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Body-centred cubic metals and alloys irradiated by energetic particles form highly mobile pris-
matic dislocation loops with a/2 〈111〉-type Burgers vectors. We show how to simulate diffusion of
prismatic loops using the discrete dislocation dynamics approach that treats elastic forces acting
between the loops and stochastic forces associated with ambient thermal fluctuations. We find that
interplay between stochastic thermal forces and internal degrees of freedom of loops, in particular
the reorientation of the loop habit planes, strongly influences the observed loop dynamics. The
loops exhibit three fundamental types of reactions: coalescence, repulsion, and confinement by elas-
tic forces. The confinement reactions are highly sensitive to the internal degrees of freedom of the
loops. Depending on the orientation of the loop habit planes, the barrier to enter an elastically
confined bound state is lowered substantially, whereas the life-time of the bound state increases by
many orders of magnitude.

I. INTRODUCTION

Metals exposed to irradiation develop a highly com-
plex microstructure, involving a mixture of mobile and
immobile defects of both interstitial and vacancy type.
The defect and dislocation network develops under the
effect of internal and external stresses and temperature,
and generates its own fluctuating stress field, leading to a
variety of changes in mechanical properties, such as hard-
ening and the loss of ductility, and having a detrimental
effect on the longevity of structural reactor components
in a radiation environment.

Predicting the dynamics of evolution of microstructure
is a major challenge to computer modelling because of
the broad spectrum of activation energies characterizing
defect and dislocation networks. Defect cluster migra-
tion barriers vary from meVs to eVs. The binding energy
of elastically confined defect structures spans a similar
range of energy scales [1], and the magnitude of elas-
tic interaction depends on the size of defects and their
spatial distribution. Simulating the temperature depen-
dent dynamics of microstructure requires the treatment
of intrinsic thermally activated defect mobility as well as
correlated motion of defects and dislocations mediated
by elastic interactions.

Highly glissile prismatic dislocation loops are produced
by irradiation [2, 3] together with sessile cavities, as
evidenced by in-situ transmission electron microscopy
(TEM) observations [4, 5]. The correlated motion of dis-
location loops, often observed experimentally, is an ele-
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mentary process leading to the formation of rafts of de-
fects and their eventual coalescence [6–9]. In other words,
the spatial ordering of dislocation loops stems from their
elastic interaction, whereas the loop motion itself is a
thermally activated process, fundamentally the same as
stochastic Brownian motion of individual defects [9–14].
The subject of this paper is the simulation of stochas-
tic glide motion of prismatic a/2 〈111〉 dislocation loops,
with a particular emphasis on the analysis of elementary
reactions between the loops, treated as dislocation line
objects, and modelled using discrete dislocation dynam-
ics.

Molecular dynamics and lattice type simulations per-
formed over the past two decades investigated the
stochastic diffusion of prismatic loops over a range of
sizes and temperatures [10–12, 15–18], elementary loop
and dislocation reactions [1, 9], as well as energies of
binding of loops to other defects [19]. However, a di-
rect atomistic simulation of an ensemble of interacting
dislocation loops still remains a challenge because of the
constraint imposed by the simulation cell size accessible
to a molecular dynamics simulation, and the relatively
short timescale of such a simulation. While the more
recent atomistic approaches involving the use of kinetic
Monte Carlo [20–23] have reached the experimentally rel-
evant time scale when exploring the relaxation of radia-
tion cascade damage in thin films, the identification of
pathways of migration and reaction between interacting
dislocation loops containing more than a few dozen in-
terstitials remains a largely unexplored problem.

Discrete dislocation dynamics (DDD) provides a com-
pelling alternative approach to modelling complex dislo-
cation microstructures, offering highly efficient computa-
tion of long-range elastic interactions. Furthermore, dis-
location dynamics enables the treatment of dislocation
reactions, simultaneously simulating internal and collec-
tive dislocation loop dynamics and enabling the inves-
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tigation of complex networks and junctions within the
same methodological framework. The objective of this
work is to include thermal stochastic forces in DDD
through the Langevin stochastic formalism, to enable
modelling the diffusion of dislocations. Stochastic dis-
location dynamics [24, 25] approach is formulated and
applied to the treatment of diffusion of loops and ele-
mentary reactions between interacting loops as an essen-
tial step towards modelling thermal evolution of complex
dislocation ensembles.

Langevin dynamics has been applied earlier to the
treatment of collective dynamics of dislocation loops on
a coarse-grained level, where the loops were treated as
point-like objects interacting through long-range elastic
fields described in the elastic dipole tensor approximation
[1, 9, 26, 27]. Extending the treatment to the case where
loop dynamics involves also the relaxation of their inter-
nal degrees of freedom, such as tilting of the loop habit
plane, we find that this strongly increases the lifetime of
configurations where pairs of loops are bound together
by their attractive elastic fields. Furthermore, the barri-
ers to entering such bound states are strongly reduced,
explaining why dislocation loop rafts are able to form so
easily in many materials, as confirmed by in-situ TEM
observations [1, 9, 28].

The paper is organized as follows. In Sec. II we de-
rive an expression for thermal stochastic forces acting on
a dislocation line. In Sec. III the diffusion coefficient of
a single prismatic loop is evaluated and examined as a
function of temperature, and the DDD analysis is bench-
marked against molecular dynamics simulations. We also
discuss the fluctuation-dissipation theorem, relating the
amplitude of stochastic thermal forces to the magnitude
of dissipative drag experienced by a dislocation moving
through a crystal. Next, the concept of the loop-loop in-
teraction potential energy surface is introduced, and the
elementary loop-lop reactions are simulated, with par-
ticular attention devoted to the investigation of internal
degrees of freedom of the loops. Finally, in Sec. IV we
evaluate the lifetime of an elastically confined loop-loop
configuration, which is a functional of the loop-loop in-
teraction potential energy surface.

