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Body-centred cubic metals and alloys irradiated by energetic particles form highly mobile pris-
matic dislocation loops with a/2 〈111〉-type Burgers vectors. We show how to simulate diffusion of
prismatic loops using the discrete dislocation dynamics approach that treats elastic forces acting
between the loops and stochastic forces associated with ambient thermal fluctuations. We find that
interplay between stochastic thermal forces and internal degrees of freedom of loops, in particular
the reorientation of the loop habit planes, strongly influences the observed loop dynamics. The
loops exhibit three fundamental types of reactions: coalescence, repulsion, and confinement by elas-
tic forces. The confinement reactions are highly sensitive to the internal degrees of freedom of the
loops. Depending on the orientation of the loop habit planes, the barrier to enter an elastically
confined bound state is lowered substantially, whereas the life-time of the bound state increases by
many orders of magnitude.

I. INTRODUCTION

Metals exposed to irradiation develop a highly com-
plex microstructure, involving a mixture of mobile and
immobile defects of both interstitial and vacancy type.
The defect and dislocation network develops under the
effect of internal and external stresses and temperature,
and generates its own fluctuating stress field, leading to a
variety of changes in mechanical properties, such as hard-
ening and the loss of ductility, and having a detrimental
effect on the longevity of structural reactor components
in a radiation environment.

Predicting the dynamics of evolution of microstructure
is a major challenge to computer modelling because of
the broad spectrum of activation energies characterizing
defect and dislocation networks. Defect cluster migra-
tion barriers vary from meVs to eVs. The binding energy
of elastically confined defect structures spans a similar
range of energy scales [1], and the magnitude of elas-
tic interaction depends on the size of defects and their
spatial distribution. Simulating the temperature depen-
dent dynamics of microstructure requires the treatment
of intrinsic thermally activated defect mobility as well as
correlated motion of defects and dislocations mediated
by elastic interactions.

Highly glissile prismatic dislocation loops are produced
by irradiation [2, 3] together with sessile cavities, as
evidenced by in-situ transmission electron microscopy
(TEM) observations [4, 5]. The correlated motion of dis-
location loops, often observed experimentally, is an ele-
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mentary process leading to the formation of rafts of de-
fects and their eventual coalescence [6–9]. In other words,
the spatial ordering of dislocation loops stems from their
elastic interaction, whereas the loop motion itself is a
thermally activated process, fundamentally the same as
stochastic Brownian motion of individual defects [9–14].
The subject of this paper is the simulation of stochas-
tic glide motion of prismatic a/2 〈111〉 dislocation loops,
with a particular emphasis on the analysis of elementary
reactions between the loops, treated as dislocation line
objects, and modelled using discrete dislocation dynam-
ics.

Molecular dynamics and lattice type simulations per-
formed over the past two decades investigated the
stochastic diffusion of prismatic loops over a range of
sizes and temperatures [10–12, 15–18], elementary loop
and dislocation reactions [1, 9], as well as energies of
binding of loops to other defects [19]. However, a di-
rect atomistic simulation of an ensemble of interacting
dislocation loops still remains a challenge because of the
constraint imposed by the simulation cell size accessible
to a molecular dynamics simulation, and the relatively
short timescale of such a simulation. While the more
recent atomistic approaches involving the use of kinetic
Monte Carlo [20–23] have reached the experimentally rel-
evant time scale when exploring the relaxation of radia-
tion cascade damage in thin films, the identification of
pathways of migration and reaction between interacting
dislocation loops containing more than a few dozen in-
terstitials remains a largely unexplored problem.

Discrete dislocation dynamics (DDD) provides a com-
pelling alternative approach to modelling complex dislo-
cation microstructures, offering highly efficient computa-
tion of long-range elastic interactions. Furthermore, dis-
location dynamics enables the treatment of dislocation
reactions, simultaneously simulating internal and collec-
tive dislocation loop dynamics and enabling the inves-
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tigation of complex networks and junctions within the
same methodological framework. The objective of this
work is to include thermal stochastic forces in DDD
through the Langevin stochastic formalism, to enable
modelling the diffusion of dislocations. Stochastic dis-
location dynamics [24, 25] approach is formulated and
applied to the treatment of diffusion of loops and ele-
mentary reactions between interacting loops as an essen-
tial step towards modelling thermal evolution of complex
dislocation ensembles.

