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Abingdon, Oxfordshire OX14 3DB, United Kingdom

Vacancy formation and migration control self-diffusion in pure crystalline materials, whereas
irradiation produces high concentrations of vacancy and self-interstitial atom defects, exceeding by
many orders of magnitude the thermal equilibrium concentrations. The defects themselves, and the
extended dislocation microstructure formed under irradiation, generate strongly spatially fluctuating
strain and stress fields. These fields alter the local formation and migration enthalpies of defects,
and give rise to the anisotropy of diffusion even if in the absence of stress the diffusion tensor is
isotropic. We have performed ab initio calculations of formation and migration energies of vacancies
in all the commonly occurring body-centred-cubic (BCC) metals, including alkaline, alkaline-earth
and transition metals, and computed elastic dipole and relaxation volume tensors of vacancies at
the equilibrium lattice positions and along the vacancy migration pathways. We find that in all the
BCC metals the dipole tensor of a migrating vacancy at a saddle point exhibits an anti-crowdion
character. Applied external stresses or the local stresses generated by dislocations may enhance
or suppress anisotropic diffusion by altering the energy barriers with respect to the direction of
migration of a defect.

I. INTRODUCTION

Vacancy formation and migration are the fundamen-
tal microscopic processes determining self-diffusion and
atomic transport in crystalline materials [1]. At ther-
mal equilibrium, vacancies are formed naturally by ther-
mal fluctuations, whereas significantly higher concentra-
tions of vacancies and self-interstitial atom (SIA) de-
fects can be produced by irradiation [2, 3]. Elastic
dipole and relaxation volume tensors of vacancies and
self-interstitial atom defects computed from first princi-
ples at equilibrium lattice positions for a variety of BCC
metals [4–6] show that for vacancies these tensors are en-
tirely isotropic, whereas for SIA defects they are strongly
anisotropic. Hence at an equilibrium lattice position, in
the linear elasticity approximation a vacancy does not
interact with a shear stress field even in an elastically
anisotropic cubic material.

Dipole or relaxation volume tensors of a vacancy may
acquire an anisotropic component if the vacancy is dis-
placed from an equilibrium position, for example by a
thermal fluctuation. At a relatively low temperature
this has no fundamental effect on the nature of inter-
action with external elastic fields, as the dipole and re-
laxation volume tensors now become thermodynamic av-
erage quantities, with their symmetry still reflecting the
cubic symmetry of the lattice site occupied by a vacancy.
Large anisotropic distortions changing the symmetry of
the dipole tensor may still arise from infrequent events as-
sociated with the migration of a vacancy from one lattice
site to another. Using molecular statics, Sivak et al. [4]
computed the elastic dipole tensor of a vacancy in iron at
a saddle point between two equilibrium lattice positions,
and showed that the distortion of the lattice around a va-
cancy at a saddle point resembled the distortion around a
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〈111〉 SIA crowdion defect, taken with the opposite sign.
The anisotropic component of the dipole tensor resulting
from this directional distortion now enables elastic inter-
action with a shear strain field, either applied externally
or generated by other defects or dislocations. The strain
and stress dependence of the migration enthalpy of a va-
cancy also gives rise to anisotropic diffusion in external
elastic fields [7–10]. Strong external stresses and strains
may also have an effect on the local vacancy concentra-
tion, promoting the migration of vacancies to the regions
of high compressive strain.

Below, we explore how accurate electronic and atomic
scale simulations can help generate high quality data re-
quired for the development of models for the diffusion-
mediated dynamics of defects in the presence of deforma-
tion and stress. We briefly review the methods for com-
puting the formation and migration energies as well as
elastic dipole tensors Pij and relaxation volume tensors
Ωij of defects using ab initio density functional theory
(DFT). We then explore how the formation and migra-
tion enthalpies of defects change in the presence of ex-
ternal stresses or strains. We show that the relaxation
volume tensor of a defect represents a particularly con-
venient parameter, describing the response of a defect to
an external stress field.

The study below focuses on the DFT analysis of
vacancy defects in several commonly occurring body-
centred cubic (BCC) alkaline metals (Li, Na, K, Rb, Cs),
an alkaline-earth metal (Ba), several non-magnetic tran-
sition metals (V, Nb, No, Ta, W), and two magnetic
transition metals (Cr, Fe). We compare the calculated
formation and migration energies with experimental val-
ues derived from self-diffusion experiments, and compare
temperatures characterising the onset of migration of de-
fects with temperatures of stage III resistivity recovery
curves observed in materials exposed to electron irradi-
ation at cryogenic temperatures. Using DFT supercell
simulations, we compute elastic dipole tensor Pij and re-
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laxation volume tensor Ωij for a vacancy at equilibrium
and at the saddle point on its migration trajectory. Cal-
culations show that in all the metals investigated below,
lattice distortions around a migrating vacancy exhibit
anti-crowdion-like anisotropic character at all the inter-
mediate positions along the transition pathway. The nu-
merical values of elastic dipole tensors and relaxation vol-
ume tensors of defects derived from ab initio calculations
enable accurate assessment of the effect of elastic fields on
the generation and migration of vacancies in materials.

