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Abstract: We study the amplitude modulation of the radial electric field constructed from the1

Langmuir probe plasma potential measurements at the edge of MAST. The Empirical Mode2

Decomposition technique is applied, which allows us to construct fluctuations on temporal scales3

of plasma turbulence, the Geodesic Acoustic Mode and these associated with the residual poloidal4

flows. This decomposition preserves nonlinear character of the signal. Hilbert transform is then used5

to obtain the amplitude modulation envelope of the fluctuating radial electric field on these time6

scales. We find significant spectral coherence at frequencies between 1− 5 kHz, in the turbulence and7

the GAM amplitude modulation envelopes and for the signal representing the low frequency zonal8

flows. We find evidence of local and nonlocal three wave interactions leading to coupling between9

the GAM and the low frequency part of the spectrum.10

Keywords: Fusion plasma; radial electric field; temporal intermittency)11

1. Introduction12

The edge region of tokamaks, defined by the steep pressure gradient, is dominated by turbulent13

structures of density, temperature and the electrostatic potential (see, for example, [1] and the14

references therein) arising from resistive and/or interchange plasma instabilities. These fluctuations15

are responsible for the intermittent turbulent radial transport, which drives core heat and particle16

losses. Thus, better understanding and control of the edge transport is fundamental to enabling17

enhanced plasma confinement scenarios of future fusion reactors. The anisotropic shear amplification18

of micro-turbulence Reynolds stress produces radially localised, toroidally and poloidaly symmetric19

flows, called zonal flows (ZF). These flows are distinct from the residual poloidal flows, often called20

zero frequency zonal flows (ZFZF) [2,3]. Shearing associated with both types of zonal flows can21

nonlinearly modify stability threshold of unstable plasma modes [4–6] and reduces turbulence level by22

vortex stretching [7,9].23

Zonal flows are axisymmetric electrostatic potential modes with zero poloidal and toroidal24

numbers, m=n=0. In tokamak geometry, toroidal curvature couples ZF to the density perturbations25

with poloidal mode numbers m ≥ 1 (n = 0), and with a finite frequency. This compressible component26

of ZF is called Geodesic Acoustic Mode (GAM). The local dispersion relation for the GAM has been27

derived from various plasma models and the leading term is ωG,l∼ cs/R0, where cs is the local sound28

speed and R0 is the major radius [10,11]. The amplitude of the density fluctuations varies with the29

poloidal angle θ as A ∼ sin(θ). Since its theoretical discovery, the GAM has been experimentally30
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observed in many tokamaks [12–16]. While the local theory predicts a monotonic change of the31

observed GAM frequency with a radius, due to temperature gradient, there is growing evidence32

that the GAM is a global mode with a complex radial mode structure [17–20]. Driven by turbulent33

fluctuations [21], ZF and GAM provide a natural sink for turbulent energy. The stability of these flows34

is less understood. The GAM is damped by a Landau mechanism, in the region of low safety factor35

q(r). The ZF/GAM can decay via nonlinear tertiary K-H instability of small scale fluctuations [5,21].36

Nonlinear advection of GAM pressure perturbations provides a mechanism for the energy transport37

from ZF back to micro-turbulence scales [22,23].38

Nonlinear interaction of ZF/GAM with turbulence are fundamental to our understanding of the39

L-H transition [8,24]. In this context, GAM is a valuable tool in the experimental studies of ZF due to40

its finite frequency, which allows easier identification of ZF in experimental data [19]. Here, we study41

the coupling of GAM/ZF and turbulence by examining the low frequency amplitude modulations of42

the oscillating radial electric field component on different temporal scales. It has been observed before43

that the power associated with the radial electric field oscillations at GAM frequency is not uniform44

in time. Instead, it shows strong temporal intermittency, that is, the power is concentrated in few45

intense temporal regions, separated by intervals of low level activity. We use Hilbert transform based46

techniques to extract radial electric field fluctuations on different temporal scales while preserving47

their nonlinear character. This allows us to construct signals representing meso-scale turbulence, the48

