Diffusion and interaction of prismatic dislocation loops simulated by stochastic discrete dislocation dynamics
Enquiries about copyright and reproduction should in the first instance be addressed to the UKAEA
Publications Officer, Culham Science Centre, Building K1/0/83 Abingdon, Oxfordshire, OX14 3DB, UK. The United Kingdom Atomic Energy Authority is the copyright holder.
Diffusion and interaction of prismatic dislocation loops simulated by stochastic discrete dislocation dynamics

Yang Li, Max Boleininger, Christian Robertson, Laurent Dupuy
and Sergei L Dudarev
Diffusion and interaction of prismatic dislocation loops simulated by stochastic discrete dislocation dynamics

Yang Li, 1,* Max Boleininger, 2,† Christian Robertson, 1,‡ Laurent Dupuy, 1,§ and Sergei L Dudarev 2,¶

1 DEN-Service de Recherches Métallurgiques Appliquées, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
2 Culham Science Centre, UK Atomic Energy Authority, Abingdon, Oxfordshire OX14 3DB, United Kingdom

(Dated: March 20, 2019)

Body-centred cubic metals and alloys irradiated by energetic particles form highly mobile prismatic dislocation loops with $a/2\langle111\rangle$-type Burgers vectors. We show how to simulate diffusion of prismatic loops using the discrete dislocation dynamics approach that treats elastic forces acting between the loops and stochastic forces associated with ambient thermal fluctuations. We find that interplay between stochastic thermal forces and internal degrees of freedom of loops, in particular the reorientation of the loop habit planes, strongly influences the observed loop dynamics. The loops exhibit three fundamental types of reactions: coalescence, repulsion, and confinement by elastic forces. The confinement reactions are highly sensitive to the internal degrees of freedom of the loops. Depending on the orientation of the loop habit planes, the barrier to enter an elastically confined bound state is lowered substantially, whereas the life-time of the bound state increases by many orders of magnitude.

I. INTRODUCTION

Metals exposed to irradiation develop a highly complex microstructure, involving a mixture of mobile and immobile defects of both interstitial and vacancy type. The defect and dislocation network develops under the effect of internal and external stresses and temperature, and generates its own fluctuating stress field, leading to a variety of changes in mechanical properties, such as hardening and the loss of ductility, and having a detrimental effect on the longevity of structural reactor components in a radiation environment.

Predicting the dynamics of evolution of microstructure is a major challenge to computer modelling because of the broad spectrum of activation energies characterizing defect and dislocation networks. Defect cluster migration barriers vary from meVs to eVs. The binding energy of elastically confined defect structures spans a similar range of energy scales [1], and the magnitude of elastic interaction depends on the size of defects and their spatial distribution. Simulating the temperature dependent dynamics of microstructure requires the treatment of intrinsic thermally activated defect mobility as well as correlated motion of defects and dislocations mediated by elastic interactions.

Highly glissile prismatic dislocation loops are produced by irradiation [2, 3] together with sessile cavities, as evidenced by in-situ transmission electron microscopy (TEM) observations [4, 5]. The correlated motion of dislocation loops, often observed experimentally, is an elementary process leading to the formation of rafts of defects and their eventual coalescence [6–9]. In other words, the spatial ordering of dislocation loops stems from their elastic interaction, whereas the loop motion itself is a thermally activated process, fundamentally the same as stochastic Brownian motion of individual defects [9–14]. The subject of this paper is the simulation of stochastic glide motion of prismatic $a/2\langle111\rangle$ dislocation loops, with a particular emphasis on the analysis of elementary reactions between the loops, treated as dislocation line objects, and modelled using discrete dislocation dynamics.

Molecular dynamics and lattice type simulations performed over the past two decades investigated the stochastic diffusion of prismatic loops over a range of sizes and temperatures [10–12, 15–18], elementary loop and dislocation reactions [1, 9], as well as energies of binding of loops to other defects [19]. However, a direct atomistic simulation of an ensemble of interacting dislocation loops still remains a challenge because of the constraint imposed by the simulation cell size accessible to a molecular dynamics simulation, and the relatively short timescale of such a simulation. While the more recent atomistic approaches involving the use of kinetic Monte Carlo [20–23] have reached the experimentally relevant time scale when exploring the relaxation of radiation cascade damage in thin films, the identification of pathways of migration and reaction between interacting dislocation loops containing more than a few dozen interstitials remains a largely unexplored problem.

