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Multi-component alloy Fe-Cr-Mn-Ni is a promising new candidate system not only because of
its potential application as structural materials beyond conventional austenitic steels but also for
fundamental physics role played by Mn element in Fe-Cr-Ni based alloys. In this work, the phase
stability of magnetic face-centered cubic (fcc) Fe-Cr-Mn-Ni system in the full composition range
has been studied by the means of spin-polarized Density Functional Theory (DFT) and Cluster
Expansion (CE) method. A new four-component magnetic intermetallic FeCr2MnNi4 phase, which
has not been described previously in the literature, is predicted as the ground state (GS) for the
quaternary system. All experimental GS of underlying fcc binary and ternary subsystems have been
consistently reproduced in the present CE model among which the antiferromagnetic L10 MnNi has
the lowest formation enthalpy. Nickel is found to be the most influential element from the points of
view of fcc stability and the average magnitudes of magnetic moments of all the elements in the alloy.
Theoretical magnetic phase diagram of Fe-Cr-Mn-Ni is found to be in good agreement with available
experimental results. The average magnitude of magnetic moment is increasing with volume slower
in Fe-Cr-Mn-Ni than in Fe-Cr-Ni that supports the addition of Mn to the Fe-Cr-Ni alloys in order
to improve the swelling resistance under irradiation. Order-disorder phase transition temperature
and chemical Short-Range Order (SRO) as functions of temperature and composition have been
systematically investigated with the Monte-Carlo simulations. The increase of nickel composition
in the pseudobinary alloys from 0 to 50 at.% leads to the increase of order-disorder transition
temperatures, which is in a variance compared to other constituent elements. Detailed analysis of
the SRO shows an important role of L10 MnNi precipitates in the increase of the order-disorder
transition temperature in a wide range of quaternary concentrations, including the near-equiatomic
region. The contribution of configurational entropy to the free energy of alloys calculated using the
matrix formulation of the CE method shows an important effect on the alloy stability mostly in the
intermediate temperature range, where the order-disorder transition takes place.

PACS numbers: 81.05.Zx, 05.10.Ln, 71.15.Mb, 81.30.Bx, 75.50.Bb

I. INTRODUCTION

High Entropy Alloys (HEAs) are a relatively new group
of materials, the study of which was started from the in-
vestigation of the equiatomic CoCrFeMnNi alloy by Can-
tor et al. in Ref.1, which has indicated as-cast disordered
single-phase fcc solid solutions with outstanding mechan-
ical properties. Initially explained as being stabilized by
high configurational entropy of mixing, HEAs have drawn
attention to the central regions of the multi-component
phase diagrams. HEAs are roughly described as alloys

with the composition of 4 or more elements in equal
or near-equal ratios of concentrations, but the definition
and the formation criteria are still not formally defined2.
The distinctive characteristic properties observed in this
class of alloys are the ”four core effects”, empirically de-
scribed by Yeh et al.3,4: severe lattice distortion, slow
diffusion rate, cocktail effect and high configurational en-
tropy. The combination of these effects is thought to be
the cause of the formation of single-phase disordered solid
solutions with very unique properties.

Currently, many groups of HEAs are being studied,
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showing better properties than conventional materials in
their groups, such as, but not limited to5: refractory
HEAs (such as the NbMoTaW), low-density HEAs (such
as the Li20Mg10Al20Sc20Ti30), ceramic HEAs, and transi-
tion metal HEAs, such as Cantor alloy, which are mainly
studied because of their outstanding mechanical proper-
ties. Moreover, new methods of obtaining HEAs that
retain their structures are being developed and tested6,
making steps to the industrial production and implemen-
tation of HEAs on larger scales.

In particular, HEAs have been shown to exhibit bet-
ter resistance to irradiation damage compared to pure
metals7 and conventional austenitic steels8–10. This is
attributed to their compositional complexity by authors
of Refs.9,10 and would make them good candidates for
irradiation-facing materials in fusion and fission reactors.
The main additional requirement is the removal of Co
because it forms radioactive isotopes under irradiation.
Such an alloy, with the composition Cr18Fe27Mn27Ni28,
was investigated in the Oak Ridge National Laboratory
both experimentally8 and theoretically11, and has shown
good radiation-resistance properties.

Experimental investigations were done for various com-
positions of Cantor alloy and its derivatives in the as cast
and annealed states. Near-equiatomic alloys with the fcc
single-phase disordered solid solution structure in as-cast
state include FeNiMnCr18

12 and Cr18Fe27Mn27Ni28
8. Af-

ter annealing at temperatures below 973 K, the various
precipitates have been reported to form in the equiatomic
and near-equiatomic alloys, including Cr-rich bcc or σ
phase in Fe40Mn28Ni8Cr24 (Ref.13) and CrMnFeCoNi
(Refs.14–17); B2-FeCo and L10-MnNi in CrMnFeCoNi
(Ref.16). This opens the question of the stabilization of
single-phase disordered HEAs at lower temperatures to
widen their application.

The properties of HEAs have been extensively studied
experimentally, which has laid out a good basis for pre-
dictory and explanatory models to be built upon. Nowa-
days, the theoretical methods of materials investigation
at atomic scales are being intensively applied to study
HEAs and to help us understand the mechanisms of HEA
formation and, hence, improve their design18.

In order to explain the physical background of special
behavior of alloys in the Fe-Cr-Mn-Ni system the vast
range of concentrations have to be studied. In this con-
text, the goal of this work is to deepen the knowledge
about the phase stability and properties of the Fe-Cr-
Mn-Ni alloys and to find the optimal compositions from
points of view of formation free energies, order-disorder
transition temperatures and homogeneity required for
application in fusion reactors and to build a basis for
the investigation of point defect properties and irradi-
ation resistance. In this paper, the choice of the ap-
propriate computational methods in order to study the
aforementioned physical properties as functions of com-
position is following: Density Functional Theory (DFT),
Cluster Expansion (CE) and Monte Carlo (MC) simula-
tions.

Ab initio methods are the most accurate methods to
investigate the ground states of materials on the atom-
istic scale (including the energy, crystal lattice and mag-
netic configuration). The most efficient ab initio method
is DFT, where the approximated solutions of many-body
Schrodinger-like equations significantly reduces the com-
putational costs with the insignificant loss of accuracy.

The CE method is based on the usage of extensive
structural database and fitting technique for various
physical properties of materials and can be applied to
predict possible configurations of alloys for given com-
position and to model the Effective Cluster Interactions
(ECIs)19,20. In this study, the most appropriate parame-
ter to be fitted using CE is the enthalpy of mixing (Hmix).
The values of Hmix in the whole composition range can
be obtained from DFT. Finally, the ECIs from CE can be
employed in the MC simulations in order to investigate
the behavior of alloys at finite temperatures.

The proposed approach has been developed in Ref.21

to investigate the finite-temperature phase stability of
ternary Fe-Cr-Ni system in both bcc and fcc lattices, and
was successful at reproducing the experimental Short-
Range Order (SRO) parameters and Order-Disorder
Transitions (ODTs) temperatures. It is worth mention-
ing here that the effect of valence electrons plays an im-
portant role in understanding of the phase stability of
HEAs22,23. In particular, by extending the rigid band ap-
proximation (RBA) to the magnetic alloys23, it is shown
that the spin-polarized electronic structure calculations
can provide a realistic estimate for the stability of dif-
ferent phases present in HEAs as a function of the num-
ber of valence electrons per atom or Valence Electrons
Concentration (VEC). When the VEC exceeds 6.97, the
magnetic RBA model predicts that the fcc phase would
be able to form. When the VEC is less than 6.97, there
are either possibilities of the bcc phase stability or the
coexistence between the bcc and other complex ones in-
cluding Laves or σ phase.

Using the VEC criterion, the boundaries of stability
region for the fcc Fe-Cr-Mn-Ni alloy can be roughly es-
timated. Ni and Fe have 10 and 8 valence electrons per
atom, respectively. It is well-known that Ni is a fcc-
stabilizer and the Fe high-temperature phase is also the
fcc in conventional austenitic steels. VEC values of Mn
and Cr are 7 and 6, respectively. The VEC of the former
is near to the critical value 6.97 and that of the latter is
below, making Cr the fcc-destabilizer. Hence, the region
of quaternary alloys, where the formation of fcc phase
is possible, is indicated by the maximal Cr concentra-
tion, which in the case of the Cr-[FeMnNi] pseudobinary
is equal to 58.5 at.%. The resulting region in which fcc
phases may be formed still takes ∼80 % of the whole
concentration range. The investigation of the fcc lattice
in Fe-Cr-Mn-Ni system can therefore give the stability
estimate for the major part of the system.

This paper is structured as follows. Computational
methodology section (Section II) consists of Cluster Ex-
pansion formalism for quaternary alloy (II.A), formalism
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for calculation of chemical Short-Range Order parame-
ters (II.B), approximations of cluster variation method
for the calculation of configurational entropy (II.C) and
computational details for different methods in calcula-
tions (II.D). Phase stability at T =0 K based on DFT
calculations results is presented in the Section III for all
subsystems of Fe-Cr-Mn-Ni quaternary, namely: bind-
ing energy studies for pure elements and motivation for
the choice of representative structures (III.A); enthalpies
of mixing, enthalpies of formation, volume per atom and
magnetic properties for the Mn-containing binary (III.B)
and ternary (III.C) subsystems, and for the quaternary
system (III.D) as well as the magnetic phase diagram,
table of alloy ground states and the ECIs for quaternary
system and all underlying subsystems. Finite tempera-
ture phase stability analysis is presented in Section IV
and includes the results for a configurational entropy
from a combined Monte Carlo and Cluster Expansion
method (IV.A) and it’s contribution to the free energy
of mixing (IV.B), the order-disorder transition tempera-
tures (IV.C) and Short-Range Order parameters (IV.D)
studied in the whole concentration range. The main re-
sults of current work are summarized in the Conclusions
section.

II. COMPUTATIONAL METHODOLOGY

A. Cluster Expansion Formalism for Quaternary
Alloy

The enthalpy of mixing of an alloy with chosen configu-
ration represented by a vector of configurational variables
~σ can be calculated from DFT using the value of total
energy per atom of simulated alloy structure Elattot(~σ) and
the corresponding pure elements Elattot(p) underlying the
same lattice as the alloy structure as follows:

∆Hmix(~σ) = Elattot(~σ)−
K∑
p=1

cpE
lat
tot(p), (1)

where K is the number of alloy components and cp are
the average concentrations of each alloy component.

In the cluster expansion formalism, the enthalpy of
mixing can be parametrized as a polynomial in the occu-
pational variables24:

∆Hmix(~σ) =
∑
ω,n,s

J (s)
ω,nm

(s)
ω,n〈Γ

(s′)
ω′,n′(~σ)〉ω,n,s, (2)

where the summation is performed over all the clusters,
distinct under symmetry operations in the studied lat-
tice, represented by the following parameters: ω and
n are the cluster size (the number of lattice points in
the cluster) and its label (maximal distance between two
atoms in the cluster in terms of coordination shells), re-
spectively, see Fig. 1; (s) is the decoration of cluster by

point function γj,K(σi). m
(s)
ω,n denotes the site multiplic-

ity of the decorated clusters (in per-lattice-site units);

and J
(s)
ω,n represents the ECI energy corresponding to the

same (s) decorated cluster.

