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Abstract

CALANIE (CALculation of ANIsotropic Elastic energy) program evaluates
an elastic interaction correction to the total energy of a localized object, for
example a defect in a solid material simulated using an ab initio or molecular
statics approach, resulting from the use of periodic boundary conditions. The
correction, computed using a fully elastically anisotropic Green’s function
formalism, arises from the elastic interaction between a defect and its own
periodically translated images. The field of elastic displacements produced
by the defect is described in the elastic dipole approximation. Applications
of the method are illustrated by two case studies, one involving an ab initio
investigation of point defects and vacancy migration in FCC gold, and an-
other a molecular statics simulation of a dislocation loop. We investigate the
convergence of the method as a function of the simulation cell size, and note
the particular significance of elastic correction in the limit where the size of
the defect is comparable with the size of the simulation cell.
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PROGRAM SUMMARY1

Manuscript Title: CALANIE: anisotropic elastic correction to the total energy,2

to mitigate the effect of periodic boundary conditions3

Authors: Pui-Wai Ma, S. L. Dudarev4

Program Title: CALANIE, version 2.05

Journal Reference:6

Catalogue identifier:7

Licensing provisions: Apache License, Version 2.08

Programming language: C/C++9

Computer: Any computer with C/C++ compiler10

Operating system: Linux, Unix, Windows11

RAM: 15MB12

Number of processors used: 113

Supplementary material:14

Keywords: Defects, dipole tensor, elastic correction, anisotropy elasticity, ab initio15

calculations, periodic boundary conditions16

Classification: 7.117

External routines/libraries:18

Subprograms used:19

Nature of problem:20

Periodic boundary conditions (PBCs) are often used in the context of ab initio21

and interatomic potential based atomic scale simulations. A localized defect in22

a crystalline material, simulated using PBCs, interacts elastically with its own23

periodically translated images, and this gives rise to a systematic error in the24

computed defect formation or migration energy. Evaluating the correction to the25

total energy resulting from effects of elastic interaction between a defect and its26

periodic images, to alleviate the effect of PBCs, is an essential aspect of any accu-27

rate calculation of the energy of a defect performed using PBCs.28

29

Solution method:30

The energy of interaction between a localized defect and its periodically translated31

images is computed in the linear elasticity approximation. In this approximation,32

the energy of elastic interaction is expressed analytically in terms of the elastic33

dipole tensor of the defect and elastic Green’s function. Elements of the dipole34

tensor are computed as a part of the simulation evaluating the formation energy of35

the defect. Elastic Green’s function and its first and second derivatives are com-36

puted numerically from the elastic constants of the material. The method and the37

corresponding numerical procedures are implemented in the CALANIE computer38

program. The program evaluates matrix elements of the elastic dipole tensor of a39

localized defect and the elastic correction to the total energy arising from the use40
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of periodic boundary conditions.41

42

Restrictions:43

The approach assumes the validity of the linear elasticity approximation. This44

limits the accuracy of evaluation of the elastic correction, which becomes less pre-45

cise if the size of the defect is comparable with the size of the simulation cell.46

47

Unusual features:48

An open source code, containing full detail of the relevant theoretical concepts,49

algorithms and numerical implementation.50

51

Running time: A typical calculation takes several minutes.52

53

54

1. Introduction55

Mechanical deformation or irradiation by energetic particles produce de-56

fects in a crystalline material, such as dislocations, dislocation loops, voids,57

and Frenkel pairs [1, 2, 3, 4]. Defect structures evolve under the effect of ex-58

ternal stress and temperature. Defects migrate, segregate and agglomerate as59

a result of elastic interaction, mediated by lattice deformations [5, 6, 7, 8, 9].60

Evolution of defect structures changes mechanical and physical properties of61

the material [10].62

Electronic and atomic scale simulations are indispensable numerical tools63

that help understand the fundamental laws driving microstructure evolution64

and its effect on mechanical and physical properties of the materials. Ab ini-65

tio density function theory (DFT) calculations [11, 12] are commonly used for66

computing the formation and migration energies of small defects. The energy67

of formation of a defect at equilibrium determines the relative probability of68

its occurrence, whereas the energy of migration determines the rate of evolu-69

tion of a defect structure. Molecular dynamics [2, 3] and kinetic Monte Carlo70

[13, 14, 15] simulations provide information about the rates and pathways of71

relaxation processes characterizing complex configurations of defects.72

To avoid considering surface effects, simulations are often performed us-73

ing periodic boundary conditions (PBCs). Through periodic boundary con-74

ditions, a spatially localized defect situated in a simulation cell interacts75

elastically with an infinite number of its own images situated in periodically76
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translated simulation cells [6, 7, 8, 9]. Since elastic fields effectively have infi-77

nite range, and the energy Eel of elastic interaction between any two defects78

varies as the inverse cube of distance R between the defects Eel ∼ R−3 [8],79

if a relatively small cell is used in a simulation, the elastic energy of interac-80

tion between a defect and its periodic images can be substantial. This can81

affect the accuracy of calculations performed using PBCs and make the total82

energy data strongly dependent on the cell size. Although in principle the83

issue can be circumvented using a larger simulation cell, in practice this may84

not necessarily be a realistic option because of the limitations imposed by85

the available computational resources or numerical algorithms. For example,86

in a conventional DFT calculation, the simulation cell size is still limited to87

a few hundred atoms.88

A possible way forward is to introduce an elastic correction to the calcu-89

lated formation energy. A first order correction, in the linear elasticity far90

field approximation, can be derived using the elastic dipole tensor formalism91

[6, 7, 8, 9], which only requires knowing the elements of elastic dipole tensor92

