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Abstract 

Kinetic treatments of drift tearing modes that match an inner, resonant layer solution to an 

external MHD solution, characterised by Δ′, can fail to match the ideal MHD boundary 

condition on the parallel electric field,  𝐸∥ = 0. In this paper we demonstrate how consideration 

of ion sound and ion Landau damping effects achieves this, placing the theory on a firm footing. 

These effects are found to modify the effective critical Δ′ for instability of drift tearing modes, 

in particular for weak electron temperature gradients. The implications for a realistic hot 

plasma resonant layer model - involving large ion Larmor radius and semi-collisional electron 

physics (Connor et al., 2012) - are determined. 

 

1. Introduction 

Tearing modes are driven by current gradients and pressure gradients in the 

plasma whose destabilising effect is characterised by a quantity Δ′. The 

associated tearing of a tokamak magnetic field occurs at the resonant radius, 𝑟 =

𝑟0, where 𝑚 = 𝑛𝑞(𝑟0), 𝑚 and 𝑛 being the poloidal and toroidal mode numbers of 

the helical instability and 𝑞 is the safety factor. In the vicinity of  𝑟 = 𝑟0 complex 

kinetic effects can occur and to account for these it is convenient to treat a narrow 

‘inner’ region in which these effects are included but the equations are simplified 

because of the localised nature of this inner layer. Stability is then determined by 

matching solutions of these inner equations to outer ones, valid across the regions 

away from the layer (and satisfying appropriate boundary conditions at the 

plasma boundary and magnetic axis) where a simple ideal MHD description of 

the plasma suffices. The solution of the inner equations provides a quantity Δ(𝜔), 

where 𝜔 is the complex mode frequency, while the solution of the outer equations 

yields the afore-mentioned quantity Δ′: the matching condition leads to a 

dispersion relation and a critical value of Δ′for instability. 

For a simple resistive MHD model (or even a cold ion model containing electron 

diamagnetic effects) of the inner region, the corresponding solutions match 

satisfactorily to the outer ones, with the perturbed parallel electric field, 𝐸∥ , 

vanishing properly as one reaches the outer ideal MHD region. However, for a 
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kinetic or fluid treatment of the ion physics when the ions have finite temperature, 

so that the effects of finite ion Larmor radius (FLR) and their parallel thermal 

motion or transport are included, this matching becomes more complex (Coppi et 

al., 1979, Cowley et al., 1986, Fitzpatrick, 1989, Connor et al., 2012). Even 

though one can match the longitudinal component of the perturbed vector 

potential, 𝐴∥, from the inner region to its form in the ideal region, where 𝐴∥ ∝

1 + (𝑟 − 𝑟0)Δ′, the expression for 𝐸∥ does not necessarily tend to zero. To 

accomplish this (i.e. decay of 𝐸∥ ) within the matching region, one must consider 

an intermediate region where ion sound and ion Landau damping become 

significant at the characteristic frequency of a drift tearing mode (Coppi et al., 

1979). Consequently, the overall matching condition is modified, with an impact 

on the stability of the drift tearing mode. The investigation of this effect for the 

realistic situation in a hot plasma where the ion Larmor orbit width exceeds the 

reconnecting layer width associated with a semi-collisional electron model, is the 

subject of this paper. In this work, the intermediate region is described by a 

cylindrical, collision-less plasma model.  

We note in passing that the stabilising effects of ion sound on the ‘drift 

collisional’ tearing mode were also presented by Bussac et al. (1978) and a simple 

model for the effects of ion Landau damping on the semi-collisional neoclassical 

drift tearing mode was given by Fitzpatrick (1989), while a more fluid-like 

treatment of this problem was presented by Connor et al. (Connor et al. 2017). 

In Section 2 we develop the governing equations, namely the vorticity equation 

and Ampere’s equation, that pertain in the intermediate region. To complete these 

equations, we solve the collision-less kinetic equations for the perturbed parallel 

electron and ion currents. We obtain these solutions in Section 3 by calculating 

in the space of the radial co-ordinate.  However, we wish to connect this region 

to inner region models which feature large ion Larmor radii (as compared to the 

electron scales of the reconnecting layer). Since such inner region models are 

better dealt with in Fourier space (Pegoraro & Schep, 1986), it is convenient to 

operate with Fourier transforms of the radially dependent perturbed fields (as in 

the formalism of Connor et al. (Connor et al., 2012)), deducing the corresponding 

real space behaviour from their long wavelength limit in Fourier transformed 

variables. The resulting intermediate region solution is then inserted into 

Ampere’s law in Section 4 to calculate the effect of the intermediate region on  

Δ′. 

The results are characterised by a quantity 𝑎 =
𝜔𝜏𝐿𝑠

2𝜔∗𝑒𝐿𝑛

(𝜔−𝜔∗𝑒)

(𝜔𝜏+(1+𝜂𝑖)𝜔∗𝑒)
. Here 𝜔 is 

the mode frequency,  𝜔∗𝑗 = 𝑚𝑇𝑗/(𝑒𝑗𝐵𝑟𝐿𝑛) are diamagnetic frequencies with j 
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labelling the species (j = e, i for electrons and ions, respectively), 

1 𝐿𝑛 =⁄ 𝑑(ln 𝑛)/𝑑𝑥 with 𝑛 the plasma density, 𝜂𝑗 = 𝑑(ln 𝑇𝑗)/𝑑(ln 𝑛) with 𝑇𝑗 the 

temperature of species j,  𝜏 = 𝑇𝑒/𝑇𝑖, r is a minor radius of the cylinder and 𝐿𝑠 is 

the magnetic shear length. Since drift tearing modes typically have a real 

frequency 𝜔 = 𝜔∗𝑒(1 + 𝛼𝜂𝑒), where 𝛼 is 0(1) (for the collisionless case, 𝛼 = 0.5 

(Drake & Lee, 1977; Coppi et al., 1979; Cowley et al.,1986), while for semi-

collisional electrons, 𝛼 = 0.74 (Connor et al., 2012)), 𝑎 is usually large, but for 

weak electron temperature gradients it too can become 0(1). This is the situation 

addressed by Coppi et al. (1979) and in the present work. 

In Section 5, we discuss the implications for a realistic hot plasma resonant layer 

model - involving large ion Larmor radius and semi-collisional electron physics 

(Connor et al., 2012). In contrast to the calculation in (Coppi et al., 1979), we 

now need both real and imaginary parts of the modified Δ′.  A final section 

discusses the results and draws conclusions. 