II. BASIC FORMULAE

Methods for calculating formation energies of defects
using periodic boundary conditions were recently re-
viewed in [5, 6, 11]. If a defect structure is simulated
under the constraint of vanishing average strain, corre-
sponding to the case where the translation vectors of the
simulation cell remain fixed, the formation energy of the
defect structure is given by the equation

EF
D = ED(ND)− ND

Nperf
Eperf (Nperf )− Ecorr

el , (1)

where Nperf is the number of atoms in a perfect lattice
cell, ND is the number of atoms in a simulation box con-
taining a defect, where for a vacancy ND = Nperf−1. ED

is the total energy of the cell containing a defect, Eperf

is the energy of the perfect lattice cell, and Ecorr
el is a

correction term resulting from the condition of vanishing
average strain and periodic boundary conditions. Proce-
dures for evaluating Ecorr

el are detailed in Refs. [5, 6, 11].
Migration energy EM

D is the minimum energy required
for a defect to move from one equilibrium position to an-
other. Normally it is defined as the difference between
the energy at the saddle point on the trajectory of migra-
tion and the energy at the nearest equilibrium position
in the lattice.
Ecorr

el can be computed from the elastic dipole tensor
Pij of the defect and anisotropic elastic Green’s function
and its derivatives [12]. Elements of elastic dipole tensor
can be evaluated from the macrostress σ̄ij that devel-
ops in a simulation cell due to the presence of a defect
structure in it [5, 11, 13], namely

Pij = −
∫
V

σD
ijdV = −

∫
Vcell

σijdV = −Vcellσ̄ij . (2)

Here σD
ij is the stress associated with a defect in an in-

finite medium subject to traction free boundary condi-
tions [14], and σij is the stress in a periodically trans-
lated simulation cell. Domain and Becquart [15] evalu-
ated the dipole tensor of a vacancy at equilibrium from
the Kanzaki forces, which converge if the simulation cell
is sufficiently large [16]. Equation (2) applies to any cell
size provided that atomic displacements at cell bound-
aries are well described by linear elasticity. In practice,

the accuracy of evaluation of Pij from equation (2) is ap-
proximately 5%, assuming a typical size of the simulation
cell used in ab initio calculations [5].

Assuming the experimental conditions involving ap-
plied constant external pressure p, we replace formation
and migration energies of a defect by its formation and
migration enthalpies [17]

H
F/M
D = E

F/M
D + pΩ

F/M
D . (3)

Formation and migration volumes of a defect ΩF
D and

ΩM
D can be evaluated from its relaxation volume Ωrel

computed at equilibrium and along the defect migration
pathway. The relaxation volume tensor, proportional to
the so-called λ-tensor [18], is related to the dipole tensor
through the tensor of elastic compliance

Ωij = SijklPkl. (4)

The elastic compliance tensor S = C−1 is the inverse of
the elastic constant tensor C. The relaxation volume of
a defect equals the trace of the relaxation volume tensor

Ωrel = Ω11 + Ω22 + Ω33. (5)

The formation volume of a defect is related to its re-
laxation volume through

ΩF
D = Ωeq

rel + (Nperf −ND)Ω0, (6)

where Ω0 is the atomic volume. For a vacancy ΩF
D =

Ωeq
rel + Ω0. In all the cases investigated experimentally,

ΩF
D is positive [17], implying that the total volume of

a material always increases when vacancies are formed.
Indeed, the formation of a vacancy in the bulk of a sin-
gle crystal requires depositing an atom onto its surface.
Despite the fact that the relaxation volume of a vacancy
is negative [6] and the crystal lattice contracts when va-
cancies accumulate in the bulk of the material [19], the
net result of vacancy formation is volume increase, since
|Ωeq

rel| < Ω0 [17].
The migration volume of a defect equals

ΩM
D = ΩF,sd

D − ΩF,eq
D = Ωsd

rel − Ωeq
rel. (7)

Superscripts sd and eq refer to the saddle point and equi-
libirum configurations.

In anisotropic solids, instead of expressing defect for-
mation and migration enthalpies in terms of pressure p,
it is more appropriate to write them as functions of the
stress tensor σij describing the elastic field acting on a
defect, namely

H
F/M
D = E

F/M
D − σijΩF/M

ij . (8)

The formation volume tensor is therefore

ΩF
ij = Ωeq

ij + (Nbulk −ND)Ω0,ij (9)

where the second term is proportional to the atomic vol-
ume tensor. In a cubic crystal Ω0,ij = 1

3Ω0δij . The
migration volume tensor is therefore

ΩM
ij = Ωsd

ij − Ωeq
ij . (10)
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Returning to the relaxation volume tensor defined by
equation (4) above, we note that depending on the spe-
cific application, it may be convenient to use either the
relaxation volume tensor or the elastic dipole tensor when
evaluating the energy of interaction between a defect and
external elastic field [5]:

Eel = −σijΩij = −CijklεklSijmnPmn = −εklPkl. (11)

Formation and migration energies, elastic dipole and re-
laxation volume tensors can be derived from the same set
of DFT calculations.