Pij of the defect and the elastic constants tensor Cijkl of specific material.93

This information can be readily derived from the same DFT or molecular94

statics calculation.95

An elastic dipole tensor fully defines the elastic field produced by a defect96

in a material [16]. The strain field associated with a localized defect can97

be expressed in an explicit analytical manner in terms of the dipole tensor.98

From the dipole tensor it is also possible to evaluate the relaxation volume99

tensor of the defect [17]. By considering a defect as a compound object100

characterized by its dipole tensor, it is possible to formulate a continuum101

model spanning the spatial scale many orders of magnitude larger than an102

atomistic simulation. In addition, the notion of the dipole tensor enables103

treating interactions between defects. A dipole tensor can be defined for104

an arbitrarily large configuration of defects, for example the entire defect105

structure created in a collision cascade simulation can be described by a106

dipole tensor, enabling extending the treatment to a macroscopic scale [17].107

In previous studies, we derived analytical equations for treating the elas-108

tic fields of defects in a simulation cell using periodic boundary conditions109

[8]. We have also derived equations for evaluating the elastic correction to110

the energy of a localized defect [9], and implemented them in our program111

CALANIE. It is appropriate to make this code, suitable for evaluating the112

elastic correction to the total energy, and for calculating the elastic dipole113

tensor of a defect in a simulation cell, available as an open source computer114
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program. Full numerical and algorithmic aspects of the code are described115

below.116

In what follows we review our theory and explain the meaning of various117

equations. We also discuss the details of the numerical implementation of the118

method, followed by the details of the compilation procedure, and the format119

of input and output files. We give two examples illustrating applications of120

the code. The first example involves ab initio calculations of properties of121

point defects and vacancy migration in FCC gold. This example illustrates122

the applicability of CALANIE to both equilibrium and non-equilibrium con-123

figurations. The second example illustrates molecular statics calculations124

of mecoscopic size dislocation loops. We investigate the convergence of the125

dipole tensor and the formation energy of defects as functions of the sim-126

ulation box size, and the significance of applying elastic correction to the127

formation energy in the limit where the simulation cell is relatively small.128

2. Theory129

2.1. Elastic dipole tensor130

In continuum elasticity theory, the elastic strain energy of a defect in an131

infinite medium is defined as a volume integral over the entire space:132

ED =
1

2

∫
V

σij(r)εij(r)dV, (1)

where εij and σij are the elastic strain and stress fields. Assuming the validity133

of the linear elasticity approximation, we write σij = Cijklεkl, where Cijkl is134

the elastic constant tensor of rank four. The above equation now acquires135

the form136

ED =
1

2

∫
V

Cijklεkl(r)εij(r)dV. (2)

In the presence of infinitesimal external strain εextij , elastic energy ED can be137

represented by a Taylor series expansion:138

ED(εextij ) = ED(εextij = 0) +

(
δED
δεextij

)
εextij =0

εextij + · · · . (3)

The energy of elastic interaction between a defect and external strain field is139

defined as [16]:140

E = −Pijεextij , (4)
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where Pij is the elastic dipole tensor of a defect. Comparing Eq. 3 and 4, we141

can identify the dipole tensor with142

Pij = −
(
δED
δεextij

)
εextij =0

= −
∫
V

σDijdV, (5)

where σDij is the stress field resulting from the presence of a defect in the143

elastic medium.144

In practice, calculations are not performed in an infinite medium. Infinite145

medium is simulated by applying periodic boundary conditions to a finite size146

simulation cell. This is equivalent to putting N identical defects in an infinite147

medium in the form of a lattice of defects, defined by the translation vectors148

of the simulation cell, where N →∞. We can write the total stress as a linear149

sum of contributions from all the identical periodically translated defects as150

[8],151 ∫
V

σDijdV +
∑
n6=0

∫
V

σIm,nij dV = N

∫
V

σDijdV, (6)

where σIm,nij is the stress field due to the nth image of the defect. Dividing152

both sides of the above equation by N , we find153 ∫
V

σDijdV =
1

N

∫
V

(
σDij +

∑
n6=0

σIm,nij

)
dV =

∫
Vcell

σijdV. (7)