 

2. Intermediate Region Plasma Model 

We consider cylindrical geometry with co-ordinates  𝑟, 𝜃, 𝑧  and magnetic fields 

(0, 𝐵𝜃(𝑟), 𝐵𝑍 (𝑟)); the total field strength is B .  The perturbed fields of the tearing 

mode involve the parallel vector potential, 𝐴||, and electrostatic potential, 𝜑,  with 

frequency 𝜔  and structure 𝐴||~𝐴(𝑥)𝑒−𝑖𝜔𝑡+𝑖𝑘𝑧−𝑖𝑚𝜃 for example.  Here 𝑥 = 𝑟 −

𝑟0 , where the resonant surface, 𝑟0, is given by 𝑘𝐵𝑍(𝑟0) − 𝑘𝜃𝐵𝜃(𝑟0) = 0, with 

𝑘𝜃 = 𝑚/𝑟, so that the wave-number parallel to the magnetic field is 𝑘|| =

𝑚𝑥/𝑟𝐿𝑠, with 𝐿𝑠 being the magnetic shear length. In the toroidal geometry of a 

tokamak,  𝐿𝑠 = 𝑅𝑞/𝑠 , with R the major radius, 𝑠 = 𝑟𝑑(ln 𝑞)/𝑑𝑟 and q the safety 

factor. 

The electrons and ions satisfy the linearized, collision-less, kinetic equation: 

           (𝜔 −
𝑚𝑥𝑣||

𝑟𝐿𝑠
) 𝑔𝑗 = (𝜔 − 𝜔∗𝑗

𝑇 )
𝑒𝑗𝐹𝑀𝑗

𝑇𝑗
𝐽0 (

𝑘⊥𝑣⊥

 𝜔𝑐𝑗
) (𝜑 − 𝑣||𝐴||)                 (1) 

Here the perturbed electron distribution, 𝛿𝑓𝑗 is written   𝛿𝑓𝑗 = −
𝑒𝑗𝐹𝑀𝑗

𝑇𝑗
𝜑 + 𝑔𝑗, 

where 𝐹𝑀𝑗  is the Maxwellian distribution for species j ,  𝑣|| is the parallel velocity 

and 𝑣⊥ the perpendicular velocity, while 𝜔∗𝑗
𝑇 = 𝜔∗𝑗 (1 + 𝜂𝑗 (

𝑚𝑗𝑣2

2𝑇𝑗
−

3

2
)) ,  with 

𝑣2 = 𝑣||
2 + 𝑣⊥

2 .  𝐽0 is the Bessel function of zero order with 𝑘⊥ , where 𝑘⊥
2 = 𝑘𝑥

2 +
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𝑚2

𝑟2 
, being the wave-number perpendicular to the magnetic field, and  𝜔𝑐𝑗 =

𝑒𝑗𝐵

𝑚𝑗
, 

with 𝑚𝑗 the mass of species j, is the cyclotron frequency for species j. 

The stability of tearing modes can be investigated from two equations: the 

vorticity equation and Ampere’s law. The former is obtained by multiplying eqn. 

(1) by 𝑒𝑗, integrating over velocity space, summing over the two species, j, and 

applying the quasi-neutrality condition. The result is: 

  𝑘∥𝐽∥ =
𝑒2𝑛𝜑 

𝑇𝑖
[(1 − Γ0(𝑏))(𝜔 − 𝜔∗𝑖) − 𝜔∗𝑖𝜂𝑖𝑏(Γ0(𝑏) − Γ1(𝑏))] ≡

𝑒2𝑛𝜑 

𝑇𝑖
𝐹(𝑏)        

            (2)  

Here 𝐽∥ = 𝐽∥,𝑖  + 𝐽∥,𝑒 is the perturbed parallel current density, e the proton charge 

and Γ𝑙(𝑏) = I𝑙(𝑏)𝑒−𝑏 , where   𝑏 = 𝑘⊥
2𝑇𝑖 (𝑚𝑖𝜔𝑐𝑖

2 )⁄ , with I𝑙(𝑏) the modified 

Bessel functions of order l. Ampere’s equation is simply: 

  
𝑑2𝐴∥ 

𝑑𝑥2 = −𝐽
∥
 ,                                   (3) 

In general, one must consider several regions in x: (i) the innermost layer, 𝑥~𝛿𝑒, 

where 𝛿𝑒 is the width of the very narrow region where electron physics such as 

electron Landau damping or semi-collisional effects play a role in  reconnection; 

(ii) at somewhat larger values of 𝑥, namely 𝑥 ~ 𝜌𝑖 > 𝛿𝑒, where 𝜌𝑖 = 𝑣𝑇𝑖   / 𝜔𝑐𝑖  , 

with 𝑣𝑇𝑖  the ion thermal velocity, 𝑣𝑇𝑖 = (2𝑇𝑖/𝑚𝑖)1/2, is the ion Larmor 

radius, one must retain full ion Larmor radius effects; (iii) the ‘intermediate 

region’, 𝜔~𝑘∥𝑣𝑇𝑖, where full ion parallel dynamics operates (ion sound 

at 𝑥~ (𝐿𝑠/𝐿𝑛)1/2 𝜌𝑖 and ion Landau damping at (𝐿𝑠/𝐿𝑛) 𝜌𝑖; and finally; (iv) the 

outer ideal MHD region. These regions are shown schematically in Fig. 1. 

Solutions of eqns. (2) and (3) must be matched through all these four regions. In 

earlier work Connor et al. (2012) considered this problem, but omitted the 

intermediate region required to ensure 𝐸∥ → 0 as one approaches the ideal region. 

We now develop the equations to describe this region. 

Expressions for the parallel current densities, 𝐽∥,𝑒  and   𝐽∥,𝑖  , valid in the ion sound 

region and where 𝑏 ≪ 1,   are derived from solving the respective kinetic 

equations for electrons and ions, eqn. (1): 

                            𝐽∥,𝑒 = −𝑖
𝑒2𝑛𝐸∥ 

𝑘∥
2𝑇𝑒

(𝜔 − 𝜔∗𝑒)                        (4) 