There are two points that follow from the examination
of Eq. (8). First, consider a case where a defect adopts
several symmetry equivalent orientations in the lattice,
all having the same energy. For example, a 〈111〉 SIA
has four equivalent degenerate orientations in a crystal
lattice, where each orientation corresponds to the axis of
the defect being parallel to one of the four 〈111〉 type
directions. In the presence of an external stress field,
the formation enthalpy is going to vary as a function
of the crystallographic orientation of the axis of the de-
fect. This, for example, can bias the structure of an en-
semble of interacting defects [20]. Also, stress fields can
have a biasing effect on the diffusion of defects, through
the direction-dependent contribution to the migration en-
thalpy, giving rise to the anisotropy of diffusion even in
the nominally isotropic materials.

III. FORMATION AND MIGRATION
ENERGIES

All the ab initio DFT calculations described below
were performed using Vienna Ab initio Simulation Pack-
age (VASP) [21–24]. We used simulation cells contain-
ing 3 × 3 × 3 bcc unit cells, or 54 atoms, in the perfect
lattice configuration. Calculations were performed using
a 5 × 5 × 5 k-point mesh and a plane wave cutoff en-
ergy that for Li was chosen at 1500 eV, for Na and K
at 780 eV, for Rb and Cs at 660 eV, for Ba at 560 eV,
and for all the other elements at 450 eV. Calculations
were performed using PAW (Projector augmented-wave
method) pseudo-potentials [25, 26] and the GGA-PBE
(Perdew-Burke-Ernzerhof) [27, 28] exchange-correlation
functional. There are 3, 7, 9, 9, 9 and 10 valence elec-
trons per atom in Li, Na, K, Rb, Cs and Ba, respectively,
and correspondingly 11, 12, 14, 11, 12, 11 and 12 valence
electrons per atom in V, Cr, Fe, Nb, Mo, Ta and W. For
all the elements we assumed a non-magnetic configura-
tion, with the exception of Cr and Fe where we assumed a
collinear magnetic ground state. Although the electronic
ground state of Cr is believed to have the form of a spin
density wave (SDW) [29], we adopt an anti-ferromagnetic
(AFM) ground state in the current study, which has the
energy indistinguishable from that of the SDW ground
state within the error margin of ab initio calculations
[30]. In the case of Fe, it is generally accepted that its
ground state is collinear and ferromagnetic [31, 32].

Simulation cells containing 54 atoms in the perfect lat-
tice configurations were relaxed to find the equilibrium
lattice constant. Cell translation vectors then remained
constant in all the subsequent calculations. Two distinct
calculations of vacancy configurations for each element
were performed by removing an atom from two different
adjacent lattice sites displaced by one lattice vector in
the [111] direction. In both calculations, ionic positions
were fully relaxed. Then, nudge elastic band calculations
[33, 34] were performed, to identify a vacancy migration
trajectory, linking the two equilibrium vacancy configu-
rations. For each element, a vacancy migration trajec-
tory was represented by eleven configurational images.
Convergence conditions required that the maximum force
acting on an atom in a fully relaxed ionic configuration
would not exceed 0.01 eV/Å.

To compute the relaxation volumes of defects, it is nec-
essary to evaluate matrix elements of the tensor of elas-
tic constants Cijkl. This tensor is evaluated using the Le
Page and Saxe method [35] for a 2 atom simulation cell
and a 30×30×30 k-point mesh. The calculated values of
elastic constants for all the elements are given in Table I
together with experimental data.

Vacancy formation EF
V and migration EM

V energies de-
rived from DFT calculations are given in Table II and
Fig. 1. The sum of these energies ESD = EF

V + EM
V

gives the activation energy for self-diffusion [1]. The com-
puted values compare favourably with the experimental
data compiled by Ehrhart et al. [46]. For transition met-
als, the values given in Table II also compare well with
results derived from earlier ab initio calculations [47, 48].

Experimental data for Li, Na, K, V, Nb, Ta, Cr, Mo, W
and Fe show that the vacancy migration enthalpy scales
linearly with the melting temperature of the material
[49]. In alkaline metals, where melting temperatures are
generally lower than those of transition metals, vacancy
migration enthalpies are relatively small. Resistivity re-
covery experiments performed on electron irradiated ele-
mental metals [46] show that in alkaline metals vacancies
migrate at relatively low temperatures, corresponding to
migration enthalpies of 0.038 eV, 0.03 eV and 0.038 eV
in Li, Na and K, respectively. These values are at least
an order of magnitude lower than vacancy migration en-
thalpies in transition metals. Our calculations confirm
this.