Langevin dynamics has been applied earlier to the
treatment of collective dynamics of dislocation loops on
a coarse-grained level, where the loops were treated as
point-like objects interacting through long-range elastic
fields described in the elastic dipole tensor approximation
[1, 9, 26, 27]. Extending the treatment to the case where
loop dynamics involves also the relaxation of their inter-
nal degrees of freedom, such as tilting of the loop habit
plane, we find that this strongly increases the lifetime of
configurations where pairs of loops are bound together
by their attractive elastic fields. Furthermore, the barri-
ers to entering such bound states are strongly reduced,
explaining why dislocation loop rafts are able to form so
easily in many materials, as confirmed by in-situ TEM
observations [1, 9, 28].

The paper is organized as follows. In Sec. II we de-
rive an expression for thermal stochastic forces acting on
a dislocation line. In Sec. III the diffusion coefficient of
a single prismatic loop is evaluated and examined as a
function of temperature, and the DDD analysis is bench-
marked against molecular dynamics simulations. We also
discuss the fluctuation-dissipation theorem, relating the
amplitude of stochastic thermal forces to the magnitude
of dissipative drag experienced by a dislocation moving
through a crystal. Next, the concept of the loop-loop in-
teraction potential energy surface is introduced, and the
elementary loop-lop reactions are simulated, with par-
ticular attention devoted to the investigation of internal
degrees of freedom of the loops. Finally, in Sec. IV we
evaluate the lifetime of an elastically confined loop-loop
configuration, which is a functional of the loop-loop in-
teraction potential energy surface.

II. SIMULATION METHOD

A. Stochastic force in dislocation dynamics

All simulations described in this paper were performed
using the 3D nodal dislocation dynamics code numodis
[29]. In numodis, continuous dislocation lines are dis-
cretized into a series of nodes linked by straight disloca-
tion segments. The internal elastic stress is then com-
puted according to the non-singular isotropic elasticity
theory [30]. The Langevin equation of motion for every
point on a dislocation segment is based on the dynamic
equation of motion, taken here in the overdamped limit

[31]:

B · v = f tot + fs, (1)

where v is the velocity of the dislocation line, B is the
viscous drag tensor per dislocation line unit length de-
pending on the slip system and temperature, and fs is
the stochastic force per unit length. The total configura-
tional force per unit length f tot exerted on a dislocation
segment equals

f tot = fel −∇Ecore. (2)

In the absence of external body and image forces, the
elastic driving force reduces to the well-known Peach-
Koehler (PK) force. The core energy Ecore is a phe-
nomenological correction introduced to improve agree-
ment with atomistic simulations. The core energy is also
required to yield a net positive line-tension for small-scale
line fluctuations [32, 33], which are expected to arise from
the action of stochastic force. The core energy per unit
length of a dislocation line is [34]

Ecore = ξµb2

4π(1− ν)
(
1− ν cos2 ψ(l)

)
, (3)

where ξ is the core strength parameter, ψ is the angle
between the dislocation tangent and the Burgers vector,
and l is the coordinate of a point on a dislocation line.

Consider the intrinsic mobility of an individual pris-
matic loop with perimeter L in an infinite medium in the
absence of external forces. Without loss of generality, as-
sume that the Burgers vector of the loop is collinear with
the z direction of the Cartesian system of coordinates. In
the absence of climb forces, the motion for a dislocation
line is one-dimensional

B
∂z(l, t)
∂t

= f totz (l, t) + fs(l, t), (4)

where B is the viscous drag coefficient for the given slip
system and the stochastic force fs is assumed to be lo-
cally correlated in time and space:

〈fs(l, t)〉 = 0,
〈fs(l, t)fs(l′, t′)〉 = σ2

sδ(l − l′)δ(t− t′), (5)
where σs sets the scale of the stochastic force, and δ(x)
is the Dirac delta-function

δ(x) = 0, ∀x 6= 0,
∞∫
−∞

δ(x)dx = 1. (6)

To find the amplitude of stochastic force, the effective
diffusion coefficient for the center-of-position (COP) of
the prismatic loop is matched to a 1D Einstein diffusion
law [18]. The projection of the COP on the Burgers vec-
tor direction is given by zCOP = L−1 ∫ L