〈Γ(s′)
ω′,n′(~σ)〉ω,n,s are the cluster functions, averaged over

all the clusters of size ω′ and label n′ decorated by the
sequence of point functions (s′) that are equivalent by
the symmetry to the cluster ω, n and decorated by the
same sequence of point functions (s). Later in the text,

〈Γ(s′)
ω′,n′(~σ)〉ω,n,s is referred to as 〈Γ(s)

ω,n(~σ)〉 for ease of no-
tation. In Monte Carlo formalism, cluster functions are
also averaged over the all MC steps at chosen tempera-
ture, which controls the accuracy and the computational
costs of the calculations.

The definition of point functions in this work is the
same as in Ref.25 and as following:

γj,K(σi) =


1 if j = 0 ,

− cos
(
2πd j2e

σi
K

)
if j > 0 and odd,

− sin
(
2πd j2e

σi
K

)
if j > 0 and even,

(3)

where i = 0, 1, 2, ...(K − 1), j is the index of point func-

tions j = 0, 1, 2, ...(K − 1) and d j2e stands for the ceiling
function - rounding up to the closest integer.

The cluster function is then defined as the product
of orthonormal point functions of occupation variables26

γj,K(σi), on specific cluster described by ω and n:

Γ(s)
ω,n(~σ) = γj1,K(σ1)γj2,K(σ2) · · · γjω,K(σω). (4)

The matrix ¯̄τK , relating the point probabilities to the
point correlation functions, can be constructed using
point functions γj,K(σi) as its elements:

(¯̄τK) =

 γj=0,K(σi = 0) · · · γj=0,K(σi = K − 1)
...

. . .
...

γj=K−1,K(σi = 0) · · · γj=K−1,K(σi = K − 1)

 .

(5)
The exact ¯̄τK matrices for 2-, 3-, and 4-component

systems are presented in Eq. A1.
The general expression for the cluster correlation func-

tion is then may be determined using the ¯̄τK matrix26:

〈Γ(s)
ω,n〉 =

∑
A,B,···

(
∏
ω

¯̄τK)(s),A,B,···y
A,B,···
ω,n , (6)

where (
∏
ω

¯̄τK)(s),A,B,··· denotes the matrix direct product

(Kronecker product); the summation is done over the
atomic species composing the alloy; yA,B,···n denotes the
temperature-dependent many-body probability of find-
ing atomic species A,B, · · · in the corresponding ω clus-
ter with coordination shell, denoted by n.

Using the form of Eq. (6), two-body cluster correlation
function written in form26:

〈Γ(s)
2,n〉 =

∑
A,B

(¯̄τK ⊗ ¯̄τK)(s),A,By
AB
2,n , (7)
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where ⊗ denotes the matrix direct product. Ac-
cordingly, the three and four-body correlation functions
within the matrix formulation are defined as:

〈Γ(s)
3,n〉 =

∑
A,B,C

(¯̄τK ⊗ ¯̄τK ⊗ ¯̄τK)(s),A,B,Cy
ABC
3,n , (8)

and

〈Γ(s)
4,n〉 =

∑
A,B,C,D

(¯̄τK ⊗ ¯̄τK ⊗ ¯̄τK ⊗ ¯̄τK)(s),A,B,C,Dy
ABCD
4,n ,

(9)
respectively.

The 3- and 4-body probability functions can be deter-
mined by the inverse of the respective correlation func-
tions and they are presented in Eqs. (A2) and (A3).

The complete set of decorations (s) for a cluster of size
ω corresponding to the Kω list of indices is generated
by applying the permutation representation of the space
group # 225 (O5

h) elements to the decorations belonging
to the cluster and its subclusters. With symmetry, all
correlation functions are generated from the given sym-
metrically unique set of correlations for each cluster in
the Hamiltonian expansion.

B. Chemical Short-Range Order Parameters

Chemical Short-Range Order (SRO) in the alloys can
be analysed using the Warren-Cowley SRO parameters.
They can be obtained from the relation of pair prob-
abilities and point probabilities by using the following
expression:

αABn = 1−
yAB2,n

cAcB
. (10)

The Warren-Cowley SRO parameters have been formu-
lated in26,27 based on the principles, that e.g. for clusters
of two sites, the decorations indices can be interchanged
because the space group O5

h contains two-fold symmetry
axes and translations that transform one site into the
other. For clusters with more than 2 sites, the permuta-
tion operators are more complex and depend on the spe-
cific sites occupied in the clusters. For example, for the
3-body cluster labelled by ω = 3;n = 2 in Fig. 1, using
group theoretical arguments it can be found for a three
sites cluster that the symmetrically unique decoration

(131) is equivalent to the (113) i.e. 〈Γ(131)
3,2 〉 ≡ 〈Γ

(113)
3,2 〉.

The fact that the inverse of a Kronecker product of two
matrices is equivalent to the product of inverse matrices
can be used to express the pair probabilities in terms of
pair correlations. For this, the inverse of ¯̄τK matrix, ¯̄τ−1

K

can be obtained with its elements defined as follows26:

(¯̄τ−1
K )ij =

1

K



1 if j = 0 ,

−2 sin
(
2πd j2e

σi
K

)
if j > 0 and even,

−2 cos
(
2πd j2e

σi
K

)
if j > 0

and j < K − 1

and j is odd,

− cos
(
2πd j2e

σi
K

)
if j = K − 1

and j is odd.

(11)
The exact forms of ¯̄τ−1

K matrices for the 2-, 3- and
4-component systems in presented in Eq. A4.

Using the ¯̄τ−1
K matrix, the point probability function

is written as:

yA1,1 =
∑
s

(¯̄τ−1
K )A,(s)〈Γ

(s)
1,1〉, (12)

and from Eq. (7) the pair probability function is written
as:

yAB2,n =
∑
s

(¯̄τ−1
K ⊗ ¯̄τ−1

K )A,B,(s)〈Γ
(s)
2,n〉. (13)

Since MC simulations with the Effective Cluster Inter-
action (ECI) from CE give an information about 〈Γ(s)

2,n〉,
the Warren-Cowley parameters can be easily calculated
directly form MC simulations. The exact formulas for
the calculation of the Warren-Cowley SRO parameters
for each pair of atoms in the 4-component system, used
in this work, is presented in Eq. A5, which were for-
mulated in Ref.27. More explicitly, the Warren-Cowley
SRO parameters can be determined in terms of corre-
lation functions from MC simulations using the matrix
formulation in Eq. 11. The explicit formula for the SRO
Warren-Cowley parameters is given as:

αABn = 1−

∑
s

(¯̄τ−1
K ⊗ ¯̄τ−1

K )A,B,(s)〈Γ
(s)
2,n〉(∑

s
(¯̄τ−1
K )A,(s)〈Γ

(s)
1,1〉
)(∑

s
(¯̄τ−1
K )B,(s)〈Γ

(s)
1,1〉
) .

(14)

C. Configurational Entropy Contribution

Free energy of mixing for the alloy is defined as follows:

Fmix = Hmix − TSmix, (15)

where the mixing entropy term

Smix = Sconfmix + Svibmix + Selmix + Smagmix , (16)

consists of configurational, vibrational, electronic and
magnetic mixing entropies. Relative magnitudes of the
aforementioned contributions to the mixing entropy have

been estimated in Refs.2,4,28–30 to be following: Sconfmix >
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Svibmix > Selmix > Smagmix , and thought the maximal magni-
tude of Svib can reach the value of 3 times larger than the
maximal value of Sconf , the values of Svibmix are closer to
the electronic and magnetic contributions. Hence, even
though the vibrational, electronic and magnetic mixing
entropies influence the stability of the alloy, the main
entropic contribution to the Fmix comes from configura-
tional mixing entropy.

The cluster contribution to the entropy as determined
from Monte Carlo calculations of correlation functions
using the approach established in Ref.26, each cluster re-
sulting in an entropy formula and denoted by ε. The
generalized formula for the entropy, taking into account
all many-body interactions is then expressed as:

Sconfω,n = kB
∑
q

wω,nq
∑
s

y(s)
q ln(y(s)

q ). (17)

The index (s) of the inner sum runs for all possible dec-
orations of clusters of any given cluster indexed by q,
which are given by Kωq total decorations.

The weights in the sum are worked out following
the iterative Barker formula31 in the formalism of clus-
ter variation method. Detailed derivation is formulated
elsewhere26, and the explicit values are listed in the Sup-
plementary materials, Table SIII.

D. Computational Details

DFT calculations with collinear spin-polarization were
performed using the projector augmented wave (PAW)
method implemented in VASP32–37. Exchange and cor-
relation were treated in the generalized gradient ap-
proximation GGA-PBE38. The core configurations of
Fe, Cr, Mn and Ni in PAW potentials were [Ar]3d74s1,
[Ar]3d54s1, [Ar]3d64s1 and [Ar]3d94s1, respectively.

Total energies were calculated using the Monkhorst-
Pack mesh39 of k-points in the Brillouin zone, with k-
mesh spacing of 0.2 Å−1. This corresponds to 12x12x12
k-point mesh for a four-atom fcc conventional unit cell.
The plane wave cut-off energy used in the calculations
was 400 eV. The total energy convergence criterion was
set to 10−6 eV/cell, and force components were relaxed
to 10−4 eV/Å.

Mapping DFT energies to CE was performed using the
ATAT package24,25,40,41. In order to find the ECI for
binary fcc alloys, the initial database of 28 structures
from Ref.42 was used. For ternary fcc alloys the initial
database consisted of 98 structures adapted from Ref.43.
The quaternary database was constructed following the
approach from Ref.21: the ternary database was consid-
ered, the symmetry and the number of non-equivalent
positions (NEPs) in each structure was checked and the
structures with the number of NEPs greater than three
were included in the quaternary fcc structure database by
populating the higher NEPs with various combinations
of elements.

Fe-Cr-Mn-Ni alloys show complex magnetic behavior
even in collinear calculations with competing stability
of non-magnetic (NM), ferromagnetic (FM), antiferro-
magnetic (AFM) and ferrimagnetic (FiM) configurations.
Thus, full relaxations starting from various initial mag-
netic configurations were performed in order to find the
most stable magnetic order characterizing a given struc-
ture.

Only the most stable magnetic configurations for each
compositions have been taken into account during the
construction of the data set, which later have been
mapped to CE, which allowed to account for the mag-
netism in the implicit way. The CE routine of the ATAT
code has produced the number of structures, absent in
the initial data set. This helped to construct more pre-
cise concentration mesh of structures, calculated with
DFT. Fitting of the final DFT structures data set to the
CE produced the ECIs, which were used in the following
Monte Carlo simulations.