II. SIMULATION METHOD

A. Stochastic force in dislocation dynamics

All simulations described in this paper were performed
using the 3D nodal dislocation dynamics code numodis
[29]. In numodis, continuous dislocation lines are dis-
cretized into a series of nodes linked by straight disloca-
tion segments. The internal elastic stress is then com-
puted according to the non-singular isotropic elasticity
theory [30]. The Langevin equation of motion for every
point on a dislocation segment is based on the dynamic
equation of motion, taken here in the overdamped limit

[31]:

B · v = f tot + fs, (1)

where v is the velocity of the dislocation line, B is the
viscous drag tensor per dislocation line unit length de-
pending on the slip system and temperature, and fs is
the stochastic force per unit length. The total configura-
tional force per unit length f tot exerted on a dislocation
segment equals

f tot = fel −∇Ecore. (2)

In the absence of external body and image forces, the
elastic driving force reduces to the well-known Peach-
Koehler (PK) force. The core energy Ecore is a phe-
nomenological correction introduced to improve agree-
ment with atomistic simulations. The core energy is also
required to yield a net positive line-tension for small-scale
line fluctuations [32, 33], which are expected to arise from
the action of stochastic force. The core energy per unit
length of a dislocation line is [34]

Ecore = ξµb2

4π(1− ν)
(
1− ν cos2 ψ(l)

)
, (3)

where ξ is the core strength parameter, ψ is the angle
between the dislocation tangent and the Burgers vector,
and l is the coordinate of a point on a dislocation line.

Consider the intrinsic mobility of an individual pris-
matic loop with perimeter L in an infinite medium in the
absence of external forces. Without loss of generality, as-
sume that the Burgers vector of the loop is collinear with
the z direction of the Cartesian system of coordinates. In
the absence of climb forces, the motion for a dislocation
line is one-dimensional

B
∂z(l, t)
∂t

= f totz (l, t) + fs(l, t), (4)

where B is the viscous drag coefficient for the given slip
system and the stochastic force fs is assumed to be lo-
cally correlated in time and space:

〈fs(l, t)〉 = 0,
〈fs(l, t)fs(l′, t′)〉 = σ2

sδ(l − l′)δ(t− t′), (5)
where σs sets the scale of the stochastic force, and δ(x)
is the Dirac delta-function

δ(x) = 0, ∀x 6= 0,
∞∫
−∞

δ(x)dx = 1. (6)

To find the amplitude of stochastic force, the effective
diffusion coefficient for the center-of-position (COP) of
the prismatic loop is matched to a 1D Einstein diffusion
law [18]. The projection of the COP on the Burgers vec-
tor direction is given by zCOP = L−1 ∫ L

0 dl z(l, t). After
a rearrangement, Eq. (4) becomes

∂zCOP

∂t
= 1
BL

∫ L

0
dl fs(l, t). (7)
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The effect of elastic force on the COP vanishes due to the
boundary condition z(l + L, t) = z(l, t). Assuming that
the initial position of the loop center is zCOP(0) = 0, the
solution to Eq. (7) at time τ is

zCOP(τ) = 1
BL

∫ L

0
dl
∫ τ

0
dt fs(l, t). (8)

Since the stochastic force fs(l, t) is defined in terms of
its correlation function, the mean square displacement of
the COP can be expressed as

〈
z2

COP(τ)
〉

=
(

1
BL

)2 ∫ L

0
dl
∫ L

0
dl′

×
∫ τ

0
dt
∫ τ

0
dt′ 〈fs(l, t)fs(l′, t′)〉 .

(9)

Substituting Eq. (5) into Eq. (9) yields

〈
z2

COP(τ)
〉

=
( σs
BL

)2 ∫ L

0
dl
∫ L

0
dl′

×
∫ τ

0
dt
∫ τ

0
dt′δ(l − l′)δ(t− t′).

(10)

Evaluating the above integral, we arrive at

〈
z2

COP(τ)
〉

=
( σs
BL

)2
Lτ ≡ 2DCOPτ. (11)

This equation is a mere corollary of the 1D Einstein
diffusion law, where DCOP is the corresponding diffusion
coefficient of the centre-of-position [35]. Substituting the
fluctuation-dissipation relation

DCOP = kBT

BL
(12)

into Eq. (11), we find the amplitude of the stochastic
force

σs =
√

2kBTB, (13)

where kB is the Boltzmann constant and T is absolute
temperature.

As numodis is a nodal dislocation dynamics code, the
total force per unit length is converted into an effective
nodal force by integrating over the neighboring segments
[31]. The same rule is applied to convert the stochastic
force per unit length into a stochastic force acting on
a node. However, care must be taken when rescaling
the force, as the randomly applied force must remain
consistent with the choice of the segment length and the
integration time step. For a straight segment of length ∆l
indexed by n, the scaled stochastic force per unit length
is found using the stochastic average:

fsn(t) = 1
∆l

∫ ln+∆l/2

ln−∆l/2
dl fs(l, t). (14)

Using Eq. (5), for the δ-correlated force generated by
thermal fluctuations, the nodal correlation function ac-
quires the form

〈fsn(t)fsn′(t′)〉 = σ2
s

(∆l)2

∫ ln+∆l/2

ln−∆l/2
dl
∫ ln′ +∆l/2

ln′−∆l/2
dl′

× δ(l − l′)δ(t− t′)

= σ2
s

∆l δn,n
′δ(t− t′).

(15)

Similarly, assuming the integration time step ∆t, the
scaled stochastic force per unit length can be finally ex-
pressed as

fsn =
√

2kBTB

∆l∆t N(0, 1), (16)

where N(0, 1) is a random number sampled from the
standard normal distribution, and the direction of the
force is collinear with the Burgers vector of the disloca-
tion loop.