𝐽∥,𝑖 = −𝑖
𝑒2𝑛𝐸∥ 

𝑘∥
2𝑇𝑖

[(𝜔 − 𝜔∗𝑖)(1 + 𝜁𝑖𝑍(𝜁𝑖)) − 𝜔∗𝑖𝜂𝑖 (𝜁𝑖
2(1 + 𝜁𝑖𝑍(𝜁𝑖)) −

                                                                                                        
1

2
𝜁𝑖𝑍(𝜁𝑖))],    (5) 
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where 𝐸∥ = −𝑖(𝑘∥𝜑 − 𝜔𝐴∥ ), 𝜁𝑖 = 𝜔𝐿𝑠 𝑘𝑦𝑥𝑣𝑇𝑖⁄  and 𝑍(𝜁𝑖) is the plasma 

dispersion function. Making use of the long-wavelength approximation, 

𝑏 ~| 𝜌𝑖
2 𝑑2 𝑑𝑥2⁄ | ≪ 1,  for the ions in eqn. (2), eliminating 𝐽∥,𝑒,𝑖  and introducing 

the dimensionless variable, 𝑋 = 1/𝜁𝑖, so that 𝑋 = (2𝐿𝑛/𝐿𝑠)(𝜔∗𝑖/𝜔)(𝑥/𝜌𝑖), we 

obtain the following fourth order system describing the potentials 𝜑 and 𝐴∥ , 

replacing the former by 𝜙 = 𝜑/𝑣𝑇𝑖 and denoting the latter by 𝐴: (so that 𝐸∥ ∝

(𝑋𝜙 − 𝐴) ): 

                       𝑋
𝑑2𝐴

𝑑𝑋2
= 𝛽𝑖 (1 −

𝜔∗𝑖(1+𝜂𝑖)

𝜔
)

𝑑2𝜙

𝑑𝑋2
,     (6) 

and  

                𝑋
𝑑2𝐴

𝑑𝑋2
=

𝛽𝑒

2
(

𝐿𝑠

𝐿𝑛

𝜔∗𝑖

𝜔
)

2

(𝜙 −
𝐴

𝑋
) [1 −

𝜔∗𝑒

𝜔
+ 𝜏 (1 −

𝜔∗𝑖

𝜔
) (1 +

𝑍

𝑋
) −

                                                                                              𝜏
𝜔∗𝑖

𝜔

𝜂𝑖

𝑋2 (1 +
𝑍

𝑋
−

𝑋𝑍

2
)],       (7) 

where 𝑍 = 𝑍(1/𝑋) and the 𝛽𝑗 are the ratios of plasma to magnetic pressure for 

each species. These two equations can be combined to yield: 

            
𝑑2𝜙

𝑑𝑋2
= 𝑄(𝑋) (𝜙 −

𝐴

𝑋
)  ,                                                (8) 

where  

𝑄(𝑋) =
1

2
(

𝐿𝑠

𝐿𝑛
)

2 (�̂�𝜏)2

(�̂�𝜏+1+𝜂𝑖)
[�̂� − 1 + (�̂�𝜏 + 1) (1 +

𝑍

𝑋
) + 𝜂𝑖 (

1

𝑋2
+

𝑍

𝑋3
−

𝑍

2𝑋
)],   (9) 

with  �̂� =  𝜔/𝜔∗𝑒.  The quantity 𝑄(𝑋) contains the effects of ion sound when 

𝑋 ≪ 1 and ion Landau damping in the region 𝑋~1. Introducing the ion sound 

approximation, 

                  𝑄(𝑋) ≈
1

2
(

𝐿𝑠

𝐿𝑛
)

2 (�̂�𝜏)2

(�̂�𝜏+1+𝜂𝑖)
[�̂� − 1 − (�̂�𝜏 + 1 + 𝜂𝑖)

𝑋2

2
].                     (10) 

The validity of the ion finite Larmor radius (FLR) and ion sound expansions 

requires these terms both to be small so that the balance of terms in eqn. (10) 

implies �̂� − 1~ 𝜂𝑒~
𝐿𝑛

𝐿𝑠
< 1 

We shall find it to be sufficient to consider only the ion sound approximation, in 

order to ensure 𝐸∥ → 0, the physics of ion Landau damping only playing a 

conceptual role that justifies the use of the ‘outward carrying energy’ wave 

boundary conditions, as in the theory of the electron drift wave (Pearlstein & 

Berk, 1969). 
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3. Solution in the Intermediate Region 

At low 𝛽𝑖, eqn. (6) allows us to write  𝐴 ≡ constant, since 𝐴∥  is an even function 

of x, which we choose to be unity: 𝐴 = 1. Introducing the following scaled 

variables: 

           𝑦 = (
�̂�𝜏𝐿𝑠

𝐿𝑛
)

1/2
𝑋, �̂� =(

�̂�𝜏𝐿𝑠

𝐿𝑛
)

−1/2
𝜙, 𝑎 =

�̂�𝜏𝐿𝑠

2𝐿𝑛

(�̂�−1)

(�̂�𝜏+1+𝜂𝑖)
 ,                       (11) 

eqn. (8) can then be written as 

            
𝑑2

𝑑𝑦2
�̂� + (

𝑦2

4
− 𝑎) �̂� = 𝑅(𝑦),    𝑅(𝑦) = −

𝑎

𝑦
+

𝑦

4
 .                              (12) 

The validity of the ion FLR and ion sound expansions means that eqn. (12) is only 

valid on the domain (𝐿𝑠/𝐿𝑛)1/2 > 𝑦 >  (𝐿𝑛/𝐿𝑠)1/2,  requiring (𝐿𝑛/𝐿𝑠) ≪ 1. 

To solve eqn. (12) we adopt two different techniques, corresponding to the two 

components of the inhomogeneous term, 𝑅(𝑦). For the first term, 𝑅(𝑦) =

𝑅1(𝑦) = −𝑎/𝑦, we employ a Fourier transform for its solution, �̂�1. For the 

second one,  𝑅(𝑦) = 𝑅2(𝑦) = 𝑦/4, we generalise a technique due to Basu and 

Coppi (1977), involving an integral representation of its solution, �̂�2 . 

 

 (i)  Solution  �̂�1(𝑦) 

Fourier transforming eqn. (12) with 𝑅(𝑦) = −𝑎/𝑦 we obtain an equation for  

       �̃�1(𝑘) = ∫ 𝑑𝑘exp(i𝑘𝑦)
∞

−∞
�̂�1(𝑦) ,                                            (13) 

namely  

  
1

4

𝑑2

𝑑𝑘2
�̃�1 + (

𝑘2

4
+ 𝑎) �̃�1 = i 𝜋 𝑎 sgn(𝑘),                 (14) 

where the transform of the right-hand side is given by Pegoraro and Schep (1986), 

utilising the theory for Fourier transforms of generalised functions (Gel’fand & 

Shilov, 1964). 