0 dl z(l, t). After
a rearrangement, Eq. (4) becomes

∂zCOP

∂t
= 1
BL

∫ L

0
dl fs(l, t). (7)
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The effect of elastic force on the COP vanishes due to the
boundary condition z(l + L, t) = z(l, t). Assuming that
the initial position of the loop center is zCOP(0) = 0, the
solution to Eq. (7) at time τ is

zCOP(τ) = 1
BL

∫ L

0
dl
∫ τ

0
dt fs(l, t). (8)

Since the stochastic force fs(l, t) is defined in terms of
its correlation function, the mean square displacement of
the COP can be expressed as

〈
z2

COP(τ)
〉

=
(

1
BL

)2 ∫ L

0
dl
∫ L

0
dl′

×
∫ τ

0
dt
∫ τ

0
dt′ 〈fs(l, t)fs(l′, t′)〉 .

(9)

Substituting Eq. (5) into Eq. (9) yields

〈
z2

COP(τ)
〉

=
( σs
BL

)2 ∫ L

0
dl
∫ L

0
dl′

×
∫ τ

0
dt
∫ τ

0
dt′δ(l − l′)δ(t− t′).

(10)

Evaluating the above integral, we arrive at

〈
z2

COP(τ)
〉

=
( σs
BL

)2
Lτ ≡ 2DCOPτ. (11)

This equation is a mere corollary of the 1D Einstein
diffusion law, where DCOP is the corresponding diffusion
coefficient of the centre-of-position [35]. Substituting the
fluctuation-dissipation relation

DCOP = kBT

BL
(12)

into Eq. (11), we find the amplitude of the stochastic
force

σs =
√

2kBTB, (13)

where kB is the Boltzmann constant and T is absolute
temperature.

As numodis is a nodal dislocation dynamics code, the
total force per unit length is converted into an effective
nodal force by integrating over the neighboring segments
[31]. The same rule is applied to convert the stochastic
force per unit length into a stochastic force acting on
a node. However, care must be taken when rescaling
the force, as the randomly applied force must remain
consistent with the choice of the segment length and the
integration time step. For a straight segment of length ∆l
indexed by n, the scaled stochastic force per unit length
is found using the stochastic average:

fsn(t) = 1
∆l

∫ ln+∆l/2

ln−∆l/2
dl fs(l, t). (14)

Using Eq. (5), for the δ-correlated force generated by
thermal fluctuations, the nodal correlation function ac-
quires the form

〈fsn(t)fsn′(t′)〉 = σ2
s

(∆l)2

∫ ln+∆l/2

ln−∆l/2
dl
∫ ln′ +∆l/2

ln′−∆l/2
dl′

× δ(l − l′)δ(t− t′)

= σ2
s

∆l δn,n
′δ(t− t′).

(15)

Similarly, assuming the integration time step ∆t, the
scaled stochastic force per unit length can be finally ex-
pressed as

fsn =
√

2kBTB

∆l∆t N(0, 1), (16)

where N(0, 1) is a random number sampled from the
standard normal distribution, and the direction of the
force is collinear with the Burgers vector of the disloca-
tion loop.

B. Simulation setup, parameters, and statistics

All the dislocation dynamics (DD) simulations were
performed using a 5 µm cubic simulation cell with axes
parallel to x = [ 112], y = [110], and z = [111] directions.
The origin of the coordinate system is at the centre of
the cell. Initially, a hexagonal prismatic 〈111〉 disloca-
tion loop is positioned at the origin. The loop radius is
chosen as ρ = 4.5 nm, corresponding to the loop perime-
ter of L = 27 nm. The hexagonal loop shape was chosen
out of convenience as this has an almost negligible effect
on its dynamics. A round loop of equivalent size would
have the radius of 4.09 nm, as the stress field of a loop is
proportional to its area [26].

The three parameters included in the stochastic force
(16) require further clarification.