B. Simulation setup, parameters, and statistics

All the dislocation dynamics (DD) simulations were
performed using a 5 µm cubic simulation cell with axes
parallel to x = [ 112], y = [110], and z = [111] directions.
The origin of the coordinate system is at the centre of
the cell. Initially, a hexagonal prismatic 〈111〉 disloca-
tion loop is positioned at the origin. The loop radius is
chosen as ρ = 4.5 nm, corresponding to the loop perime-
ter of L = 27 nm. The hexagonal loop shape was chosen
out of convenience as this has an almost negligible effect
on its dynamics. A round loop of equivalent size would
have the radius of 4.09 nm, as the stress field of a loop is
proportional to its area [26].

The three parameters included in the stochastic force
(16) require further clarification.

The viscous drag coefficient B characterizes the drag
force acting on a dislocation line. In bcc metals it is
generally assumed that B(T ) = B0 + B1T , where B0
and B1 are independent of temperature [36–38]. MD
simulations of glissile prismatic loops and self-interstitial
clusters in bcc metals show that B(T ) = B0 and is inde-
pendent of T over a wide temperature range. Given that
the simulations performed in this study address prismatic
dislocation loops of very small size, it is appropriate to
treat B as a temperature-independent constant. The nu-
merical value of B used in this work has been evaluated
from the atomistic study by Derlet et al. [18] using the
fluctuation-dissipation relation (12). The resulting value
of the drag coefficient B = 0.08 MPa · ns describes the
effective mobility of edge dislocations at temperatures
above T = 200 K, but underestimates the magnitude of
drag at lower temperatures, as shown in Fig. 1. At low
temperatures, the Peierls barrier [39, 40] and quantum ef-
fects [41, 42] play an important part, affecting dislocation
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FIG. 1. Viscous drag coefficient B for a prismatic dislocation
loop in iron extracted from molecular dynamics simulations
[18] (dots). The viscosity is well described by a non-Arrhenius
relation (line), see Derlet et al. [18] for the choice of parame-
ters in the functional expression. The dashed line corresponds
to the constant value of B = 0.08 MPa · ns used here, which
is valid for temperatures above 200 K.

mobility, but are not considered in this study. The chosen
value of B = 0.08 MPa · ns agrees well with previous pa-
rameterizations derived from the analysis of dislocation-
defect interactions in iron [43, 44].

Since the simulations were performed by splitting dis-
location loops into straight segments, and involved solv-
ing the equations of motion by means of a finite differ-
ence time integration algorithm, it would be appropriate
to assess the effect of discretization length ∆l and time
step ∆t on the computed diffusion coefficient. Thermal
diffusion of a single prismatic loop at 300 K was simu-
lated using three discretization lengths, ∆l = 5, 10, and
15 Å, and three time steps, ∆t = 0.2, 0.5 and 1.0 fs.
Simulations were run over the interval of 6 ns, with the
loop configuration data recorded every 0.6 ps. Loop dif-
fusion coefficients were computed using the drift diffusion
correction method [18], in which the diffusion trajectory
was split into multiple uncorrelated sub-trajectories. The
velocity auto-correlation function 〈vCOP(t)vCOP(t+ τ)〉
yields the correlation time of τ ≈ 2 ps, in broad agree-
ment with atomistic estimates [13, 33]. The velocity cor-
relation time is longer than the stochastic force corre-
lation time [36] derived from atomistic simulations, and
represents the low limit for the time length of a sub-
trajectory, which here was chosen as 6 ps. The diffusion
coefficient is then found by ensemble averaging over the
sub-trajectories, with the uncertainty characterized by
the standard error of the mean.

Fig. 2 shows a selection of simulated COP trajectories,
which are similar in terms of their statistical properties.
The values of diffusion coefficient derived from these tra-
jectories remain within their respective error bounds, in-
dependent of the selected values of ∆l and ∆t, in agree-
ment with the theoretical analysis by Derlet et al. [18].
All the further simulations presented in Sec. III were car-
ried out using the simulation parameters given in Tab. I,
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FIG. 2. Random walk trajectories of a prismatic loop with
radius ρ = 4.5 nm undergoing Brownian motion at 300 K sim-
ulated using the same viscous drag coefficient, and several
different discretization lengths ∆l and time steps ∆t. The
diffusion behaviour of the loop is independent of the choice of
discretization parameters.

TABLE I. Simulation parameters for pure iron [43, 45]

parameter symbol value
Burgers vector b 2.47 Å
Shear modulus µ 63 GPa
Poisson’s ratio ν 0.43
Drag coefficient B 0.08 MPa · ns
Dislocation core radius Rc 1.4 Å
Core strength parameter ξ 0.257
Time step ∆t 0.5 fs
Discretization length ∆l 10 Å

unless specified otherwise.

III. RESULTS

A. Stochastic dynamics of an individual dislocation
loop

Using stochastic dislocation dynamics, we performed a
series of simulations, investigation the dynamics of a sin-
gle prismatic loop at temperatures ranging from 100 K to
800 K, with temperature increments of 100 K. No exter-
nal stress was applied.

Consider first the internal degrees of freedom of the
prismatic loop. It is readily seen from simulations that
the initially purely prismatic [111] loop with its Burgers
vector normal to its habit plane, within a few picosecond
adopts a tilted configuration, see Fig. 3a. If the shape
of the loop is defined by its dislocation countour C, the
vector area of the loop is given by [27, 46]

A = 1
2

∮
C

r × dl. (17)
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and the the effective loop normal unit vector is

n̂ = 1
2|A|

∮
C

r × dl. (18)

The angle between the Burgers vector and the effective
loop normal shall be referred to as the tilt angle θ, with
the azimuthal angle φ defined in full analogy with the
spherical system of coordinates, see Fig. 3b for illustra-
tion. Following this definition and depending on the na-
ture of the loop (vacancy or interstitial), the loop is pure
prismatic if n̂ · b̂ = ±1 corresponding to θ = 0 or 180◦.
We note that the elastic relaxation volume of a loop is
given by the scalar product of the Burgers vector and the
loop vector area Ωrel = b ·A [27].