This can be cast in the canonical form for parabolic cylinder functions by 

introducing 𝜅 = 2𝑘 . The solution of eqn. (14) can then be written as: 

     �̃�1(𝜅, 𝑎) = 𝐴𝐸(− 𝑎, 𝜅 ) + 𝐵𝐸∗(− 𝑎, 𝜅 ) +

                                  i 𝜋 𝑎 
𝐸(− 𝑎,𝜅 )

𝑊
∫ 𝑑𝜅′𝐸∗(− 𝑎, 𝜅′ )

𝜅

0
sgn(𝜅′) −

                                                      i 𝜋 𝑎 
𝐸∗(− 𝑎,𝜅 )

𝑊
∫ 𝑑𝜅′𝐸(− 𝑎, 𝜅′ )

𝜅

0
sgn(𝜅′)              (15)   
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where 𝐸(− 𝑎, 𝜅 ) and 𝐸∗(− 𝑎, 𝜅 ) are the wave-like parabolic cylinder functions 

(Abramowitz & Stegun, 1972), the Wronskian, 𝑊 = −2𝑖 and A and B are 

constants to be determined by applying appropriate boundary conditions.  

The acceptable solution in configuration space (i.e. x-space) is a wave carrying 

energy outwards from the resonant layer, eventually decaying due to ion Landau 

damping (Pearlstein & Berk, 1969). Since the electron drift wave is a ‘backwards’ 

wave with group velocity opposed to its phase velocity, this translates into 

suppressing the wave solution with positive phase velocity in x-space. In k-space 

this implies supressing the one with an apparent negative phase velocity, so that 

         B = 
i 𝜋 𝑎

𝑊
∫ 𝑑𝜅′𝐸(− 𝑎, 𝜅′ )

∞

0
sgn(𝜅′).               (16) 

We also require �̂�1(𝜅, − 𝑎) to be odd in 𝜅 with   �̂�1(0, 𝑎) = 0. This requires 

     𝐴 =  −
i 𝜋 𝑎𝐸∗(− 𝑎,0)

𝑊𝐸(− 𝑎,0)
∫ 𝑑𝜅′𝐸(− 𝑎, 𝜅′ )

∞

0
sgn(𝜅′)     .                           (17) 

 

Thus 

    �̃�1(𝜅, 𝑎)  =
i 𝜋 𝑎

𝑊
[𝐸∗(− 𝑎, 𝜅 ) ∫ 𝑑𝜅′𝐸(− 𝑎, 𝜅′ )sgn(𝜅′)

∞

𝜅
−

                                        
𝐸∗(− 𝑎,0)

𝐸(− 𝑎,0)
𝐸(− 𝑎 , 𝜅) ∫ 𝑑𝜅′𝐸(− 𝑎, 𝜅′ )sgn(𝜅′)

∞

0
+

                                                              𝐸(− 𝑎 , 𝜅) ∫ 𝑑𝜅′𝐸∗(− 𝑎, 𝜅′)sgn(𝜅′)
𝜅

0
  ] .   (18) 

In calculating the contribution of �̂�1(𝑦) to Δ′, we shall find knowledge of 

�̃�1(𝜅, 𝑎) is sufficient.  Specifically, we shall require the quantity: 

     i
𝑑

𝑑𝑘
�̃�1(𝑘, 𝑎)𝑘=0 = −

 2𝑎𝜋

𝐸(− 𝑎,0)
∫ 𝑑𝜅′ 𝐸(− 𝑎, 𝜅′ )sgn(𝜅′),   𝑎 > 0

∞

0
              (19) 

As shown in the appendix, eqn. (A.10), the integral over 𝜅′ can be performed 

analytically to yield: 

   i
𝑑

𝑑𝑘
�̃�1(𝑘, 𝑎)𝑘=0 = −

2𝜋 𝑒
𝑖𝜋
4 𝑎 Γ(

3

4
−

𝑖𝑎

2
) 

 Γ(
5

4
−

𝑖𝑎

2
)  

 𝐹 (
1

2
,

1

4
−

𝑖𝑎

2
;

5

4
−

𝑖𝑎

2
; −1) ≡ 𝐼0(𝑎)       (20)      

Here 𝐹(𝑎, 𝑏; 𝑐; 𝑧) is the hypergeometric function and Γ(𝑧) the Gamma function 

(Abramowitz & Stegun, 1972). 𝐼0(𝑎) is displayed in Fig. 2. 

 (ii)  Solution  �̂�2(𝑦) 

Introducing 𝑧 = 𝑖𝑦2/4 and  �̂�2(𝑦) = 𝑢 exp(−𝑧) into eqn. (12) with 𝑅(𝑦) =

𝑦/4, we obtain the equation: 
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  𝑧
𝑑2𝑢

𝑑𝑧2
+ (

1

2
− 2𝑧)

𝑑𝑢

𝑑𝑧
+ (−

1

2
+ i𝑎) 𝑢 = −

e𝑖𝜋/4𝑧1/2e𝑧

2
                      (21) 

for  𝑢(𝑧). Generalising the technique of Basu and Coppi (1977), we introduce the 

transform: 

    𝑢(𝑧) = 𝑧𝛽 ∫ 𝑑𝑡𝑣(𝑡)e𝑧𝑡
𝐶

                       (22) 

where the contour C remains to be chosen for convenience. Inserting the 

substitution (22) in eqn. (21) leads to 

𝑧𝛽−1 ∫ 𝑑𝑡𝑣(𝑡)e𝑧𝑡
𝐶

 {𝑧2(𝑡2 − 2𝑡) + 𝑧 [(2𝛽 +
1

2
) (𝑡 − 1) + i𝑎] + 𝛽(𝛽 −  1) +

                                                            𝛽/2} = −e𝑖𝜋/4𝑧
1

2e𝑧/2  .                               (23)                                             

Choosing 𝛽 = 1/2 , which eliminates the term independent of z on the right-hand 

side bracket, eqn. (23) simplifies to  

       ∫ 𝑑𝑡𝑣(𝑡)e𝑧𝑡
𝐶

 {𝑧2(𝑡2 − 2𝑡) + 𝑧 [
3

2
(𝑡 − 1) + i𝑎] } = −e𝑖𝜋/4e𝑧/2              (24) 

Integrating by parts in t, 

[𝑣(𝑡)e𝑧𝑡(𝑡2 − 2𝑡)]𝑡1

𝑡2 

− ∫ 𝑑𝑡e𝑧𝑡
𝐶

 {
𝑑

𝑑𝑡
[((𝑡2 − 2𝑡))𝑣(𝑡)] − [

3

2
(𝑡 − 1) + i𝑎] 𝑣(𝑡)}  = −e𝑖𝜋/4e𝑧/2,                   

                    (25) 

where 𝑡1 and 𝑡2 are the end-points of contour C and are to be chosen later for 

convenience. 