Discrete dislocation dynamics (DDD) provides a compelling alternative approach to modelling complex dislocation microstructures, offering highly efficient computation of long-range elastic interactions. Furthermore, dislocation dynamics enables the treatment of dislocation reactions, simultaneously simulating internal and collective dislocation loop dynamics and enabling the inves-
tigation of complex networks and junctions within the same methodological framework. The objective of this work is to include thermal stochastic forces in DDD through the Langevin stochastic formalism, to enable modelling the diffusion of dislocations. Stochastic dislocation dynamics [24, 25] approach is formulated and applied to the treatment of diffusion of loops and elementary reactions between interacting loops as an essential step towards modelling thermal evolution of complex dislocation ensembles.

Langevin dynamics has been applied earlier to the treatment of collective dynamics of dislocation loops on a coarse-grained level, where the loops were treated as point-like objects interacting through long-range elastic fields described in the elastic dipole tensor approximation [1, 9, 26, 27]. Extending the treatment to the case where loop dynamics involves also the relaxation of their internal degrees of freedom, such as tilting of the loop habit plane, we find that this strongly increases the lifetime of configurations where pairs of loops are bound together by their attractive elastic fields. Furthermore, the barriers to entering such bound states are strongly reduced, explaining why dislocation loop rafts are able to form so easily in many materials, as confirmed by in-situ TEM observations [1, 9, 28].

The paper is organized as follows. In Sec. II we derive an expression for thermal stochastic forces acting on a dislocation line. In Sec. III the diffusion coefficient of a single prismatic loop is evaluated and examined as a function of temperature, and the DDD analysis is benchmarked against molecular dynamics simulations. We also discuss the fluctuation-dissipation theorem, relating the amplitude of stochastic thermal forces to the magnitude of dissipative drag experienced by a dislocation moving through a crystal. Next, the concept of the loop-loop interaction potential energy surface is introduced, and the elementary loop-loop reactions are simulated, with particular attention devoted to the investigation of internal degrees of freedom of the loops. Finally, in Sec. IV we evaluate the lifetime of an elastically confined loop-loop configuration, which is a functional of the loop-loop interaction potential energy surface.

II. SIMULATION METHOD

A. Stochastic force in dislocation dynamics

All simulations described in this paper were performed using the 3D nodal dislocation dynamics code NUMODIS [29]. In NUMODIS, continuous dislocation lines are discretized into a series of nodes linked by straight dislocation segments. The internal elastic stress is then computed according to the non-singular isotropic elasticity theory [30]. The Langevin equation of motion for every point on a dislocation segment is based on the dynamic equation of motion, taken here in the overdamped limit [31]:

\[\mathbf{B} \cdot \mathbf{v} = f^{tot} + f^s, \]

where \(\mathbf{v} \) is the velocity of the dislocation line, \(\mathbf{B} \) is the viscous drag tensor per dislocation line unit length depending on the slip system and temperature, and \(f^s \) is the stochastic force per unit length. The total configurational force per unit length \(f^{tot} \) exerted on a dislocation segment equals

\[f^{tot} = f^{el} - \nabla E^{core}. \]

In the absence of external body and image forces, the elastic driving force reduces to the well-known Peach-Koehler (PK) force. The core energy \(E^{core} \) is a phenomenological correction introduced to improve agreement with atomistic simulations. The core energy is also required to yield a net positive line-tension for small-scale line fluctuations [32, 33], which are expected to arise from the action of stochastic force. The core energy per unit length of a dislocation line is [34]

\[E^{core} = \frac{\xi \mu b^2}{4\pi(1-\nu)} (1 - \nu \cos^2 \psi(t)), \]

where \(\xi \) is the core strength parameter, \(\psi \) is the angle between the dislocation tangent and the Burgers vector, and \(l \) is the coordinate of a point on a dislocation line.