Mapping of the mixing enthalpies of 835 structures was
conducted for quaternary system and the cross-validation
score of 12.95 meV was achieved. Such value of Cross-
Validation Score (CVS) is considered to be reasonable
taking into account the complex magnetic structure of
the investigated system. The set of clusters, which have
minimized the CVS, consists of 6 two-body, 2 three-
body and 1 four-body undecorated clusters, illustrated
in Fig. 1. In this study, the CE Hamiltonian have been
constructed for the quaternary fcc Fe-Cr-Mn-Ni system
as well as for the corresponding ternary and binary sub-
systems. For the sake of consistency, for all the systems,
clusters with the same size and relative positions of points
have been taken into account (see Fig. 1). Therefore, the
enthalpy of mixing for all considered systems in the CE
formalism can be written as:

∆Hmix(~σ) =
∑
ω,n,s

J
(s)
ω,nm

(s)
ω,n〈Γ(s)

ω,n(~σ)〉 =

= J
(0)
1,1

〈
Γ

(0)
1,1

〉
+
∑
s
J

(s)
1,1

〈
Γ

(s)
1,1

〉
+

+
6∑

n=1

∑
s
m

(s)
2,nJ

(s)
2,n

〈
Γ

(s)
2,n

〉
+

+
2∑

n=1

∑
s
m

(s)
3,nJ

(s)
3,n

〈
Γ

(s)
3,n

〉
+

+
∑
s
m

(s)
4,1J

(s)
4,1

〈
Γ

(s)
4,1

〉
,

(18)

where J
(s)
ω,n are different in each studied subsystem.

Size ω, label n, decoration (s), multiplicity m
(s)
ω,n, co-

ordinates of points and J
(s)
ω,n (in meV) of aforementioned

clusters are listed in the Supplementary materials, Ta-
ble S I.

ECIs, obtained using the structure inversion method44,
for studied binary and ternary subsystems as well as for
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ω=2;n=6ω=2;n=1 ω=2;n=2 ω=2;n=3 ω=2;n=4

ω=2;n=5 ω=3;n=1 ω=3;n=2 ω=4;n=1

FIG. 1: Undecorated 2-, 3- and 4-body clusters m
(s)
ω,n

used in this work.

quaternary system are presented in the corresponding
sections.

Semi-canonical MC simulations were performed also
using the ATAT package. Most of the simulations were
performed using a cell containing 2048 atoms in the form
of 8x8x8 fcc unit cell. For each composition, simula-
tions were performed starting from a disordered high-
temperature state at T = 3000 K . The alloy was then
cooled down with the temperature step of ∆T = 100 K,
with 2000 equilibration and accumulation Monte Carlo
passes. Thermodynamic Integration (TDI) calculations
were performed with the temperature step of ∆T = 5 K
in order to obtain the accurate values of the configura-
tional entropy.

III. PHASE STABILITY AT 0 K

A. Pure Elements

Extensive calculations of total energy as a function of
volume have been conducted for known and hypothetical
crystal structures and magnetic configurations of Fe, Cr,
Mn and Ni in order to understand the stability of pure
elements and obtain the reference energies of the most
stable magnetic configurations for the CE method.

The most stable fcc structures of pure elements from
the current studies at 0 K are: AntiFerroMagnetic
Double-Layer (AFMDL) Fe, Non-Magnetic (NM) Cr,
FerroMagnetic (FM) Ni and AntiFerroMagnetic Single-
Layer (AFMSL) Mn. Global ground states of pure ele-
ments from the current studies at 0 K are following: FM
bcc Fe, AFM bcc Cr, FM fcc Ni, AFM σ-phase α-Mn.

Experimental ground states of pure elements at 0 K
are: non-collinear bcc FM Fe45, spin-density wave bcc
Cr46, FM fcc Ni45. Experimental results for Mn indi-
cate both collinear and non-collinear AFM σ-phase α-
Mn, as discussed further. However, the total energies
per atom of collinear and non-collinear configurations ob-
tained from DFT calculations47 are almost indistinguish-
able.

Due to the reason of the time scale, the non-collinearity
has not been considered in the current work, and the

FIG. 2: Calculated equations of state for known and
hypothetical crystal structures and magnetic

configurations of Mn.

enthalpies of formation have been calculated with the
respect to the collinear global ground states.

Binding energy curves for different Mn structures are
shown in Fig. 2 with a reference to the binding energy
of α-Mn GS (E − EAFMα−Mn). It can be seen from Fig. 2,
that lowering the volume per atoms significantly below
the equilibrium volume for each structure lead the mag-
netic ordering to change to the non-magnetic, indicating
the high-pressure magnetic phase transition. The com-
parison of magnetic ordering, volume per atom and the
E−EAFMα−Mn values with experimental and theoretical re-
sults is presented in Table I. Magneto-volume relation
for studied structural and magnetic phases of Mn with
non-zero Average Magnitude of Magnetic Moments (AM-
MMs) is presented in Fig. 3 and it shows that the volume
per atom increases with increasing AMMM in all struc-
tures.

The GS of Mn, α-Mn, has a very complex atomic struc-
ture. The lattice is identified as σ-phase with 58 atoms
in the unit cell and 4 crystallographically and magnet-
ically inequivalent sites, where the half of the atoms in
each site is ordered antiferromagnetically to the other
half. Table II presents the comparison of the magnitudes
of magnetic moments for this sites with the previous ex-
perimental and theoretical results. It can be seen that
the values obtained in this work lie within the range of
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TABLE I: Magnetic ordering, AMMM (in µB), volume per atom (in Å3) and E − EAFMα−Mn (in meV) for different
phases of pure Mn compared to previous experimental and theoretical data.

Phase
Magnetic ordering AMMM [µB ] V/at [Å3] E − EAFMα−Mn [meV]

Prev. Present Theor. Exp. Present Theor. Exp. Present Prev. Present

α-Mn AFM
NM 0 10.75a 10.74 21

AFM 0.5b 0.57 11.08c 12.05d 11.13 0c 0

β-Mn FiM
NM 0 12.17e 10.81 72

AFM 0.5e 0.24 12.40e, 10.84c 12.44e,f,g 10.82 63c 71

γ-Mn (fcc) AFM

NM

2.13h

0

11.16c 12.95i

10.67

67c

102

AFMSL 1.84 11.37 52

AFMDL 1.28 11.02 94

AFMQL 1.14 10.98 93

δ-Mn (bcc) AFM

NM 0

11.12c

10.70

146c

185

FM 0.99h 0.85 10.86 167

AFMDL 0.54 10.77 181

AFMTL 0.98 10.97 157

AFMQL 0.78 10.95 158

ε-Mn (hcp) AFM
NM 0 10.63 72

AFM 0.20h 0.53 10.72c 10.69 61c 70

a - Hobbs et al.47, b - Shull et al.48, c - Hafner et al.49, d - Lawson et al.50, e - Asada et al.51, f - Preston et al.52, g - Sliwko et al.53, i -
Wyckoff et al.54, h - Asada et al.55

(a) (b)

FIG. 3: Magneto-volume relation (a) for all calculated Mn structures at equilibrium volume and (b) for 4 sites in
AFM α-Mn.

previous experimental and theoretical results.

Due to the fact that the ground state crystal lattices
of Fe, Cr, Mn and Ni belong to different crystallographic
groups, the analysis of alloy stability in Sections III.2 -
III.5 have been performed both in terms of enthalpy of
mixing and enthalpy of formation. Since only Ni ground
state is fcc, it will act as a fcc phase stabilizer - the in-
crease of Ni content will more likely result in the stabi-
lization of fcc lattice structure. In contrary to Ni, Cr has
the highest difference of Efcc − EGS = 0.394 eV, and
therefore can inhibit a formation of fcc phase in favor of
bcc phase. The values of Efcc − EGS for Fe and Mn are
5 times smaller compared to the Cr.

B. Binary Subsystems

In this subsection, there are presented enthalpies of
formation, enthalpies of mixing, volumes per atom and
AMMM obtained using DFT at 0 K for the binary sys-
tems containing Mn, namely Cr-Mn, Fe-Mn and Mn-Ni.
Since the methodology and the results for Fe-Cr, Cr-Ni
and Fe-Ni are similar to one used in Ref.21, they are de-
scribed in the Supplementary materials, Section S I.A-C.
ECIs for all binaries are also presented. A chosen set
of undecorated clusters (6 two-body, 2 three-body and
1 four-body) gives for binaries the same numbers of the
decorated clusters. The interpretation of ECIs is given
for the first and second nearest neighbors (1NN and 2NN,
respectively).
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TABLE II: AMMM (in µB) of atoms on different sites in antiferromagnetic α-Mn structure compared to previous
experimental and theoretical data.

Site No. of atoms Magnetic moment [µB ]

Exp.a Exp.b Exp.c Exp.c Exp.d Theor.e Present

Col. Col. Col.1 Col.2 N.Col. N.Col. work

I 2 1.35 1.8 1.54 2.5 2.83 3.19 2.94

II 8 1.35 1.4 1.54 2.5 1.83 2.79 2.39

III 24 0.99 1.2 3.08 1.7 0.61 1.81 1.38

IV 24 0.22 0.1 0 0 0.47 0.02 0.02

a - Kunitomi et al.56, b - Oberteuffer et al.57, c - Kasper and Roberts et al.58, d - Lawson et al.50, e - Hobbs et al.47.

Enthalpies of formation of binary structures are cal-
culated as the energy of the structure with respect to
the energies of pure GSs, i.e. antiferromagnetic bcc-Cr,
ferromagnetic bcc-Fe, antiferromagnetic α-Mn and ferro-
magnetic fcc-Ni. Formation energies of the most stable
pure fcc states are connected by a dashed line that rep-
resents the ”zero line” of mixing enthalpies of the consid-
ered systems, so all structures with energies below and
above it possess negative and positive enthalpies of mix-
ing, respectively.

The effect of magnetism on the volume of structures is
analysed by comparing the calculated values of volume
to the linear heuristic estimate, called the Vegard’s law,
in which the value of volume per atom for the mixture is
equal to the sum of volumes per atom of it’s constituents
factoring their concentration.

The binary enthalpies of mixing from DFT calculations
and CE are compared in the Supplementary materials,
Fig. S 4.

1. Cr-Mn Binary

The final database for the CE model for fcc Cr-Mn bi-
nary consists of 55 structures and the Cross-Validation
Score (CVS) between DFT and CE is equal to 8.3 meV.
ECIs (Fig. 4(b)) have the smallest absolute values, com-
pared to the other binaries. 1NN ECI is positive and
2NN ECI is negative, which means that unlike elements
are attracted in 1NN and repelled in 2NN.

The ground states of Cr-Mn system in terms of mix-
ing enthalpy are Cr3Mn (Z1(100)) and CrMn (Z2(100)),
but all fcc Cr-Mn structures exhibit positive enthalpy
of formation (Fig. 5(a)). As a consequence, no stable
fcc phases are observed experimentally for this system.
Enthalpy of mixing shows tendency to decrease in near-
equiatomic concentration region, whereas enthalpy of for-
mation shows strong linear drop with the increase of Mn
concentration.

Chromium suppresses high magnetic moment of Mn
resulting in NM region with the Cr concentration larger
than 50at.%, where the volumes per atom hold al-
most perfectly the Vegard’s law for NM reference struc-
tures(Fig. 5(b)). For Cr concentration smaller than

50at.% structures are FiM and the volumes per atom lay
between magnetic and non-magnetic Vegard’s law esti-
mates, where Mn dominates the magnetic structure. The
value of AMMM increases with the increase of Mn con-
centration. The Cr-rich NM stability region and the Mn-
rich FiM stability region are divided with non-magnetic
CrMn structure (Fig. 5(c)).

2. Fe-Mn Binary

The final CE database for fcc Fe-Mn binary consists
of 58 structures and CVS between DFT and CE is 11.6
meV and ECIs are given in Fig. 4(d). The 1NN ECI is
positive and the 2NN ECI is negative and twice larger,
which means that the unlike elements are strongly re-
pelled in the second coordination shell and attracted in
the first coordination shell - this favors the formation of
L12 Fe3Mn phase, which is the ground state of Fe-Mn
system in terms of enthalpy of mixing.