Equation (25) is solved if 

             
𝑑

𝑑𝑡
[((𝑡2 − 2𝑡))𝑣(𝑡)] − [

3

2
(𝑡 − 1) + i𝑎] 𝑣(𝑡) = 0             (26) 

and  

                       [𝑣(𝑡)e𝑧𝑡(𝑡2 − 2𝑡)]𝑡1

𝑡2= −e𝑖𝜋/4e𝑧/2.                              (27) 

Equation (25) is satisfied by: 

                 𝑣(𝑡) =
𝑐̂

𝑡1/4+𝑖𝑎/2(2−𝑡)1/4−𝑖𝑎/2                                           (28) 

and eqn. (27) by choosing 𝑡1 = 0,     𝑡2 = 1  and the constant �̂� = e𝑖𝜋/4/2. 
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4. The  Δ′ − Integral 

Inserting the solution �̂� = �̂�1 + �̂�2 into Ampere’s law (6) and integrating over X 

through the ion sound region yields the modification to Δ′ arising from the 

intermediate region (which represents ion sound and, implicitly, ion Landau 

damping physics and we designate it as such): 

 Δ′𝐼𝐿𝐷 =
1

𝐴
∫ 𝑑𝑥

𝑑2𝐴

𝑑𝑋2

∞

−∞
=

1

𝜌𝑖
∫

𝑑𝑋

𝑋

∞

−∞
[1 +

(1+𝜂𝑖)

�̂�𝜏
] 𝑄(𝑋) (𝜑 −

𝐴

𝑋
)          (29) 

where we have used eqn. (7). Introducing the normalisations (11), the 

contribution from the ion sound term in  𝑄(𝑋) becomes:  

              Δ′𝐼𝐿𝐷 =
𝛽𝑖(�̂�𝜏+1+𝜂𝑖)

𝜌𝑖
(

𝐿𝑠

𝐿𝑛�̂�𝜏
)

1/2

∫ 𝑑𝑦
∞

0
[1 − 𝑦�̂�(𝑦)]                    (30) 

We express this as   

    Δ′𝐼𝐿𝐷 = Δ′(1)
+ Δ′(2)

                      (31) 

where 

  Δ′(1)
=

𝛽𝑖(�̂�𝜏+1+𝜂𝑖)

𝜌𝑖
(

𝐿𝑠

𝐿𝑛�̂�𝜏
)

1/2

∫ 𝑑𝑦
∞

0
[1 − 𝑦�̂�1(𝑦)]            (32) 

and 

          Δ′(2)
=

𝛽𝑖(�̂�𝜏+1+𝜂𝑖)

𝜌𝑖
(

𝐿𝑠

𝐿𝑛�̂�𝜏
)

1/2

∫ 𝑑𝑦
∞

0
[1 − 𝑦�̂�2(𝑦)]             (33)              

To evaluate Δ′(1)
 we introduce the Fourier transform for  �̂�1(𝑦, 𝑎),    �̃�1(𝜅, 𝑎), 

perform the integration over y, using the resulting delta-function, 𝛿(𝑘), to reduce 

the integral to: 

     Δ′(1)
=

𝛽𝑖(�̂�𝜏+1+𝜂𝑖)

2𝜌𝑖
(

𝐿𝑠

𝐿𝑛�̂�𝜏
)

1/2
i

𝑑

𝑑𝑘
�̃�1(𝑘, 𝑎)𝑘=0 =  

𝛽𝑖(�̂�𝜏+1+𝜂𝑖)

2𝜌𝑖
(

𝐿𝑠

𝐿𝑛�̂�𝜏
)

1/2
𝐼0(𝑎)          

                    (34) 

on inserting the result (20).   

In the case of Δ′(2)
 we insert solution (22) with 𝑣(𝑡) given by eqn. (28), into 

integral (33), obtaining 

          Δ′(2)
=

𝛽𝑖(�̂�𝜏+1+𝜂𝑖)

𝜌𝑖
(

𝐿𝑠

𝐿𝑛�̂�𝜏
)

1/2

∫ 𝑑𝑦
∞

0
[1 −

i𝑦2

4
∫ 𝑑𝑡 exp (−

i𝑦2𝑡

4
)

1

0
(1 −

                                                                        𝑡)−
1

4
−i𝑎/2(1 + 𝑡)−

1

4
+i𝑎/2]                      (35) 

Using the identity 
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  1 =  exp (−
i𝑦2

4
) +

i𝑦2

4
∫ 𝑑𝑡 exp (−

i𝑦2𝑡

4
)

1

0
              (36) 

We can rewrite eqn. (35) as 

       Δ′(2)
=

𝛽𝑖(�̂�𝜏+1+𝜂𝑖)

𝜌𝑖
(

𝐿𝑠

𝐿𝑛�̂�𝜏
)

1/2

{∫ 𝑑𝑦 exp (−
i𝑦2

4
)

∞

0
+

          ∫ 𝑑𝑦
i𝑦2

4

∞

0
∫ 𝑑𝑡 exp (−

i𝑦2𝑡

4
) [1 − (1 −   𝑡)−

1

4
−i𝑎/2(1 + 𝑡)−

1

4
+i𝑎/2] 

1

0
}       (37)                    

Now the integration over y can be readily performed to yield: 

       Δ′(2)
= √𝜋𝑒−𝑖𝜋/4 𝛽𝑖(�̂�𝜏+1+𝜂𝑖)

𝜌𝑖
(

𝐿𝑠

𝐿𝑛�̂�𝜏
)

1/2

{1 +
1

2
∫ 𝑑𝑡 t−

3

2 [1 − (1 −
1

0

                                                                                         𝑡)−
1

4
−i𝑎/2(1 + 𝑡)−

1

4
+i𝑎/2] } (38) 

Thus, we require the integral 

           𝐼(𝑎) =
1

2
∫ 𝑑𝑡 t−3/2 [1 − (1 −  𝑡)−

1

4
−i𝑎/2(1 + 𝑡)−

1

4
+i𝑎/2]

1

0
                        (39)  

This can be evaluated analytically, as shown in eqn. (B.9) of Appendix B: 

   𝐼(𝑎) = −1 +
√(2𝜋 )Γ(

3

4
−

𝑖𝑎

2
)

 Γ(
1

4
−

𝑖𝑎

2
)

                (40) 

Thus, we have        

         Δ′𝐼𝐿𝐷 =
𝛽𝑖(�̂�𝜏+1+𝜂𝑖)

2𝜌𝑖
(

𝐿𝑠

𝐿𝑛�̂�𝜏
)

1/2

(𝐼0(𝑎) + 𝐼1(𝑎))                              (41) 

where 

                            𝐼1(𝑎) = √2 𝜋𝑒−𝑖𝜋/4
Γ(

3

4
−

𝑖𝑎

2
)

 Γ(
1

4
−

𝑖𝑎

2
)
                                        (42) 

which is evaluated numerically and displayed in Fig. 3. The combination  

      𝐼(𝑎) = 𝐼0(𝑎) + 𝐼1(𝑎)                                (43) 

is plotted in Fig. 4. When 𝑎 = 0, the expression (41) reduces to the analytic result 

for the real part of Δ′ quoted in Coppi et al. (1979) for the case 𝜂𝑒 = 0. 

