients for the dominant population pro-
cesses. The electron density is ne, with the emitting ion
density of a specified charge state given by ni and charge
exchange donor species density nd.

For the simulations, the relevant plasma population
densities and temperatures at the plasma edge are from
SOLPS26 or EDGE2D-EIRENE27 plasma fluid simula-
tions. The photon emissivity coefficients were taken from
the Open-ADAS web repository37.

Fig. 8 a) and b) shows forward modelled synthetic
images of Dα light for JET and AUG. Such images can



8

FIG. 8. Simulated images of a) Dα emission from JET (black
and white), b) Dα emission from AUG, and c) predicted visi-
ble emission from the Balmer series in MAST-U as would be
measured by the mid-plane camera.

be used to assess the physical accuracy of the underlying
plasma simulations when compared quantitatively with
real measurements. Fig. 8 c) shows a predicted observa-
tion of a detached plasma in MAST-U. For this simula-
tion the light is given by the sum over the first five terms
of the Deuterium Balmer series. In the MAST-U image
the edge emission of the plasma at the mid-plane is pre-
dicted to be much less pronounced than in MAST due to
the increased compression ratio of neutrals between the
mid-plane and divertor during detached operation.

In Fig. 9 we quantify the impact of reflections on mea-
surements made using JET’s KL11 filtered divertor cam-
era. An EDGE2D-EIRENE simulation was used to cal-
culate the raw plasma emission in Fig. 9 a). Reflection
effects are added to the image in Fig. 9 b), with the im-
age subtraction giving the reflection only contribution in
Fig. 9 c). The reflected light is an order of magnitude
weaker than the brightest emission features at the strike
points, however it is clear from Fig. 9 b) that the re-
flected light can dominate the image for pixels that don’t
see the brightest emission regions.

VIII. INVERSIONS WITH REFLECTIONS

Routine inversion of these images using a direct ray-
tracing forward model would be infeasible due to the
immense computational resources required for reflection
ray-tracing. However, the camera viewing geometry and
optical properties are generally constant for the dura-
tion of an experimental campaign. Let us also make the
assumption that the first wall conditions do not change
significantly between shots. This would mean that only
the distribution and intensity of emitters changes during
the shot. The wall reflection properties and the camera
response to individual geometric sources are constant, al-
lowing these response functions to be pre-computed.

The ray-tracing techniques described in this work were
used to generate a set of sensitivity matrices that describe
the coupling of individual emitting plasma sources to
the camera through the observer equations. The plasma
emission sources were discretised into 3d voxels composed
of a toroidally symmetric annulus with a uniform volume
emissivity. The response of the camera to each voxel can
be thought of as a set of basis functions into which a
measured image can be linearly decomposed. Fig. 10 a)
shows an example of an individual voxel basis function.
Fig. 10 b) shows a synthetic image created by the matrix
multiplication of a random set of voxel basis functions.

The resulting sensitivity matrix allowed camera inver-
sions to be performed using established tomography tech-
niques. There are a wide range of tomography algorithms
in use across fusion diagnostics. For this work, we elected
to use the Simultaneous Algebraic Reconstruction Tech-
nique (SART), as described in reference22.

The voxel grid was configured to have a high density
of voxels in the divertor (∼1cm width) and a coarser
(∼3cm width) in the main chamber. It is common in
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FIG. 9. a) Forward modelled plasma emission for the KL11
JET camera, b) same emission scenario with reflection effects
added, and c) the subtraction of images a) and b), giving the
isolated contribution from reflected light.

filtered camera tomography to use a trimmed voxel do-
main where only direct emission is modelled, for example
by limiting the inversion grid to voxels only in the diver-
tor. However when modelling reflections it is necessory
to include emission sources that are outside the directly
observed domain. Experiments with different voxel grid
configurations demonstrated that extending the grid into
the main chamber can significantly clean up the back-
ground halo artifacts and emission blobs at the edges of

FIG. 10. a) A slice of the sensitivity matrix representing
a single voxel basis function for the AUG mid-plane filtered
camera. b) A synthetic image produced by the matrix multi-
plication of a random set of basis functions.

the domain.

In Figure 11 we compare and contrast an example cam-
era inversion with and without reflection effects included.
The measured image in Fig. 11 a) is from a Dα filtered
divertor camera at JET. The inverted synthetic images
are shown in Fig. 11 b) and e) with the underlying emis-
sivity profiles in Fig. 11 c) and f). Various difference
images are also presented to aid the comparisons. The
tile position labels are included in Fig. 11 i).