Earlier ab initio calculation performed using local den-
sity approximation (LDA) show broadly similar results.
For Li, EF

V = 0.57 eV (Ref. 50), 0.53 eV (Ref. 51),
0.54 eV (Ref. 52), 0.52 eV (Ref. 53), and EM

V = 0.055
eV (Ref. 53). For Na, EF

V = 0.34 eV (Ref. 54) and
EM

V = 0.054 eV (Ref. 55). For K, EF
V = 0.30 eV (Ref.

55) and EM
V = 0.051 eV (Ref. 55). These LDA values

are similar to those found in our GGA-PBE calculations.
This is probably not surprising, as these simple metals do
not exhibit effects of strong on-site electron correlations
associated with localised d or f electrons. For complete-
ness, in Table II we also provide data for Rb, Cs, and
Ba, where the latter is an alkaline-earth metal. To the
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C11 (GPa) C12 (GPa) C44 (GPa) Ω0 (Å3) a0 (Å)

Li 18.14 11.85 11.43 20.24 3.434

14.85a 12.53a 10.80a 21.27 b 3.491 b

Na 9.34 7.44 5.96 36.96 4.197

8.57 c 7.11 c 5.87 c 37.71 b 4.225 b

K 3.91 3.44 2.70 73.66 5.282

4.17 d 3.41 d 2.86 d 71.32 b 5.225 b

Rb 3.07 2.65 1.99 90.95 5.666

3.25 e 2.73 e 1.98 e 87.10 b 5.585 b

Cs 2.16 1.85 1.38 116.75 6.158

2.47 f 2.06 f 1.48 f 110.45 b 6.045 b

Ba 12.06 7.31 10.39 63.56 5.028

13.0 g 7.6 g 11.8 g 63.25 b 5.02 b

V 279.59 142.02 26.72 13.43 2.995

227.9h 118.7h 42.6h 13.91 b 3.03 b

Nb 248.76 135.24 19.46 18.32 3.322

246.6h 133.2h 28.1h 17.97 b 3.30 b

Mo 469.07 157.72 99.71 15.77 3.159

464.7h 161.5h 108.9h 15.63 b 3.15 b

Ta 266.28 161.36 76.75 18.27 3.319

266.0h 161.2h 82.4h 17.97 b 3.30 b

W 518.26 199.77 142.09 16.15 3.185

522.4h 204.4h 160.6h 15.78 b 3.16 b

Cr 448.12 62.03 102.13 11.72 2.862

394.1 i 88.5 i 103.75 i 11.94 b 2.88 b

Fe 289.34 152.34 107.43 11.36 2.832

243.1 j 138.1 j 121.9 j 11.82 b 2.87 b

aRef. 36, bRef. 37, cRef.38, dRef. 39, eRef. 40,
fRef. 41, gRef. 42, hRef. 43, iRef. 44, jRef. 45.

TABLE I. Elastic constants (GPa) are calculated following
the Le Page and Saxe [35] method, using a 2-atom cell and
30 × 30 × 30 k-points. Atomic volumes (Å3) and lattice con-
stants (Å) are computed using 54 atom perfect lattice sim-
ulation cell. Entries given in italics are the experimentally
observed values.

best of our knowledge, there are no prior experimental or
theoretical results available for these metals.

Assuming that the temperature of stage III, T (III), of
recovery of electron irradiated materials corresponds to
the onset of vacancy migration, we can estimate the va-
cancy migration temperature TM from the classical tran-
sition state theory [56]. The effective migration event
frequency can be written as

ν = ν0 exp(−EM/kBT ), (12)

where ν0 is the vacancy migration attempt frequency.
The value of ν0 can be estimated from the Debye fre-
quency and the corresponding Debye temperature θD.
Choosing ν = 1s−1 as a characteristic timescale of exper-
imental observations, we can estimate TM and compare
it with the temperature T (III) of stage III of resistivity
recovery as shown in Table III.

EF
V EM

V ESD

Li 0.506 0.053 0.559

0.480 0.038 0.518

Na 0.334 0.053 0.387

0.335 0.030 0.365

K 0.292 0.053 0.345

0.34 0.038 0.386

Rb 0.261 0.046 0.306

Cs 0.249 0.047 0.296

Ba 1.009 0.216 1.225

V 2.553 0.650 3.203

2.1-2.2 0.5 2.6-3.21

Nb 2.715 0.646 3.361

2.6-3.07 0.55 3.62

Mo 2.830 1.159 3.988

3.0-3.24 1.35-1.62 4.53

Ta 2.951 0.761 3.711

2.2-3.1 0.7 3.8-4.39

W 3.354 1.729 5.083

3.51-4.1 1.70-2.02 5.45

Cr 3.015 1.105 4.120

2.0-2.27 0.95 4.58

Fe 2.370 0.682 3.052

1.59-2.0 0.55 2.36-3.01

TABLE II. Calculated vacancy formation energy EF
V (eV),

vacancy migration energy EM
V (eV), and the self-diffusion ac-

tivation energy ESD(eV). Experimental data are given in ital-
ics below the calculated values. Experimental values of EF