The elastic potential energy of a prismatic loop is min-
imised for configurations tilted away from the perfect
prismatic loop orientation, with the resulting tilt angle θ
determined by the competition between the elastic self-
energy associated with interaction between dislocation
segments and the core energy proportional to the length
of the perimeter of the loop, see Fig. 3c. The potential
energy is invariant with respect to rotations around the
Burgers vector, allowing the loop to rotate freely with
respect to φ in a DD simulation.

The mean value of the tilting angle 〈θ〉 decreases at
higher temperatures, reflecting the anharmonicity of the
potential self-energy of the loop. Indeed, it takes com-
paratively less energy for the loop normal to tilt towards
the Burgers vector than away from it, hence on average
smaller values of θ are favoured at higher temperature.

In addition to the tilting degrees of freedom, the loop
shape also develops transient fluctuations on a smaller
scale. However, any part of the loop is constrained to
remain on the glide cylinder, as the relaxation volume
of the loop Ωrel = A · b is conserved throughout the
simulation.

Consider next the diffusion behaviour of the entire
loop. The prismatic loop trajectory exhibit a charac-
teristic pattern of Brownian motion, with higher temper-
ature inducing a more pronounced loop displacement per
unit time. The single loop COP trajectories for 200 K
and 600 K, and the diffusion coefficients calculated with
the drift diffusion correction [18], are given in Fig. 4.
Globally, the temperature dependence of the diffusion
coefficient is found to be consistent with the fluctuation-
dissipation theorem, regardless of the loop radius ρ.

Moreover, for ρ = 4.5 nm and T < 400 K the diffu-
sion coefficients derived from simulations are consistently
lower than expected from the linear interpolation from
higher temperature (dashed line) because the tilting of
the loop results in the elongation of its perimeter, see
Fig. 3b. According to the fluctuation-dissipation theo-
rem, DCOP ∝ 1/L, and therefore the reorientation of the
habit plane gives rise to a lower value of the diffusion co-
efficient. This effect is found to become less pronounced
at higher temperature as the mean tilt angle 〈θ〉 decreases
with temperature.
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FIG. 3. (a) Snapshots from a stochastic dislocation dynam-
ics simulation of a hexagonal initially pure prismatic loop of
4.5 nm radius at 100 K show that the loop habit plane be-
comes tilted within a few picosecond. (b) The tilt angle θ is
defined as the angle between the normal vector (red arrow)
and the Burgers vector (black arrow). (c): The prismatic loop
adopts a tilted configuration on the glide cylinder to minimize
its potential energy.

The stochastic DD simulations performed in this work
describe thermally induced Brownian motion of prismatic
loops, which for T > 200 K is consistent with molecular
dynamics. The simulations further reveal that the pris-
matic loop habit plane becomes tilted with respect to
the Burgers vector, while remaining highly mobile with
respect to rotations around the Burgers vector.

The tilting behaviour of prismatic loops, also observed
in atomistic simulations, is possibly dominated by sin-
gular orientation effects in the core energy [47]. Consid-
ering that the core energy scales linearly with the loop
radius ∝ ρ and whereas the elastic self-energy varies
super-linearly as ∝ ρ log ρ [48], one would expect the
core energy to become less significant for larger loops.
However, the singular nature of the core energy in com-
bination with atomic discreteness would break the cylin-
drical symmetry of the system, subsequently introduc-
ing energy barriers in relation to its rotation around the
Burgers vector.

B. Diffusion of interacting dislocation loops

The question about thermal evolution of interacting
dislocation loops has recently attracted attention in the
context of dipole tensor formalism as an efficient approx-
imation for the long range elastic interaction between the
loops [26, 49]. Here, we show that the internal degrees
of freedom of loops, not explicitly treated by the dipole
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FIG. 4. Top: Random walk trajectories of a hexagonal
prismatic loop of radius ρ = 4.5 nm simulated for 200 K and
600 K. Bottom: Plots of diffusion coefficients as a function
of temperature for different loop sizes ρ. Dashed lines are
analytical predictions derived from the fluctuation-dissipation
theorem DCOP = kBT/(BL).

tensor formalism, have a profound effect on the stochas-
tic dynamics of loops, particularly where the loops form
bound configurations confined by attractive elastic inter-
actions.

Consider a pair of prismatic loops with unit Burgers
vectors b̂1 = b̂2 = ẑ. The loop centers are separated
by distance s in the glide direction and by ∆x in the
direction perpendicular to the Burgers vector direction,
see Fig. 5a. In the absence of climb force, either loop can
move or distort only in the glide direction.

While the stochastic simulations involve an explicit
treatment of internal degrees of freedom of the loops,
it is also instructive to consider the static properties of a
simplified system of two loops. Following the discussion
in Sec. III A, the internal degrees of freedom of the sim-
plified system are reduced to the tilting modes only, thus
keeping the loops otherwise flat and of ellipsoidal shape.

For a single loop the potential energy is invariant with
respect to rotations around its Burgers vector. For a pair
of loops the invariance is lifted by their elastic interaction:
for a loop-pair separation constrained at s, the system
has multiple tilting configurations corresponding to local
energy minima, giving rise to a complex potential energy
surface (PES) with several branches and crossing points.

x̂

ŷ

ẑ

∆x

s

z
(2)
COP

z
(1)
COP

a) Two interacting loops

conf. 1:

conf. 2:

conf. 3:

b) metastable
configurations of

loops

FIG. 5. (a) Two prismatic loops defined using the coordinate
system introduced in Sec. III B. Loop configuration (line) is
free to deviate from the pure prismatic form (dashed) on the
glide cylinder. (b) A selection of representative metastable
configurations of interacting loops extracted from dislocation
dynamics simulations, also showing the loop normal vectors.
Configurations are ordered from bottom to top in the ascend-
ing order according to the total potential energy, and hence
in the order of decreasing stability of a configuration.