Therefore, the total stress induced by a defect integrated over infinite medium154

equals the total stress of the defect plus all its images, integrated over a155

simulation cell in a periodic boundary condition calculation. The proof is156

based on the linear elasticity approximation stating that the total stress field157

is a linear sum of stresses produced by the defect and all its images, and158

on the fact that the stress field in a simulation cell is the same as in any159

periodically translated cell. The simulation box used for defect calculation160

needs to be of exactly the same shape and volume as in the corresponding161

perfect lattice case, to mimic the infinite medium condition.162

Eq. 5 can now be written in term of macrostress σ̄ij developing in a163

simulation cell under the PBCs, namely164

Pij = −
∫
Vcell

σijdV = −Vcellσ̄ij. (8)
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The macrostress σ̄ij is the same as the average stress in the cell. We note that165

the volume integral may be ill-defined if the equation is applied to a discrete166

atomistic configuration. However, the same expression can be derived in the167

discrete atomistic approximation.168

Provided that the total energy of the system depends only on atomic169

positions, such that ED = ED({Rn}), where {Rn} is a set of coordinates, we170

can write171

Pij = −
(
δED
δεextij

)
εextij =0

= −
∑
n,α

δED
δRn,α

(
δRn,α

δεextij

)
εextij =0

, (9)

where n is the index of an atom and α refers to a Cartesian coordinate. This172

first term in the right hand side is the component of force Fn,α acting on173

the atoms. The second term can be obtained assuming that all the position174

vectors move in response to the applied external strain:175

R→ (I + ε)R, (10)

which leads to176 (
δRn,α

δεextij

)
εextij =0

= Rn,jδαi. (11)

The dipole tensor then becomes177

Pij =
∑
n

Fn,iRn,j = −Vcellσ̄ij. (12)

This is the same formula for calculating dipole tensor as found using the178

Kanzaki force method [16]. Interestingly, according to the Virial Theorem at179

0K, the right hand side can also be written in terms of the macrostress. We180

note that in a DFT calculation, the macrostress developing in a cell due to181

the presence of a defect in it, is calculated as the variation of the total energy182

as a function of the strain tensor. In both the continuum and discrete limits,183

we arrive at the same equation for the dipole tensor. This equation relates184

linear elasticity to both electronic and atomic scale simulations.185

If the simulation cell used in the context of defect simulations has a186

different shape in comparison with the perfect lattice case, the case can be187

treated as if the simulation cell is subjected to external strain. The strain188

tensor describing the applied external strain εapp, given that ‖εapp‖ � 1,189

relates the perfect and deformed simulation cells as follows190

Vperf (I + εapp) = Vdef , (13)
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where I is the identity matrix, Vperf = {Lperf1 ,Lperf2 ,Lperf3 } is the matrix of191

translation vectors of the perfect lattice cell and Vdef = {Ldef1 ,Ldef2 ,Ldef3 } is192

the matrix of translation vectors of the cell containing a defect. Therefore193

the strain tensor is simply194

εapp = (Vperf )−1Vdef − I. (14)

Whenever applied strain exists, the dipole tensor should be corrected as195

[6, 7, 9]196

Pij = Vcell(Cijklε
app
kl − σ̄ij). (15)

There are other methods using which one can derive elastic dipole tensors197

from atomic scale simulation [16, 6, 18]. Varvenne and Clouet [7] concluded198

that only the residual stress method is tractable in the limit of small simula-199

tion cell, especially in the relation to ab initio calculations. Below we check200

the convergence of Pij, and the effect of cell size on the elastic correction201

energy.202

For a linear defect, such as a self-interstitial atom (SIA) crowdion defect,203

we can write [8]:204

Pij = Cijkl

(
Ω(1)nknl +

Ω(2)

3
δkl

)
(16)

where n = (cosφ sin θ, sinφ sin θ, cos θ) is a unit vector characterizing the205

orientation of the axis of the defect, and Ω(1) and Ω(2) represent the relative206

contribution of the anisotropic and isotropic components to the relaxation207

volume of a defect, where the total relaxation volume of the defect is given208

by the sum209

Ωrel = Ω(1) + Ω(2). (17)

Values of Ω(1) and Ω(2) can be obtained from ab initio calculations. This210

formula is used for analyzing the change in elastic correction energy assuming211

that a defect is able to rotate freely [8].212

2.2. Elastic correction energy213

The formation energy of a defect equals [9]:214

EF
def = [Edef (Ndef )− Eapp]− Ndef

Nperf

Eperf (Nperf )− Ecorr
el , (18)

where Edef is the energy of a simulation cell containing a defect, Eperf is the215

energy of a reference perfect lattice cell, Ndef is the number of atoms in the216
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cell containing a defect, Nperf is the number of atoms in a perfect lattice cell,217

Eapp is the elastic energy due to the applied strain, and Ecorr
el is the elastic218

correction energy due to the PBCs. The applied strain energy equals [6]:219

Eapp =
V perf

2
Cijklε

app
ij ε

app
kl − Pijε

app
ij , (19)

where V ref is the volume of the simulation cell. We neglect the change of220

volume due to deformation assuming small applied strain. The first term in221

equation (19) accounts for the elastic energy associated with the deformation222

of the simulation cell. The second term is the result of interaction between223

the defect and applied strain.224

The elastic correction energy Ecorr
el is a term resulting from the periodic225

supercell effect. It contains two parts226

Ecorr
el = EDD + Ecorr

strain. (20)

EDD is the energy due to elastic interaction between a defect and its periodic227

images, represented by elastic dipole-dipole terms. Ecorr
strain is the self-strain228

correction energy. Adopting the far-field elasticity approximation, the reg-229

ularized elastic interaction energy EDD can be written in terms of elastic230

dipole tensor and anisotropic elastic Green’s function [19, 6, 7, 8], where231

EDD = Etotal
DD + Ecorr

DD . (21)