V ,
EM

V and ESD are taken from Ref. 46.

element θD(K) Est. TM (K) Exp. T (III) (K)

Li 344 29.4 16.5

Na 158 20.1 15-15.5

K 91 20.4 14-16

Rb 56 17.9 –

Cs 38 18.6 –

Ba 110 82.7 –

V 380 239.2 170

Nb 275 240.0 200-270

Mo 450 424.1 400-640

Ta 240 284.0 260-300

W 400 635.2 620-900

Cr 630 400.1 350

Fe 470 249.4 220-278

TABLE III. Estimated temperature of vacancy migration TM

(K) compared to the temperature of stage III resistivity re-
covery observed in elemental metals irradiated by high en-
ergy electrons at cryogenic temperatures. Debye temperature
values θD (K) are taken from Ref. 37. Values of stage III
resistivity recovery temperatures are taken from Ref. 46.
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FIG. 1. (Color online) Energy of a mono-vacancy at vari-
ous points along the vacancy migration pathway. Values in-
dicated by symbols on the graphs were derived from nudge
elastic band calculations involving eleven images and span-
ning the interval between two adjacent equilibrium positions
of a vacancy in bcc lattice.

IV. ELASTIC DIPOLE AND RELAXATION
VOLUME TENSORS

We now proceed to the calculation of dipole tensors
Pij of vacancies at equilibrium and in transition state
configurations. Fig. 2 shows how the diagonal Pii and
off-diagonal Pij , i 6= j, elements of the elastic dipole ten-
sor vary along the vacancy migration pathway. The di-
agonal elements of the dipole tensor Pii are all negative,
and they vary in such a way that no particular trend can
be observed. The off-diagonal terms, all acquire negative
values on the migration trajectory. The result is similar
to the one found by Sivak et al. [4] in iron for the sad-
dle point on the vacancy transition pathway, investigated
using molecular statics.

To gain better insight into the nature of electronic pro-
cesses associated with vacancy migration, we inspected
electronic density configurations characterising vacancy
migration. Figures 3 to 6 show two-dimensional plots of
electron charge density difference computed for Li, Na,
V and W. As the atomic size increases, and the character

of bonding changes from that mediated by s electrons in
alkaline metals to d electrons in transition metals, the
pattern changes. The picture of density transformation
is particularly simple in Li, whereas in tungsten we ob-
serve significant effects of directionality of interatomic
bonding associated with 5d electrons. Still, the pattern
of variation of charge density deformation from the equi-
librium to the saddle point on the trajectory of vacancy
migration remains broadly similar. In all the bcc metals,
an atom exchanges its position with a vacancy, and this
does not involve the formation of any collective string-like
configuration typically associated with a self-interstitial
crowdion defect [48, 57, 58]. Still, the elastic dipole ten-
sor of a migrating vacancy exhibits the same symmetry
and character as an “anti-crowdion” for all the metals
explored in this study.

Using equations 4 to 7, we evaluate relaxation volume
tensors, formation and migration volumes of vacancies
in all the metals included in this study. The values are
summarised in Table IV. Experimental information on
vacancy formation and relaxation volumes is relatively
limited, still we know that the experimentally measured
values of vacancy formation volume in noble metals vary
between 0.5 and 0.7 atomic volume [17], and the relax-
ation volume of a vacancy is negative [19].

Comparing the values predicted by our calculations to
earlier ab initio results derived using LDA for Li, Na and
K, we find similar magnitudes of parameters ΩF

V and
ΩM

V . For Li, values predicted earlier are ΩF
V = 0.52Ω0

(Ref. 51), 0.49Ω0 (Ref. 52), 0.49Ω0 at 0GPa and 0.36Ω0

at 3.4GPa (Ref. 59), and ΩM
V = -0.2Ω0 at 0GPa and -

0.06Ω0 at 3.4GPa (Ref. 59). For Na, the literature values
are ΩF

V = 0.51Ω0 (Ref. 54), 0.5Ω0 at 0GPa and 0.29Ω0

at 2.8GPa (Ref. 59), and ΩM
V = -0.1Ω0 at 0GPa and

-0.01Ω0 at 2.8GPa (Ref. 59). For K, earlier calculations
give ΩF

V = 0.45Ω0 (Ref. 55). These values are in good
agreement with the values found in the present study.
We see that the migration volume of a vacancy is rela-
tively small, with the exception of the case of Cr. Our
calculations complement the data not available in liter-
ature, and also show how the relaxation volume tensor
varies during vacancy migration.