The viscous drag coefficient B characterizes the drag
force acting on a dislocation line. In bcc metals it is
generally assumed that B(T ) = B0 + B1T , where B0
and B1 are independent of temperature [36–38]. MD
simulations of glissile prismatic loops and self-interstitial
clusters in bcc metals show that B(T ) = B0 and is inde-
pendent of T over a wide temperature range. Given that
the simulations performed in this study address prismatic
dislocation loops of very small size, it is appropriate to
treat B as a temperature-independent constant. The nu-
merical value of B used in this work has been evaluated
from the atomistic study by Derlet et al. [18] using the
fluctuation-dissipation relation (12). The resulting value
of the drag coefficient B = 0.08 MPa · ns describes the
effective mobility of edge dislocations at temperatures
above T = 200 K, but underestimates the magnitude of
drag at lower temperatures, as shown in Fig. 1. At low
temperatures, the Peierls barrier [39, 40] and quantum ef-
fects [41, 42] play an important part, affecting dislocation
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FIG. 1. Viscous drag coefficient B for a prismatic dislocation
loop in iron extracted from molecular dynamics simulations
[18] (dots). The viscosity is well described by a non-Arrhenius
relation (line), see Derlet et al. [18] for the choice of parame-
ters in the functional expression. The dashed line corresponds
to the constant value of B = 0.08 MPa · ns used here, which
is valid for temperatures above 200 K.

mobility, but are not considered in this study. The chosen
value of B = 0.08 MPa · ns agrees well with previous pa-
rameterizations derived from the analysis of dislocation-
defect interactions in iron [43, 44].

Since the simulations were performed by splitting dis-
location loops into straight segments, and involved solv-
ing the equations of motion by means of a finite differ-
ence time integration algorithm, it would be appropriate
to assess the effect of discretization length ∆l and time
step ∆t on the computed diffusion coefficient. Thermal
diffusion of a single prismatic loop at 300 K was simu-
lated using three discretization lengths, ∆l = 5, 10, and
15 Å, and three time steps, ∆t = 0.2, 0.5 and 1.0 fs.
Simulations were run over the interval of 6 ns, with the
loop configuration data recorded every 0.6 ps. Loop dif-
fusion coefficients were computed using the drift diffusion
correction method [18], in which the diffusion trajectory
was split into multiple uncorrelated sub-trajectories. The
velocity auto-correlation function 〈vCOP(t)vCOP(t+ τ)〉
yields the correlation time of τ ≈ 2 ps, in broad agree-
ment with atomistic estimates [13, 33]. The velocity cor-
relation time is longer than the stochastic force corre-
lation time [36] derived from atomistic simulations, and
represents the low limit for the time length of a sub-
trajectory, which here was chosen as 6 ps. The diffusion
coefficient is then found by ensemble averaging over the
sub-trajectories, with the uncertainty characterized by
the standard error of the mean.

Fig. 2 shows a selection of simulated COP trajectories,
which are similar in terms of their statistical properties.
The values of diffusion coefficient derived from these tra-
jectories remain within their respective error bounds, in-
dependent of the selected values of ∆l and ∆t, in agree-
ment with the theoretical analysis by Derlet et al. [18].
All the further simulations presented in Sec. III were car-
ried out using the simulation parameters given in Tab. I,
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FIG. 2. Random walk trajectories of a prismatic loop with
radius ρ = 4.5 nm undergoing Brownian motion at 300 K sim-
ulated using the same viscous drag coefficient, and several
different discretization lengths ∆l and time steps ∆t. The
diffusion behaviour of the loop is independent of the choice of
discretization parameters.

TABLE I. Simulation parameters for pure iron [43, 45]

parameter symbol value
Burgers vector b 2.47 Å
Shear modulus µ 63 GPa
Poisson’s ratio ν 0.43
Drag coefficient B 0.08 MPa · ns
Dislocation core radius Rc 1.4 Å
Core strength parameter ξ 0.257
Time step ∆t 0.5 fs
Discretization length ∆l 10 Å

unless specified otherwise.

III. RESULTS

A. Stochastic dynamics of an individual dislocation
loop

Using stochastic dislocation dynamics, we performed a
series of simulations, investigation the dynamics of a sin-
gle prismatic loop at temperatures ranging from 100 K to
800 K, with temperature increments of 100 K. No exter-
nal stress was applied.