The first term232

Etotal
DD =

1

2

∑
n6=0

PijPkl
∂

∂xj

∂

∂xl
Gik(Rn) (22)

is a sum of pairwise elastic interactions between a defect and its periodic233

images situated at Rn. The sum is conditionally convergent. The second234

term235

Ecorr
DD = − 1

2Vcell

∑
n6=0

∫
Vcell

PijPkl
∂

∂xj

∂

∂xl
Gik(Rn − r)d3r (23)

regularizes the strain produced by the periodic images and ensures the ab-236

solute convergence of sum (22).237

The self-strain correction energy is238

Ecorr
strain = −1

2
Pij
(
−ε̄Dij

)
=

1

2Vcell

∫
Vcell

Pijε
D
ij (r)d

3r. (24)
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As we only need to correct the linear elastic part of the strain field of the239

defect, one can apply the far-field approximation again, namely240

Ecorr
strain = − 1

2Vcell

∫
Vcell

PijPkl
∂

∂xj

∂

∂xl
Gik(r)d

3r. (25)

This term corrects the total energy for the effect of elastic strain produced by241

the defect itself. Eq. (25) has the form similar to Eq. (23), and corresponds242

to the first term n = 0 in the series.243

In practice, Eq. (23) and (25) can be represented by surface integrals244

through the use of the divergence theorem [20], namely245 ∫
Vcell

Pkl
∂

∂xj

∂

∂xl
Gik(r)d

3r =

∮
Scell

Pkα
∂

∂xj
Gik(r)nαdS. (26)

Here n is the unit vector of external surface normal, and index α refers a246

Cartesian component of this vector. Calculating the first derivative of elastic247

Green’s function is numerically more expedient that the second derivative,248

and the same applies to the calculation of surface integrals versus volume249

integrals. Elastic Green’s function, and its first and second derivatives can250

be calculated numerically following Barnett’s approach [21].251

3. Algorithm252

It is not feasible to calculate Etotal
DD and Ecorr

DD by adding up an infinite253

number of terms in the series. Provided that we take the same number of254

terms in both series, the sum of them, EDD, converges at a large cutoff255

distance [8]. Calculating Etotal
DD is trivial, since we can evaluate the second256

derivative of elastic Green’s function numerically. The calculation of Ecorr
DD is257

somewhat more involved as it requires calculating integrals over the surface258

of the simulation cell, see Eq. 26.259

A simulation cell involving PBCs usually has six surfaces. Generally, we260

need to consider a surface integral over a rhombohedral cell. For an arbitrary261

function F , the surface integral of a rhomboid in three dimensional system262

of coordinates can be written as263 ∫
S

F (r(u, v))dS =

∫ 1

−1

∫ 1

−1
F (r(u, v))J(u, v)dudv (27)

where264

J(u, v) =

∥∥∥∥∂r∂u × ∂r

∂v

∥∥∥∥ (28)
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is the transformation Jacobian. The position vector r is a function of u and265

v in terms of the translation vectors of the simulation cell. For example, the266

position vector at the top and bottom surfaces of a box is267

r =
u

2
Lx +

v

2
Ly ±

1

2
Lz, (29)

where the + and − signs in the last term correspond to the top and bottom268

surfaces, respectively. The Jacobian for both the top and bottom surfaces is269

now270

J(u, v) =
1

4
‖Lx × Ly‖ . (30)

The Jacobian for the other four surfaces can be evaluated in a similar way.271

Integration from -1 to 1 is performed numerically using the nine point272

Gaussian quadrature method. In the two dimensional case, the double inte-273

gration is performed in a nested manner, namely274 ∫ 1

−1

∫ 1

−1
f(u, v)dudv ≈

∑
i

∑
j

wiwjf(ui, vj) (31)

where wi and wj are the weights with respect to ui and vj. This fully defines275

the numerical procedure required for evaluting the surface integral in Eq.276

(26). A test involving eleven point Gaussian quadrature integration was also277

performed, and procudes the same result up to four decimal places [8].278

We have verified our calculations of EDD using summation over cubic,279

spherical and ellipsoidal summation volumes [8], increasing the magnitude of280

the cut-off distance, and found that the results were absolutely convergent in281

all cases. Considering the balance between efficiency and accuracy, we chose282

to use spherical neighbourhoods with the cutoff radius of 10 + δ times trans-283

lation vectors, where the magnitude of δ is small. Our results were verified284

numerically against numerical results computed using ANETO [6], which is a285

FORTRAN program developed independently by Varvenne et al. for a simi-286

lar purpose. The authors of Ref. [6] attribute their methodology to Cai et al.287

[22], who developed it for correcting elastic interactions between dislocations288

in two dimensions, using an electrostatic analogy. No electrostatic analogy289

was involved in the derivation of equations given in the preceding section of290

this paper.291
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4. Compilation of the program292

CANALIE is a code written in C++. It can be compiled using any293

modern C++ compiler, including Intel and GNU compilers. No linking to294

external libraries is required. The code can be compiled in two different ways295

for two different purposes. The first one is for general ab initio calculations.296