In full analogy to the Born-Oppenheimer approximation
of quantum physics [50], the internal degrees of freedom
of loops evolve significantly faster (on the timescale of
∼ ps) than the loop-pair separation (varying on the ∼ ns
timescale), and thus the notion of PES describes the sys-
tem of interacting loops in the adiabatic approximation.
Each PES branch represents a meta-stable tilting state
for a given reaction coordinate s. Transitions between
PES branches occur by the rotation of loop habit planes,
which are therefore separated by energy barriers.

The energy of interaction between pairs of prismatic
loops is computed in the order of ascending accuracy: in
the dipole tensor approximation for a pair of pure pris-
matic loops, as exact elastic interaction between a pair
of pure prismatic loops, and as exact elastic interaction
between prismatic loops with relaxed internal degrees of
freedom. Note that in the dipole tensor approximation
the expression for the loop-loop interaction reduces to the
Foreman-Eshelby expression [1, 2, 51]. The treatment of
internal relaxation is explained in detail in Sec. A of Ap-
pendix. The energy of interaction between the loops is
defined as the energy difference between the total energy
of two loops minus the energy of isolated loops with the
same orientation of the Burgers vector and the loop habit
plane.

W int(s) = W tot(s)− lim
s→∞

W tot(s). (19)

Energies of elastic interaction are compared in Fig. 6
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FIG. 6. Comparison of energies of elastic interaction of two
pure prismatic dislocation loops of radius ρ = 4.09 nm, ob-
tained by exact integration (solid, blue) and computed in the
dipole tensor approximation using the Foreman-Eshelby equa-
tion [1, 2, 51] (dashed, red). Allowing the loops to tilt, and
thus to acquire a mixed character, reveals a complex poten-
tial energy surface (solid, grey). Plots A to D represent loop
pairs with increasing separation ∆x perpendicular to the glide
cylinders.

for the various loop separations ∆x using an example of
two round loops with radii ρ = 4.09 nm. Note that the
choice of radii is consistent with loops being hexagonal
and having the same area, as discussed in Sec. II B.

The exact interaction energy trend for pure prismatic
pairs of loops broadly follows the PES trend, but does
not reflect the full complexity of interaction between
internally relaxed loops. The dipole approximation is
consistent with the exact treatment, but only for loop
separations several times larger than the sum of loop
radii. The dipole tensor formalism becomes inaccurate
for smaller separations, resulting in a qualitatively in-
correct predicted interaction behavior, see the top two
panels in Fig. 6.

A major effect of internal relaxation is found when
we follow how the loops approach an elastically confined

bound state from infinite separation. This reaction is
fundamental to the formation of dislocation loop rafts.
From Fig. 6 it is evident that loop interaction energy at
large separations is positive. Therefore an energy bar-
rier first has to be overcome before the loops can enter
a bound state. This barrier here given by the maximum
value of the chosen potential energy branch. In the pure
prismatic loop picture the barrier is substantial, ranging
from 8 eV, 2 eV, and 0.4 eV for separations ∆x of 8 nm,
12 nm, and 20 nm, respectively. In contrast, the lowest
PES branches have dramatically reduced barriers to trap-
ping of 2 eV, 0.5 eV, and 0.1 eV, respectively, and as such
may eventually be overcome by diffusion. In our earlier
work based on a pure prismatic loop picture, where elas-
tic interaction between the loops was described by the
Foreman-Eshelby equation [2, 51], the trapping barrier
had to be artificially lowered to facilitate elastic confine-
ment of loops, as otherwise no formation of loop rafts
would occur [1].

We also note that in the limit of large separation s,
only three PES branches form. The corresponding fun-
damental configurations of pairs of loops are shown in
Fig. 5b, and their energy ordering is consistent with the
separations ∆x studied here.

This comparison demonstrates that the energy of inter-
action between prismatic loops is strongly affected by the
internal degrees of freedom of the loops. Consequently,
the competition between the elastic energy and the core
energy plays a pivotal role in determining the landscape
of binding energies of loops. This subtlety is neglected in
any physical approximation where the dislocation loops
are treated as being purely prismatic, or where they are
treated as point-like objects defined only by their posi-
tion in real space and involving no consideration of their
internal degrees of freedom.

In what follows, we carry out stochastic dislocation
dynamics simulations of interacting pairs of loops. The
simulations start from large initial separations ∆x and s
at 200 K in an attempt to emulate various elementary in-
teractions observed in experiment, see Section I, namely
coalescence, repulsion, and mutual elastic confinement of
interacting loops.

Case A: Coalescence of dislocation loops

The coalescence of dislocation loops was observed using
TEM and was found to involve loops of comparable size
[8], with diameters larger than 4 nm. To match experi-
mental observations, two pure prismatic hexagonal 〈111〉
loops with ρ = 4.5 nm are introduced in a simulation
cell with separations of ∆x = 8 nm and s = 5 nm, yield-
ing a mutually attractive elastic force, see Fig 6. Note
that the glide cylinders of the loops overlap slightly. Se-
quential snapshots taken during simulations are shown
in Fig. 7a. The loops coalesce into a larger prismatic
loop, with small debris released and ejected by a strong
repulsive elastic force.
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FIG. 7. (a) Shapshots taken from stochastic dislocation dy-
namics simulations of a loop coalescence reaction, for the ini-
tial loop-pair separations of ∆x = 8 nm and s = 5 nm, viewed
at an angle from the −ŷ direction. Note the occurrence of
ejection of debris during loop coalescence. b) Plot of the ef-
fective diffusion coefficient as a function of time. The dotted
line is a reference value computed for a single loop with size
ρ = 4.5 nm.