 

5. The Effective 𝚫′ 𝐟𝐨𝐫 𝐒𝐭𝐚𝐛𝐢𝐥𝐢𝐭𝐲  

The result (41) for Δ′𝐼𝐿𝐷, the modification to Δ′ due to the ion sound/ion Landau 

damping physics, can be substituted into expressions in the literature for the drift 
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tearing mode growth rate at finite ion temperature (Cowley et al., 1986, Connor 

et al., 2012) which have ignored the presence of these effects. 

For example, the semi-collisional tearing mode in the absence of the ion sound 

intermediate layer has a growth rate 𝛾 given by Im(𝛿�̂�), where �̂� = �̂�0 + 𝛿�̂�, 

and 𝛿�̂� satisfies the dispersion relation: 

  𝛿�̂� ∼ −
𝛿𝑠𝑐�̂�0

1/2

𝜋�̂�
 𝑒−𝑖𝜋/4(Δ′𝐼𝐿𝐷 − Δ′𝑐𝑟𝑖𝑡).                     (44) 

Here �̂�0 = (1 + 0.74𝜂𝑒), with 𝜈𝑒 the electron collision frequency and 𝑣𝑇𝑒 the 

electron thermal velocity, 𝛿𝑠𝑐  is the semi-collisional width (𝛿𝑠𝑐 << 𝜌𝑖) and 

               Δ′𝑐𝑟𝑖𝑡 =
√𝜋 �̂�

𝜌𝑖

(�̂�0−1)2

�̂�0
(1 + �̂�0𝜏 −

𝜂𝑖

2
) ln (𝜌𝑖/(𝛿𝑠𝑐�̂�0

1/2
))       

                                                        −
𝜋�̂� 

𝜌𝑖
�̂�0(�̂�0 − 1)𝐼 ̅ ,                     (45)  

with  �̂� = 𝛽𝑒(𝐿𝑠/𝐿𝑛)2/2 . 𝐼(̅�̂�0(𝜂𝑒), 𝜂𝑖,𝜏) is an integral that is negative and 

numerical evaluation shows that it is well represented by 𝐼 ̅ ≅ −1.3 𝜂𝑒
1/2

 (Connor 

et al., 2012)1. The first contribution to Δ′𝑐𝑟𝑖𝑡 in eqn. (45) is due to ion finite 

Larmor radius effects (FLR), while the second term represents diamagnetic 

effects.  The most sensitive dependence of Δ′𝑐𝑟𝑖𝑡 is on 𝜂𝑒. 

To introduce the effect of the intermediate ion sound layer, we replace Δ′  in eqn. 

(44) by  (Δ′ − Δ′𝐼𝐿𝐷).  Using eqns. (41) and (43), with the result for 𝐼(𝑎) 

displayed in Fig. 4, we show in Fig. 5,  Δ′𝑒𝑓𝑓 , the critical value of  Δ′ (i.e. the 

value of Δ′  for which the growth rate, as calculated from eqn. (44), vanishes) as 

a function of 𝜂𝑒 for typical values of the other parameters: �̂� = 0.05, 
𝛿0

𝜌𝑖
=

10−3, 𝜏 = 1, 𝜂𝑖 = 0,
𝐿𝑠

𝐿𝑛
= 10 . Because Δ′𝐼𝐿𝐷  is complex, both its real and 

imaginary parts contribute to the growth rate in eqn. (44). We see that the 

contribution from the ion sound/ion Landau damping layer is less important than 

those arising from Δ′𝑐𝑟𝑖𝑡 , representing the FLR and diamagnetic terms, except 

near 𝜂𝑒 = 0  where it remains finite.  There it provides a persistent stabilising 

contribution, unlike the others, which tend to zero. 

 

 

 

                                                           
1 We point out that eqn. (45) corrects an evident misprint in the corresponding eqn. (42) in Connor et al. 
(2012). The corresponding figure there, Fig.4, was, however, correctly calculated. 
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6. Discussion and Conclusions 

We have investigated the impact of ion sound and ion Landau damping on the 

effective tearing mode stability parameter, Δ′, in hot tokamak plasma. These 

effects are essential in ensuring the parallel electric field approaches zero as one 

attempts to match solutions of the inner resonant layer equations to those of the 

external ideal MHD model. Because the tearing mode frequency is effectively 

determined by the resonant layer physics and depends on 𝜂𝑒 , it transpires that the 

effect is strongest for weak electron temperature gradients. In this situation one 

can introduce an intermediate region, between that where the key resonant layer 

physics lies and the ideal MHD region, where electron drift wave physics 

dominates (Coppi et al. 1979). Indeed, by recalling the ideas of Pearlstein and 

Berk (Pearlstein and Berk, 1969) one does not need to explicitly consider the ion 

Landau damping region, replacing it by the boundary condition that the drift 

waves must only carry energy outwards. Matching solutions through this layer 

provides a link between the true Δ′ and the effective one seen by the inner layer. 

The effect of the intermediate layer is parametrised by the quantity  𝑎 =
𝜔𝜏𝐿𝑠

2𝜔∗𝑒𝐿𝑛

(𝜔−𝜔∗𝑒)

(𝜔𝜏+(1+𝜂𝑖)𝜔∗𝑒)
.  Recalling that a good fit to the drift tearing mode frequency 

is  �̂�0 = (1 + 0.74𝜂𝑒) (Connor et al., 2012), we note that 𝑎 is indeed essentially 

a function of 𝜂𝑒 and 𝐿𝑠/ 𝐿𝑛 . However, the validity of the theory requires the 

electron temperature gradient to be rather weak, with  𝜂𝑒~𝐿𝑛/𝐿𝑠 , i.e. 𝐿𝑇𝑒
~ 𝐿𝑠 , 

so that 𝑎 ~ 0(1) (Coppi et al., 1979). Note that a further validity condition, 𝑎 ≫

𝐿𝑛/𝐿𝑠, required for our analysis of the intermediate layer, is satisfied provided 

 𝐿𝑛/𝐿𝑠 ≪ 1. For the case �̂� = �̂�0, 𝜂𝑒 = 𝜂𝑖, 𝜏 = 1, this requires  𝜂𝑒 >

5.4(𝐿𝑛/𝐿𝑠)2. Although the effects of the intermediate region increase as 𝜂𝑒 

increases, a valid treatment for 𝜂𝑒~ 0(1) would require a numerical calculation 

involving the full effects of ion Larmor radius and ion Landau damping, as the 

approximations inherent in the simple electron drift wave model, namely the long 

wavelength ion Larmor radius and the ion sound expansion, no longer hold.    

