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Abstract.
All density profile reconstruction techniques for both O-mode and X-mode are

based on the assumption that the cut-off frequency profile is monotonic. However,
there are many sources of perturbations to the plasma that generate hollow areas
in the cut-off frequency profile, breaking the aforementioned assumption and
causing a significant immediate reconstruction error that is not rapidly damped.
Inside these hollow areas, the probing microwaves exhibit no specular reflections,
so they are refereed to as blind areas. It is demonstrated that even though
no reflections occur inside the blind areas, the higher probing frequencies that
propagate through these areas carry information about them that can be used
to estimate their size. The information used is the signature imprinted in the
time-of-flight signal. In addition to the reconstruction algorithm not handling
well non-monotonic profiles, the reconstruction algorithm is based on the WKB
approximation of the reflectometer signal, which ignores all full-wave features
that are present in experimental signals. The corresponding full-wave features
are investigated here with the use of full-wave simulations in 1D, with a special
attention paid to the perturbed frequency band. The simulated signals of excess
time-of-flight, coming from sine shaped perturbations, are used to build a database
of perturbation signatures on 5 dimensions of parameters. The database is then
used in a synthetic example to invert the perturbation signature and determine
its size. The same procedure is also demonstrated in experimental reflectometry
data corresponding to a magnetic island during a Tore Supra discharge. The new
adapted reconstruction scheme, when compared to the standard reconstruction,
improved the description of the density profile inside the blind area and also
over 10 cm after it. This technique is pioneer in describing blind areas. Further
research will focus on refining its assumptions and broaden its applications.
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1. Introduction

The FMCW (frequency-modulated continuous-wave)
reflectometry diagnostic is a well established technique
for density profile measurement with successful
implementations on various medium and large size
tokamaks, such as DIII-D [1], Tore Supra [2,
3], ASDEX Upgrade [4, 5] and JET [6]. Even
though there has been significant improvements in
the reflectometry hardware design [2, 7] and data
extraction techniques [5, 8, 9] over the last two decades,
the measured density profiles on fusion experiments
still require improvements in the data analysis part
in order improve the accuracy of the reconstructed
profile. As an example, the LFS (Low Field
Side) reflectometer being built for ITER has as its
first operation priority to achieve a minimum radial
accuracy of 5 mm [10]. Improving the accuracy
on the reconstructed density profile also improves
the accuracy of extracted parameters for physical
studies such as MHD instabilities and turbulence. In
addition, the high spatial and temporal resolution,
combined with precise reconstruction techniques,
makes reflectometry a promising diagnostic for real-
time monitoring of the plasma in future reactors.

The data analysis for profile reflectometry can be
divided into three topics: the initialization technique;
the recursive profile reconstruction algorithm; and the
description of blind areas.

On the initialization technique, in O-mode
reflectometry, the edge plasma is not directly probed
and an assumption is made for the edge density profile.
On the other hand, in X-mode, the plasma is probed
with a frequency below any cut-off frequency, and the
probing frequency increases until the injected waves
start to be reflected at a position with assumed ωprob =
ωce(R), i.e. zero density. The position is estimated
from the amplitude rise of the reflected signal. The
initial investigation on the initialization technique is
described in [11] based on 1D full-wave simulations
and future research will tackle the turbulence and 3D
geometrical effects using 3D full-wave simulations. The
research in the initialization technique is paramount to
improve the accuracy and stability of the reconstructed
profiles. It is a complex topic that will be tackled in
future dedicated papers.

The recursive profile reconstruction algorithm for
O-mode is well-established and based on the Abel in-
version [12, 13]. For X-mode, the density profile recon-

struction algorithm published by Bottollier-Curtet [14]
in 1987 has been the standard reconstruction algorithm
ever since, with a later constant correction proposed
in [15, 16], and a recent variable integration weight
factor proposed in [17] demonstrated improved recon-
struction stability and precision in the edge plasma,
and allowed for faster profile reconstructions without
loss of accuracy. For smooth monotonic profiles with
low turbulence levels and accurate initialization, these
techniques are very precise. The advantage of the X-
mode technique is the ability to probe the plasma edge
and regions with lower density gradients due to the
increased gradient of the cut-off frequency.

Both O-mode and X-mode density profile recon-
struction techniques rely on the assumption of a mono-
tonic cut-off frequency profile. However, there are
many sources of perturbations that generate hollow ar-
eas in the cut-off frequency profile, breaking the afore-
mentioned assumption. Inside these hollow areas, the
probing microwaves exhibit no specular reflections and
thus they are refereed to as blind areas. Even though
no reflections occur inside the blind areas, the higher
probing frequencies that propagate through these ar-
eas carry information about them that can be used to
estimate their size. The information used is the signa-
ture imprinted in the time-of-flight signal. The profile
reconstruction techniques have never been adapted in
these cases where the cut-off profile is non-monotonic.
Many phenomena cause perturbations in the density
profile that lead to blind areas in the cut-off frequency
profile. The small scale turbulence fluctuations gen-
erate an overall change in the acquired phase signal
and the inversion process of the fluctuation proper-
ties is investigated via a transfer function, as initially
approached in [18] and more recent developments are
found in [19]. For isolated perturbations, the signature
in the reflectometer signal is related to the size of the
perturbation. The spectrum of the phase signal can
be used to describe the spatial structure of small scale
fluctuations (in the order of the probing wavelength)
[20]. In this situation, the probing electric field is still
similar in magnitude compared to probing the unper-
turbed profile. On this paper, on the other hand, the
focus is on bigger perturbations that introduce a valley
in the density profile that is large enough such that the
probing microwaves have no specular reflection inside
the valley. These perturbations are out of the Born
approximation validity and the probing electric field
is no more similar in magnitude to the unperturbed
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case. This situation can occur during massive gas and
pellet injections [21], MHD activity [22] and in hollow
profiles that emerge during the initiation of heating
systems [23] or even due to relativistic effects [24].