The other alloy GS in terms of enthalpy of mix-
ing are FeMn31, FeMn15 and Fe3Mn4. Trends in en-
thalpy of mixing (Fig. 6(a)) are consistent with previous
calculations59. The enthalpies of formation of all Fe-Mn
structures are positive, which means that at 0 K there are
no stable compositions from the point of view of enthalpy
of formation. However the values of enthalpies tend to
decrease in near-equiatomic concentration region, which
is consistent with previous calculations60, and with previ-
ous assessments of metastability of fcc alloys61. This can
be related to the fact that the most stable α-Mn structure
has much more complex lattice in ground state than fcc,
and GS of Fe is ferromagnetic bcc within collinear cal-
culations, although it should be noted that Fe has stable
fcc lattice above 1190 K, and austenite steels, which have
fcc lattice, can be stablized to exist even at room tem-
perature. The study of Fe-Mn alloy powders has shown a
presence of martensite (bcc) and austenite (fcc)62,63. The
latter is observed as a single phase in Fe70Mn30 alloy64,
which is close in a concentration to the fcc Fe3Mn ground
state.

In the Fe-Mn binary subsystem, the volumes of com-
positions lie between the Vegard’s law estimates for mag-
netic and non-magnetic reference structures (Fig. 6(b)).
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FIG. 4: ECIs for binary subsystems.

FIG. 5: (a) Enthalpy of formation, (b) average
magnitudes of magnetic moments per atom, (c) volume
per atom of fcc Cr-Mn structures calculated using DFT.
The results obtained for the most stable structures and

magnetic configurations for each considered alloy
composition are indicated by filled shapes, the less

stable structures are indicated by open shapes.

Fe-rich and Mn-rich structures almost perfectly satisfy
the estimate for magnetic reference structures, but tend
to decrease with the proximity of Fe-Mn ratio to the
equiatomic composition.

The antiferromagnetism in fcc Fe-Mn alloys was exper-
imentally observed in wide range of concentrations65–67.
Current results show that the magnetic moments of Mn
atoms are antiferromagnetic to Fe for almost all struc-
tures. AMMMs of both elements slowly decrease with
increasing Mn concentration (Fig. 6(c)). AMMM for fcc
Fe50Mn50 structure is 1.5 µB, which is close to the experi-
mental value of 1.2 µB estimated for Fe50Mn50 disordered
solid solution in Ref.66. AMMMs of the system are de-
creasing with increasing Mn concentration and are dom-
inated by Fe atoms in Fe-rich region, and by Mn atoms
in Mn-rich region. Average magnitudes of magnetic mo-
ment of Mn atoms vary between the value for fcc AFMSL
Mn in Mn-rich region and site-I magnetic moment from
α-Mn in Fe-rich region (see Table II).

3. Mn-Ni Binary

For the fcc Mn-Ni system, the database for the CE
model consists of 52 structures and CVS between DFT
and CE is 11.6 meV. ECIs (Fig. 4(f)) are the strongest
among all binaries. Similarly to Fe-Mn, the 1NN ECI
is positive and 2NN is 1.5 times stronger and negative,
which translates into attraction of unlike atoms in 1NN
and repulsion in 2NN. This favors the formation of MnNi3
L12 phase, which is the ground state of Mn-Ni system.

Accoding to the current studies, the fcc Mn-Ni bi-
nary system has two GS in terms of both formation
and mixing enthalpies (Fig. 8(a)): antiferromagnetic L10

MnNi which has been observed with X-ray diffraction in
Refs.69,70 (see Fig. 7(a)) and ferromagnetic L12 MnNi3
at 75at.%Ni which has been observed in (works cited in
Ref.71) (see Fig. 7(b)). The formation enthalpy of L10

MnNi is the most negative among all studied structures,
including ternary and quaternary (see Table III).
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FIG. 6: (a) Enthalpy of formation, (b) average
magnitudes of magnetic moments per atom, (c) volume
per atom of fcc Fe-Mn structures calculated using DFT.

The notation is the same as in Fig. 5. Experimental
data is adapted from Ref.68

(a) (b)

-3.25µB 3.25µB

FIG. 7: Atomic structure and magnetic moments of the
binary Mn-Ni ground states calculated in a conventional
fcc 2x2x2 super cell using collinear magnetism in DFT:
(a) MnNi and (b) MnNi3. The color code of the arrows

shows the magnitudes of magnetic moments.

Volumes per atom for NM structures are in a good
correspondence with the Vegard’s law estimate for NM
structures (Fig. 8(b)), whereas the values of volumes per
atom for both FM and FiM structures become highly
overestimated, when moving from pure elements to the
equiatomic concentration, compared to the Vegard’s law
estimate for magnetic structures. Values of volumes per
atom for the structures with Mn concentration between 0
and 30at%, which are mostly FM, are in an excellent cor-
respondence with the experimental data from Refs.72,73,
whereas for higher Mn concentration the agreement grad-

ually becomes worse, compared to experimental data
from Refs.74,75.

Regions of stability of different magnetic configurations
are divided by antiferromagnetic L10 MnNi. Magnetic
ordering of the most stable sturctures with more than
50at.% Mn concentration is AFM or FiM (Fig. 8(c)), and
at Mn concentrations lower than 25at.% the magnetic
ordering of the most stable structures is FM, which is
consistent with the experimental observations76–78. The
boundary of this division is approx. 33 at.%Mn. The
value of AMMM of manganese is growing with the in-
creasing Ni concentration, being equal to the value of
magnetic moment for fcc AFMSL Mn (see Table II) at
concentrations close to 0at.% Ni, and to the value of mag-
netic moment of Type I atom in AFM α-Mn at concen-
trations close to 100at.% Ni (see Table II). The values of
AMMM are underestimated compared to the experimen-
tal results from Ref79 up to 20at.% Mn, but are close at
higher Mn concentration. The values of AMMMs for FM
structures increase with the increase of Mn concentra-
tion. The AMMM of Ni is very close to the experimental
values from Ref.79.

From current studies, Mn atoms in the L10 MnNi form
two sublattices, which are antiferromagnetically ordered
to each other, with the magnitude of magnetic moment
per atom of 3.15 µB and Ni atoms do not have magnetic
moment. The AMMM of 0 for Ni closely corresponds to
one of the estimates in Ref.80, and the AMMM for Mn
lies between the estimates from Refs.80, 4µB, and Ref.81,
2.4µB. Simulation and experimental results from Ref.82

show that both bulk and thin film Mn50Ni50 have Mn
in high-spin state with values of magnetic moment per
atom of 2.8-3.9µB and Ni with strongly reduced values of
magnetic moment per atom. Total AMMM of 1.58µB is
very close to the values from Ref.75, 1.9µB and adapted
from Ref.80, 2µB.

In the fcc L12 MnNi3 FM structure, Mn atoms have the
magnetic moment of 3.252 µB, and Ni atoms have on av-
erage the magnetic moment of 0.53 µB, which closely cor-
responds to the experimental measurements from Ref.78

with µMn = 3.18 µB and µNi = 0.3 µB, Ref.76 with µMn =
3.7 µB and µNi = 0.6 µB, and Ref.77 with µMn = 3.6 µB

and µNi = 0.31 µB. Total AMMM of 1.21µB is also very
close to the experimental value of 1.1µB from Ref.77.

C. Ternary Subsystems

In this subsection, the results of DFT calculations at
0 K for Fe-Cr-Mn, Fe-Mn-Ni and Cr-Mn-Ni ternary struc-
tures including the underlying binaries are presented and
analysed. Since the methodology and the results for Fe-
Cr-Ni ternary alloy are similar to one used in Ref.21, they
are described in the Supplementary materials, Section
S I.D. ECIs have been obtained based on the chosen set
of undecorated clusters (6 two-body, 2 three-body and
1 four-body) which gives for ternaries 18 two-body, 10
three-body and 5 four-body decorated clusters.
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FIG. 8: (a) Enthalpy of formation, (b) average
magnitudes of magnetic moments per atom, (c) volume
per atom of fcc Mn-Ni structures calculated using DFT.

The notation is the same as in Fig. 5. Experimental
data is adapted from: a - Cable et. al81, b - Petrillo et.
al76, c - Kasper et. al80, d - Kren et. al75, e - Paoletti
et. al77, f - Tange et. al83, g - Kajzar et. al79, h - Shull
et. al78, i - Gokcen72, j - Honda et. al73, k - Pearson et.

al74.

Enthalpies of formation, enthalpies of mixing, volumes
per atom and AMMMs for all ternary alloys are presented
as the color-coded ternary diagrams, where color repre-
sents values of a property of choice and three axis cor-
respond to the concentrations of respective chemical ele-
ments. In such a representation, only one value for each
composition can be presented, which is chosen to be the
value of the most stable structure for each composition
on all ternary plots. Values in between are interpolated
to give the more readable picture.

The enthalpies of mixing from DFT calculations
and CE are compared in the Supplementary materials,
Fig. S 6-S 9.

1. Fe-Cr-Mn Ternary

The final set of structures applied for the development
of CE model for fcc Fe-Cr-Mn ternary consists of 260
structures, 89 of which are three-component and the re-

sulting CVS is 11.95 meV. The absolute values of ECIs in
fcc Fe-Cr-Mn system are the smallest in comparison with
other ternary systems (Fig. 9(a)). Moreover, the 1NN
and 2NN interactions are the strongest ones, which shows
that the interactions of further neighbors and multi-body
ECIs are almost negligible in Fe-Cr-Mn alloys.

There are three ternary ground states in terms of en-
thalpy of mixing: FeCr4Mn, which has a similar structure
to Fe-Me from Ref.84, Fe5Cr2Mn, which is a derivative of
L12

84, Fe6CrMn, which is the ABC6-type structure, ob-
served previously in CuMnPt6

85,86 that evolved through
Cu3Au-type alloy, in Cu[Mn,Fe]Pd6

87 and in Ni6SiTi88.
In terms of enthalpy of formation there are no ground
states and the structures in general are more unstable
in the Cr-rich region (Fig. 10(b)). No stable ternary Fe-
Cr-Mn fcc intermetallic phases are found in literature89.
Metallographic analysis, X-ray diffraction and electron-
probe micro analysis results show that the single-phase
region of the fcc phase is only extended up to 5at.% Cr
and up to 38at.% Mn in the ternary phase diagram at
923 K, whereas for Mn content less than 25at.% the co-
existence of fcc and fcc+σ phases is observed90.

The Cr-rich region, limited at 70at.% Cr on Cr-Mn
edge and 30at.% Cr on the Fe-Cr edge shows the non-
magnetic ordering, and the rest of the alloy shows the
ferrimagnetic ordering (Fig. 10(c)) - the separation lines
are shown by green dashed lines, which are constrained
on ends (binary edges) by the compositions of DFT cal-
culated structures.

Volume-concentration dependency for Cr-rich NM re-
gion strongly corresponds to the Vegard’s law estimate,
whereas for FiM region the volume per atom increases
with the AMMM of the alloy and it has the highest val-
ues in the Fe-rich region (Fig. 10(d)). The concentration
dependency behavior of studied parameters resembles the
interpolation of binary subsystems plots.