Consider the intrinsic mobility of an individual prismatic loop with perimeter \(L \) in an infinite medium in the absence of external forces. Without loss of generality, assume that the Burgers vector of the loop is collinear with the \(z \) direction of the Cartesian system of coordinates. In the absence of climb forces, the motion for a dislocation line is one-dimensional

\[B \frac{\partial z(l, t)}{\partial t} = f^{tot}(l, t) + f^s(l, t), \]

where \(B \) is the viscous drag coefficient for the given slip system and the stochastic force \(f^s \) is assumed to be locally correlated in time and space:

\[\langle f^s(l, t) \rangle = 0, \]

\[\langle f^s(l, t) f^s(l', t') \rangle = \sigma^2 \delta(l - l') \delta(t - t'), \]

where \(\sigma^s \) sets the scale of the stochastic force, and \(\delta(x) \) is the Dirac delta-function

\[\delta(x) = 0, \quad \forall x \neq 0, \]

\[\int_{-\infty}^{\infty} \delta(x) dx = 1. \]

To find the amplitude of stochastic force, the effective diffusion coefficient for the center-of-position (COP) of the prismatic loop is matched to a 1D Einstein diffusion law [18]. The projection of the COP on the Burgers vector direction is given by \(z_{COP} = L^{-1} \int_0^L dl \, z(l, t) \). After a rearrangement, Eq. (4) becomes

\[\frac{\partial z_{COP}}{\partial t} = \frac{1}{BL} \int_0^L dl \, f^s(l, t). \]

\[|f^s(l, t)| \leq c_{max} \]
The effect of elastic force on the COP vanishes due to the boundary condition \(z(l + L, t) = z(l, t) \). Assuming that the initial position of the loop center is \(z_{\text{COP}}(0) = 0 \), the solution to Eq. (7) at time \(\tau \) is

\[
z_{\text{COP}}(\tau) = \frac{1}{BL} \int_0^L dl \int_0^\tau dt \ f^s(l, t). \tag{8}
\]

Since the stochastic force \(f^s(l, t) \) is defined in terms of its correlation function, the mean square displacement of the COP can be expressed as

\[
\langle z_{\text{COP}}^2(\tau) \rangle = \left(\frac{1}{BL} \right)^2 \int_0^L dl \int_0^L dl' \int_0^\tau dt \int_0^\tau dt' \langle f^s(l, t) f^s(l', t') \rangle. \tag{9}
\]

Substituting Eq. (5) into Eq. (9) yields

\[
\langle z_{\text{COP}}^2(\tau) \rangle = \left(\frac{\sigma_s}{BL} \right)^2 \int_0^L dl \int_0^L dl' \int_0^\tau dt \int_0^\tau dt' \delta(l - l') \delta(t - t'). \tag{10}
\]

Evaluating the above integral, we arrive at

\[
\langle z_{\text{COP}}^2(\tau) \rangle = \left(\frac{\sigma_s}{BL} \right)^2 L \tau = 2D_{\text{COP}} \tau. \tag{11}
\]

This equation is a mere corollary of the 1D Einstein diffusion law, where \(D_{\text{COP}} \) is the corresponding diffusion coefficient of the centre-of-position [35]. Substituting the fluctuation-dissipation relation

\[
D_{\text{COP}} = \frac{k_B T}{BL} \tag{12}
\]

into Eq. (11), we find the amplitude of the stochastic force

\[
\sigma_s = \sqrt{2k_B TB}, \tag{13}
\]

where \(k_B \) is the Boltzmann constant and \(T \) is absolute temperature.

As NUMODIS is a nodal dislocation dynamics code, the total force per unit length is converted into an effective nodal force by integrating over the neighboring segments [31]. The same rule is applied to convert the stochastic force per unit length into a stochastic force acting on a node. However, care must be taken when rescaling the force, as the randomly applied force must remain consistent with the choice of the segment length and the integration time step. For a straight segment of length \(\Delta l \) indexed by \(n \), the scaled stochastic force per unit length is found using the stochastic average:

\[
f_n^s(t) = \frac{1}{\Delta l} \int_{l_n - \Delta l/2}^{l_n + \Delta l/2} dt \ f^s(l, t). \tag{14}
\]

Using Eq. (5), for the \(\delta \)-correlated force generated by thermal fluctuations, the nodal correlation function acquires the form

\[
\langle f_n^s(t) f_{n'}^s(t') \rangle = \frac{\sigma_s^2}{(\Delta l)^2} \int_{l_n - \Delta l/2}^{l_n + \Delta l/2} dl \int_{l_{n'} - \Delta l/2}^{l_{n'} + \Delta l/2} dl' \delta(l - l') \delta(t - t') = \frac{\sigma_s^2}{\Delta l} \delta_n, n' \delta(t - t'). \tag{15}
\]

Similarly, assuming the integration time step \(\Delta t \), the scaled stochastic force per unit length can be finally expressed as

\[
f_n^s = \sqrt{\frac{2k_B TB}{\Delta t}} N(0, 1), \tag{16}
\]

where \(N(0, 1) \) is a random number sampled from the standard normal distribution, and the direction of the force is collinear with the Burgers vector of the dislocation loop.