Section 2 demonstrates the typical error induced
by the blind area on the standard reconstruction
algorithm. Then, section 3 shows a proof of concept
in the WKB framework to demonstrate that it is
possible to estimate the perturbation size. The
additional impact due to the full-wave effects not being
considered in the reconstruction algorithms is discussed
in section 4 with the use of full-wave simulations
in 1D. Next, section 5 describes the influences of
the perturbation shape on the reflectometry time-of-
flight signal. Sections 6 and 7 create and apply a
reconstruction technique for the blind areas based on
a database of perturbation signals on 5 dimensions of
parameters.

2. Reconstruction error due to blind areas

If the reconstruction method does not incorporate
identification and reconstruction tools for these
blind regions, big discrepancies can appear in the
reconstructed profile. An example is shown in
figure 1 using a simulated phase under the WKB
approximation as the input signal. For simplicity, only
the right hand polarization of X-mode is shown, since
the behavior is equivalent, it represents a case more
complex than the O-mode and it collapses to the O-
mode solution when the background magnetic field
goes to zero. The magnetic field profile used is typical
of Tore Supra with a low magnetic field strength of 2
T at the plasma center.

It is clear from figure 1 that the unmodified stan-
dard reconstruction algorithm is unable to reconstruct
the density perturbation. Furthermore, if the oscilla-
tions are smoothed, the perturbation can be neglected
entirely, or even worse, a shift can be introduced in
the reconstructed profile after the perturbation if the
time-of-flight jump is filtered out.

The density profile reconstruction algorithms
developed in [15, 17] for X-mode reflectometry are
based on linear integrations of the refractive index,
except for [17] where the shape of the last integration
step is optimized based on the local plasma parameters.
Due to a sharp change of the refractive index near
the cut-off position, the shape of the last integration
step is the main factor that dictates the accuracy of
the reconstructed profile. As explained in [17], the
trapezoidal integration over all radial steps before the
final radial step is always more accurate than the
integration on the last step for smooth monotonic
density profiles, unlike the profiles treated in this
paper. Such disparity was initially predicted in [15]
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Figure 1. Synthetic example of input versus reconstructed
density profiles with a blind area. The profile was reconstructed
with the standard Bottollier-Curtet algorithm with a constant
correction, as in [15–17], using three different treatments in the
phase signal. The radial axis is defined from zero at the plasma
edge and increasing towards the plasma center.

with the observation of refractive index profiles similar
to those displayed in figure 2.
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Figure 2. Calculated refractive index profiles (correct and
reconstructed) for two different probing frequencies, f1 and f2,
corresponding to two different cut-off positions, at 0.38 m and
0.52 m. The radial origin is at the plasma edge starting with
zero density (hence N(0) = 1) and increasing towards the plasma
center. A perturbation was introduced at the position of 0.36 m
with a 5 cm width and a depth in the cut-off profile of 10 GHz.
The conditions simulated correspond with typical Tore Supra
parameters: plasma radius of 0,72 m and at the plasma core a
magnetic field strength of 2.5 T and electronic density of 6×1019

m−3.

The additional error on the reconstructed pro-
file due to the error on the trapezoidal integration
contributes for the large discrepancies on the recon-
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structed density profiles observed in figure 1. As can
be seen in figure 2, a probing frequency just above the
blind area, f1, undergo abrupt changes in the refractive
index path, which leads to a poor discrete description
of the correct refractive index along the perturbation
during the reconstruction process. This discrepancy
translates into a large error in the reflection position.
As the probing frequency is increased, the perturba-
tion on the refractive index path diminishes and the
error caused in the reconstructed reflection position de-
creases, as can be observed for the probing frequency
f2.

Even though the probing microwaves are not
reflected inside the blind region, there is information
to be explored from the higher probing frequencies
that propagate through the perturbation. The
parameters necessary to describe a perturbation are:
the perturbation width; the perturbation depth; and
the perturbation shape. For simplicity, the first
perturbations investigated have a well known shape
and width and are inserted in a region with linear cut-
off frequency profile, fcut, which can be either fpe when
probing with O-mode or fR if probing with the right-
hand X-mode. In this way, the density profile can
be reconstructed using an unperturbed signal, which
experimentally could come from a previous sweep
or an interpolation of the time-of-flight signal with
the perturbation signature removed. Afterward, the
perturbation signature is evaluated to determine its
properties. To determine the perturbation depth, a
signature in the time-of-flight signal is scaled to the
perturbation depth (for an assumed width and shape).

As a proof of concept, this procedure is developed
in the next section (section 3) for signals simulated
using the WKB approximation. Afterward, the
reflectometer signal is simulated with a 1D full-wave
equation solver to take into account the full-wave
effects, such as tunneling, wave-trapping, interference
and scattering. Then, the influence of the perturbation
shape on the perturbation signature is discussed, and
lastly, the reconstruction techniques are discussed.

3. Blind area reconstruction proof of concept
in WKB framework

In this section, a proof of concept is done using the
simplest simulation of the measured phase signal, with
the use of the WKB approximation. The right-hand X-
mode case is considered for the computations and the
result is compatible with the O-mode solution when
the background magnetic field goes to zero. The WKB
approximation that computes the wave’s phase, φ, at
each probing frequency, fn, is presented in equation 1

[12]:

φ (fn) =
2πfn
c

∫ Rn

edge

N (fn, fpe(R), fce(R)) dR− π

2
, (1)

where c is the speed of light in vacuum, Rn is the
reflection position for the probing frequency fn and N
is the refractive index given by equation 2:

N =

√
1− X(1−X)

1−X − Y 2
, (2)

with

X =
f2pe
f2n

, Y =
fce
fn
. (3)

The WKB time-of-flight signal can be directly
calculated taking the derivative of the phase signal with
respect to the probing frequency.

