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Abstract. The novel technique of dynamical mode decomposition (DMD) is applied

to the outputs of a numerical simulation of Kelvin-Helmholtz turbulence in a cylindical

plasma, so as to capture and quantify the time evolution of the dominant nonlinear

structures. These structures comprise rotationally symmetric deformations together

with spiral patterns, which are shown to be identifiable as DMD modes. A new

method to calculate the time evolution of DMD mode amplitudes is proposed, based

on convolution-type correlation integrals, and then applied to the simulation outputs

in a limit cycle regime. The resulting time traces capture the essential physics far

better than Fourier techniques applied to the same data.

1. Introduction

Strongly nonlinear phenomena are ubiquitous in plasma physics, both in experimental

measurements and in the outputs from numerical simulations. The nonlinear
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phenomenology may be temporally transient [1] or sustained [2], spatially localised

[3] or global [4]. Identifying the dominant dynamical features and their interactions,

and quantifying their time evolution, is therefore a central task. Fourier decomposition

has major limitations in this context, because the empirically identified key structures

typically require a very large number of Fourier modes to represent them.

Here we consider the application of dynamical mode decomposition (DMD) [5, 6, 7]

to this problem. DMD is attractive, in that it: assumes no functional form for the

structures; is entirely data-driven, see Eq. (1) below; and is mathematically linear -

mode identification and growth rates reduce to an eigenvector-eigenvalue procedure.

When the time evolution of the mode amplitude is modulated, as in most cases of

turbulence, the single DMD derived growth rate is insufficient to capture the dynamics.

Here we therefore propose and develop a method to extract the modulation dynamics

from the outputs of the DMD technique, as applied to a simulation of turbulence in a

cylindrical plasma.

2. Extraction of nonlinear dynamics

The turbulence dataset is obtained from a direct numerical simulation, based on

an extension of the Hasega-Wakatani reduced fluid model which includes ion-neutral

collisions and electron parallel velocity evolution [8, 9]. Turbulent and nonlinear

phenomena can be simulated, such as those arising from resistive drift waves and the

Kelvin-Helmholtz instability in linear devices [10, 11]. The turbulence addressed here

originates from the Kelvin-Helmholtz instability for the plasma parameters in MISTRAL

[11]. Its phenomenology includes a limit cycle oscillation between the background plasma

and turbulent fluctuations; for more detail, see [12]. The time evolution of the energy of

each Fourier mode in a saturated state, and the two-dimensional patterns of the density

at t = 3050, 3150 and 3200 are shown in Fig. 1, where time t is normalized by the ion

gyrofrequency. The energies (squared amplitudes) of the background and the turbulence

are modulated in time: the period of the limit cycle, TLCO ∼ 100, which is much longer

than the timescale of turbulent oscillation, Tturb = O(10). The computational time-step

is much smaller, δt = 2× 10−2. The spatial pattern in Fig. 1 changes on the timescale

TLCO. Let us now apply the DMD to the underlying dataset, and then propose and

develop a novel method to extract the modulation dynamics.

We represent the system at time t by an array (state vector) X =

X(r1, r2, · · · |t1, t2, · · ·), which is a matrix recording the value of the set of simulation

outputs X (for example, density) at each point rj and at each time tj. The system

transits to the state X′ = X(r1, r2, · · · |t1 + ∆t, t2 + ∆t, · · ·), where ∆t is the unit of

time resolution chosen for DMD analysis. Here ∆t = 5, which is large enough to reduce

the computational cost, while remaining sufficient to resolve the turbulence evolution.

In the DMD approach, we focus on the properties of the matrix A which generates the

mapping

X′ = AX. (1)
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Figure 1. Top: Time evolution of the energy (logarithmic scale) in each cylindrical

Fourier mode (m,n) of the simulation in its saturated phase, for integer 0 < m < 9

and n = 0. Here m and n denote axial and azimuthal mode numbers. The background

corresponds to the mode (0, 0). Quasiperiodic energy flows are evident, and the flow

into higher m-numbers indicates the formation of sharper spatial gradients associated

with nonlinear structures at those times. Bottom: Full two-dimensional spatial

patterns of the density from the direct numerical simulation at t = 3050, 3150 and

3200.