The corresponding time evolution of the diffusion coef-
ficient of the resulting large loop is shown in Fig. 7b. We
observe that the diffusion coefficient becomes constant
over the interval of a few nanosecond and converges to a
notably smaller value than the diffusion coefficient of sin-
gle loop with ρ = 4.5 nm. Using the DCOP ∼ 1/L scaling
relation, the equivalent loop size of the loop produced by
the coalescence of a pair of loops equals ρeq ≈ 7 nm. This
is consistent with an estimate of the equivalent loop size
obtained by removing a quarter of each loop’s circumfer-
ence, leading to ρeq ≈ 3/2ρ. While the relaxation volume
of the loops is a conserved quantity, the length of the loop
circumference is not; this example demonstrates clearly
that the effective diffusivity of an ensemble of prismatic
loops may reduce over time as a result of coalescence of
loops.

Case B: Repulsion between the loops

An example of repulsive interaction between diffus-
ing dislocation loops is obtained by placing the loops
with separations of ∆x = 5 nm and s = 12 nm, using
three different initial configurations shown in Fig. 5b.
Fig. 8 shows the evolution of the corresponding inter-
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FIG. 8. Dislocation dynamics simulation of two pris-
matic loops in a repulsive arrangement without (A) and with
stochastic forces at T = 200 K (B) included. The initial loop
configurations (conf.) are taken from Fig. 5. In the absence
of stochastic forces the system of two loops moves along the
PES branches, see conf. 2 and conf. 3 in (A). On the other
hand, the trajectories of the heated system eventually become
indistinguishable, oscillating between various tilting configu-
rations.

action energies during the simulation performed without
stochastic forces (T = 0 K) and with stochastic forces
(T = 200 K) included, in comparison with the theoreti-
cal prediction derived from examining the corresponding
potential energy surface.

As expected for repulsive configurations, we find that
the distance between the loops gradually increases over
the interval of time spanned by the simulation. Inspec-
tion of the loop-pair configuration shows that the cold
(T = 0) systems retain their initial orientation of the
habit plane, which is consistent with the energy tra-
jectories propagating along the distinct PES branches.
On the other hand, the trajectories of the heated sys-
tem (T = 200 K) soon start overlapping, starting from
s ≈ 20 nm, eventually becoming indistinguishable. The
stochastic force supplies additional thermal energy to the
loops, which is evidently sufficient to overcome the energy
barrier between the different PES branches, enabling the
loops to rotate and thus oscillate between various tilting
configurations.

Case C: Elastic confinement of loops

Prismatic loops may exhibit strong elastic attraction
and form an elastically confined configuration as seen in
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Fig. 6. Depending on loop size and loop separation, the
binding energy can vary from meVs to eVs, potentially
surpassing the binding energy of dislocations to substitu-
tional defects. Therefore it can be reasoned that elastic
confinement of loops represents the key step leading to
the stabilization of experimentally observed rafts of dis-
location loops.

We adopt the initial setup corresponding to ∆x =
12 nm and s = 12 nm, for which the pair of loops exhibit
mutual attraction. As in the repulsive case investigated
above, the simulations were run for three initial loop con-
figurations shown in Fig. 5b, corresponding to distinct
branches of the potential energy surface. The evolution
of the energy of interaction between the two loops as a
function of their separation in comparison with the ide-
alized PES is shown in Fig. 9.

In the absence of stochastic forces, the two-loop sys-
tem is hindered from reaching the lowest energy state
because it is unable to overcome the energy barrier asso-
ciated with the rotation of the loop habit planes. In con-
trast, the addition of stochastic forces supplies the loops
with additional energy, enabling the system to explore
the potential energy landscape more freely to the point
where it even oscillates around the global energy mini-
mum. As in the loop repulsion case investigated above,
the interaction energy derived using simulations involv-
ing elevated temperature is found to be shifted upwards
by about 1.5 eV compared to the PES, as the Langevin
thermostat adds additional energy to the system.

The COP trajectories of the two loops corresponding
to conf. 1 state are shown in Fig. 10. After a brief ini-
tial relaxation time, the loops become mutually trapped
in their relative frame by attractive elastic interaction,
with their COP trajectories becoming strongly spatially
correlated. The loop separation distance in the elastically
confined state fluctuates around the global potential en-
ergy minimum as a result of the effect of stochastic force,
in agreement with experimental observations and simu-
lations reported in Figs. 3-5 of Ref. [1]. Interestingly, the
simulated trajectories suggest that the bound two loops
oscillate on a ∼ 0.5 ns time-scale, thus evolving signifi-
cantly slower than the tilt angle of the isolated loop, see
Fig. 3.

IV. THE LIFETIME OF ELASTICALLY
CONFINED LOOP CONFIGURATIONS

In Sec. III B above, we have explored the three types
of fundamental reactions between prismatic dislocation
loops. These reactions, namely loop coalescence, repul-
sion and mutual elastic trapping or confinement, have
all been modelled using stochastic dislocation dynamics
at 200 K. The simulations enable comparison with mod-
els developed earlier for modeling the thermal evolution
of multiple loops, which involve the dipole approxima-
tion [9] and treat the loops as point objects, assuming
that they remain purely prismatic over the duration of
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FIG. 9. Dislocation dynamics simulation of a pair of pris-
matic loops in an attractive arrangement without (A) and
with stochastic forces at T = 200 K (B) included. The initial
configurations (conf.) of loops are taken from Fig. 5. Tra-
jectories in (B) are shifted down by an estimated amount of
additional thermal energy supplied by the thermostat W th

for better comparison. In the absence of stochastic forces,
the loop-pair is stuck in metastable configurations. In con-
trast, the heated system escapes from the metastable state,
instead fluctuating around the global minimum.
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FIG. 10. z-coordinates of centres of elastically confined loops
plotted versus simulation time. The initial position of the
loops corresponds to conf. 1.

the simulation. In this paper we show that the internal
degrees of freedom significantly influence the nature of in-
teraction between the loops, with potentially significant
implications for the lifetime of elastically confined loop
configurations. We now analyze this effect quantitatively.