The simplest solution to describe the blind area
is to relate the jump amplitude in the time-of-flight
signal when going through the valley, to the depth of
the perturbation with an assumed shape and a fixed
width. Figure 3 shows the time-flight signal computed
under the WKB approximation for the input profile
presented in figure 1.
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Figure 3. Time-of-flight during a right-hand X-mode sweep of
the probing frequency, computed under the WKB approximation
for the example conditions given in figure 1.

The height of the peak present in the time-of-
flight signal can be directly related to the perturbation
depth, as long as the perturbation width and shape
are fixed and known. Figure 4 illustrates the relation
obtained when inserting sine shaped perturbations
with various depths and fixed width and radial
position, on fixed profiles of fpe and fce.

Using this relation, one can accurately reconstruct
the perturbation that is inside of the boundary con-
ditions assumed. After determining the unperturbed
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Figure 4. Relation of the time-of-flight jump to the depth of a
sine shaped perturbation with a fixed width and radial position
in the same conditions as introduced in figure 1.

profile from a previous frequency sweep or an interpo-
lation of the time-of-flight skipping the perturbation,
the perturbation is estimated with the relation in fig-
ure 4 and inserted back into the unperturbed profile.
Initially skipping the perturbation’s signature avoids
the problem on the trapezoidal integration that is il-
lustrated in figure 2.

Applying this procedure to the example case of
figure 1 results in the reconstructed profile displayed
in figure 5.
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Figure 5. Input and reconstructed density profiles. The
reconstructed profile is divided into a regular reconstruction
skipping the perturbation, plus the estimated perturbation. The
perturbation is estimated using the relation obtained for a sine
shaped perturbation with a fixed width.

The procedure described above can successfully
reconstruct the density profile of blind regions

as long as the assumed boundary conditions are
satisfied. However, the experimental signals are more
complex than the signal computed under the WKB
approximation. In the next sections, a full-wave 1D
wave equation solver code is used to simulate the
time-of-flight signals. Not only the WKB solution
is out of its domain of validity in some parts, but
in addition, time-dependent full-wave phenomena are
present in the full-wave simulated signals. Therefore,
these additional effects must be taken into account
to build new relations like the one demonstrated in
figure 4 to successfully reconstruct the profile of the
blind areas with experimental signals. Moreover, these
relations will vary with the perturbation parameters
of shape and width, and the local profile parameters of
∇fcut (the gradient of the cut-off profile) and fce in the
X-mode case, thus, these dependencies are also taken
into account.

4. Time dependent full-wave effects in the
simulated signals

The profile reconstruction algorithms are based on
the WKB approximation for the phase increment
signal, therefore, it is essential to understand how
the full-wave effects alter the WKB signal in order to
avoid discrepancies in the reconstruction process. In
addition, the full-wave effects can be used to extract
additional characteristics of the shape of the blind
area. Due to the complexity of this problem and
the challenging task that it would be to extract these
information from experimental signals, this approach is
not tackled here and is left for further investigation as
a refinement to the methods developed here. An initial
introduction into considering some of these effects can
be found in [25].

In order to investigate the full-wave effects from
the blind regions covered here, the perturbations
are introduced in a linear cut-off frequency profile
(fcut). Since the phase evolution depends not only
on the density but also on the magnetic field for
the X-mode, working in the fcut framework allows
to account for both the density and the magnetic
field together. The O-mode solution is again included
when the magnetic field goes to zero. Later on,
the specific dependency on the fce profile is also
taken into account when deducing the most general
reconstruction technique. The dependency on fce
becomes important when investigating perturbations
near the plasma edge, where the density can be
very low and fcut approaches fce. Before then, the
fce profile is fixed for all the following analyses of
full-wave effects, focusing on perturbations in typical
conditions of core plasma in Tore Supra. For such, the
magnetic field strength is fixed at 3.2 T at the plasma
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center and a standard tokamak 1/R radial dependency.
The cut-off profile, fcut, is assumed locally linear
and the maximum density in the plasma center is
6 × 1019m−3. Consequently, the perturbations placed
halfway between the plasma edge and the plasma
center have density close to 3 × 1019 m−3, magnetic
field strength of 3 T, and are probed at around 105
GHz.

In this section, the perturbations are subtracted
exclusively from the fcut profile with a shape of one
period of a sine squared function, and size in the scale
much larger than the probing wavelength in vacuum.
The sine squared shape was chosen for the studies of
this section due to its characteristics of having null
magnitude and derivative each half wavelength. This
allows for smooth local implementation on top of the
assumed profile. An example of such a perturbation is
presented in figure 6, with 6.4 cm width and varying
depth.

In order to account for the full-wave effects, the
reflectometer signals are simulated with a 1D time-
dependent full-wave code, based on a wave equation
solver and a 4th order Runge-Kutta [26] approximation
on the derivatives of fields and velocities [27]. The
numerical reproduction of the reflectometer signal is a
replica of the experimental set-up of a heterodyne IQ-
detection scheme [7, 28] and the same data treatment
with tomographic techniques [8, 9] for maximum
compatibility. The instantaneous phase increment is
directly extracted from the angle of the reflectometer
simulated signal and the wave’s amplitude from its
modulus. In addition, the instantaneous time-of-
flight signal is directly obtained by deriving the
instantaneous phase with respect to the probing
frequency. Apart from the instantaneous signals, a
spectrogram can also be computed from the simulated
signal to observe all its frequency components.