The main differences in the inverted divertor emission
patterns when adding the reflections in Figure 11 is the
reduction in volume emission artefacts above tile 5 and
tile 1. A lot of the bright isolated voxels on the surfaces
of these tiles disappear or are significantly reduced. The
emission peak on tile 5 drops by 7% when reflections are
taken into account. Overall, the emission intensity of the
strike point radiator is over estimated when reflections
are not taken into account. This in turn would lead to
an error in the inferred plasma density when the inverted
emission is used to infer physics parameters. The amount
of error gets progressively worse as you move away from
the bright radiators.



10

FIG. 11. a) A measured image of Dα light from the JET KL11 divertor camera d, pulse #90415 at 55.016 seconds. The image
was inverted using sensitivity matrices both with and without reflection effects. The inverted synthetic images (b and e) and
accompanying emissivity profiles (c and f) are given for both cases, along with some difference images. The voxel grid used in
this inversion extends into the main chamber.

IX. DISCUSSION

The ray-tracing techniques presented are expected to
have the most impact on filtered camera imaging sys-
tems on metal wall machines. Polluting reflected light
has long prevented the exploitation of these diagnostics.
The improvement would be more modest however on car-
bon walled machines where the graphite produces much
more diffuse reflecting features.

Although each individual ray-traced image can take
several hours to compute, a typical inversion with the
SART algorithm and the cached sensitivity matrix could
be performed in a few minutes on a standard desktop
PC. In the example case in Fig. 11, the inversion took
5 minutes using a single core of an Intel Xeon E5-2665
at 2.4GHz. Further speed increases could be obtained in
future through parallelisation across multiple cores.

The calibration photos provided a good method for
approximating the material BRDF properties of the bulk

Tungsten and Beryllium tile groups. But as anticipated,
there were a number of tile groups that showed a poor
match between the calibration and simulation images.
One such tile group is the Inconel limiter tiles with a
Beryllium coating (highlighted in Fig. 4 with an example
photo in Fig. 12 (top)). These tiles appeared to exhibit
a highly anisotropic BRDF response function that could
not be captured by the fundamentally isotropic material
model that was used.

Another tile group that showed poor agreement was
the tile 3 row of Tungsten coated CFC tiles (highlighted
in Fig. 4 with an example photo in Fig. 12 (top)). These
tiles show evidence of plasma surface interactions result-
ing in a localised rougher surface, perhaps through sput-
tering and deposition. They are also near commonly used
divertor strike point positions and their surface coating
appears to exhibit a complex spatially repeating pattern.

In future work, the tile BRDF model for all tile groups
could be improved by using tabulated BRDF data mea-
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FIG. 12. Close up photographs of the regions of interest
identified in Fig. 5. (top) A section of the inboard limiter
with Beryllium coated Inconel tiles that have an anisotropic
BRDF. (bottom) A section of the Tungsten divertor with clear
visible indications of plasma surface interactions on the in-
board tiles (lower part of the image).

sured using a spectral gonioreflectometer. Future work
could aim to exploit the published gonioreflectometer
measurements on the ITER first wall tiles35 or repeat
the measurements for the JET tiles.

The assumption that the wall material properties are
changing slowly throughout an experimental campaign is
crucial to enabling the use of the cached ray-tracing sen-
sitivity data. This is because calculating the sensitivity
matrices on a shot-to-shot basis would be computation-
ally infeasible. Therefore, for the method to be suitable
it is important that the material reflection properties are
assessed throughout a campaign, perhaps through the in-
vessel point light method developed in this paper. First
wall material changes could be monitored over time by
assessing the change to the BRDF fit in the calibration
photographs. This may prove to be a valuable monitoring
tool for machines where regular vessel access is restricted
or expensive.

X. CONCLUSIONS

A new technique for forward modelling filtered camera
diagnostics has been developed that is capable of tak-
ing into account realistic reflection effects. This tech-
nique was implemented using the Raysect open source
ray-tracer and the CHERAB spectroscopy framework.

It was shown that it is possible to measure and ap-
proximately fit the BRDF properties of most first wall
tile components through a series of calibration photos
of in-vessel point lights. This technique could be inte-
grated into regular tokamak shutdown activities to verify
the cached ray-tracing reflection model and as a method
of monitoring the evolution of wall conditioning due to
plasma-surface interactions.

Photo-realistic renderings of radiation scenarios for a
number of fusion machines were demonstrated with an
unprecedented level of detail. These high-fidelity forward
models can be used to assess the scientific value of new
and existing filtered camera plasma diagnostics.

To enable routine inversions of measured camera data,
sensitivity matrices for a divertor voxel grid were calcu-
lated including the reflection effects. This allows inver-
sions to be performed with matrix multiplication in min-
utes, a process that would be infeasible with on demand
ray-tracing. These techniques may enable the wider ex-
ploitation of filtered scientific cameras in divertor science
studies.
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