Given these constraints on 𝜂𝑒, we have applied the results to a realistic hot 

tokamak plasma model, though in cylindrical geometry, where the ion Larmor 

orbit exceeds the reconnecting layer width, which itself is described by semi-

collisional electron physics (Cowley et al., 1986; Connor et al., 2012) and 

compared the stabilising effects from the ion sound / ion Landau damping physics 

with other stabilising effects, as a function of  𝜂𝑒. The sum of these effects then 

leads to a critical value, Δ′𝑒𝑓𝑓 for tearing instability. Although this calculation is 

strictly valid for a collision-less plasma slab in a sheared magnetic field geometry, 

it only ignores possible curvature, collisional and trapped particle effects. These 
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are weak in the range of x (𝜌𝑖 < 𝑥 < 𝜌𝑖𝐿𝑠/𝐿𝑛)  that is relevant for the ion 

dynamics involved in this calculation; it is therefore a meaningful calculation for 

more general geometries.  
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Appendix A: Derivation of eqn. (20) for 𝑰𝟎(𝒂) 

This appendix leans heavily on results concerning the Confluent Hypergeometric 

functions, the Hypergeometric functions and the Parabolic Cylinder functions, 

respectively from Chapters 13, 15 and 19 of Abramowitz and Stegun, 1972.  

Firstly 𝐸(−𝑎, 𝑧) can be related to the usual Parabolic Cylinder function  

𝐷𝑖𝑎−1/2(𝑒−𝑖𝜋/4𝑧), so that  

               𝐼0(𝑎) = −2𝑎𝜋 ∫ 𝑑𝑧 𝐷𝑖𝑎−1/2(𝑒−𝑖𝜋/4𝑧)
∞

0
/𝐷𝑖𝑎−1/2(0)                     (A.1) 

Now 𝐷𝑖𝑎−1/2(𝑒−𝑖𝜋/4𝑧) itself can be expressed in terms of a Confluent 

Hypergeometric function, U: 

        𝐷𝑖𝑎−1/2(𝑒−𝑖𝜋/4𝑧) = 2(𝑖𝑎/2−1/4)𝑒𝑖𝑧2/4 𝑈 (1 4⁄ −
𝑖𝑎

2
,

1

2
; −𝑖𝑧2/2)          (A.2) 

The Confluent Hypergeometric function,  𝑈(𝑎, 𝑏; 𝑥), has an integral 

representation; using this we can write: 

         𝑈 (
1

4
−

𝑖𝑎

2
,

1

2
; −

 𝑖𝑧2

2
) = 

                         
𝑒−𝑖𝑧2/2

Γ(
1

4
−𝑖𝑎/2)

∫ 𝑑𝑡𝑒𝑖𝑡𝑧2/2(𝑡 − 1)−(
𝑖𝑎

2
+3/4)∞

1
𝑡(𝑖𝑎/2−3/4)                  (A.3) 

This enables one to perform the integration over z in the numerator of eqn. (A.1), 

which becomes: 

    
2(𝑖𝑎/2−1/4)𝑒𝑖𝜋/4

Γ(
1

4
−𝑖𝑎/2)

(
𝜋

2
)

1/2

∫ 𝑑𝑡(𝑡 − 1)−(
𝑖𝑎

2
+3/4)∞

1
𝑡(𝑖𝑎/2−3/4)(𝑡 − 1/2)−1/2        (A.4) 

Finally, introducing 𝑢 = 1/𝑡, result (A.4) becomes 

      
 2

(
𝑖𝑎
2

−1/4)
𝑒𝑖𝜋/4

Γ(
1

4
−𝑖𝑎/2)

(
𝜋

2
)

1/2

∫ 𝑑𝑢(1 − 𝑢)−(
𝑖𝑎

2
+3/4)1

0
(1 − 𝑢/2)−1/2                      (A.5) 

Now the Hypergeometric function, 𝐹(𝑎, 𝑏; 𝑐; 𝑥) also has an integral 

representation and one observes  
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       𝐹 (
1

2
,

1

4
−

𝑖𝑎

2
;

5

4
−

𝑖𝑎

2
; −1) =

Γ(
5

4
−𝑖𝑎/2)

Γ(
1

4
−𝑖𝑎/2)Γ(1)

∫ 𝑑𝑡𝑡
−(

𝑖𝑎

2
+3/4)1

0
(1 + 𝑡)−1/2     (A.6) 

so that, on substituting 𝑡 = 1 − 𝑢, we obtain 

          𝐹 (
1

2
,

1

4
−

𝑖𝑎

2
;

5

4
−

𝑖𝑎

2
; −1) 

        =
Γ(

5

4
−𝑖𝑎/2)

√2Γ(
1

4
−𝑖𝑎/2)Γ(1)

∫ 𝑑𝑢(1 − 𝑢)−(
𝑖𝑎

2
+3/4)1

0
(1 − 𝑢/2)−1/2                   (A.7) 

Thus, result (A.5) can be rewritten as: 

            
√𝜋 2

(
𝑖𝑎
2

−1/4)
𝑒𝑖𝜋/4

Γ(
5

4
−𝑖𝑎/2)

 𝐹 (
1

2
,

1

4
−

𝑖𝑎

2
;

5

4
−

𝑖𝑎

2
; −1)          (A.8) 

Concerning the denominator in eqn. (A.1), we have: 

                      𝐷𝑖𝑎−1/2(0) =  
√𝜋 2

(
𝑖𝑎
2

−1/4)

Γ(
3

4
−𝑖𝑎/2)

               (A.9) 

so that, finally, on using properties of the Gamma function: 

            𝐼0(𝑎) = −
2𝜋 𝑒𝑖𝜋/4𝑎 Γ(

3

4
−𝑖𝑎/2) 

 Γ(
5

4
−𝑖𝑎/2)  

 𝐹 (
1

2
,

1

4
−

𝑖𝑎

2
;

5

4
−

𝑖𝑎

2
; −1)                     (A.10)             

Expression (A.10) provides eqn. (20) of the main text. 