The simulated instantaneous time-of-flight signals
corresponding to probing the profiles depicted in figure
6 can be found in figure 7. The chosen frequency
sweeping rate was 20 GHz/µs, compatible to the
system that was once installed in Tore Supra [29].

It can be seen in figure 7 how the height of the peak
in time-of-flight is no longer a good scaling parameter
to the perturbation depth, as done previously in section
3 when the phase is computed in the WKB framework.
The reason is because of big fluctuations in the vicinity
of the time-of-flight jump. Other features along the
higher frequencies need to be explored in order to
extract information from the perturbation size.

The procedure to reconstruct the blind area is
tackled in section 6, because firstly, the full-wave
effects are discussed in order to clarify all their
features in the simulated signals. The full-wave effects
discussed below are: interference, wave-trapping,
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Figure 6. Linear fcut profiles with sine square shaped valleys
of different depths and a fixed width of 6.4 cm.
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Figure 7. Instantaneous time-of-flight signals from probing the
profiles introduced in figure 6 with a sweeping rate of 20 GHz/µs.

Bragg backscattering and tunneling. The impact of
these effects are only briefly summarized here and a
more detailed study of these effects can be found in
[25], where the same simulation tools of this paper were
used.

4.1. Interferences, wave trapping and resonances

The fluctuations around the time-of-flight jump are
interferences due to the frequency mixing caused by the
time-dependent effects around the perturbation. As
the probing frequency is swept and arrives at the jump
frequency, there will be a small band of frequencies
that will partially tunnel into the valley. In the
most complicated scenarios, the tunneling interfaces
followed by the valley can act as a system of three
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partially reflecting mirrors; two interfaces to entry and
exit the tunneling barrier and another at the end of
the valley. Between the three mirror system, specific
frequencies can be trapped for a longer period and
return mixed in the reflected signal. Frequency mixing
also occurs when the plasma is probed just above
the perturbation frequency. In this case, the probing
wave propagates much slower through the perturbation
because it is close to its cut-off frequency. Therefore,
these slowly propagating frequencies arrive at the
antenna after some slightly higher probing frequencies.
All these effects contribute to the frequency mixing
generating the interferences observed around the time-
of-flight jump.

The interfaces between the tunneling boundaries
and the valley can be interpreted as cavities that,
in addition to the interferences mentioned above, can
fulfill a resonance condition [30]. When this condition
is satisfied, a positive or negative spike is seen in the
time-of-flight signal at the resonant frequency. One
example of a resonance can be observed in figure 7 for
the signal corresponding to the perturbation depth of
5.6 GHz. The signal from a single perturbation can be
observed on the spectrogram, as the example given in
figure 8, for the smooth sine shaped perturbations with
a 5 cm width and 5.6 GHz depth.
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Figure 8. Spectrogram and instantaneous time-of-flight signals
over a perturbation with sine square shape, 5 cm width and
depth of 5.6 GHz.

The modulation and resonances are evident in
these simulated signals (considering smooth sine
shaped perturbations) but are very hard to identify and
isolate in experimental data because of the innate noise
level. Thus, the inversion technique is more robust if
using a bigger bandwidth with the frequencies above
the time-of-flight jump. In addition, the maximum of
the spectrogram is the signal less sensitive to these

modulations, compared to the instantaneous time-of-
flight, as can be observed in figure 8. The interferences
and resonances in the simulated signals affect the
maximum of the spectrogram only over a bandwidth
of 1 GHz on the probing frequency around the jump in
time-of-flight.

The reflection coefficient of each interface in
such three mirror system can be computed from the
refractive index jump, according to [31]. Steep jumps
in refractive index can also lead to strong Bragg
backscattering for the probing frequencies above the
perturbation. This effect is demonstrated analytically
in [32]. In order to illustrate an academic example
with strong wave trapping, resonance conditions and
Bragg backscattering, a square perturbation with
depth of 10 GHz is introduced in the fcut profile. The
corresponding signals are displayed in figure 9. The
abrupt jump in fcut enhances the reflections due to
the abrupt refractive index jump and also because the
squared edges have broad wavenumber spectra that
end up fulfilling the Bragg condition for many probing
frequencies.
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Figure 9. Spectrogram and instantaneous time-of-flight for the
10 GHz square valley in fR.

The instantaneous time-of-flight signal in figure 9
shows many resonant frequencies and reflections. After
the smoothed time-of-flight jump on the spectrogram,
two additional oscillating branches arise. The upper
branch belongs to waves that were trapped and arrive
later in the reception antenna, and the lower branch
belongs to reflections that occurred before the cut-
off frequency, i.e. a Bragg backscattering component.
The spectrogram maximum signal is still smooth and
continuous but contain small fluctuations. In order to
remove these additional contributions from the main
reflection in the cut-off, one can use the tomography
techniques to apply a narrow band filter that follows
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the respective beat frequency evolution [8]. Although a
square perturbation is not realistic, additional echoes
are seen quite often experimentally and this analysis
can be extended to these cases.

4.2. The amplitude signal and the tunneling effect

An additional information from the full-wave signal is
the receiving wave amplitude extracted using the IQ
detection method, as seen in figure 10 for the cases in
figure 6.
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Figure 10. Amplitude from the simulated measurement when
probing the profiles introduced in figure 6 with a sweeping rate
of 20 GHz/µs.