2. Cr-Mn-Ni Ternary

The cross-validation score between CE and DFT for
the fcc Cr-Mn-Ni ternary system is 12.74 meV. The fi-
nal database of structures consists of 250 structures, 66
of which are three-component. Absolute values of 1NN
ECIs are positive and the largest among other ternaries
(Fig. 9(c)).

The ternary alloy ground state in terms of enthalpy
of mixing and enthalpy of formation (Fig. 11(a,b)) is
CrNi2Mn, previously not described in a literature, which
has the same space group (P4/mma) and magnetic space
group (Pm’m’m) as previously predicted Fe2CrNi phase
from Ref.21 (see Table III), althought the relative mag-
nitudes of magnetic moments are different: in Fe2CrNi,
the absolute value of magnetic moment of Cr (1d) is the
highest, 2.436 µB , followed by Fe (1g and 1f) with val-
ues 2.046 µB and 2.123 µB , and Ni (1a) having the lowest
AMMM of 0.153 µB ; and in CrMnNi2 the highest value of
magnetic moments is held by Mn (1a), equal to 2.872 µB ;
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(a) (b)

(c) (d)

FIG. 9: ECIs for ternary subsystems.

1d is similarly occupied by Cr with AMMM of 2.543 µB ;
1g and 1f are occupied by Ni atoms with the values of
magnetic moments equal to 0.133 µB and 0.338 µB , re-
spectively. Since ordered ternary structures with neg-
ative formation enthalpy were not found in Fe-Cr-Mn
and Fe-Mn-Ni systems, the CrNi2Mn is the most stable
ternary compound. Ternary ground state CrNi2Mn and
the ground states of underlying binary subsystems are
marked on Fig. 11 as filled circles.

The Cr-Mn-Ni system has 3 regions of magnetic order-
ing (Fig. 11(c)) - non-magnetic in Cr-righ region, limited
at 70at.% Cr in ternary (Cr70Mn15Ni15), 30at.% Cr at
Cr-Mn binary and 50at.% at Cr-Ni binary; ferromagnetic
in Ni-rich region, limited at 50at.% Ni in Cr-Ni binary
and 30at.% Ni at Mn-Ni binary; and the rest of alloys are
ordered ferrimagnetically - all indicated by green dashed
lines. Values of volumes per atom in the NM region corre-
spond to the Vegard’s law estimate in the Cr-Mn region
and are underestimated for Ni-rich region (Fig. 11(d)).
Volume per atom in FM and FiM regions increases with
the increasing average magnitude of magnetic moment
per atom in the alloy. Concentration dependency behav-
ior of studied parameters resembles the interpolation of
binary subsystems plots.

3. Fe-Mn-Ni Ternary

The total number of structures used in the CE method
for the fcc Fe-Mn-Ni system is 210 with 46 three-
component structures and the CVS is 11.83 meV. ECIs
(Fig. 9(d)) in 2NN are negative and the strongest com-
pared to other 2-body interactions. They have also the
largest absolute value compared to other ternary subsys-
tems.

In terms of enthalpy of mixing there is one ternary
ground state, fcc FeMnNi6 (Fm-3m) (Fig. 12(a)). How-
ever, none of structures is a ground state in terms of
formation enthalpy. Ground states of underlying binary
subsystems are indicated by filled circles on all subplots
of Fig. 12. In general, structures with negative enthalpy
of formation are located in the Ni-rich region, due to the
presence of fcc stabilizing Ni in sufficient concentrations
(Fig. 12(b)).

Average magnitudes of magnetic moments per atom
from current calculations are compared to the neutron
diffraction data from Refs.91,92 for alloys with composi-
tion Fe75−xNixMn25, x=0-25at.%. AMMM for FM and
FiM structures, obtained in current work, lay between
the AMMM for antiferromagnetic structures at 77 K and
paramagnetic structures.

Aging experiments for Fe75Ni20Mn5
93 and

Fe7.8Mn8.2Ni84
94 have indicated the low-temperature
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(a) (c)

(b) (d)

FIG. 10: Interpolated data obtained from the results calculated using DFT for the most stable structures and
magnetic configurations for Fe-Cr-Mn alloys on fcc lattice: (a) enthalpy of mixing; (b) enthalpy of formation; (c)

average magnitudes of magnetic moments; and (d) volume per atom. Green dashed lines separate the regions with
different predominate magnetic configuration, which are indicated in (c).

precipitation of the L10 MnNi and L12 MnNi3 phases.

Magnetic stability is divided into two regions
(Fig. 12(c)) - ferromagnetically ordered Ni rich region,
limited at 50at.% Ni in ternary (Fe25Mn25Ni50) and
40at.% Ni at Fe-Ni binary, and the FiM ordered region
in the rest of the alloy - all regions indicated by green
dashed lines. Simulation results are in a good corre-
spondence with the experimental magnetic phase dia-
gram for ternary95,96 and pseudobinary Fe50NixMn50−x,
x=9.88-39.74at.%97. The lines separating the regions of
stability of FM and AFM, presented in Fig. 12(c) are in
good agreement with separation line obtained experimen-
tally at 4 K in Ref.95 (indicated as green dotted line in
Fig. 12(c)) and the experimental line of phase transition
with changing Ni concentration from Ref.97 (indicated as
solid green line in Fig. 12(c)). The antiferromagnetic L10

MnNi structure has a very negative enthalpy of forma-

tion, which also corresponds to the ordered MnNi region
in Ref.98.

As Fe-Mn-Ni ternary is fully magnetic, the volume
per atom has overestimated values compared to the Ve-
gard’s law estimate and tends to increase with the in-
creasing AMMM (Fig. 12(d)). The X-ray diffraction re-
sults for induction-melted specimens with varying com-
position Fe75−xNixMn25, x=0-25at.%, annealed for 15
hours at 900 ◦C and water quenched92, indicate that all
3-component specimens have the disordered fcc lattice
with the average volume per atom of 11.69 Å3, which is
close to the results of current calculations - 11.33 Å3.
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FIG. 11: Interpolated data obtained from the results calculated using DFT for the most stable structures and
magnetic configurations for Cr-Mn-Ni alloys on fcc lattice: (a) enthalpy of mixing; (b) enthalpy of formation; (c)

average magnitudes of magnetic moments; and (d) volume per atom. Green dashed lines separate the regions with
different predominate magnetic configuration, which are indicated in (c). Filled circles represent ground states.

D. Fe-Cr-Mn-Ni Quaternary System

The final database of structures for fcc Fe-Cr-Mn-
Ni system contains all other subsystems databases and
consists of 831 structures total, 191 of which are four-
component. The cross-validation score between CE
and DFT is equal to 12.95 meV. Differences between
DFT and CE enthalpies of mixing for the most stable
structures of all studied compositions can be seen in
Figs. 14(a) and 14(b). A chosen set of undecorated clus-
ters gives for quaternary system 36 two-body, 28 three-
body and 15 four-body decorated clusters. ECIs for qua-
ternary systems are represented in Fig. 13 (note that the
ECIs scale is different compared to ternary and binary
subsystems). The exact values of ECIs for quaternary
system are given in the Supplementary materials, Ta-
ble S I.

Since DFT calculations in current studies give the re-
sults for 0 K and do not take into account the pressure,
the concentration dependence of any chosen property can
be represented analogously to how it has been done for
ternary components - as a color-coded diagram depend-
ing on the concentration of 4 components. In the authors’
opinion, the most representative way to illustrate the
varying concentration of 4 components is the tetrahedron
representation, where each vertex corresponds to the con-
centration of considered element. The transformation of
a tetrahedral four-component coordinates into 3D carte-
sian coordinates have been worked out in Refs.99,100. In
such a representation, similarly to a ternary case, only
one value per composition can be represented, and there-
fore in following plots only values for the most stable
structures for each composition are shown.

Quaternary alloy ground state in terms of both mixing
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(a) (c)

(b) (d)

FIG. 12: Interpolated data obtained from the results calculated using DFT for the most stable structures and
magnetic configurations for Fe-Mn-Ni alloys on fcc lattice: (a) enthalpy of mixing; (b) enthalpy of formation; (c)

average magnitudes of magnetic moments; and (d) volume per atom. Green dashed lines separate the regions with
different predominate magnetic configuration, which are indicated in (c). Filled circles represent ground states.

Experimental data is adapted from a Ref.95 (line that separate the regions of FM and AFM stability) and b Ref.97

(line of FM-AFM magnetic phase transition with the change of Ni concentration).

and formation enthalpies (Fig. 14(a,c)) is FeCr2MnNi4
(I4/mmm), which is not found in literature, with the
structure being the derivative of previously described
ABC6. Its atomic and magnetic configuration is illus-
trated in Fig. 15. Cr atoms are ordered as simple cubic
structure, Fe and Mn atoms are oredered as fcc and Ni
atoms show the layered structure with fcc[100] ordering
within the layer.

Transmission electron microscopy of Fe10Ni7Mn6Cr77

(wt.%) alloy shows the pronounced precipitation within
martensite and degenerate precipitation within the re-
tained austenite101. Single-phase fcc near-equiatomic
[FeNiMn]82Cr18 alloy was obtained with the arc-
melting and homogenization, and remained stable under
deformation12. Antiferromagnetic austenitic state is ob-

served for Fe61.5Mn23Ni7Cr8.5 alloy102.

Region of fcc stability from the points of view of the
negative formation enthalpy is close to the estimate of
higher limit of fcc stability from the point of view of
VEC (8 valence electrons per atom). It is localized near
the Ni corner and for the quaternary and most underly-
ing subsystems the Ni concentration should be minimally
25at.%, with the exception of the following: 40at.%Ni
for Fe-Ni binary; 50at.%Ni for Cr-Mn-Ni ternary; and
67at.%Ni for Cr-Ni binary.

Quaternary alloys in the middle of the phase diagram,
where the concentration of every constituting element is
larger than 12.5at.%, show ferrimagnetic ordering, and
the alloys near the faces of the phase diagram show the
ordering of neighboring lower-compound structures; with
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FIG. 13: ECIs for quaternary system.

small NM region in Cr-rich part, limited at 62.5at.% Cr
in the quaternary (Cr62.5[FeMnNi]37.5) (Fig. 14(d)). The
magnetic ordering of the most stable structures at each
concentration were analysed. Resulting 264 data points
in the whole concentration range were interpolated to
produce the theoretical magnetic phase diagram of the
fcc Fe-Cr-Mn-Ni system, which is presented in Fig. 16.
It should be noted that all the studied structures are or-
dered atomic structures with relatively high symmetry.
Values of volumes per atom (Fig. 14(e)) have the positive
correlation with the values of the average magnitudes of
magnetic moments per atom for the FiM region, observed
in the major part of the quaternary system. AMMM and
volume per atom from all studied binary, ternary and
quaternary structures with VEC larger than the critical
value of 6.97 from Refs.22,23 have been collected to illus-
trate the magneto-volume relation. It is represented in
Fig. 17 and it is clearly seen that the volume per atom
is increasing with the increase of the average magnitude
of magnetic moments for all subsystems and quaternary
system. However, for Fe-Cr-Ni ternary subsystem, the
rate of this change is the biggest. It means that AMMM
are strongly affected by the change of volume, compared
to other subsystems. This fact may be responsible for the
high swelling effect of Fe-Cr-Ni alloys. Also, the AMMM
is increasing with the increase of volume slower in Fe-
Cr-Mn-Ni quaternary than in Fe-Cr-Ni ternary, which
supports the results of reduced swelling in Fe-Cr-Mn-Ni
HEA compared to Fe-Cr-Ni in Ref.8.