B. Simulation setup, parameters, and statistics

All the dislocation dynamics (DD) simulations were performed using a 5 µm cubic simulation cell with axes parallel to \(x = [1 \overline{1} 0], y = [1 \overline{1} 0], \) and \(z = [111] \) directions. The origin of the coordinate system is at the centre of the cell. Initially, a hexagonal prismatic (111) dislocation loop is positioned at the origin. The loop radius is chosen as \(\rho = 4.5 \) nm, corresponding to the loop perimeter of \(L = 27 \) nm. The hexagonal loop shape was chosen out of convenience as this has an almost negligible effect on its dynamics. A round loop of equivalent size would have the radius of 4.09 nm, as the stress field of a loop is proportional to its area [26].

The three parameters included in the stochastic force (16) require further clarification.

The viscous drag coefficient \(B \) characterizes the drag force acting on a dislocation line. In bcc metals it is generally assumed that \(B(T) = B_0 + B_1 T \), where \(B_0 \) and \(B_1 \) are independent of temperature [36–38]. MD simulations of glissile prismatic loops and self-interstitial clusters in bcc metals show that \(B(T) = B_0 \) and is independent of \(T \) over a wide temperature range. Given that the simulations performed in this study address prismatic dislocation loops of very small size, it is appropriate to treat \(B \) as a temperature-independent constant. The numerical value of \(B \) used in this work has been evaluated from the atomistic study by Derlet et al. [18] using the fluctuation-dissipation relation (12). The resulting value of the drag coefficient \(B = 0.08 \) MPa · ns describes the effective mobility of edge dislocations at temperatures above \(T = 200 \) K, but underestimates the magnitude of drag at lower temperatures, as shown in Fig. 1. At low temperatures, the Peierls barrier [39, 40] and quantum effects [41, 42] play an important part, affecting dislocation
mobility, but are not considered in this study. The chosen value of \(B = 0.08 \text{MPa} \cdot \text{ns} \) agrees well with previous parameterizations derived from the analysis of dislocation-defect interactions in iron \([43, 44]\).

Since the simulations were performed by splitting dislocation loops into straight segments, and involved solving the equations of motion by means of a finite difference time integration algorithm, it would be appropriate to assess the effect of discretization length \(\Delta l \) and time step \(\Delta t \) on the computed diffusion coefficient. Thermal diffusion of a single prismatic loop at 300 K was simulated using three discretization lengths, \(\Delta l = 5, 10, \) and 15 Å, and three time steps, \(\Delta t = 0.2, 0.5 \) and 1.0 fs. Simulations were run over the interval of 6 ns, with the loop configuration data recorded every 0.6 ps. Loop diffusion coefficients were computed using the drift diffusion correction method \([18]\), in which the diffusion trajectory was split into multiple uncorrelated sub-trajectories. The velocity auto-correlation function \(\langle v_{\text{COP}}(t) v_{\text{COP}}(t + \tau) \rangle \) yields the correlation time of \(\tau \approx 2 \) ps, in broad agreement with atomistic estimates \([13, 33]\). The velocity correlation time is longer than the stochastic force correlation time \([36]\) derived from atomistic simulations, and represents the low limit for the time length of a sub-trajectory, which here was chosen as 6 ps. The diffusion coefficient is then found by ensemble averaging over the sub-trajectories, with the uncertainty characterized by the standard error of the mean.

Fig. 2 shows a selection of simulated COP trajectories, which are similar in terms of their statistical properties. The values of diffusion coefficient derived from these trajectories remain within their respective error bounds, independent of the selected values of \(\Delta l \) and \(\Delta t \), in agreement with the theoretical analysis by Derlet \textit{et al.} \([18]\).