The deep drop in the amplitude signals in figure
10 reveals the existence of a valley in fcut, even in
cases where no blind region is found. The amplitude
drops are due to the electromagnetic flux conservation
when probing a negative curvature that can lead or
not to a blind area. Amplitude drops can also appear
due to 3D geometrical effects, because unlike in 1D,
the reflected waves in 3D not always fully return to
the antenna. These effects are not seen here since
the simulations performed are in 1D. Apart from the
electromagnetic flux conservation and the geometrical
effects, as the probing frequency approaches the jump
over a blind region, the microwaves start to partially
tunnel into the valley causing the received amplitude to
decrease. The frequencies that partially tunneled into
the perturbation eventually return to the antenna later
on. This is why the amplitude drop is followed by an
amplitude increase. When these delayed waves return
to the antenna, they interfere with higher probing
frequencies, which explains the fluctuations after the
initial amplitude dip. The way these frequencies
are mixed strongly depends on the quality factor of
the cavities (inside the tunneling region and inside
the valley) combined with the sweeping rate of the

probing frequency. The quality factor dictates the
interference amplitudes and the sweeping rate dictates
the interference bandwidth. All the signals displayed
in this paper have a fixed sweeping rate of 20 GHz/µs,
which corresponds to the sweeping rate available in
Tore Supra during the discharge studied in section
7. Faster sweeping rates extend the frequency band
influenced by the full-wave effects, and if too high,
an additional beat frequency is induced and the
amplitude variations become more sensitive to the
electromagnetic flux conservation due to the changes
in the cut-off gradient.

The time at which the tunneled waves return is
impossible to be accurately determined experimentally.
The frequency at which the microwaves start tunneling,
on the other hand, are related to the probing frequency
and the tunneling barrier width. For the tunneled
waves to be reflected back, they must have an
evanescent path equal or longer than the width of the
barrier to cross into the perturbation. The analytical
expression for the fields of the evanescent wave is
demonstrated in [31]. In practice, the tunneling band
for the cases studied in this paper were verified for
a varying perturbation width on a fixed perturbation
amplitude of 15 GHz. The band of the amplitude drop
until half of its original value was observed to be longer
for the shortest perturbation width of 2 cm, being 1.25
GHz, and shorter for wider perturbations, like 0.6 GHz
for the 6 cm width.

Apart from the interferences due to the wave-
trapping in the cavities, additional reflections can
emerge from Bragg backscattering when the spectrum
of the inserted perturbation contains wave-numbers
fulfilling the Bragg rule. In the end, the interferences
can originate from one or many of these sources. The
bandwidth at which these effects take place in the
amplitude signals of figure 10 corresponds to the same
bandwidth in their respective time-of-flight signals in
figure 7. The amplitude of the incoming waves from the
full-wave effects are normally small compared to the
amplitude of the specular reflections from the cutoff
positions. Therefore, as can be observed in figures
10 and 7, when the specular reflection dominates,
even though some full-wave effects still exist, they
have much lower amplitude and exert no influence in
the time-of-flight signal. On the other hand, when
the specular reflections are too weak or practically
inexistent, the contribution from the full-wave effects
dominate the time-of-flight signals.

Since the contribution from the full-wave effects
were observed to be restricted to the bandwidth
of the amplitude variations, the full-wave effects
can be assumed limited to a bandwidth already
observed for the tunneling effect. Furthermore, the
interference contributions can be strongly suppressed
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if the maximum of the spectrogram is taken as the
time-of-flight signal instead of the instantaneous time-
of-flight, as observed in figure 7. The tunneling effect
contribution, on the other hand, is unavoidable in the
spectrogram signal, but its presence is indicated by the
dip in the amplitude signal.

To conclude on how the full-wave effects are
tackled on the reconstruction process, figure 11 shows
an example comparison between the time-of-flight
extracted from the maximum of the spectrogram of
the full-wave simulation versus the WKB simulated
time-of-flight. This is a case where all full-wave
effects are present within a bandwidth of 1 GHz
around the time-of-flight jump. As long as a
corresponding experimental signal is treated outside of
this bandwidth, the experimental time-of-flight can be
assumed well described by the WKB simulated signal.
This conclusion is crucial for building a database of
signals used to reconstruct the perturbations in section
6.
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Figure 11. Comparison between a full-wave time-of-flight from
the maximum of the spectrogram versus a WKB simulated time-
of-flight over a perturbation with sine square shape, 5 cm width
and depth of 5.6 GHz.

5. Influence of the perturbation shape on the
time-of-flight signal

The observation of all full-wave effects demonstrate
that there is much more information in the reflec-
tometer signals than just the amplitude of the time-
of-flight jump. Moreover, the time-of-flight signal is
highly susceptible to interference fluctuations around
the jump. Therefore, analyzing the higher frequency
band becomes the most robust path. When exploring
the time-of-flight signal in the higher probing frequen-
cies, the signal is also dependent on the shape of the
perturbation. This section summarizes the influence of

the perturbation shape by investigating the impact on
the time-of-flight signal by changing the perturbation
skewness and kurtosis.

The skewness is an indication of the asymmetry
of a distribution around its mean value. It is
mathematically defined in [33]. To investigate the
effect of the radial non-uniform contribution to the
time-of-flight signal, the refractive index profile and
the time-of-flight signal have been investigated in [25]
for a probing frequency slightly higher than all cut-off
frequencies in the blind area. The radially non-uniform
refractive index distribution (same for the time-of-
flight) inside the perturbation is caused by the radially
non-uniform ratio of fpe to fce, but it is only a higher
order effect that can be neglected in the perturbation
reconstruction techniques treated here.

The kurtosis of the perturbation is an indication
if the perturbation is more concentrated in the center
or in the extremities. A mathematical definition
can be found in [34]. To investigate this effect,
three perturbation shapes were investigated on a
perturbation with a width of 12 cm. The shapes used
were a sine function, a sine squared function, and a
cubic sine function. For the sine function, the depth
was set at 8 GHz but it increases for the other shapes
in order to maintain a constant area on the fcut profile,
i.e.

∫
width

fcutdR =const. The resulting profiles can be
observed in figure 12.
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Figure 12. Perturbations with varying kurtosis over a linear
fcut profile.