The enthalpy of formation, volume per atom, average
magnitudes of magnetic moments, type of magnetic or-
dering, as well as crystalographic symmetry and mag-
netic symmetry for the most stable intermetallic struc-
tures of Fe-Cr-Mn-Ni alloys are given in Table III.

IV. FINITE TEMPERATURE PHASE
STABILITY OF FE-CR-MN-NI ALLOYS

Finite-temperature phase stability of Fe-Cr-Mn-Ni al-
loys was analysed with the semi-canonical Monte Carlo
simulations using ECIs obtained from the combination
of CE and DFT calculations. MC simulations were per-
formed for the 264 different compositions in the whole
concentration range in the 10at.% concentration mesh.

As a result of MC simulations, the mixing enthalpies
and the many-body probability functions has been ob-
tained. The last have been subsequently used in order
to calculate the configurational entropy and the Warren-
Cowley SRO parameters.

Order-Disorder Transition (ODT) temperature
(TODT ) in the current work was identified as the temper-
ature above which the system is disordered and below -
shows partial ordering. The chemical ordering strongly
affects both the entalpy of mixing and the configurational
entropy of mixing of the studied system. Therefore,
the thermodynamic potential which includes both these
values, such as free energy of mixing, would accurately
represent the order-disorder transition. Hence, TODT
in this work was identified via the inflection point on
the free energy of mixing versus the temperature curve,
which refers to the change of sign of second derivative of
the free energy of mixing as a function of temperature.

Since MC simulations used in this work are based on
the lattice gas model, they do not take into account nei-
ther the change of the state of matter nor the change
of lattice. Therefore, all phase transitions are treated as
ordering-related transitions, and the transition at high-
est temperature for a chosen composition is interpreted
as the order-disorder transition.
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TABLE III: Chemical composition, lattice symmetry with Wyckoff position, magnetic symmetry with Wyckoff
position, magnetic moment on each magnetic Wyckoff position (in µB), AMMM from present work and found in

experimental literature (in µB), magnetic ordering, volume per atom from present work and found in experimental
literature (in Å3), and the formation enthalpy of the most stable intermetallic phases with negative Hform (in eV) in

fcc quaternary Fe-Cr-Mn-Ni system.

Composition Symmetry, Mag. symm., MMW.p., AMMM, [µB ] Magnetic Vol./at., [Å3] Hform

Wyckoff Wyckoff [µB ] Current Exp. ordering Current Exp.

CrNi2 Immm - 0 NM 10.92 11.36a -0.018

Cr1 2 a Cr1 2 a 0

Ni1 4 e Ni1 4 e 0

CrNi8 I4/mmm C2’/m’ 0.28 0.16b FiM 10.89 -0.007

Cr1 2 a Cr1 2 a -0.687

Ni1 8 h Ni1 4 g 0.199

Ni2 8 i Ni2 8 j 0.278

Ni3 4 i 0.178

Fe3Ni2 I4/mmm C2’/m’ 1.81 FM 11.42 11.56c -0.043

Fe1 4 e Fe1 4 i 2.591

Fe2 2 b Fe2 2 d 2.652

Ni1 4 e Ni1 4 i 0.607

FeNi P4/mmm Cmm’m’ 1.65 1.64shull FM 11.33 11.53e -0.069

1.52d

Fe1 1 d Fe1 2 c 2.661

Ni1 1 a Ni1 2 a 0.631

FeNi3 Pm-3m Pm’m’m 1.2 1.21shull FM 11.14 11.21e,a -0.092

1.12d 11.23f

Fe1 1 a Fe1 1 a 2.914

Ni1 3 c Ni1 1 f 0.631

Ni2 1 d 0.588

Ni3 1 g 0.673

FeNi8 I4/mmm P-1 0.86 0.85d FM 10.99 10.98c -0.053

Fe1 2 a Fe1 1 a 2.814

Ni1 8 i Ni1 2 i 0.643

Ni2 8 h Ni2 2 i 0.599

Ni3 2 i 0.604

Ni4 2 i 0.604

MnNi P4/mmm P Bmna 1.58 1.9j AFM 11.7 12.27h,i -0.154

2.0g 12.31j

Mn1 1 d Mn1 2 d 3.151

Ni1 1 a Ni1 2 b 0

MnNi3 Pm-3m Pm’m’m 1.21 1.1k FM 11.36 11.56f,a -0.137

Mn1 1 a Mn1 1 a 3.252

Ni1 3 c Ni1 1 f 0.5

Ni2 1 d 0.555

Ni3 1 g 0.537

CrFe2Ni P4/mmm Pm’m’m 1.69 FiM 11.37 -0.026

Cr1 1 c Cr1 1 d -2.436

Fe1 2 e Fe1 1 g 2.046

Ni1 1 a Fe2 1 f 2.123

Ni1 1 a 0.153

CrMnNi2 P4/mmm Pm’m’m 1.47 FiM 11.6 -0.098

Cr1 1 c Cr1 1 d -2.543

Mn1 1 a Mn1 1 a 2.872

Ni1 2 e Ni1 1 g 0.133

Ni2 1 f 0.338

Cr2FeMnNi4 I4/mmm P-1 1.36 FiM 11.49 -0.068

Cr1 4 c Cr1 1 g -2.529

Fe1 2 a Cr2 1 f -2.539

Mn1 2 b Fe1 1 b 2.432

Ni1 8 f Mn1 1 h 2.856

Ni1 1 a 0.147

Ni2 1 d 0.109

Ni3 1 e 0.146

Ni4 1 c 0.113

a - Jung103, b - Takano et. al104, c - Owen et. al105, d - Reck et. al106, e - Wakelin et. al107, f - Bhatia et. al108, g - Kasper
et. al80, h - Pearsonet. al74, i - Gokcen72, j - Kren et. al75, k - Paoletti et. al77
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(a) (b) (c)

(d) (e)

FIG. 14: The most stable structures for each considered composition calculated using DFT for Fe-Cr-Mn-Ni
quaternary alloys, ternary and binary suballoys on fcc lattice: (a) enthalpy of mixing from CE; (b) enthalpy of
mixing from DFT; (c) enthalpy of formation from DFT; (d) average magnitudes of magnetic moments; and, (e)

volume per atom.
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(a) (b)

-2.9µB 2.9µB

FIG. 15: Atomic structure of the predicted quaternary
alloy ground state FeCr2MnNi4 in a conventional fcc

unit cell using collinear (a) and non-collinear (b)
magnetism in DFT.

FIG. 16: Theoretical magnetic phase diagram of
quaternary fcc Fe-Cr-Mn-Ni alloy based on the results

of DFT calculations.

A. Configurational Entropy Calculation from a
Combined Monte Carlo and Cluster Expansion

Combining Monte Carlo simulations with the cluster
expansion method is the common approach for calcu-

lating thermodynamic properties once the ECIs, J
(s)
ω,n,

are known. Within the Monte Carlo technique, the
free energies and mixing enthalpies are calculated for
atomic configurations in the supercells at specific tem-
perature ranges and chemical potentials using known en-
ergies from cluster expansion associated to clusters, and
the other thermodynamic properties are calculated from
these quantities (as discussed later). On the other hand,
the Cluster Variation Method (CVM) is a variational
method where quantities such as entropy are formulated
in terms of correlation functions, which are calculated

from the function minimization. The practical limita-
tions for the Monte Carlo technique are time consuming
simulations required for the thermodynamic integration
method, whereas for the CVM method, which uses an-
alytical formulas, the limitation is the need to consider
the clusters with many points.

In Refs.109,110, analytic expressions for configurational
entropy in terms of Monte Carlo cluster correlation func-
tions were applied to obtain the free energies as functions
of temperature. In this work, the configurational entropy
is calculated for each cluster term along the underlying
subclusters included in the CE Hamiltonian. Each config-
urational entropy expression depends on the cluster cor-
relation functions obtained from semi-canonical Monte
Carlo simulations based on the CE ECIs26.

In the theory developed by Kikuchi111 the configura-
tional entropy is expressed analytically in terms of deco-
rated multi-body cluster correlations functions associated
to a basic cluster. A basic cluster contains several sub-
clusters - at least the 1-body subcluster and the cluster
itself. For the cluster expansion of the Fe-Cr-Mn-Ni sys-
tem the cluster expansion in the current work includes
10 basic clusters: four 1-body cluster, six 2-body clus-
ters, two 3-body clusters, and one 4-body cluster, with
some of the basic clusters appearing also as subclusters
of other clusters, i.e. the nearest neighbor 2-body cluster
in the 4-body cluster. Applying the theory of Kikuchi
to the Fe-Cr-Mn-Ni with 10 basic clusters, it is possi-
ble to obtain analytic configurational entropies in terms
of correlation functions, resulting in one expression per
basic cluster. The cluster correlation functions are cal-
culated from semi-canonical Monte Carlo simulations in
the ATAT software24.

The analytic expressions for configurational entropy
corresponding to specific basic cluster depend on the dec-
orated cluster probabilities, as expressed by the weight
factors. Each sum of decorated probabilities in a sub-
cluster has a weight associated to it. The values of the
coefficients weighting the multi-body cluster probabili-
ties in the configurational entropy expression include the
point cluster, 6 different types of two-body, 2 three-body
clusters and 1 four-body cluster. Their values are indi-
cated in the Supplementary materials, Table S III. For
example, the expression for the configurational entropy
in the 4-body cluster contains the probabilities of 1-body
cluster (i=1, ω = 1, n = 1), the probabilities for the
1st pair cluster (i=2, ω = 2, n = 1), the 1st 3-body
cluster (i=8, ω = 3, n = 1) and the four-body prob-
abilities corresponding to the tetrahedron itself (i=10,
ω = 4, n = 1). However, during the calculation of the
weights wi for each of these subclusters it is found, in
agreement with Kikuchi work111, that the correspond-
ing weights are wi = −5, 6, 0 and −2, resulting in the
expression for this basic cluster:
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FIG. 17: Magneto-volume relation for a) binary; b) ternary and c) quaternary alloys based on DFT calculations for
structures with VEC > 6.97. Filled circles represent the most stable structures for each composition; open circles

indicate the rest of the structures; solid lines represent the line fitting for the most stable structures.

Sconf4,1 (~σ) = −5
∑
s y

(s)
1,1(~σ) ln(y

(s)
1,1(~σ))

+6
∑
s y

(s)
2,1(~σ) ln(y

(s)
2,1(~σ))

−2
∑
s y

(s)
4,1(~σ) ln(y

(s)
4,1(~σ))

(19)

where ~σ dependence on the y
(s)
ω,n(~σ) is introduced to

indicate that the equilibrium configuration of the Monte
Carlo supercell, ~σ, is associated to the temperature, T .
So that the configuration ~σ is dependent on each tem-
perature value, T . In Eq. 19 the expression for config-
uration entropy in the tetrahedron approximation with
the weights, wi, is indicated. For the rest of the clus-
ters (pairs, and triplets), the weights required for the
expression of configuration entropy are reported in the
Supplementary materials, Table S III.