V. STRESS-INDUCED ANISOTROPIC
DIFFUSION

All the off-diagonal elements of elastic dipole tensor Pij

of a vacancy vanish at an equilibrium position. However,
whenever a vacancy is moving away from its equilibrium
position, the off-diagonal elements of Pij are non-zero.
Figs. 2 and 7 show how both tensors vary as a vacancy
moves from one equilibrium position in the lattice to an-
other.

We have already observed that the elastic dipole and
relaxation volume tensors of a vacancy at a saddle point
resemble those of a 〈111〉 SIA defect, but with an opposite
sign. For a vacancy at a saddle point or for a 〈111〉 SIA



6

��
��
�
��
�	

�

�
��
N 
�

(

�41t

�418

�412

�4

�61n

�61t

�618

�������N���������N ������� �(
6 612 618 61t 61n 4

�
��
��
��
�
	

��

�
��
bF
��

e

�68

�d

�i

�c

��������b���
������bF��
�������e
8 814 81c 81i 81d 6

��
��
�
��
�	

�

�
��
N 
�

(

�80r

�80o

�80c

�804

8

�������N���������N ���������(
8 804 80c 80o 80r 6

�
��
��
��
�
	

��

�
��
bF
��

e

�03c

�0

�13c

�1

�23c

�2

�53c

5

��������b���
������bF��
�������e
5 531 53R 53t 53n 2

FIG. 2. (Color online) Variation of the elastic dipole tensor of a vacancy along its migration pathway linking two adjacent
equilibrium positions in bcc lattice. Pii is a diagonal element of the dipole tensor (note that P11 = P22 = P33), whereas Pij is
an off-diagonal element (where P12 = P23 = P13 for a transition in the [111] direction). The values are given in eV units.

defect, there are four symmetry-equivalent and energy-
degenerate orientations, namely [111], [1̄11], [11̄1] and
[111̄]. The diagonal elements of Pij for all these orien-
tations are the same, however the off-diagonal elements
differ. If we take the elastic dipole tensor of a defect in
the [111] orientation as

P
[111]
ij = P

[1̄1̄1̄]
ij =

 Pa Pb Pb

Pb Pa Pb

Pb Pb Pa

 , (13)

then the elastic dipole tensors for the other three orien-
tations have the form

P
[1̄11]
ij = P

[11̄1̄]
ij =

 Pa −Pb −Pb

−Pb Pa Pb

−Pb Pb Pa

 , (14)

P
[11̄1]
ij = P

[1̄11̄]
ij =

 Pa −Pb Pb

−Pb Pa −Pb

Pb −Pb Pa

 , (15)

P
[111̄]
ij = P

[1̄1̄1]
ij =

 Pa Pb −Pb

Pb Pa −Pb

−Pb −Pb Pa

 . (16)

The magnitude of the off-diagonal elements does not
change, but the sign change depending on the choice of
the direction of axis of the defect.

There are eight equivalent nearest neighbour positions
in bcc lattice where a vacancy can hop from a given lat-
tice site. A vacancy can jump left or right along any
of the four directions, i.e. [111], [1̄11], [11̄1], and [111̄].
Whenever there is an external stress, migration enthalpy
differs depending on the choice of direction in which a
vacancy performs a hop.

Consider vanadium as an example. If a shear stress of
σ12 = σ21 =0.5GPa is imposed, as illustrated in Fig. 9,
the migration enthalpy for a hop in the [111] direction de-
creases by about 0.05 eV, whereas the migration enthalpy
in the [1̄11] direction increases by about 0.05 eV. Consid-
ering all the four possible directions of vacancy migration,
we find that a vacancy moves easier in the [111] and [111̄]
directions, compared to the [1̄11] and [11̄1] directions, if
the material is subjected to shear stress σ12 > 0.

A more rigorous way of treating the effect of stress on
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FIG. 3. (Color online) Two-dimensional plot of electron
charge density difference computed for Li in the (2̄11) plane.
The plot refers to a vacancy migrating from one equilibrium
lattice position to another along the [111] direction. (Top)
the initial equilibrium position, (Middle) the saddle point,
and (Bottom) the final equilibrium position. Electron charge
density difference is defined as the ground state electron den-
sity computed for a given configuration of atoms minus the
superposition of atomic charge densities.

vacancy diffusion is provided by the formalism of anisotr-
poic diffusion tensor. Following Dederichs and Schroeder
[9], we write the anisotropic diffusion tensor of a vacancy
moving in an applied strain field as

Dij(R) =
1

2

∑
h

λhr
h
i r

h
j exp

(
εkl(R)(P sd,h

kl − P eq
kl )

kBT

)
,

(17)

where λh = ν0 exp(−βEM,h
D ), index h refers to a possible

hopping site, and rhi is a Cartesian component of the
hopping direction vector. In the limit where the applied
strain field is relatively small, the exponential factor in

FIG. 4. (Color online) Two-dimensional plot of electron
charge density difference computed for Na in the (2̄11) plane.
The plot refers to a vacancy migrating from one equilibrium
lattice position to another along the [111] direction. (Top)
the initial equilibrium position, (Middle) the saddle point,
and (Bottom) the final equilibrium position.