Consider first the internal degrees of freedom of the
prismatic loop. It is readily seen from simulations that
the initially purely prismatic [111] loop with its Burgers
vector normal to its habit plane, within a few picosecond
adopts a tilted configuration, see Fig. 3a. If the shape
of the loop is defined by its dislocation countour C, the
vector area of the loop is given by [27, 46]

A = 1
2

∮
C

r × dl. (17)
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and the the effective loop normal unit vector is

n̂ = 1
2|A|

∮
C

r × dl. (18)

The angle between the Burgers vector and the effective
loop normal shall be referred to as the tilt angle θ, with
the azimuthal angle φ defined in full analogy with the
spherical system of coordinates, see Fig. 3b for illustra-
tion. Following this definition and depending on the na-
ture of the loop (vacancy or interstitial), the loop is pure
prismatic if n̂ · b̂ = ±1 corresponding to θ = 0 or 180◦.
We note that the elastic relaxation volume of a loop is
given by the scalar product of the Burgers vector and the
loop vector area Ωrel = b ·A [27].

The elastic potential energy of a prismatic loop is min-
imised for configurations tilted away from the perfect
prismatic loop orientation, with the resulting tilt angle θ
determined by the competition between the elastic self-
energy associated with interaction between dislocation
segments and the core energy proportional to the length
of the perimeter of the loop, see Fig. 3c. The potential
energy is invariant with respect to rotations around the
Burgers vector, allowing the loop to rotate freely with
respect to φ in a DD simulation.

The mean value of the tilting angle 〈θ〉 decreases at
higher temperatures, reflecting the anharmonicity of the
potential self-energy of the loop. Indeed, it takes com-
paratively less energy for the loop normal to tilt towards
the Burgers vector than away from it, hence on average
smaller values of θ are favoured at higher temperature.

In addition to the tilting degrees of freedom, the loop
shape also develops transient fluctuations on a smaller
scale. However, any part of the loop is constrained to
remain on the glide cylinder, as the relaxation volume
of the loop Ωrel = A · b is conserved throughout the
simulation.

Consider next the diffusion behaviour of the entire
loop. The prismatic loop trajectory exhibit a charac-
teristic pattern of Brownian motion, with higher temper-
ature inducing a more pronounced loop displacement per
unit time. The single loop COP trajectories for 200 K
and 600 K, and the diffusion coefficients calculated with
the drift diffusion correction [18], are given in Fig. 4.
Globally, the temperature dependence of the diffusion
coefficient is found to be consistent with the fluctuation-
dissipation theorem, regardless of the loop radius ρ.

Moreover, for ρ = 4.5 nm and T < 400 K the diffu-
sion coefficients derived from simulations are consistently
lower than expected from the linear interpolation from
higher temperature (dashed line) because the tilting of
the loop results in the elongation of its perimeter, see
Fig. 3b. According to the fluctuation-dissipation theo-
rem, DCOP ∝ 1/L, and therefore the reorientation of the
habit plane gives rise to a lower value of the diffusion co-
efficient. This effect is found to become less pronounced
at higher temperature as the mean tilt angle 〈θ〉 decreases
with temperature.
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FIG. 3. (a) Snapshots from a stochastic dislocation dynam-
ics simulation of a hexagonal initially pure prismatic loop of
4.5 nm radius at 100 K show that the loop habit plane be-
comes tilted within a few picosecond. (b) The tilt angle θ is
defined as the angle between the normal vector (red arrow)
and the Burgers vector (black arrow). (c): The prismatic loop
adopts a tilted configuration on the glide cylinder to minimize
its potential energy.

The stochastic DD simulations performed in this work
describe thermally induced Brownian motion of prismatic
loops, which for T > 200 K is consistent with molecular
dynamics. The simulations further reveal that the pris-
matic loop habit plane becomes tilted with respect to
the Burgers vector, while remaining highly mobile with
respect to rotations around the Burgers vector.

The tilting behaviour of prismatic loops, also observed
in atomistic simulations, is possibly dominated by sin-
gular orientation effects in the core energy [47]. Consid-
ering that the core energy scales linearly with the loop
radius ∝ ρ and whereas the elastic self-energy varies
super-linearly as ∝ ρ log ρ [48], one would expect the
core energy to become less significant for larger loops.
However, the singular nature of the core energy in com-
bination with atomic discreteness would break the cylin-
drical symmetry of the system, subsequently introduc-
ing energy barriers in relation to its rotation around the
Burgers vector.

B. Diffusion of interacting dislocation loops

The question about thermal evolution of interacting
dislocation loops has recently attracted attention in the
context of dipole tensor formalism as an efficient approx-
imation for the long range elastic interaction between the
loops [26, 49]. Here, we show that the internal degrees
of freedom of loops, not explicitly treated by the dipole




