Whereas X and X′ comprise datasets, A is taken to embody the physical dynamics

of, in the present case, Kelvin-Helmoltz plasma turbulence. The challenge is, first, to

reduce the rank of A to manageable level using singular value decomposition (SVD) [13],

and then to identify the dominant eigenvalues and eigenvectors of A. The eigenvectors

Ψ are the DMD modes: they correspond to the dominant nonlinear spatial structures,

and represent their action in the time evolution of the data. The details of the DMD

approach are summarized in the Appendix. In outline, mathematically,

Ψ = X′VrΣ
−1
r ξ. (2)

Here, the matrices V and Σ are obtained from the SVD of X, and satisfy X = UΣV ∗;

U and V are unitary matrices, and Σ is the diagonal matrix consisting of the singular

values of X. The subscript r indicates the matrix is truncated to the rank r. ξ is

the eigenvector of U∗
rAUr, which is the projection of A on U . In this way, the key

structures together with their frequency and growth rate are simultaneously obtained

by DMD. This approach is model-independent and does not draw on knowledge of the

underlying physical processes. The DMD eigenmodes are typically strongly nonlinear

spatial structures, which would require numerous Fourier modes to represent them.
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Figure 2. The five dominant eigenvectors, in the form of two-dimensional spatial

patterns, derived from DMD analysis of the simulation outputs. These are the

dominant nonlinear structures, Mode1 to Mode5, discussed in the main text.

Hence, the DMD approach greatly reduces the number of effective degree of freedom,

compared to a Fourier-based approach.

Figure 2 illustrates the leading DMD modes obtained for the density fluctuation

ñ(r, θ, t) in the turbulence simulation, where the rank r of A is truncated to r = 9. These

DMD modes show the characteristic spatial structures: Mode1 and Mode2 correspond

to the deformation of the background; Mode3 is the dominant fluctuation pattern; and

Mode4 and Mode5 are the spiral structures, which transiently appear and disappear

on the timescale of the limit cycle oscillation [12]. All the physical structures rotate in

the azimuthal direction, so that each eigenvector has a counterpart complex conjugate

pattern. Together, they represent each rotating mode, and each mode in the pair has

the same eigenvalue as its complex conjugate. The real and imaginary parts of the DMD

eigenvalue define the frequency and growth rate, respectively, of the corresponding DMD

mode. However, when the turbulence is modulated, as in the case of the limit cycle

oscillation here, a single growth rate cannot express the temporal dynamics. Thus, we

must now develop a method to extract how the amplitude of each DMD mode changes

with time.

We first propose a method to define the magnitude of each DMD mode. By

calculating the instantaneous correlation coefficient between each DMD mode and the

full turbulence dataset, the dynamical change of the amplitudes of a DMD mode can

be deduced. This correlation can be estimated from the convolution integral

Fj(r, θ, t) =

∫
ñ(r − r′, θ − θ′, t)Ψ̂j(r

′, θ′)r′dr′dθ′∫
ñ(r′, θ′, t)r′dr′dθ′

. (3)

Here Ψ̂j is the j-th DMD mode, normalized such that the two-dimensional spatial

integral is unity. Recalling that the spatial pattern of the turbulence propagates in
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Figure 3. Top: Time evolution of the correlation coefficient Cj (see Eqs.(3) and

(4)), tracing the changing relative amplitude of Mode1 to Mode5 (see Fig.2) in the

simulation outputs. Bottom: Time evolution of the system plotted in the (C3, C4)

plane, for three successive cycles identical from the upper panel. These closed Lissajous

figures demonstrate the limit cycle dynamics that govern C3 (KH instability) and C4

(spiral structure) in combination.

the azimuthal direction, the correlation can be defined as

Cj(t) = max[Fj((r, θ, t))]. (4)

Cj defines an effective amplitude for each DMD mode. The calculated time evolution of