equation (17) can be expanded in the Taylor series, where
by retaining only the linear terms we obtain

Dij(R) ≈ Dij,0 + dijklεkl(R), (18)

where the diffusion constant tensor

Dij,0 =
1

2

∑
h

λhr
h
i r

h
j , (19)

describes diffusion in the absence of applied field, and
dijkl is the elasto-diffusion tensor [9]:

dijkl =
1

2

∑
h

λhr
h
i r

h
j

(
P sd
kl − P

eq
kl

kBT

)
. (20)
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FIG. 5. (Color online) Two-dimensional plot of electron
charge density difference computed for V in the (2̄11) plane.
The plot refers to a vacancy migrating from one equilibrium
lattice position to another along the [111] direction. (Top)
the initial equilibrium position, (Middle) the saddle point,
and (Bottom) the final equilibrium position.

We note that linear in applied field expansion applies
only in the limit where the argument of the exponential
function is small.

Alternatively, the anisotropic diffusion tensor can be
expressed in terms of the migration volume tensor and
the stress tensor, see equation (11), namely

Dij(R) =
1

2

∑
h

λhr
h
i r

h
j exp

(
σkl(R)(ΩM,h

kl − Ωeq
kl )

kBT

)
.

(21)
Using this equation and the data given in the Tables,
we can give an estimation to the variation of Dij under
applied stress. For a vacancy migrating in a cubic lattice,

FIG. 6. (Color online) Two-dimensional plot of electron
charge density difference computed for W in the (2̄11) plane.
The plot refers to a vacancy migrating from one equilibrium
lattice position to another along the [111] direction. (Top)
the initial equilibrium position, (Middle) the saddle point,
and (Bottom) the final equilibrium position.

we write

Dij =
λ

2

(a
2

)2

Xij , (22)

where

Xij =
∑
h

ehi e
h
j exp

(
σkl(R)(ΩM,h

kl − Ωeq
kl )

kBT

)
. (23)

is an auxiliary dimensionless diffusion tensor, and eh =
rh/(a/2). We note that components of vector ehi take
values of +1 or −1. Under stress-free conditions, equa-
tion (21) correctly reproduces the isotropic case where
the diffusion constant tensor is diagonal Dij = D0δij ,
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and

D0 =
Zl2λ

2d
(24)

where Z = 8 is number of nearest neighbour positions ac-
cessible to a direct vacancy hop, l =

√
3a/2 is the hopping

distance, and d = 3 is the number of spatial dimensions.

Consider vanadium and tungsten as examples. Assum-
ing realistic applied shear stress of σ12 = σ21 = 0.1GPa
or 0.5GPa, and temperatures of 500K, 800K and 1000K,
we compute elements of the dimensionless auxiliary dif-
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Pii(eq) Pii(sd) Pij(sd) Ωii(eq) Ωii(sd) Ωij(sd)

Li -0.853 -0.949 -0.378 -0.161 -0.180 -0.131

Na -0.846 -0.871 -0.241 -0.151 -0.156 -0.088

K -0.727 -0.719 -0.246 -0.147 -0.145 -0.099

Rb -0.684 -0.683 -0.203 -0.144 -0.144 -0.090

Cs -0.548 -0.527 -0.224 -0.129 -0.124 -0.111

Ba -1.224 -1.478 -0.728 -0.116 -0.140 -0.088

V -7.756 -7.850 -2.811 -0.164 -0.166 -0.628

Nb -8.013 -8.202 -2.895 -0.135 -0.138 -0.650

Mo -9.072 -8.972 -1.808 -0.118 -0.116 -0.092

Ta -9.181 -8.232 -1.794 -0.137 -0.123 -0.102

W -10.621 -9.135 -2.683 -0.115 -0.099 -0.094

Cr -5.037 -7.962 -1.764 -0.120 -0.190 -0.118

Fe -3.589 -3.883 -1.549 -0.085 -0.092 -0.102

TABLE IV. Diagonal and off-diagonal elements of elastic
dipole and relaxation volume tensors of a vacancy at an equi-
librium position and in a saddle point configuration. Elements
of the elastic dipole tensor are given in eV units, whereas the
values of relaxation volume tensors are given in atomic volume
units Ω0. Indexes ii refer to a diagonal elements of the ten-
sor, whereas ij refer to an off-diagonal element. The diagonal
elements are the same, and so are the off-diagonal elements,
of both tensors. The off-diagonal elements of elastic dipole
and relaxation volume tensors vanish if the vacancy is at an
equilibrium position. A saddle point corresponds to the mid-
dle of the transition pathway. Note that this point may not
necessarily correspond to the highest energy on the transition
pathways, as it is the case in Mo and W. The relaxation vol-
ume of a vacancy equals the sum of diagonal elements of the
relaxation volume tensor Ωrel = Ω11 + Ω22 + Ω33.