In order to investigate the radial distribution of
the time-of-flight contribution from the perturbation,
figure 13 shows the time-of-flight differentiated radially
for a single probing frequency corresponding to a cut-
off just above the perturbation. This quantity was
computed under the WKB approximation only for a
qualitative observation, therefore all full-wave effects,
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specially tunneling, are neglected. The total time-of-
flight contribution for this single probing frequency
after propagating through the blind area is given by
the radial integral of the differential time-of-flight and
is given in the legend of figure 13. The integral
values show the observable differences in time-of-flight
from the different perturbation shapes. These are
qualitative observations because these differences are
much higher at probing frequencies with cut-off close
to the top of the perturbations and decrease when
increasing the probing frequency. At these probing
frequencies just above the perturbation the time-of-
flight is strongly influenced by the full-wave effects
discarded in these computations.
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Figure 13. Differential time-of-flight per radius when probing
with a frequency corresponding to a cut-off slightly above the
perturbations of figure 12. The integral values in the legend is
computed by integrating dτ over dR along the perturbation, thus
it corresponds to time-of-flight contribution exclusively from the
perturbation.

Figure 13 shows how the perturbations have a
larger time-of-flight contribution from the regions with
higher fcut, i.e. in the borders of the perturbation,
or equivalently, the more they are elongated if keeping
a constant area. This happens because the probing
waves propagate much slower when propagating with
a probing frequency very close to the local cut-off
frequency. The shapes selected for figure 13 are close
to the expected real cases. The cubic sine shape
have a very shallow borders and is only deep in the
center. This would almost characterize it as a narrower
valley. The sine shape on the other hand, is not so
realistic because the edges are not smooth and have
discontinuous derivatives. The data presented in figure
13 represent a single probing frequency slightly above
the perturbation in order to emphasize the difference
between the used shapes as should not be taken as
the total difference between the entire signal coming

from the perturbations. As mentioned before, the
probing frequencies around the time-of-flight jump are
neglected due to the tunneling and interference full-
wave effects, and at the higher probing frequencies this
effect is diminished.

In addition, as observed that the bottom of
the perturbation have a much lower contribution to
the additional time-of-flight, this effect raises another
question. If the bottom of a valley perturbation
has less impact on the time-of-flight, it means that
the deeper the valley is, the less prominent becomes
the signature of a given δfcut at the bottom of the
valley. This accuracy can be inferred by analyzing
perturbations with different depth, and comparing
the time-of-flight after the perturbation, with versus
without an additional δfcut of constant area in fR.
The perturbation chosen had a sine squared shape
with 2 cm width and 2 GHz amplitude over the larger
valleys with 12 cm width and varying depths. When
computing the differential time-of-flight for a probing
frequency slightly above the perturbation, it was found
that the contribution from the δfcut vanishes below an
experimental noise level at around a depth of 10 GHz
on the larger valley.

To conclude, the skewness of the perturbation
shape has a much higher order impact compared to
the perturbation kurtosis. It is not the aim in this
study for the moment, but if the skewness of the
perturbation was of interest, the tunneling band can
be investigated further to provide information on the
width along the tunneling barrier, i. e. information
on the perturbation’s shape. The kurtosis of the
perturbation, on the other hand, was inferred to
significantly contribute to the observed signals. As
such, it is recommended in future work in this topic to
corroborate the study on the reconstruction techniques
with information from the perturbation shape for the
type of perturbation being investigated, be it from
simulations, theory or from previous measurements
from other diagnostics.

6. Reconstruction from database of
perturbations

The simplest and most powerful approach to recon-
struct the blind areas is to, firstly, create a database
of perturbations and the respective additional time-of-
flight caused by each perturbation, and then, use this
database to compare to the experimental signal and
identify the perturbation size. Other methods were
tested that used a simpler description of the time-of-
flight signature due to the perturbation, e.g. the in-
tegral of the additional time-of-flight over a given fre-
quency band, or a few set of time-of-flight values for
a few corresponding probing frequencies. These types
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of solutions are limited to specific signal shapes and
cannot be generalized. Recording the full perturbation
signal over a broad frequency band also allows for the
addition of multiple perturbation signatures, whatever
are their signal’s shapes.

The signal measured while probing across the
perturbation is too complex to be considered in
this step and therefore it is skipped. Consequently,
the recorded additional time-of-flight due to the
perturbation only starts at the probing frequency
equals to the cut-off frequency at the end of the
perturbation, thus this probing frequency is denoted
fend. Furthermore, this approach allows for building
the database with signals simulated under the WKB
approximation. Therefore, when using this database,
as long as the full-wave effects are avoided in the
experimental signal, the WKB approximation is valid.
The usage of the WKB approximation to compute
the signal in the database drastically simplifies the
recorded signals and speeds up the computations, also
allowing for a higher resolution in the solution’s space.

The approach of creating a database of solutions
is similar to developing a neural network to invert the
perturbation signals, as it has been done for inverting
the density profile [35]. The main difference to these
approaches is that when creating the database, the
user has full control of the input parameters and the
output accuracy can be precisely verified, allowing for
a more precise determination of the error bars around
the solution found.

For simplicity, only one perturbation shape is used
to compute the example database of this paper. Unlike
in section 4, there is no requirement to assume smooth
shapes for smooth implementations into the cutoff
profile. Furthermore, the smooth start and end of the
perturbation is already experimentally compatible to
the non-perturbed profile. Therefore, the perturbation
shape assumed to create the database is half period of
a sine function. Additional shapes will be considered
in future refinements to the reconstruction technique.

The database contains the excess time-of-flight
versus probing frequency, due to the perturbation on
the space of the following parameters: the probing
frequency at the end of the perturbation (fend); the
local value of fce; the local gradient of the cut-off
frequency profile (∇fcut); the perturbation width; and
the perturbation depth.