Cj is plotted in Fig. 3 for Mode1 to Mode5. This captures the changing contribution of

each structure to the overall turbulence. The limit cycle between the deformation of the

background and the dominant turbulence, with the appearance and disappearance of

the spiral structure [12], is immediately evident. For example, the closed cycle Lissajous

figures in (C3, C4) plane space shown in the lower panel of Fig. 3 clearly capture the

causal relation between the KH instability and the spiral structure. They increase

together, and then at a critical amplitude of the KH instability, the spiral structure

becomes suddenly stronger, which leads to the suppression of the KH instability. Both

amplitudes then decline to their starting point. Thus, the growth in the amplitude

of the KH instability is constrained, and eventually reversed, by the excitation of the

spiral structure, which itself finally decays. The next circulation on this limit cycle

then commences. The approach presented here, of combining method DMD and the

correlation integral, Eq. (3), enables one to create an approximation to the attractor

for this strongly nonlinear and turbulent plasma system. We note that the correlation

integral approach introduced here could also be used in the same way for the SVD

[13, 14, 15] and proper orthogonal decomposition (POD) [16] methods. It is also
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potentially relevant to experimental imaging techniques such as those exploiting gas

puffing [17, 18, 19], beam emission spectroscopy [20, 21], and visible light tomography

[22, 23].

3. Conclusions

We have shown that the DMD technique, augmented by the correlation integral

approach introduced in Eqs. (3) and (4), has great potential for the quantitative

characterization of turbulent and strongly nonlinear phenomenology in plasmas. Using

this method, we have systematically extracted the time evolution of the magnitude of

each of the dominant, spatially coherent, global nonlinear structures (Fig. 3, upper),

together with their coupled cyclic behavior (Fig. 3, lower). This would not be extremely

difficult using Fourier mode decomposition. The method introduced here remains

valid, even when the amplitude of the structure changes drastically on a timescale

much longer than the typical fluctuation period; whereas the conventional DMD

method applies on shorter timescales, comparable to the turbulence period. Hence,

by combining conventional DMD with the present method, turbulence phenomenology

that is multi-timescale (from the turbulence timescale to the transport timescale) can

be systematically addressed and quantified.
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Appendix A. A brief summary of dynamical mode decomposition

In the DMD method [5]-[7], the dynamical system is expressed asX(r1, r2, · · · |t1, t2, · · ·),
where rj and tj are the measurement location and time, respectively. So, if one observes

the system with grids that span space with N elements and time with M elements, the

size of the matrix A is N × M . The DMD method assumes that the system can be

described by the linear combination of nonlinear dynamical states, as in Eq. (1), where

the operator A governs the system evolution. The operator A is determined entirely
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from the observable data, as

A = X ′X†. (A.1)

The size of X is usually so large that a reduction of the dataset is necessary. To achieve

this, we use the SVD technique [13]. Formally, we write

X = UΣV ∗,

≈ UrΣrV
∗
r , (A.2)

where the subscript r denotes the r-rank truncation. Here, a general matrix is

decomposed into two unitary matrices, U and V , which are combined with the diagonal

matrix Σ, containing the singular values of the original matrix; Σii ̸= 0,Σij = 0 (i ̸= j)

[13]. It is necessary to construct the matrix Ã, which is the projection of A onto Ur:

Ã = U∗
rAUr

= U∗
rX

′VrΣ
−1
r . (A.3)

The eigenvalue problem for A is then recast as

Ãξ = Λξ. (A.4)

The eigenvalues Λ and eigenvectors ξ of Ã are next obtained from Eq. (A.4). Because

the eigenvalues of A and Ã are the same, the eigenvector of A, Ψ, is given as

Ψ = U ′
rξ = X ′VrΣ

−1
r ξ. (A.5)

The eigenvector Ψ is called the DMD mode. Finally, the time evolution of the system

x(t) is expressed by using DMD modes as

x(t) = ΨeΩtΨ†x(0), (A.6)

where x(0) is the initial condition. We emphasize that this expression can be used

only for the short timescale evolution, comparable to the fluctuation period, and given

monotonic growth or damping. This is because the mode amplitude Ψ†x(0) in Eq. (A.6)

is constant in time. Quantifying the time evolution of the modulated turbulence, where

the amplitude changes dynamically, is therefore difficult using DMD alone; hence the

present paper.
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