�
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�lpohne���]0�lll�

�
�
��
��
�
�
0.
��

5

h

hnp
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h hnp hn( hn) hn6 l

FIG. 9. (Color online) Variation of the migration enthalpy
of a vacancy along the migration pathway in the absence of
applied stress, and under shear stress of σ12 = σ21 =0.5GPa,
computed for the hopping trajectories extending in the [111]
and [1̄11] directions.

Ωeq
rel ΩF

V ΩM
V ΩSD pSF

Li -0.484 0.516 -0.05491 0.461 -7.76

(0.28a)

Na -0.454 0.546 -0.01356 0.532 -2.65

(0.41a/0.3 b)

K -0.441 0.559 0.00509 0.564 -1.14

Rb -0.432 0.568 0.00082 0.569 -0.81

Cs -0.386 0.614 0.01472 0.629 -0.56

Ba -0.347 0.653 -0.07219 0.581 -3.89

V -0.493 0.507 -0.00595 0.502 -60.14

Nb -0.405 0.595 -0.00955 0.586 -39.88

Mo -0.353 0.647 0.00390 0.651 -44.39

(0.9 c)

Ta -0.410 0.590 0.04236 0.632 -43.80

W -0.345 0.655 0.04821 0.704 -50.79

Cr -0.361 0.639 -0.20973 0.429 -64.53

Fe -0.256 0.744 -0.02098 0.723 -44.97

(0.95 c)

TABLE V. Vacancy relaxation volume at equilibrium Ωeq
rel,

vacancy formation volume ΩF
V , vacancy migration volume

ΩM
V , and self-diffusion volume ΩSD computed using density

functional theory, see text. The values are given in atomic vol-
ume units Ω0. Experimental data, where available, are given
in italics below the computed values. Experimental values of
ΩSD for aRef. 60 and bRef. 61 are the self-diffusion activation
volumes. Experimental values of vacancy formation volumes
are from cRef. 46. Critical pressure required for the sponta-
neous formation of a vacancy pSF is calculated according to
Eq. (3) and is given in GPa units.

0.1GPa Xii X12 = X21 0.5GPa Xii X12 = X21

500K 8.24 -1.97 500K 14.75 -12.39

800K 8.09 -1.23 800K 10.45 -6.72

1000K 8.06 -0.98 1000K 9.54 -5.20

TABLE VI. Elements of the auxiliary diffusion tensor Xij

computed for Vanadium assuming the shear stress of σ12 =
σ21 = 0.1GPa and 0.5GPa, and temperatures of 500K, 800K
and 1000K. The auxiliary diffusion tensor is defined by equa-
tion (22). Elements of Xij not given in the table vanish due
to symmetry.

0.1GPa Xii X12 = X21 0.5GPa Xii X12 = X21

500K 8.01 -0.315 500K 8.19 -1.773

800K 8.00 -0.220 800K 8.08 -1.103

1000K 8.00 -0.176 1000K 8.05 -0.881

TABLE VII. Elements of the auxiliary diffusion tensor Xij

computed for Tungsten assuming the shear stress of σ12 =
σ21 = 0.1GPa and 0.5GPa, and temperatures of 500K, 800K
and 1000K. The auxiliary diffusion tensor is defined by equa-
tion (22). Elements of Xij not given in the table vanish due
to symmetry.
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fusion tensor Xij , and summarise the results in Tables VI
and VII. Other elements of Xij not listed in the Tables
vanish due to symmetry. We note that although at equi-
librium, where the relaxation volume tensor is isotropic
and a vacancy does not interact with the shear compo-
nent of the applied stress, the effect of stress on vacancy
diffusion can be fairly significant. Furthermore, the fact
that a shear stress can influence vacancy migration shows
that vacancy diffusion may be affected not only by elas-
tic fields of edge dislocations [62, 63], but also by the
elastic fields of screw dislocations where the stress field
is dominated by its shear components.

VI. CONCLUSION

We have evaluated vacancy migration and formation
energies for a number of bcc metals including alkaline,
alkaline-earth and transition metals. We have also evalu-
ated elastic dipole tensors and relaxation volume tensors
of vacancies at equilibrium and on trajectories of migra-
tion. We find that since the off-diagonal elements of both
elastic dipole and relaxation volume tensors of a migrat-
ing vacancy do not vanish, diffusion of vacancies can be

significantly affected by shear stress fields, either applied
externally or generated by other defects and dislocations.
In particular, the fact that migration barriers in different
directions change due to the interaction with external
stress, can give rise to anisotropic diffusion. This phe-
nomenon is described by the anisotropic diffusion tensor,
which can be readily computed from the ab initio data
generated and compiled in this study.
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principles calculations of absolute concentrations and
self-diffusion constants of vacancies in lithium,” Phys.
Rev. Lett. 77, 518–521 (1996).

[54] U. Breier, W. Frank, C. Elsässer, M. Fähnle, and
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