In particular, for pair clusters (nth shell denoted by
ω = 2, n), the entropy weights are determined by the
number atomic of neighbors, Zn, at the nth shell in the
lattice of the alloy system26 (see pp.7–8). Therefore, the
entropy expression for the maximal cluster ω = 2, 1 (for
which Z1 = 12) results in Eq. 20. This entropy formula
is used further in the paper, including Figs. 18 and 19.

Sconf2,1 (~σ) =11
∑
s

y
(s)
1,1(~σ) ln(y

(s)
1,1(~σ))

− 6
∑
s

y
(s)
2,n(~σ) ln(y

(s)
2,1(~σ))

(20)

Within the thermodynamic integration method, the
configurational entropy is calculated as:

Sconf (T ) =

∫ T

0

Cconf (T ′)

T ′
dT ′, (21)

where the configurational contribution to the specific
heat Cconf is related to the fluctuations of the enthalpy
of mixing, calculated within Monte Carlo at a given
temperature112,113 as:

Cconf (T ) =
〈H2

mix(T )〉 − 〈Hmix(T )〉2

T 2
, (22)

where 〈H2
mix(T )〉 and 〈Hmix(T )〉2 are the mean and

mean square average enthalpies of mixing, respectively.
However, in order to perform the accurate integration of
region around the transition temperature, which looks
like a peak on the function of Cconf (T ), the simulations
should be performed with small temperature steps, which
increases the simulation time significantly.

In order to compare the results of the two methods
of entropy calculations, Monte Carlo run with the ther-
modynamic integration routine has been performed for
the equiatomic composition in a supercell of 8000 atoms
starting from 3000 K down to 0 K considering 1000 equi-
libration steps and 2000 accumulation Monte Carlo steps
per site at each temperature in steps of ∆T = 5 K.

The configurational entropy corresponding to each
of the 10 basic cluster obtained by the cluster expan-
sion method, as well as the configurational entropy ob-
tained from the Monte Carlo thermodynamically inte-
grated method is presented and discussed in the paper
of Fernández-Caballero et al.26. The configurational en-
tropy obtained from the analytic formulation at temper-
atures in the range 0-1000 K is found to be sensitive to
the ECIs and the Monte Carlo calculation temperature
step, resulting in nonphysical values of negative entropies
for certain clusters.

In the high temperature limit, the expression of con-
figurational entropy corresponding to each of the basic
clusters and the one obtained from the TDI are found to
converge towards the perfect random solid solution (also
known as the temperature independent Bragg-Williams
approximation) for the average system composition, cp,

given by Sconfrandom(T ) = −kB
∑
p
cp ln(cp), which, in the

case of equiatomic composition is equal to 1.386 kB.

B. Free Energy of Mixing

Knowing the enthalpy of mixing and the configura-
tional entropy, the free energy of mixing can be evalu-

ated as Fmix = Hmix − TSconfmix , where Sconfmix is defined

as Sconfrandom − Sconf . Example calculation for equiatomic
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FIG. 18: Enthalpy of mixing and free energy of mixing
from Monte-Carlo simulations, as well as -TSconf and

free energies of mixing calculated using thermodynamic
integration and Cluster Expansion methods for the

equiatomic Fe-Cr-Mn-Ni alloy.

composition is illustrated in Fig. 18, where the free en-
ergies of mixing obtained from the basic cluster approxi-
mation corresponding to the 1st nearest neighbor 2-body
cluster (ω = 2, n = 1) and TDI calculations are pre-
sented.

It can be seen for the −TSconfmix obtained from both
CE and TDI methods (Fig. 18), that its contribution to
the free energy of mixing is very small in the high tem-
perature limit, which is related to the convergence to-
wards the perfect random solid solution discussed above.
On the other hand, for the temperatures below TODT ,

the contribution of −TSconfmix becomes prominent and de-
creases the values of Fmix notably.

In order to demonstrate the contribution of −TSconfmix
to the Fmix values in the whole range of compositions
of Fe-Cr-Mn-Ni alloys, there are shown in Fig. 19 the

tetrahedron representations of Hmix, −TSconfmix and Fmix
at 300 K, 1000 K and 2000 K. It should be noted, that
for few compositions at 300 K the values of entropy ob-
tained from CE were negative, and hence they are not
represented on the corresponding subfigures of Fig. 19.

The values of −TSconfmix at 2000 K are substantial
mainly for the compositions with the high concentration
of MnNi (Fig. 19(c)). At 1000 K, which is below TODT
for the major part of the compositions in the middle of

the phase diagram, the values of −TSconfmix are substan-
tial for these compositions (Fig. 19(b)). At 300 K, where
the ODT has occurred for almost all compositions, the

values of Sconfmix are non-zero (Fig. 19(a)). However, since

the temperature is comparatively small the −TSconfmix is
also smaller than at 1000 K.

Since Hmix has been obtained from the MC simu-
lations, it shows a clear temperature dependence. At
low temperature (Fig. 19(d)), the majority of the com-
positions have negative Hmix with its values being
strongly negative. When the temperature is increased
(Fig. 19(e,f)), the values of Hmix gradually become less
negative, and for some compositions the Hmix becomes

positive.
Due to the effect of both contributions, Fmix has differ-

ent dependence on temperature in different regions. For
the compositions which are close to the vertices of the
phase diagram, the trend in temperature dependence is
similar to the trend in Hmix. On the other hand, the val-
ues of Fmix in the middle of the phase diagram are most
negative at 1000 K (Fig. 19(h)), being even more negative
than at 300 K (Fig. 19(g)), whereas at 2000 K Fmix is
strongly negative only for structures close in composition
to MnNi (Fig. 19(i)). It should be noted that the effect
of some structures being more stable at elevated tem-
peratures than at lower temperatures can be caused by
the constraints of the current work, where only the fcc
lattice is considered, and the vibrational and magnetic
contributions are not taken into account.

C. Order-Disorder Transition Temperatures

Order-Disorder Transition temperature has been cal-
culated for each MC simulated structure in the whole
concentration range as the inflection point on the free
energy of mixing versus the temperature curve for the
given structure.

The effect of each element concentration on TODT has
been studied on the pseudobinary compositions of type
Ax[BCD](1−x). The order-disorder transition tempera-
tures as functions of concentration in pseudobinaries are
shown in Fig. 20. TODT dependency on concentration
for manganese has a minimum at 30at.% Mn, which is
1100 K. TODT dependency on concentration for iron has
a minimum range of 22.5at.%-40at.% Fe with TODT in
this range being equal to 1100 K. TODT as a function
of Chromium concentration decreases with increasing Cr
concentration similar to Fe up to 30at.% Cr and then con-
tinues to decrease. One of possible explanations of such
behavior is that Cr at large concentrations suppresses the
magnetic moments of other elements, decreasing the in-
fluence of magnetic interactions on the ordering. Also,
there are no ground states with negative formation en-
thalpy and Cr content more than 33.3 at.%, which would
require more time for atoms to reallocate themselves to
the positions of preferable precipitates. Nickel pseudobi-
nary is the most interesting because Ni is fcc-stabilizer
and TODT as a function of its concentration, as opposed
to other elements, increases monotonically with increas-
ing Ni concentration. Hence, the smallest TODT equal
to 400 K is observed for equiatomic fcc FeCrMn alloy
without Ni, and most likely ordered as non-fcc.

The order-disorder transition temperature as a func-
tion of concentration of each element in Fe-Cr-Mn-Ni
alloy for the structures from a concentration mesh and
pseudobinaries is presented in Fig. 21(a). It can be seen
from this plot, that the lowest temperatures of order-
disorder transitions are observed in the structures with
the lowest Ni concentration, exactly what is observed in
the pseudobinaries. It should be noted that Ni is the fcc
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FIG. 19: Contribution of the (a-c) −TSconfmix and the (d-f) Hmix to the (g-i) Fmix in the whole concentration range
at 300 K, 1000 K and 2000 K. Sconf is taken from the cluster ω = 2, n = 1.

stabilizer and alloys with small Ni concentration, which
in this system corresponds to small VEC, may transform
into non-fcc phase. Therefore the Ni content should be
balanced accurately to achieve the disordered fcc single-
phase composition.

In current calculations, the ORNL alloy with composi-
tion Cr18Fe27Mn27Ni28

8 during the cooling is disordered
above 1290 K. Below that temperature, the L10 MnNi
phase starts to form (see reperesentative structures in
Fig. 22(c)).

The value of TODT=1290 K is lower than the tempera-
ture of the samples homogenization of 1473 K from Ref.8,
but it is higher than the temperature of recrystalization
of 1173 K from the same studies, after which authors of
Ref.8 report the single phase fcc structure. This may be
related to the fact that the current simulations do not
take into account the effect of lattice vibrations on the

evolution of the structure, which, if accounted for, should
contribute to the lowering of the TODT .

It should be noted that the authors of experimen-
tal Ref.8 state that according to the exploratory stud-
ies, equiatomic alloy does not form fcc single-phase
structure, and the composition which does form it
is Cr18Fe27Mn27Ni28 (ORNL) - the alloy with near-
equiatomic composition and depleted Cr concentration.
This result is supported by the estimation of VEC, where
less valence electrons per atom corresponds to the lower
stability of the fcc lattice, and the value for equiatomic
composition (7.75) is lower than for ORNL composition
(7.93). In the current work, the formation enthalpy of
the ORNL composition is more negative than that of
equiatomic alloy in the whole studied temperature range
(see Fig. 22(c)&(e)). Moreover, the free energy of mixing
at 1173 K is equal to -0.044 eV for equiatomic alloy and
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FIG. 20: Order-disorder transition temperatures as a
function of each element concentration. Each data point

represents different pseudobianry alloy, in which the
concentration of a chosen element is equal to that on

x-axis and the relative concentration of other elements
is equiatomic.

-0.150 eV for ORNL alloy.
Moreover, current MC simulations show that for lower

temperatures, which are still located in the range of work-
ing temperatures for fusion reactors114, the phase com-
position of the alloy is divided into distinct regions: one
is the L10 MnNi precipitate and the other is a combina-
tion of the quaternary and Mn-/Ni-poor ternary phases.
The precipitation of the L10 MnNi phase is in line with
the Cantor alloy studies from Ref.16, where it was one of
the three major precipitates that formed after annealing
for 500 days at 773 K.

L10-MnNi is the most stable structure, has very strong
short-range ordering (as discussed later) and Mn-Mn-Ni-
Ni has been shown to have the highest cluster correlation
function in Ref.26. Based on these facts, the analysis was
made to find out the compositions, where it precipitates
in Fe-Cr-Mn-Ni quaternary system. Positions and types
of atoms were taken from the MC simulations at tem-
perature 100 K. The first nearest neighbors of each atom
were analysed and if at least one unit cell had the struc-
ture of L10 (2 Mn atoms and 2 Ni atoms), the atom
was indicated as belonging to the L10. Indication via
the unit cell makes the analysis very computationally ef-
ficient and does not yield false positive error, meaning
that it does not indicate 1-layer Mn-Ni precipitations or
Mn-Ni clusters which are part of more complex inter-
metallic compounds as Mn-Ni L10 phase. The percent-
age of L10-MnNi phase in the full concentration range of
Fe-Cr-Mn-Ni is presented in Fig. 21(b).