oscillatory GAM signal and the low frequency zonal flows, ZFZF. Hilbert transform gives nonlinear49

envelopes for the turbulence and the GAM. The spectralcoherence of the turbulence with the GAM50

is then examined. We find that the amplitude modulation of the turbulence and the GAM have a51

similar behaviour at low frequencies, between 2− 5 kHz. The auto bi-coherence reveals nonlinear52

self-interaction of GAM and the possible coupling to these low frequency components.
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Figure 1. (a) Langmuir Mach probe with separations of different pins in millimetres. Pins 1,2 and 3 are
radially offset by 8mm from all other pins.

53

2. Experimental setup and data54

The Mega Amp Spherical Tokamak (MAST) has a major radius R0 ≈ 0.85 m and a minor radius55

of a ≈ 0.65 m. The magnetic field strength is about 0.5T with the toroidal, Bζ , and the poloidal, Bθ ,56
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field components giving a pitch angle of about 22◦ at the edge of the device. We analyse data from an57

Ohmic plasma discharge numbered 29150, with a line average number density, n ≈ 1.47× 1019 m−3,58

and plasma current Ip = 0.43MA. No additional heating power was applied during the discharge.59

Magnetic configuration was a double null.60

The data was collected using a Mach type reciprocating Langmuir probe [25], on the outboard61

mid-plane, measuring floating potential, Ṽf as well a set of ion saturation currents (pins 2, 5 and62

8). Figure 1 shows the schematic of the probe, with pin numbers and the relative distances between63

them. Pins (1, 3) are positioned 0.8 cm behind pin pairs (4, 6) and (7, 9). We assume that the floating64

potential Ṽf is a good proxy of the plasma potential Ṽp. These are related by Ṽp = Ṽf + Λ, where Λ65

is the sheath potential drop, which is a slowly varying function of the electron and ion temperatures66

and is usually approximated by Λ ≈ 2.5Te/e [26]. It is assumed that the electrostatic potential67

fluctuations are larger then these due to electron/ion temperature fluctuations. The sheath potential68

of the Mach barrier can modify plasma flows as well as the electron and the ion temperatures, but69

the measurement of Ṽf is based on the ion and electron currents balance, which in principle should70

depend only on the plasma temperature. The high values of temporal correlations on all pin pairs,71

with correlation coefficients between 0.65 and 0.95 are consistent with these assumptions. We construct72

radial electric field component Er by differencing the floating potential values on pin pair (1,9),73

Er = ∇rṼp ≈ (Ṽ1
p − Ṽ9

p )/d(1,9)
r , where the superscripts on the floating potential indicates a pin and74

d(1,9)
r = 0.8 cm is a radial separation of these pins. We note that the poloidal separation of the pin75

pair (1, 9), d(1,9)
θ = 3.8 cm, is much larger than the radial separation. This minimises the impact of76

large poloidal wave numbers, associated with turbulence, on the radial electric field estimation. We77

have chosen time interval of 0.315− 0.33, during which the intermittent character of the fluctuations is78

clearly present.79

Figure 2 presents a summary of the data. Panel (a) shows the time series of the radial electric field80

Er(t), containing approximately 7500 samples. Assuming that the toroidal magnetic field is dominant,81

the radial electric field gives the poloidal flow speed vθ = (ErBφ)/B2. Panel (b) shows the distance of82

the Mach probe in relation to the last closed flux surface (LCFS) during this time interval. The probe is83

inside the plasma its radial depth varies between ∼4 and ∼5 cm. Panel (c) of Figure 2 shows electron84

temperature from Thomson scattering diagnostic at the time of interest. It gives the median of electron85

temperature at the probe location of Te≈14 eV. We take the electron temperature at Te =10 eV in all86

calculations that follow. The proton gyroradius at this electron temperature is ρp = 0.15 cm.87