Using g++, one can compile CANALIE using the following command line297

$ g++ -DABINITIO -DSTRESSeV -o calanie CALANIE 2.0.cpp298

or299

$ g++ -DABINITIO -DSTRESSGPa -o calanie CALANIE 2.0.cpp300

Option -DABINITIO defines the word ABINITIO in the code, such that301

the program is compiled for the purpose of correcting the elastic energy302

and obtaining the dipole tensor from the output of a general purpose ab303

initio program. Option -DSTRESSeV means that stresses in the input file304

should be given in eV units. In other words, the input stresses are not the305

macro-stresses, but rather the macro-stresses multiplied by the cell volume.306

If one uses VASP [23, 24, 25, 26], the values are given in the line “Total”307

of the “OUTCAR” file. On the other hand, one can use a more general308

option -DSTRESSGPa. The stresses in the input file should then be given309

as the residual stresses, and should have the units of GPa. The sign of310

stresses follows the convention adopted in VASP. Positive stress means that311

the simulation cell attempts to expand.312

The second compilation option is needed for analyzing the relative elastic313

effect assuming that a linear defect can be rotated. It can be compiled using314

the command315

$ g++ -DORIENTATION -o calanie CALANIE 2.0.cpp316

This command compilation is required for analyzing changes in elastic cor-317

rection energy of a defect assuming that it can rotate freely, according to318

Eq. 16. This enables assessing the stability of a defect under the influ-319

ence of stresses developing in the supercell under PBCs. Application of this320

compilation option was illustrated in our earlier work [8].321
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5. Inputs and outputs322

CALANIE requires two input files. They are input data and input elastic.323

These files need to be located in the same directory for executing CALANIE.324

Both of them are ASCII files.325

When we use option -DABINITIO, in the input data file we need to spec-326

ify the translation vectors, the linear scaling factor, and the residual stresses327

in the perfect cell and in the cell containing a defect. They should be specified328

using the following format329

box ref 11 ???330

box ref 12 ???331

box ref 13 ???332

box ref 21 ???333

box ref 22 ???334

box ref 23 ???335

box ref 31 ???336

box ref 32 ???337

box ref 33 ???338

a lattice ref ???339

340

box def 11 ???341

...342

box def 33 ???343

a lattice def ???344

345

stress11 ref ???346

...347

stress33 ref ???348

349

stress11 def ???350

...351

stress33 def ???352

353

The numerical value that follows a keyword is the input value, the position of354

which is indicated by ??? above. Keywords box ref αβ and box def αβ355

are the translation vectors of the perfect reference cell and the cell containing356

a defect, and α, β = 1, 2, 3. Keywords a lattice ref and a lattice def are357
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linear scaling factors. Keywords stressαβ ref and stressαβ def are the358

residual stresses in the reference cell and in a cell containing a defect. One359

and only one value should be given. All the nine matrix elements for the360

translation vectors and residual stresses are required.361

In the input elastic file, the first two lines are comment lines. The third362

to eighth lines contain values of elastic constants in the Voigt notation Cij,363

in GPa units, followed by the compliance constants Sij, also in the Voigt364

notation, in GPa−1 units. The input should appear as follows365

#comments366

#comments367

C11 C12 C13 C14 C15 C16368

C21 C22 C23 C24 C25 C26369

C31 C32 C33 C34 C35 C36370

C41 C42 C43 C44 C45 C46371

C51 C52 C53 C54 C55 C56372

C61 C62 C63 C64 C65 C66373

S11 S12 S13 S14 S15 S16374

S21 S22 S23 S24 S25 S26375

S31 S32 S33 S34 S35 S36376

S41 S42 S43 S44 S45 S46377

S51 S52 S53 S54 S55 S56378

S61 S62 S63 S64 S65 S66379

Once both input files input data and input elastic are available, the program380

can be run from the same directory by executing the command381

$ ./calanie382

We provide a simple python script make input elastic.py to help generate383

input elastic. One needs to provide a file with the name input elastic Cij with384

only the first eight lines of input elastic. By running make input elastic.py,385

one generates file input elastic with the required values of Sij. Sample files386

with names input data 2, input elastic and input elastic Cij are included in387

the distribution of CALANIE.388

When using option -DORIENTATION, in input data we only need to389

specify the translation vectors and linear scaling factor for the reference cell.390

We also need the values of Ω(1) and Ω(2) through the keywords of Omega1391

and Omega2 in Å3 units. A sample file named input data 1 illustrates this392
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No. of atoms Approx. cell size k-points
Vac 107 3x3x3 4x4x4
〈100〉d 145 3x3x4 4x4x3
Octa 145 3x3x4 4x4x3
〈110〉c 193 3x4x4 4x3x3
〈110〉d 193 3x4x4 4x3x3

Table 1: The number of atoms, approximate cell size (in the units of cubic unit cell
size), and the k-point mesh that were used in the calculations of vacancy, 〈100〉 dumbbell,
octahedral site interstitial, 〈110〉 crowdion, and 〈110〉 dumbbell defects in FCC gold.