This approach is based on knowing the unper-
turbed signal and the perturbation width, both of
which are estimated from the experimental signal. The
chosen database signal is the excess time-of-flight be-
cause in this way the perturbation signature is indepen-
dent of the profile before it. The unperturbed signal
can be estimated by removing the perturbation sig-
nature and interpolating the remaining signal, or by

using a previous sweep as a reference, as long as it
is smooth and continuous over the frequency band of
interest. The choice entirely depends on the current
conditions of the signals being treated. The width of
the perturbation can be observed directly from the ex-
perimental signal. The first step is to recognize the
probing frequency at the end of the perturbation. In
the case that the end of the perturbation is directly
probed, the time-of-flight signal shows a minimum of
a valley at exactly the end of the perturbation. The
other possible cases are a perturbation end at the same
probing frequency as the start of the perturbation, or
the cut-off frequency of the end is below the one at
the start. It is not straight forward to distinguish one
case from the other, and unless there is any external
input, the value for fend can be assumed equal to the
last probing frequency taken from the unperturbed sig-
nal, or equivalently, the initial probing frequency of the
perturbation. After fend is estimated, the perturbation
width can be computed by assuming that the end po-
sition corresponds to the reconstructed profile position
with the probing frequency equals to fend when using
the unperturbed time-of-flight signal for the profile re-
construction.

The two situations that can be out of the scope of
this approach are: 1) the perturbation is too wide and
the end frequency is so high that the excess time-of-
flight from the perturbation has depleted; and 2) the
perturbed signal strongly diverges at the perturbation
and never returns close to the unperturbed case.

The signals of the excess time-of-flight due to
the perturbation versus the probing frequency starting
at fend are then computed on the five dimensions
of parameters. The computed bandwidth of probing
frequency after the perturbation was set to be
from 1 to 15 GHz, which is expected to normally
be more than necessary. Due to the full-wave
effects to be avoided, as discussed in section 4,
the usable bandwidth may change at each specific
application. Envisaging a broad domain of parameters
within realistic conditions and encompassing various
experimental scales, the database was computed within
the domain of parameters given in table 1. This range
of parameters enables application for both X and O
mode measurements, since there is a broad domain of
probing frequencies and local magnetic field (which can
be assumed null for O mode applications).

Figure 14 shows two examples of the signals stored
in the database for two fixed sets of parameters (fend,
fce, ∇fcut, width). The only parameter that is
left to be determined in the inversion process is the
perturbation depth. Given the experimental signal
from probing a perturbation, it can be compared to
the database of signals and the signal with the best
match will indicate the perturbation depth. For a good
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Table 1. Boundary conditions of all parameters in the database
of sine valley perturbations.

parameter minimum value maximum value
fend 25 GHz 250 GHz
fce 0 250 GHz
∇fcut 0 250 GHz/m
width 0.02 m 0.4 m
depth 1 GHz 30 GHz

precision in the estimated depth, the database must be
computed with a good resolution in the parameters.
This leads to a large database but fast reconstruction
process of the blind area. If the desired application
require a smaller database, interpolations can be used
between the stored signals at the cost of increasing the
reconstruction time of the blind area.
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Figure 14. Example solutions of database of time-of-flight
excess signals for sine shape valleys. Fixed parameters at (a):
width = 4cm, fend = 40GHz, fce = 0, ∇fcut = 10GHz/m.
Fixed parameters at (b): width = 4cm, fend = 100GHz,
fce = 60GHz, ∇fcut = 10GHz/m.

After constructing the database, the first test
performed was to apply the reconstruction technique
to a blind area using noiseless synthetic data. The
result obtained was very successful, equivalent to the
case presented in figure 5.

The intrinsic physical resolution on the database
to determine the depth of the perturbation is linked
to the magnitude of the excess time-of-flight from the
perturbation compared to the current noise level. A
more detailed observation of the dependencies over the
full range of parameters can be found in [25], but in
summary, it was found that the resolution in depth

increases with increasing width and decreasing depth.
The dependency over fce is almost negligible compared
to the other parameters. The resolution on depth
increases with decreasing ∇fcut and it is emphasized
at wider perturbations. The last parameter, fend,
showed greater resolution at lower probing frequencies.
After determining all parameters and reaching a given
depth resolution physically intrinsic to the database,
the experimental conditions of the extracted time-of-
flight sets the final reconstruction accuracy, as will be
observed in section 7.

7. Experimental demonstration of blind area
reconstruction

This section aims to reconstruct the profile over a blind
area based on all the results from the previous sections,
only this time on an experimental case. The data
used is from the Tore Supra database, shot 32029.
The perturbation being investigated corresponds to
a magnetic island on the q = 2/1 rational surface
calculated from the equilibrium code [36]. Since the
probing frequency sweep time for this shot was 20 µs,
followed by a dead time of 5 µs, only a single sweep
is used at a time because there is visible evolution of
the perturbation between sweeps. The used frequency
and amplitude signals around the perturbation are
displayed in figure 15.

Figure 15. Beat frequency and amplitude signals around the
perturbation to be investigated. Only a broad bandpass filter
was applied to remove reflections that were far from the main
branch. Tore Supra discharge 32029 at t = 3.0037 s.

Figure 15 shows around a probing frequency of
100 GHz the fluctuations of the beat frequency and of
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the signal amplitude, which are caused by the density
perturbation to be reconstructed. The indications
of the perturbation are the discontinuity on the
spectrogram and a strong drop in the amplitude signal
in the respective probing frequencies, corresponding to
the results from the full-wave simulations.