3. Methods88

The methods based on the Hilbert-Huang transform (HHT) offer a natural approach to studying89

temporal intermittency in a time series. The intermittency is interpreted as an amplitude modulation90

of a mode, or a group of modes, of interest. Here, we employ this method as an effective filter, which91

allows us to construct signals representing different dynamical temporal scales. The HHT performs92

well when analysing non-stationary and non-harmonic fluctuations arising in nonlinear systems.93

Fourier-based spectral techniques as well as the wavelet transform are unsuitable for such time series94

if the principal aim is to preserve the nonlinear nature of the wave trains. The HHT makes use of the95

Empirical Mode Decomposition (EMD) [27], which expands the input signal onto a set of intrinsic96

mode functions (IMFs) derived directly from the data.97

In practice, the iterative sifting process is performed as follows: firstly, the maxima and minima of
the signal are separately connected using cubic splines to form two envelopes of the data; one that
contains all of the maxima and the other, the minima. The mean of the maximum and minimum
envelopes, m1, is calculated. For an input signal S(t), the difference, h1 = S(t)− m1 gives the first
estimation of the envelope of S(t). However, this envelope’s mean is, in general, not equal to the
true local mean, especially if the data is nonlinear. The process is therefore repeated k times until the
resultant, h1k, satisfies the requirement for an IMF, h1(k−1) −m1k = h1k, where hik and mik are the ith
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Figure 2. Summary of the data. (a) Wavelet power at lower frequencies. (b) Mach probe distance from
the last closed flux surface (LCFS); negative values indicate position inside the plasma. Horizontal
red lines mark three time intervals analysed here. (c) Electron temperature profiles from Thompson
scattering system between 0.32− 0.36 seconds.

envelope and its mean after kth sifting iteration, accordingly. We then designate s1(t) = h1k as the first
IMF component of the data, containing the shortest period of the signal. Fluctuations at this scale are
removed from the data to obtain a residual r1 = S(t)− s1(t). The procedure is then repeated for the
residual r1, treated as a new input signal. The decomposition is stopped either when the component
si, or the residue ri, become too small to be of interest, or when the residue, ri, becomes a monotonic
function from which no more IMFs can be extracted. For data with a trend, the final residue should be
that trend. When the process is finished, we obtain the decomposition of a signal S(t) into IMFs si and
the final residue:

S(t) =
N

∑
i=1

si(t) + rN . (1)

The IMFs may contain oscillations with different periods in one mode, and different modes can contain
similar periods. This spectral leakage, or mode mixing, can be an issue, especially for short and
intermittent data. We incorporate the ensemble empirical mode decomposition (EEMD) [28,29] to
reduce the impact of mode mixing. This noise-assisted method adds white noise to the original data
before the sifting process starts. The EMD modes are computed as normal until all of the IMFs are
calculated. The original data is then reprocessed with a different noise realisation and the final IMF is
averaged over all ensembles. In this work we use EEMD to decompose the radial electric field time
series into a number of IMFs. We are interested in the amplitude modulation of turbulence and the
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Figure 3. (a) Wavelet dynamic spectrum of Er(t). (b) Integrated wavelet power spectrum (black)
and Fourier spectrum estimate (red). A significant spectral peak at ∼10 kHz is clearly seen. Fourier
spectrum shows an internal structure of the GAM peak, with multiple modes separated by ∼1 kHz. A
possible second harmonic is also present at ∼20 kHz.

Geodesic Acoustic Mode (GAM). The modes with the periods shorter than the GAM are interpreted as
turbulence. An envelope of a modulated signal can be constructed using analytic signal Sa:

Sa(t) = S(t) + iH[S(t)] = E(t) exp[iφ(t)], (2)

whereH[S(t)] indicates Hilbert transform of the signal S, and i2 = −1. For a slowly modulated signal98

the modulus of Sa corresponds to the amplitude modulation envelope E(t). The frequency of Sa, which99

may not be be constant in time, can be obtained from the mean of the instantaneous phase change100

f = 〈dφ/dt〉.101

In order to quantify the nonlinear interactions between different modes we use the wavelet
bi-coherence defined as

b2( f1, f2) =

∣∣〈S̃( f1, τ)S̃( f2, τ)S̃∗( f1 + f2, τ)〉
∣∣2

〈
∣∣S̃( f1, τ)S̃∗( f2, τ)