Introducing the probability density P (s, t) of finding
the two loops at separation s at time t, the equation
of motion for this probability density, see Sec. B of Ap-
pendix, can be expressed as a Fokker-Planck equation
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[52–54]

∂P (s, t)
∂t

= −∂J(s, t)
∂s

, (20)

where J is the flux of the probability density

J(s, t) = − 2
βBL

e−βV (s) ∂

∂s

(
eβV (s)P (s, t)

)
, (21)

where β = 1/(kBT ) and V (s) refers to a branch of the
potential energy surface. It is sufficient to consider the
s ∈ [0,+∞) interval of variation of s as the potential
energy surface is symmetric.

Consider now the pair of loops at an energy minimum
at smin. At equilibrium steady state the flux vanishes,
J = 0, leading to the probability acquiring the form of the
Gibbs distribution P (s) ∼ exp (−βV (s)). Similarly, the
escape process from the energy minimum at smin to a very
far separation along the glide direction sfar � smin can be
considered to proceed slow enough to preserve the steady-
state, leading to a constant flux J = J0. The steady-state
flux is found by solving Eq. (21) for the derivative and
subsequently integrating from smin to sfar, namely

[
eβV P

]sfar

smin
= −J0βBL

2

∫ sfar

smin

ds e−βV . (22)

Using P (smin) � P (sfar), the escape flux can be found
as

J0 ≈
2

βBL

eβV (smin)P (smin)∫ sfar
smin

ds eβV
. (23)

Assuming that the probability density decays rapidly
outside the potential well associated with the energy min-
imum, the probability p of finding the pair of loops in an
elastically confined state is derived by integration over
the well width ±δs, using the method of steepest descent

p =
∫ smin+δs

smin−δs
ds P (s)

= P (smin)
∫ smin+δs

smin−δs
ds e−β(V (smin)−V (s))

≈ P (smin)
2

∫ +∞

−∞
ds e−βV

′′(smin)s2/2

= P (smin)
2

(
2π

βV ′′(smin)

)1/2

(24)

where V ′′(smin) is the second derivative of V (s) evaluated
at the stationary point smin. Similarly, the integral term
in Eq. (23) peaks at the point smax corresponding to the
maximum barrier height. Applying the same approach
as in Eq. (24), the escape rate Γ can be finally expressed
as

Γ ≡ J0

p
= (V ′′(smin) |V ′′(smax)|)1/2

2πBL e−β∆V (25)

where ∆V = V (smax)−V (smin) is the energy barrier that
the pair of loops has to overcome in order to separate.
The inverse of the escape rate equals the lifetime of the
confined state of the loops. Under these conditions, a
small variation of ∆V can significantly affect the lifetime.

Consider now the choice of the potential branch V (s).
We use three different tilting configurations to investigate
the effect of internal degrees of freedom on the confine-
ment life-time. First, the pure prismatic pair of loops
is a reference configuration to models involving no inter-
nal degrees of freedom. Next, the freely tilting loop-pair
is represented by the lowest energy curve of the PES.
Finally, the tilting of each loop is fixed ad-hoc at an an-
gle of 30◦ each (unfavourable in energy, see conf. 1 in
Fig. 5b), in an attempt to mimic the habit plane lock-
ing observed in molecular dynamics. The corresponding
lifetimes of elastically confined loop configurations are
listed in Tab. II for circular loops with ρ = 4.09 nm and
ρ = 1.8 nm, which are equivalent to hexagonal loops with
ρ = 4.5 nm and ρ = 2 nm. In either case the separation
between the two loops in the plane perpendicular to the
glide cylinders is chosen as ∆x = 12 nm.

Tab. II shows that the lifetime of loops depends
strongly on the loop size and temperature. For ρ =
4.5 nm the pair of loops is effectively unable to escape
from the elastically confined state, as the lifetime is dom-
inated by the escape barrier of ≈ 10 eV . On the other
hand, the lifetime of an elastically confined configuration
involving smaller loops ρ = 2 nm is comparable with ex-
perimental timescales even at low temperatures.

The specific form of configuration of interacting dis-
location loops is found to have a most significant effect
on its lifetime. An approximation where the loops are
treated as pure prismatic objects underestimates the es-
cape time in comparison with the case of freely rotating
loops by several orders of magnitude. In contrast to that,
the pair of loop with the orientation of their habit planes
fixed at 30◦ has a significantly longer life-time in com-
parison with a freely rotating pair of loops, and it only
breaks apart at relatively high temperatures. This of-
fers a possible explanation for why the experimentally
observed rafts of loops remain stable over an apprecia-
ble temperature range, while a simple estimate based on
the purely prismatic picture of interacting loops predicts
much shorter lifetimes [1]. The loop habit plane reorien-
tation not only changes the barrier that the system needs
to overcome in order to escape, but most importantly it
strongly lowers the curvature of the potential energy bar-
rier, see Fig. 6, hence further increasing the lifetime of
an elastically confined configuration by several orders of
magnitude.

V. CONCLUSION

The stochastic motion of prismatic dislocation loops
diffusing in the glide direction is successfully simulated
using dislocation dynamics that also includes the stochas-
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TABLE II. The lifetime of an elastically confined pair of dislocation loops computed for some selected loop radii ρ and
temperatures T assuming the separation between the loops in a plane perpendicular to their glide cylinders of ∆x = 12 nm.
Three distinct configurations of pairs of loops are considered.