 

Appendix B: Derivation of eqn. (40) for �̂�(𝒂) 

We first need to evaluate integral 𝐼(𝑎) in eqn. (39). This is integrable because the 

two terms in the denominator cancel as  𝑡 → 0 . It is convenient to consider it as 

the difference of the two diverging integrals: 

           𝐼(𝑎) =
1

2
lim
𝛿→0

∫
𝑑𝑡

𝑡
3
2

1

𝛿
− lim

𝛿→0

1

2
∫

𝑑𝑡

𝑡
3
2

1

𝛿
(1 − 𝑡)−

𝑖𝑎

2
−

1

4(1 + 𝑡)
𝑖𝑎

2
−

1

4 

     ≡ 𝐽1(𝛿) − 𝐽2(𝛿, 𝑎)                                         (B.1) 

The first is readily evaluated: 

    𝐽1(𝛿) = −1 +
1

𝛿1/2
                                        (B.2)  

For the second we substitute, 𝑡 = 1/(2𝑣 + 1), to obtain 

                 𝐽2(𝛿, 𝑎) = 2−1/2 ∫ 𝑑𝑣𝑣−
𝑖𝑎

2
−1/4(1 + 𝑣)

𝑖𝑎

2
−1/4𝑧

0
                       (B.3) 



 

16 
 

where 𝑧 =
1−𝛿

2𝛿
.   Now   𝐽2(𝛿, 𝑎) can be expressed in terms of the Incomplete Beta 

function, 𝐵1−2𝛿 (
3

4
−

𝑖𝑎

2
, −

1

2
)  (see sections 1.5 and 2.53 of Erdelyi, A, 1953):  

                              𝐽2(𝛿, 𝑎) = 2−1/2𝐵1−2𝛿 (
3

4
−

𝑖𝑎

2
, −

1

2
)                                     (B.4) 

The Incomplete Beta function can be expressed in terms of the Hypergeometric 

function, 𝐹(𝑎, 𝑏;  𝑐;  𝑧)  (Abramowitz and Stegun, 1972):  

             𝐵1−2𝛿 (
3

4
−

𝑖𝑎

2
, −

1

2
) =

(1−2𝛿)
−𝑖𝑎

2
+3/4

(−
𝑖𝑎

2
+3/4)

𝐹 (
3

4
−

𝑖𝑎

2
,

3

2
;

7

4
−

𝑖𝑎

2
; 1 − 2𝛿),     (B.5)               

A suitable transformation for considering the limit  𝛿 → 0 is the relation 

 𝐹(𝑎, 𝑏;  𝑐;  𝑧) =
Γ(𝑐)Γ(𝑐 − 𝑏 − 𝑎)

Γ(𝑐 − 𝑎)Γ(𝑐 − 𝑏)
𝐹(𝑎, 𝑏;  𝑎 + 𝑏 − 𝑐 + 1;  1 −  𝑧) + 

                           (1 − 𝑧)𝑐−𝑎−𝑏 Γ(𝑐)Γ(𝑎+𝑏−𝑐)

Γ(𝑎)Γ(𝑏)
𝐹(𝑐 − 𝑎, 𝑐 − 𝑏; 𝑐 − 𝑎 − 𝑏 + 1; 1 −  𝑧) 

                  (B.6)                      

where we can then use the result 

              𝐹(𝑎, 𝑏;  𝑐; 0) = 1                      (B.7) 

(Abramowitz and Stegun, 1972) to take the limit 𝛿 → 0.  The result is  

                  𝐽2(𝛿, 𝑎) =
1

𝛿1/2
− √2𝜋

Γ(
3

4
−

𝑖𝑎

2
)

Γ(
1

4
−

𝑖𝑎

2
)
                                                (B.8) 

Combining with the result (B.2), we obtain 

                                𝐼(𝑎) = −1 + √2𝜋
Γ(

3

4
−

𝑖𝑎

2
)

Γ(
1

4
−

𝑖𝑎

2
)
                                                  (B.9) 

This is the result quoted in eqn. (40).  
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 Figure Captions 

 

Fig. 1 The regions in which different physical processes occur as the distance,

𝑥 = 𝑟 − 𝑟0 , from the resonant surface, 𝑟0, increases: (i) electron reconnecting 

physics at a scale 𝛿𝑒;  (ii) ion finite Larmor  radius effects at a scale 𝜌𝑖;  (iii) full 

ion parallel dynamics, namely ion sound at a scale (𝐿𝑠/𝐿𝑛)1/2 𝜌𝑖  and ion Landau 

damping effects at a scale (𝐿𝑠/𝐿𝑛)𝜌𝑖; and (iv) the outer ideal MHD region. 

 Fig. 2 The real and imaginary parts of 𝐼0(𝑎) as a function of the parameter 𝑎 =
(𝐿𝑠�̂�𝜏/2𝐿𝑛)(�̂� − 1)/(�̂� 𝜏 + 1 + 𝜂𝑖). 

Fig. 3 The real and imaginary parts of 𝐼1(𝑎) as a function of the parameter 𝑎 =
(𝐿𝑠�̂�𝜏/2𝐿𝑛)(�̂� − 1)/(�̂� 𝜏 + 1 + 𝜂𝑖). 

Fig. 4 The real and imaginary parts of  𝐼(𝑎) = 𝐼0(𝑎) + 𝐼1(𝑎) as a function of the 

parameter 𝑎 = (𝐿𝑠�̂�𝜏/2𝐿𝑛)(�̂� − 1)/(�̂� 𝜏 + 1 + 𝜂𝑖). 

Fig. 5  The effective critical value of  Δ′𝜌𝑖,  Δ
′
𝑒𝑓𝑓𝜌𝑖 (full (blue) line), as a function 

of 𝜂𝑒 for typical values of the other parameters: �̂� = 0.05, 
𝛿0

𝜌𝑖
= 10−3, 𝜏 = 1, 𝜂𝑖 =

0,
𝐿𝑠

𝐿𝑛
= 10 . Δ′

𝑐𝑟𝑖𝑡  is the contribution from FLR and diamagnetic effects (long 

dashed (brown) line), while (𝑅𝑒[Δ′
𝐼𝐿𝐷] − 𝐼𝑚[Δ′

𝐼𝐿𝐷]) is the contribution from the 

real and imaginary parts of the ion Landau damping terms (dashed (green) line).  
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Fig. 3 

 



 

19 
 

 

 

Fig. 4 
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