part of input. The input elastic file is the same as in the previous case.393

However, when we run the program, we need to specify the orientation of a394

defect in terms of θ and φ, namely395

$./calanie θ φ396

The dipole tensor of the defect can be calculated using Eq. 16, followed by397

the calculation of its elastic correction energy.398

There is no output file format associated with either option. Outputs399

are printed out directly. Values of Pij, E
app, Etotal

DD , Ecorr
DD , EDD, Ecorr

strain,400

and Ecorr
el are computed and displayed. The relaxation volume tensor Ωij401

and relaxation volume Ωrel are also evaluated and printed out according to402

equations Ωij = SijklPkl and Ωrel = Tr(Ωij).403

6. Applications404

6.1. Ab initio calculations: Point defects in FCC gold405

Elastic correction can be readily applied in the context of a calcula-406

tion of formation and migration energies of point defects. We have applied407

CALANIE to improve the quality of ab initio data on defect energies in408

FCC gold, which were partially described in a study by Hofmann et al. [27].409

The calculations were performed for vacancy and self-interstitial atom (SIA)410

defects, where the latter included a 〈100〉 dumbbell, an octahedral site inter-411

stitial, a 〈110〉 crowdion, and a 〈110〉 dumbbell.412

All the ab initio density functional theory (DFT) calculations were per-413

formed using Vienna Ab initio Simulation Package (VASP) [23, 24, 25, 26].414

We used the revised-TPSS exchange-correlation functional [28, 29]. The spin-415

orbit coupling was also included, to account for the band splitting and shape416
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Edef Eperf Eapp Ecorr
el EF

def

EF
def

(no corr)
Vac 4056.141572 4093.103600 -0.010717 0.00848 0.939 0.937
〈100〉d 5499.210885 5457.464770 -0.273714 0.18303 3.938 3.847
Octa 5499.380148 5457.464770 -0.285801 0.19697 4.105 4.016
〈110〉c 7318.341711 7276.601601 -0.275946 0.15802 3.959 3.841
〈110〉d 7318.342569 7276.601601 -0.275557 0.15747 3.960 3.842

Table 2: The total energy Edef of a simulation box containing a defect, the total energy
Eperf of a perfect lattice simulation cell, the applied strain energy Eapp, the elastic cor-
rection energy Ecorr

el , and the formation energy EF
def of a vacancy, a 〈100〉 dumbbell, an

octahedral site interstitial, a 〈110〉 crowdion, and a 〈110〉 dumbbell in FCC gold. The
value of EF

def with no elastic correction, corresponding to Eapp = 0 and Ecorr
el = 0, is also

given for comparison. All the values are given in eV units.

P11 P22 P33 P12 P23 P31

Vac -6.760 -6.760 -6.760 0.000 0.000 0.000
〈100〉d 36.667 39.612 39.612 0.000 0.000 0.000
Octa 39.371 39.984 39.984 0.000 0.000 0.000
〈110〉c 38.856 38.856 41.084 11.199 0.000 0.000
〈110〉d 38.742 38.742 41.332 11.155 0.000 0.000

Table 3: Elastic dipole tensor Pij , in eV units, computed for a vacancy, a 〈100〉 dumbbell,
an octahedral site interstitial, an 〈110〉 crowdion, and a 〈110〉 dumbbell in FCC gold.

Ω11 Ω22 Ω33 Ω12 Ω23 Ω31 Ωrel

Vac -0.117 -0.117 -0.117 0.000 0.000 0.000 -0.351
〈100〉d 0.231 0.888 0.888 0.000 0.000 0.000 2.008
Octa 0.598 0.735 0.735 0.000 0.000 0.000 2.068
〈110〉c 0.520 0.520 1.018 1.062 0.000 0.000 2.058
〈110〉d 0.494 0.494 1.072 1.057 0.000 0.000 2.059

Table 4: Relaxation volume tensor Ωij and relaxation volume Ωrel, in atomic volume
units, computed for a vacancy, a 〈100〉 dumbbell, an octahedral site interstitial, a 〈110〉
crowdion, and a 〈110〉 dumbbell in FCC gold.

16



modification of the 5d bands [30, 31, 32]. The plane wave energy cut-off is417

450 eV for the 11 valence electrons included in the calculation. Different418

sizes of simulation cells were used for different defects. The corresponding419

box sizes and k-point meshes are given in Table 1. All the simulation boxes420

were relaxed to the stress-free condition, with residual forces lower than 0.01421

eV/Å. Formation energies were calculated using Eq. 18 with respect to a422

perfect crystal, using a similar cell size and the same k-point mesh.423

Elastic constants are also required for calculating Eapp and Ecorr
el . They424

were calculated using the Le Page and Saxe method [33], using a 4-atom425

cubic cell. From ab initio calculations we obtained C11 = 210.55GPa, C12 =426

168.11GPa and C44 = 49.96GPa. These values are compatible with the427

low temperature experimental values, which are C11 = 201.63GPa, C12 =428

169.67GPa and C44 = 45.44GPa [34]. The calculated lattice constant is429

4.075Å, whereas the experimental value is 4.07833Å [35].430

The corrected defect formation energies EF
def , applied strain energies Eapp,431

elastic correction energies Ecorr
el , and the formation energy of defects with no432

correction applied, that is ignoring Eapp and Ecorr
el , are given in Table 2.433