∣∣2〉〈∣∣S̃( f1 + f2, τ)
∣∣2〉 , (3)

where S̃ is a wavelet coefficient at a scale associated with a period 1/ f and at time τ. For a signal S(t),
the wavelet coefficients are given by

S̃(s, τ) =

∞∫
−∞

dtS(t)
1√

s
ψ∗
(

t− τ

s

)
, (4)

where s is a temporal scale, τ is a new time label and ψ(t) is the analysing wavelet. We use Bump
wavelets [30], which have better frequency resolution, but poorer time localisation compared with a
standard Morlet wavelet. Given a set of wavelet coefficients S̃( f , τ) the wavelet spectrum estimate is
given by

P( f ) = 〈S̃∗(ν, τ)S̃(ν, τ)〉τ . (5)
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Wavelet estimates of the bi-coherence are superior to these obtained form the Fourier transform for102

shorter and non-stationary data sets. Fourier-based bi-coherence requires the averaging over many103

realisations of the same data, while the averaging indicating by 〈. . .〉 in (3) is over time.
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Figure 4. Signals constructed from EMMD produced IMFs: turbulence ST (lower, black), the GAM SG

(upper black) low frequency zonal flows SZ (blue). Envelopes of turbulence ET (red) and of the GAM
(green) obtained from the analytic signal method. Both, the GAM and ZFZF were offset vertically for
clarity.

104

4. Results105

A strong oscillatory component has been previously identified in MAST edge plasma density106

and electrostatic potential fluctuations measured by the reciprocating Langmuir probes [15,20]. This107

mode shows a spectral power peak at the frequency of ∼10 kHz, in a reasonably good agreement with108

the theoretical and numerical predictions for GAM frequency in MAST L-mode edge plasma [15,16].109

Panel (a) of figure 3 shows the wavelet transform dynamic spectrum for the radial electric field. The110

intermittent series of power maxima are clearly visible around the predicted GAM frequency of ∼10111

kHz. The integrated wavelet spectrum of electric field fluctuations is shown in the panel (b) of the112

same figure. The spectral peak at∼10 kHz is approximately 4 times above the power level of turbulent113

fluctuations at neighbouring frequencies. We note an apparent second harmonic peak at ∼ 20 kHz114

and a complex number of smaller maxima at frequencies below ∼5 kHz. We also show the Fourier115

power spectrum estimation for the same signal in the red trace, which reveals multiple peaks within116

a single broad spectral peak of a wavelet spectrum estimate. These additional spectral peaks in the117

Fourier-based spectrum are separated from the main peak by no more than 1 kHz. Allowing non-linear118

interactions between the modes represented by the peaks clustering around ∼10 kHz, could lead to119

low-frequency modulation in the electric field signal.120

In order to study the GAM amplitude modulation and its possible impact on turbulence and ZFs,121

we decompose our data into three components with distinct temporal scales: turbulence, GAM and122

low frequency zonal flow (ZFZF). We use the EEMD technique to generate 25 IMFs from the original,123

Er data, with the largest frequency of about ∼ 115 kHz and the smallest frequency at ∼ 70 Hz. The124

largest frequency is treated as the residual noise in the data and is discarded. Similarly, we discard he125
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smallest frequency mode, which is a nonlinear trend very close to zero. We then combine the IMFs at126

three different frequency ranges to obtain signals of interest. The turbulence, ST(t), is a superposition127

of IMF 2− 4, corresponding to mean instantaneous frequencies between ∼25 kHz and ∼66 kHz. The128

GAM is a single IMF with the mean frequency of 10 kHz, SG(t). Finally, the ZFZFs signal SZ(t) is129

obtained by summing modes 8− 20, with mean frequencies in the range 77− 5000 Hz. We apply130

an analytic signal approach to ST and SG, in order to obtain their amplitude modulation envelopes131

ET and EG, respectively. The turbulence envelope is smoothed over 50 neighbouring points. Figure132