When the region with precipitated L10-MnNi is com-
pared to the order-disorder transition temperatures, the
strong correlation is observed between the percentage
of L10-MnNi in low-temperature phase composition and
TODT of the alloy (Fig. 21(a)): with increasing percent-
age of L10-MnNi the TODT value also increases. This can
be interpreted as follows: if the concentration of Mn-Ni
is more than 50%, it allows the Mn and Ni atoms to be
involved in the formation of L10-MnNi phase, which is
very stable ordered structure. Therefore, even at high
temperature, when the other parts of an alloy may be-

come disordered, the L10-MnNi keeps its order, hence
increasing the TODT value of the composition which it is
part of.

D. Short-Range Order Parameters

The chemical Short-Range Order in the system was in-
vestigated in detail by analysing the Warren-Cowley SRO
parameters, calculated from Eq. A5, derived from Eq. 10,
using pair-correlation functions obtained from MC simu-
lations. Inflection points on the Warren-Cowley SRO pa-
rameters as functions of temperature indicate the order-
disorder transition temperatures, which are the same as
the ones obtained from the analysis of mixing enthalpies
(see Fig. 22 for exemplary comparisons).

As can be seen from Fig. 22(a,b), the quaternary
ground state shows simple behavior - it has one order-
disorder transition temperature at 1300 K and all SRO
pairs represent the chemical interactions in the quater-
nary ground state below the TODT . In the intermetallic
phase at 0 K, the Cr atoms do not have Cr neighbors
and are surrounded by 2 Fe atoms, 2 Mn atoms, and 8
Ni atoms. Fe and Mn atoms do not have Fe and Mn
neighbors and are surrounded by 4 Cr atoms and 8 Ni
atoms. Ni atoms are surrounded by 4 Cr, 2 Mn, 2 Fe,
and 4 Ni atoms.

Composition of the ORNL sample undergoes two sub-
sequent order-disorder transitions - first at 1320 K, when
the L10-MnNi starts forming, and second at 1180 K,
when the L12 Fe3Cr starts forming. Those order-disorder
transitions are visible both on formation enthalpy as a
function of temperature (Fig. 22(c)) and SRO as a func-
tion of temperature (Fig. 22(d)). On latter, it is also
obvious that the Mn-Ni and Fe-Cr pairs drive the order-
ing.

The equiatomic composition also undergoes two subse-
quent order-disorder transition - first at 1140 K, when the
L10-MnNi starts to form, similarly to the ORNL compo-
sition. During the second transition at 900 K, the already
formed L10-MnNi phase rapidly dissipates and the envi-
ronment becomes more uniform, which leads to the grad-
ual formation of the ordered single phase (see Fig. 22(e)).
This rapid transformation is also represented by the rapid
change of all SRO parameters (Fig. 22(f)).

Comparing the results for ORNL and equiatomic com-
position, it can be seen that the order-disorder transition
is driven by the formation of L10-MnNi in both alloys
and moreover, the behavior of SRO in equiatomic alloy
in the intermediate temperature range below the TODT
is similar to that in the ORNL alloy. However, below
900 K the behavior of SRO in two alloys stops being sim-
ilar. According to the analysis of the nearest neighbors,
when the Mn and Ni atoms start to precipitate in the
form of the L10-MnNi, the rest of the composition space
in ORNL alloy is close to that of the L12 Fe3Cr, the or-
dered metastable phase (see Fig. S1). This is represented
in SRO for ORNL - Mn-Ni and Fe-Cr pairs show attrac-
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(a) (b)

FIG. 21: (a) Order-disorder transition temperatures for whole concentration range of Fe-Cr-Mn-Ni alloy; (b)
percentage of AFM L10-MnNi precipitate at 300 K in the whole concentration range.

tion, and others show repulsion. The situation in the
equiatomic alloy is different - the concentration of the Cr
and Fe atoms in the alloy part, which is not involved in
the formation of L10 MnNi, are similar. It means that in
a contrary to the ORNL alloy there are more Cr atoms
which can be attracted by Ni and Mn atoms. As it can
be seen in Fig. 22(f), the SRO parameters for Cr-Ni and
Cr-Mn pairs are negative for the equiatomic composition,
as opposed to the ORNL alloy.

The difference in the SRO for ORNL and equiatomic
alloys is most significant at low temperature, but it is
noticeable even above the TODT . It means that most
likely, the experimentally obtained alloys will have differ-
ent properties to some extent. Hence, the extrapolation
of the properties of equiatomic alloy, as has been done in
Ref.11, might not be accurate. Also, the influence of SRO
on the defect properties, as the extension of the current
work, may be of interest.

SRO obtained from MC simulations have been com-
pared to experimental data for four alloy compo-
sitions: Fe56Cr21Ni23, Fe42.5Cr7.5Ni50, Fe38Cr14Ni48,
Fe34Cr20Ni36 (see Supplementary materials, Fig. S 10).
Current results reproduce the previous simulations
results21 and are close to experimental values above
1000 K115,116.

Analysis of the SRO parameters has been conducted
for all previously mentioned pseudobinaries, studied with
MC, and the results are presented in Supplementary ma-
terials, Section S II.

V. CONCLUSIONS

Stability of the quaternary Fe-Cr-Mn-Ni system and all
underlying subsystems have been investigated in terms
of enthalpies of mixing and enthalpies of formation us-

ing the Density Functional Theory (DFT). True fcc
Ground States (GSs) have been found in binary and
ternary subsystems containing nickel, and their existence
is supported by the results of experiments and simula-
tions found in the literature. The fcc quaternary GS
FeCr2MnNi4, which was not previously described in the
literature, is predicted to have a negative formation en-
thalpy at 0 K.

The study of magnetic ordering in the whole concen-
tration range has shown to be consistent with the existing
experimental data. The results of simulations allowed to
construct the magnetic phase diagram for fcc Fe-Cr-Mn-
Ni system. The analysis of volumes and Average Mag-
nitude of Magnetic Moments (AMMMs) in the studied
structures with the valence electron concentration larger
than 6.97 has shown that the volume per atom correlates
with the value of AMMM in a way that the higher values
of AMMM correspond to the bigger volumes per atom.

Analysis of the configurational entropy has shown that
its influence is the most prominent in the intermediate
temperature region, where the order-disorder transition
occurs.

Analysis of the SRO parameters has indicated that
the interaction between the two elements in the multi-
component system is not their intrinsic property, but
may vary, sometimes even to the point of inversion, with
the change of the concentration in the system. Even
the compositions with close concentration of constitut-
ing elements, like Cr18Fe27Mn27Ni28 and equiatomic Cr-
FeMnNi, show different behavior of SRO parameters, re-
sulting in different microstructure at low temperatures.

The antiferromagnetic L10-MnNi has been found to be
the most stable ordered structure in the multi-component
Fe-Cr-Mn-Ni system. The correlation has been indicated
between the percentage of L10-MnNi, precipitated at low
temperature, and TODT .
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FIG. 22: Formation enthalpy obtained from the MC simulations and the SRO parameters in the first coordination
shell for the FeCr2MnNi4 intermetallic phase (a, b), Cr18Fe27Mn27Ni28

8 (c, d) and the equiatomic composition (e,
f). The representative structures of each alloy generated in MC simulations at 300 K and 1100 K are shown inside

the figures.
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TODT of the system decreases with decreasing Ni con-
centration - and the effect is the opposite for the other
constituting elements. The AMMMs of all the elements
in the alloy increase the most with the increase of Ni
content, although the AMMM of Ni is the lowest of all
constituting elements. These effects can be of interest
because they allow to manipulate the stability and prop-
erties of Fe-Cr-Mn-Ni alloys.

As the continuation of the current work, the behavior
under irradiation and the defect properties of equiatomic
and near-equiatomic Fe-Cr-Mn-Ni alloys will be studied,
focusing on the magneto-volume effect, and the Short-
Range Order influence on the defect migration.
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Appendix A: Matrix formulation of SRO

Example τK matrices for K = 2, 3, 4 are defined below.

τ2 =

(
1 1

−1 1

)
, τ3 =

 1 1 1

−1 1
2

1
2

0 −
√

3
2

√
3

2

 , τ4 =


1 1 1 1

−1 0 1 0

0 −1 0 1

−1 1 −1 1

 . (A1)

For triplet or 3-body, the probability-temperature data is generated in a fashion similar to Eq. (12).

yABC3,n =
∑
s

(τ−1
K ⊗ τ−1

K ⊗ τ−1
K )ABC,(s)〈Γ

(s)
3,n〉 (A2)

For 4-body, the probability expression reads:

yABCD4,n =
∑
s

(τ−1
K ⊗ τ−1

K ⊗ τ−1
K ⊗ τ−1

K )ABCD,(s)〈Γ
(s)
4,n〉 (A3)

The inverse matrix of τ4 is given explicitly below:

τ−1
4 =

1

4


1 −2 0 −1

1 0 −2 1

1 2 0 −1

1 0 2 1

 . (A4)

Warren-Cowley SRO parameters can be also computed via the point and pair correlation functions. For a quaternary
alloy, the analytical formulas for SRO parameters are following:

αFe−Crn = 1−
1− 2(〈Γ1

1,1〉+ 〈Γ2
1,1〉 − 2〈Γ12

2,n〉+ 〈Γ13
2,n〉 − 〈Γ23

2,n〉)− 〈Γ33
2,n〉

(1− 2〈Γ1
1,1〉 − 〈Γ3

1,1〉)(1− 2〈Γ2
1,1〉+ 〈Γ3

1,1〉)
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αCr−Mn
n = 1−

1− 2〈Γ3
1,1〉 − 4〈Γ11

2,n〉+ 〈Γ33
2,n〉

−4〈Γ1
1,1〉2 + (1− 〈Γ3

1,1〉)2

αCr−Nin = 1−
1− 2(〈Γ1

1,1〉 − 〈Γ2
1,1〉+ 2〈Γ12

2,n〉+ 〈Γ13
2,n〉+ 〈Γ23

2,n〉)− 〈Γ33
2,n〉

(1− 2〈Γ1
1,1〉 − 〈Γ3

1,1〉)(1 + 2〈Γ2
1,1〉+ 〈Γ3

1,1〉)
(A5)

αFe−Mn
n = 1−

1 + 2(〈Γ1
1,1〉 − 〈Γ2

1,1〉 − 2〈Γ12
2,n〉+ 〈Γ13

2,n〉+ 〈Γ23
2,n〉)− 〈Γ33

2,n〉
(1 + 2〈Γ1

1,1〉 − 〈Γ3
1,1〉)(1− 2〈Γ2

1,1〉+ 〈Γ3
1,1〉)

αFe−Nin = 1−
1 + 2〈Γ3

1,1〉 − 4〈Γ22
2,n〉+ 〈Γ33

2,n〉
−4〈Γ2

1,1〉2 + (1 + 〈Γ3
1,1〉)2

αMn−Ni
n = 1−

1 + 2(〈Γ1
1,1〉+ 〈Γ2

1,1〉+ 2〈Γ12
2,n〉+ 〈Γ13

2,n〉 − 〈Γ23
2,n〉)− 〈Γ33

2,n〉
(1 + 2〈Γ1

1,1〉 − 〈Γ3
1,1〉)(1 + 2〈Γ2

1,1〉+ 〈Γ3
1,1〉)
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