It shows that a 〈100〉 dumbbell has the lowest formation energy, whereas a434

〈110〉 crowdion has the lowest formation energy if the elastic correction is435

not included. However, we should note that the energy difference between a436

〈100〉 dumbbell, a 〈110〉 crowdion and a 〈110〉 dumbbell is very small. Since437

the accuracy of a DFT calculation is in the meV range, it is hard to draw438

a definitive conclusion about the structure of the most stable SIA defect439

configuration in gold.440

Elements of elastic dipole tensors Pij, in eV units, are given in Table441

3, whereas the elements of the relaxation volume tensor Ωij and the total442

relaxation volume Ωrel, in atomic volume units, are given in Table 4. We443

note that their values are correlated with the symmetry of a particular defect.444

Indeed, the calculated values of Pij and Ωij might be more significant than the445

calculated values of the elastic correction terms. One can readily use them446

to evaluate the strength of defect-defect interactions through linear elasticity447

theory [5, 6, 7, 8, 9], and even apply it to examine the stress profile of an448

irradiated component on a macroscopic scale, if the distribution of defects is449

defined [17].450

Elastic correction can also be applied to non-equilibrium configurations.451

For example, it can be applied to the atomic configurations describing the452

migration pathway of a defect. We performed a nudged elastic band calcu-453

lation [36, 37] of vacancy migration in gold, where seven NEB images were454
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Figure 1: Variation of the formation energy of a vacancy during its transition from an
equilibrium position to a nearest neighbour equilibrium position. A small difference can
be observed between the cases studied with and without applying the elastic correction.

Figure 2: Elastic dipole tensor of a vacancy moving along a migration pathway in the y−z
plane. Owing to the symmetry of the defect, P22 = P33 and P12 = P31 = 0.

18



used. A vacancy hops from an equilibrium position to the nearest neighbour455

equilibrium position in the y−z plane. Fig. 1 shows the change in the forma-456

tion energy with and without the elastic energy correction. The computed457

migration energy agrees well with experimental value of 0.71 ± 0.05eV [35].458

The effect of applying the elastic correction is not prominent in this case, as459

the stress field induced in the lattice by a vacancy is relatively weak.460

On the order hand, we observe a change in Pij during the transition, illus-461

trated in Fig. 2, which can give rise to effects of anisotropic diffusion under462

external stress, or the stress induced by other defects [38]. The anisotropic463

diffusion tensor in linear approximation of a spatially slow varying external464

strain field εij(R) can be written, following Dederichs and Schroeder [39], as465

Dij(R) =
1

2

∑
h

λhr
h
i r

h
j exp

(
εkl(R)(P sd,h

kl − P
eq
kl )

kBT

)
, (32)

where h refers to a possible hopping site, λh = ν0 exp(−EM,h
D /kBT ) is the466

atomic jump frequency, ν0 is the attempt frequency, EM,h
D is the migration467

barrier, rhi is a Cartesian component of the hopping direction vector, P sd,h
kl468

and P eq
kl are the elastic dipole tensors at the saddle point and at an equilib-469

rium position. The value of Dij for a given value of strain can be evaluated470

using the data given here. Anisotropic diffusion of point defects under ap-471

plied stress induced by a screw dislocation has been explored by Sivak and472

Sivak [40] in fcc copper using kinetic Monte Carlo simulations.473

6.2. Molecular statics: Dislocation loop in tungsten474

Elastic field of a mesoscopic defect is much stronger than that of a point475

defect. Elastic correction is also larger for a defect of larger size in a small476

simulation box. For example, an ab initio calculation is usually limited to a477

few hundred atoms. The formalism developed in this paper can be applied to478

any localized defect irrespective to its structure. If the elastic dipole tensor479

Pij of the defect is known, one can use it to compute the corrected defect480

formation energy EF
def using Eq. 18, provided that the strain field at the481

surface of a simulation box is approximated by linear elasticity. We would482

like to examine the convergence of the Pij and EF
def of mesoscopic scale defects483

as a function of simulation cell size and simulation conditions.484

We have investigated the points using molecular statics. Molecular static485

allows us to do highly accurate calculations using very large simulation cells486
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Figure 3: Atomic configuration of (left) a circular 1
2 〈111〉 and (right) a square 〈100〉 self-

interstitial atom loop. Both loops contain 61 self-interstitial atoms. Bulk atoms were
filtered out according to the centre of symmetry parameter criterion.

within reasonable computation time. We used the Mason-Nguyen-Manh-487

Becquart (MNB) [41] potential for tungsten. The calculated elastic con-488

stants for this potential are C11 = 526.83GPa, C12 = 205.28GPa, and489

C44 = 160.63GPa. All the calculations were performed using LAMMPS [42].490

Atomic relaxations were performed using the conjugate gradient method. We491

have investigated circular 1
2
〈111〉 self-interstital atom (SIA) loops containing492

7, 13, 19, 37, 55 and 61 atoms, and square 〈100〉 SIA loops with 5, 13, 25,493

41 and 61 atoms, using simulation cells of varying size containing from 2,000494

to 1 million atoms. Two sets of calculations were performed. In one set,495

the shape and volume of the simulation cell remained fixed and the same as496

in the perfect lattice case. In the other set, the cell was permitted relax to497

a stress-free condition. The loop structure of a circular 1
2
〈111〉 and square498