4 shows signals and their upper envelopes. The GAM, its envelope and the ZFZF signal have been133

shifted vertically and their amplitudes were modified for clarity. A close visual inspection is sufficient134

to see that there is no phase coherence between turbulence envelope, GAM envelope and the ZFZF135

signal. This is confirmed by a linear cross correlation coefficients calculated for the pairs (ET , EG),136

(ET , SZ) and (EG, SZ), which had values at around or below 0.25, at different non-zero time lags.137

While there is no phase coherence in the low-frequency behaviour of ET , EG and SZ, there is a138

considerable spectral coherence for these time traces. Figure 5 shows Fourier spectral estimate of power139

for ET , EG and SZ in panels (a), (b) and (c) respectively. Note that all spectra have been normalised to140

their respective maxima, which had a value of 0.05 for turbulence envelope, 0.28 for the GAM envelop141

and 0.008 for ZFZF signal. All spectra have pronounced peaks at about 1 kHz and at 2 kHz. The GAM142

envelope spectrum shows a number of peaks at relatively constant increments, positioned at ∼0.55,143

∼0.75, 1 and 1.5 kHz. We also note that, the ZFZF spectrum shows a broad spectral power between144

frequencies 3− 5 kHz. This is a strong suggestion that there are nonlinear interactions between various145

modes, close to the GAM frequency, and also non-local between GAM/turbulence and ZFZF.146

The resonant tree wave interaction process is considered as a model of coupling between different147

modes present in the radial electric field time series. For a single point time series measurements,148

we can only consider frequency resonances f3 = f1 + f2. The strength of these interactions is then149

approximated by a bi-coherence, which we have calculated using wavelet coefficients and averaged150

over all times. Figure 6 shows only positive frequency part of the bi-coherence, which was thresholded151

at a relatively high value of 0.7 to emphasise the most relevant interactions. We find the signature152

of strong local interactions at the GAM frequencies f1 ≈ f2 ≈ 10 kHz, positioned on the diagonal153

line, as well as non-local interactions with the low frequency modes such as f1 = 8.4 kHz, f2 = 1.2154

kHz. Interestingly, the bi-coherence also reveals the importance of a mode with f ≈4 kHz, which also155

self-interacts and couples to low frequency modes.156

5. Discussion157

We have performed the analysis of the fluctuations in the radial electric field component obtained158

from the reciprocating Langmuir Mach probe at the mid plane of MAST. Wavelet dynamic spectrum159

reveals temporal power intermittency of the GAM, while Fourier spectrum estimate revealed multiple160

spectral peaks in the vicinity of 10 kHz. We use Hilbert-Huang transform based technique, EEMD,161

to extract radial electric field fluctuations on temporal scales of turbulence, the GAM and ZFZF.162

Envelopes of turbulent signal and the GAM were constructed using analytic signal approach. We163

found a significant spectral coherence for the turbulent envelope, GAM envelope and the low frequency164

component. The bi-coherence revealed strong nonlinear interactions, local self-interactions near the165

GAM frequency [31], and non-local interactions with low frequency mediated by the GAM. This is166

broadly consistent with previous results presented in the literature [19,32].167

Our findings may be of particular importance for better understanding how the presence of the168

GAM alters the physics of L-H transition. It has been reported that the low frequency component,169

which we have termed ZFZF in this work, increases significantly at the expense of the GAM during170

the transition [24]. The energy flow for the three component system, turbulence, GAM and ZF, is often171

modelled using nonlinear predator-prey type formulation [2,33]. These models incorporate all key172

physical interactions important for the dynamics of the system, but retain simplicity that allows better173

understanding of how each component effects their collective complex dynamics, for example, the L-H174
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Figure 5. Fourier spectra of: (a) turbulence envelope ET , (b) GAM envelope EG and (c) of ZFZF signal
SZ.

transition. The behaviour of these models is strongly influenced by the included interactions between175

various components. This work clearly shows that in addition to the linear impact of the GAM on ZFs176

[34], the nonlinear interactions are also important.177
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