Only a broad (40 MHz) bandpass filter was applied
in the beat frequency signal and the selected window
size for the spectrogram was 90 points to ensure
that the spectrogram shows the fast change in beat
frequency. Figure 16 illustrates the time-of-flight
signal of the perturbation compared to the reference
unperturbed signal in white.

Figure 16. Time-of-flight signal around the perturbation of
interest compared to the reference unperturbed case in white.
Tore Supra discharge 32029, with the perturbation at t = 3.0037
s and the reference unperturbed case at t = 3.0033 s.

The magnetic islands typically appear with a
positive density perturbation followed by a negative
density perturbation. At least the first half of
the positive perturbation can still be traditionally
probed and reconstructed (first quarter of the entire
perturbation). Therefore, in this case, instead of using
a database of sine valleys, the perturbation shape
follows the same shape as the positive part that is
probed.

The signature for the perturbation end is always a
dip in the time-of-flight signal when the perturbation
end is exposed, or not visible when the end is not
exposed (meaning that the positive part is in front of
the end point). For the perturbation present is Fig.
16, there is no visible dip in the time-of-flight signal
marking the perturbation end. In this specific case,
the density perturbation could not end at the end of
the perturbation signature, ≈ 102.5 GHz, because the
respective fR profile was verified to be very smooth
and the perturbation would be so small that there
wouldn’t be a jump in time-of-flight, as observed in

practice. Therefore, the perturbation end must be no
greater than 100.2 GHz, which was the value assumed
and led to a combined width of 6.1 cm. In any case,
if the perturbation end is slightly before this value,
the perturbation shape would not change significantly.
With the width already estimated and the first quarter
of the perturbation determined, the remaining three
quarters of the perturbation retains the same shape
and is squeezed or stretched to arrive at the estimated
perturbation width.

The next step is to estimate the perturbation
depth. The depth is extracted from comparing the
experimental data against WKB simulated signals of
various depths. In this case, the database constructed
is already collapsed to the estimated set of parameters
(shape, width, fce, ∇fcut, fend). As observed in section
4, the bandwidth where the signal’s amplitude is low
is considered dominated by full-wave effects and is
skipped. In this case, the skipped band is from 98.5
GHz to 102.2 GHz. Figure 17 shows a comparison of
the experimental signal of excess time-of-flight due to
the perturbation to the simulated signals with different
depths.
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Figure 17. Comparison between the measured perturbation
signal to WKB signals including the valley density perturbation
with varying depth values.

From observing figure 17, the depths of 0.2
GHz and 0.4 GHz from the database synthetic
signals are good indications of each limit of the
possible perturbation depth. It leads to a final
depth for the valley perturbation of 0.3±0.1 GHz, or
equivalently, a perturbation of 5.0 ± 1.7 × 1017m−3

and a local δne = 2.4 ± 0.8%. The resulting
perturbation profile is depicted in figure 18 and the
final density profile is given in figure 19, compared to
the traditional reconstruction method on the perturbed
and unperturbed measurements.
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Figure 18. Complete perturbation in fcut formed by a partially
probed first quarter that is reflected to complete the bump and
valley perturbations.
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Figure 19. The reconstructed density profiles using the stan-
dard reconstruction method on the perturbed and unperturbed
measurements versus the new method to reconstruct blind areas
introduced in this paper.

It is clear from observing figure 19 that the new
reconstruction scheme for the blind area describes
much better the perturbation and eliminates a
reminiscent tail of discrepancy.

8. Conclusions and future prospects

The reconstruction of blind regions in frequency swept
reflectometry has never been tackled before. As it
was demonstrated, the standard reconstruction process
adds a significant error in the density profile if no
special technique is applied around the perturbed
region. The work presented here investigated more

general characteristics to lay the foundations for this
novel technique to improve the density profile.

Even though the main physical characteristics
of the blind regions have been well described by
the 1D simulations present in this contribution,
future 3D simulations [37] will be necessary to verify
any additional geometrical aspects. After all, the
probing beam area and shape, plus the shape of
the perturbations, make in conjunction a system
too complex to be completely described in one
dimension. These geometrical aspects influence the
amplitude signal across the perturbation bandwidth
and the appearance and dynamics of resonances.
Understanding these effects will help to better extract
the signals from the blind area, apply any phase
correction due to the 3D structures and ultimately will
lead to a more accurate employment of the database.
This research on the geometrical aspects will also
intersect with the research of improved initialization
techniques.

The reconstruction technique of blind areas was
verified to be very accurate in the absence of noise
and with precise input of parameters when tested on
synthetic data. Thus, the final reconstruction accuracy
is expected to be related to the accuracy in which the
perturbation width, shape and the local parameters of
∇fcut and fce have been determined, which will vary
significantly according to each application. As a first
approximation, the constructed database assumed sine
shaped valleys. If any other shape is of interest, the
database can be recomputed for that specific shape,
as it was demonstrated in the experimental example.
In the end, a few different shapes can be available.
Numerical or theoretical predictions can dictate which
shape to be used in the database for a more accurate
estimation of the perturbation depth on each specific
application.

The estimations of perturbation width and ∇fcut
will degrade if there is only a single frequency sweep
available with high amplitude low k perturbations, i.e.
a case with low signal to noise ratio. For systems
with faster sweeping rates, as achieved in ASDEX
Upgrade and WEST with a 1 µs sweep time [38],
there would be many sweeps at which the perturbation
can be considered stationary. In such cases, the sum
of many sweeps can help improve the signal to noise
ratio to obtain a much better time-of-flight signal and
consequently better assumptions of the perturbation
width, the local ∇fcut, and a more accurate
extraction of the perturbation depth when compared
to the database signals. Future applications will
be investigated in dedicated contributions including
more sophisticated statistical analysis of the database
inversion process with such techniques and further
analyses on the assumed perturbation shape.
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