〈100〉 loop with 61 atoms are shown in Fig. 3. They were generated using499

AtomEye [43], where bulk atoms were filtered using the centre of symmetry500

parameter criterion.501

Fig. 4 shows elements of the elastic dipole tensor of 1
2
〈111〉 SIA loops502

plotted as functions of the simulation cell size. Due to the symmetry of the503

defect, values of diagonal terms are all the same and labelled Pαα, whereas504

the off-diagonal terms also have the same values and are labelled Pαβ. We505

see that both the fixed cell and stress-free condition calculations converge to506

the same value if the simulation box is large enough. Under the stress-free507

condition, when the simulation cell size is in the range of 10 × 10 × 10 and508

11 × 11 × 11 unit cells, the cells containing 55 and 61 atoms loops deform509
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Figure 4: Elastic dipole tensors of 1
2 〈111〉 self-interstitial atom loops containing 7, 13, 19,

37, 55, and 61 atoms as functions of the simulation cell size. Pαα are the diagonal terms,
whereas Pαβ are the off-diagonal terms. Elements of the elastic dipole tensor are computed
using the condition that the simulation cell shape was fixed to match the perfect lattice
case, or allowed to relax to a stress-free condition.
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Figure 5: Formation energy EF
def of 1

2 〈111〉 self-interstitial atom loops containing 7, 13, 19,

37, 55, and 61 atoms shown as a function of the simulation cell size. The EF
def is calculated

with elastic correction applied, i.e. using Eq. 18, or without the correction, i.e. ignoring
the Eapp and Ecorr

el . Both are calculated under the condition that the simulation cell
shape was fixed to match the perfect lattice case, or was allowed to relax to a stress-free
condition.
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Figure 6: Elements of elastic dipole tensors of 〈100〉 self-interstitial atom loops containing
5, 13, 25, 41, and 61 atoms plotted as a function of teh simulation cell size. The off-
diagonal terms of the dipole tensor vanish because of symmetry. The elastic dipole tensor
is calculated under the condition that the simulation box shape was fixed to match the
perfect lattice case, or was allowed to relax to a stress-free condition.
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Figure 7: Formation energy EF
def of 〈100〉 self-interstitial atom loops containing 5, 13, 25,

41, and 61 atoms shown as a function of the simulation cell size. Values of EF
def were

calculated with elastic correction applied, i.e. using Eq. 18, or with no correction, i.e.
ignoring Eapp and Ecorr

el . Both were calculated under the condition that the simulation
box shape was fixed to match the perfect lattice case, or was allowed to relax to a stress-free
condition.
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significantly. The calculated values of Pij do not reflect the correct symmetry510

of a 1
2
〈111〉 SIA loop type, so we discarded these data.511

Fig. 5 shows the corrected formation energy calculated using the data512

shown in Fig. 4. We note that the elastic correction converges well in the513

limit of large simulation box. At the same time, we see that although the514

fixed cell and stress-free condition calculations suggest different values prior515

to the application of elastic correction, their values become comparable when516

this correction is applied. For mesoscopic scale loops, e.g. a 61 atom loop,517

the difference can be fairly large if the correction is not applied.518

Fig. 6 and 7 show elements of the dipole tensor and formation energy519

of 〈100〉 loops as functions of the cell size. Due to symmetry, we know that520

the elements of dipole tensor P11 = P22, P33 6= 0, and that the off-diagonal521

elements all vanish. We observe a similar behaviour for 〈100〉 loops as for522

1
2
〈111〉 loops. The error in Pij becomes larger when the size of the defect523

becomes comparable to the size of the simulation box. This is a consequence524

of the fact that the derivation of the dipole tensor formalism is based on the525

linear elasticity approximation.526

When the size of the simulation cell is small, the deformation of the lattice527

near the surface of the cell due to a defect may become large and hence non-528

linear. This makes the values of Pij computed in the linear elasticity theory529

approximation inaccurate. Nevertheless, it still help correct the formation530

energy for various simulation cell conditions, such as in the two limiting531

cases of the fixed box and stress-free conditions. This enables calculating532

the formation energy of a relatively large size defect using a relatively small533

simulation cell with confidence, which is important especially in the context534

of an ab initio calculation where the cost of computation is high.535

7. Conclusion536

In this study, we presented the fundamental theory, algorithms and nu-537

merical implementation of computer program CALANIE, intended for the538

evaluation of anisotropic elastic interaction energy under periodic boundary539

conditions (PBCs). The theory is based on the linear elasticity approxi-540

mation. The elastic interaction of a defect with its periodic images can be541

approximated and evaluated using the elastic dipole and elastic Green’s func-542

tion formalism. The elements of elastic dipole tensor can be computed in the543

same electronic or atomic scale simulation as the formation energy of the de-544

fect. Elastic Green’s function and its first and second derivatives can also be545
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calculated numerically if the values of elastic constants are known. Examples546

with input files are given. Compilation of CALANIE can be performed using547

any modern C++ compiler.548

Applications of the program are illustrated using two case studies as ex-549

amples. One example involves ab initio calculations of point defects in FCC550

gold. We show that elastic correction can be applied not only to the equilib-551

rium, but also to non-equilibrium configurations. Other applications involve552

relatively large, mesoscopic scale defects. We investigate the convergence of553

calculations of elements of dipole tensors and formation energies in the large554

simulation cell limit. We show that the elastic correction treatment can im-555

prove the quality of evaluation of the formation energy even in the limit556

where the size of the defect is comparable with the size of the simulation cell.557
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