Conditions Pure prismatic Lowest PES 30◦ fixed tilt
ρ = 4.5 nm, T = 200 K ∼ 10259 yr ∼ 10258 yr +∞
ρ = 4.5 nm, T = 600 K ∼ 1075 yr ∼ 1075 yr ∼ 10117 yr

ρ = 2.0 nm, T = 200 K 4 s 18 min 3 yr
ρ = 2.0 nm, T = 300 K 5 µs 0.3 s 5 min
ρ = 2.0 nm, T = 400 K 0.2 ms 6 ms 0.5 s
ρ = 2.0 nm, T = 600 K 0.005 ms 0.1 ms 0.8 ms

tic thermal forces treated using the Langevin equation
formalism. The dependence of the diffusion coefficient
of a dislocation loop on temperature is consistent with
molecular dynamics simulations.

Reactions involving interacting dislocation loops, in-
cluding loop coalescence, repulsion and the formation of
an elastically confined pairs of loops, are well reproduced
using the stochastic dislocation dynamics framework pro-
posed above. The internal degrees of freedom of interact-
ing loops result in the formation of complex potential en-
ergy landscape of states with distinctly tilted loop habit
planes, separated by potential barriers. The addition of
thermal energy through stochastic Langevin forces act-
ing on dislocation lines enables interacting loops to switch
between the tilted configurations, allowing the system to
explore the entire energy landscape of excited states.

In comparison to the purely prismatic case of inter-
acting loops first explored by Foreman and Eshelby [51],
the reorientation of the habit plane of interacting loops
is found to strongly affect the rates of reactions result-
ing in the elastic confinement of loops. For one, the po-
tential barrier for the elastic trapping a loop approach-
ing another loop from a distance is strongly reduced,
making it much more likely for loops to form elastically
trapped configurations. Secondly, the lifetime of the elas-
tically confined state increases by several orders of mag-
nitude, bringing the estimated lifetime into broad agree-
ment with experimental observations. The habit plane
reorientation effect highlights the pivotal significance of
including internal degrees of freedom of loops in the treat-
ment of microstructural evolution, to achieve a physically
consistent description of dynamics of complex dislocation
microstructures.
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Appendix A: Potential energy surface of the
loop-pair

Given a vector z containing all the node positions, we
define a set of local energy minima that depend paramet-
rically on the distance between the loops

VS(s) = {W tot(z) | z ∈ Z is a local minimum}, (A1)

where

Z = {z | z(2)
COP − z

(1)
COP = s} (A2)

refers to the set of nodal positions for which the sepa-
ration between the loops is s. In other words, the loop
separation is held constant, whereas the remaining inter-
nal degrees of freedom are varied to find local potential
energy minima.

The potential energy surfaces defined by Eqs. (A1)-
(A2) are found by the numerical minimization of energy
of a simplified system of two loops. The internal degrees
of freedom are reduced to tilting modes only, leading to
the following parameterization of the dislocation loop:

r(ψ) =

 ρ cosψ
ρ sinψ

u sinψ + v cosψ

 , (A3)

where ψ ∈ [0, 2π) is the parameterization variable, and
u ∈ R and v ∈ R are tilting amplitudes. The normal
vector of the parameterization is independent of ψ and is
free to point in any direction, while the loop relaxation
volume is constant as Ωrel = A · b = πρ2b. Thus the
loop habit plane may tilt freely within the glide cylinder.
The above parameterization may also be used to include
tilting in the dipole-tensor approximation [26], though for
carrying out a dynamic simulation one would also need
an approximate analytic expression for the self-energy of
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a mixed ellipsoidal loop. Some expressions suitable for
this purpose are already available in literature [55, 56],
but they are relatively limited in comparison with the
general case addressed here.

The total potential energy of interacting loops is com-
puted using the non-singular de-Wit formula [30], in-
cluding the line tension core energy (3). The energy
has multiple stationary points at a given separation s,
which are not trivially identified. Here the total en-
ergy was minimized over tilt amplitudes of both loops
{u(1), v(1), u(2), v(2)} using the BFGS [57] implementa-
tion in SciPy [58] for a broad range of initial tilt con-
figurations. While this approach does not consistently
identify all the stationary points, it still gives a qualita-
tive overview of the potential energy landscape.

All the energy minima identified in this way are shown
in Fig. 6. Multiple potential energy branches belonging
to distinct tilt configurations are found. Note that tran-
sitions at a crossing may involve a significant change in
tilting, and thus would involve a transition over a large
energy barrier.

Appendix B: Langevin equation of motion for the
loop-loop separation

Assuming that the relaxation of internal loop degrees
of freedom occurs on a much shorter time-scale than the
COP diffusion, the adiabatic equation of motion for the
individual loop COP is derived from the two equations

of motion for the loops

Bż
(1)
COP = − 1

L(1)
∂V (s)
∂z

(1)
COP

+ F (1)
s

Bż
(2)
COP = − 1

L(2)
∂V (s)
∂z

(2)
COP

+ F (2)
s ,

(B1)

where V ∈ VS is a branch of the PES, and the total
stochastic force F (i)

s with strength σ
(i)
COP acting on loop

i is derived following Sec. II using〈
F (i)
s (t)F (i)

s (t′)
〉

= σ2
s

L(i) δ(t− t
′), (B2)

leading to σ(i)
COP = σs/

√
L(i). The total energy derivative

is evaluated using the chain rule with s = z
(2)
COP − z

(1)
COP,

and the two equations of motion (B1) are subtracted to
yield

Bṡ = −V ′(s)
(

1
L(2) + 1

L(1)

)
+ F (2)

s − F (1)
s . (B3)

The equation of motion (B3) simplifies further for the
case L(1) = L(2) = L:

BLṡ = −2V ′(s) + Fs, (B4)
where Fs is the net stochastic force with standard devia-
tion σ = σs

√
2L, following the sum theorem of Gaus-

sian distributed variables. Note that the expectation
value of the loop velocity over independent trajectories is
temperature-independent as the stochastic force has zero
mean:

〈ṡ〉 = − 2
BL

V ′(s). (B5)
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