All the further simulations presented in Sec. III were carried out using the simulation parameters given in Tab. I, unless specified otherwise.

III. RESULTS

A. Stochastic dynamics of an individual dislocation loop

Using stochastic dislocation dynamics, we performed a series of simulations, investigating the dynamics of a single prismatic loop at temperatures ranging from 100 K to 800 K, with temperature increments of 100 K. No external stress was applied.

Consider first the internal degrees of freedom of the prismatic loop. It is readily seen from simulations that the initially purely prismatic \([111]\) loop with its Burgers vector normal to its habit plane, within a few picosecond adopts a tilted configuration, see Fig. 3a. If the shape of the loop is defined by its dislocation contour \(C \), the vector area of the loop is given by \([27, 46]\)

\[
A = \frac{1}{2} \oint_C \mathbf{r} \times d\mathbf{l}. \tag{17}
\]
and the the effective loop normal unit vector is
\[\hat{n} = \frac{1}{2 |A|} \oint_C r \times dl. \tag{18} \]

The angle between the Burgers vector and the effective loop normal shall be referred to as the tilt angle \(\theta \), with the azimuthal angle \(\phi \) defined in full analogy with the spherical system of coordinates, see Fig. 3b for illustration. Following this definition and depending on the nature of the loop (vacancy or interstitial), the loop is pure prismatic if \(\hat{n} \cdot \hat{b} = \pm 1 \) corresponding to \(\theta = 0 \) or \(180^{\circ} \). We note that the elastic relaxation volume of a loop is given by the scalar product of the Burgers vector and the loop vector area \(\Omega_{rel} = |A| \cdot \hat{b} \) [27].

The elastic potential energy of a prismatic loop is minimised for configurations tilted away from the perfect prismatic loop orientation, with the resulting tilt angle \(\theta \) determined by the competition between the elastic self-energy associated with interaction between dislocation segments and the core energy proportional to the length of the perimeter of the loop, see Fig. 3c. The potential energy is invariant with respect to rotations around the Burgers vector, allowing the loop to rotate freely with respect to \(\phi \) in a DD simulation.

The mean value of the tilting angle \(\langle \theta \rangle \) decreases at higher temperatures, reflecting the anharmonicity of the potential self-energy of the loop. Indeed, it takes comparatively less energy for the loop normal to tilt towards the Burgers vector than away from it, hence on average smaller values of \(\theta \) are favoured at higher temperature.

In addition to the tilting degrees of freedom, the loop shape also develops transient fluctuations on a smaller scale. However, any part of the loop is constrained to remain on the glide cylinder, as the relaxation volume of the loop \(\Omega_{rel} = A \cdot \hat{b} \) is conserved throughout the simulation.

Consider next the diffusion behaviour of the entire loop. The prismatic loop trajectory exhibit a characteristic pattern of Brownian motion, with higher temperature inducing a more pronounced loop displacement per unit time. The single loop COP trajectories for 200 K and 600 K, and the diffusion coefficients calculated with the drift diffusion correction [18], are given in Fig. 4. Globally, the temperature dependence of the diffusion coefficient is found to be consistent with the fluctuation-dissipation theorem, regardless of the loop radius \(\rho \).

Moreover, for \(\rho = 4.5 \text{ nm} \) and \(T < 400 \text{ K} \) the diffusion coefficients derived from simulations are consistently lower than expected from the linear interpolation from higher temperature (dashed line) because the tilting of the loop results in the elongation of its perimeter, see Fig. 3b. According to the fluctuation-dissipation theorem, \(D_{COP} \propto 1/L \), and therefore the reorientation of the habit plane gives rise to a lower value of the diffusion coefficient. This effect is found to become less pronounced at higher temperature as the mean tilt angle \(\langle \theta \rangle \) decreases with temperature.

The stochastic DD simulations performed in this work describe thermally induced Brownian motion of prismatic loops, which for \(T > 200 \text{ K} \) is consistent with molecular dynamics. The simulations further reveal that the prismatic loop habit plane becomes tilted with respect to the Burgers vector, while remaining highly mobile with respect to rotations around the Burgers vector.

The tilting behaviour of prismatic loops, also observed in atomistic simulations, is possibly dominated by singular orientation effects in the core energy [47]. Considering that the core energy scales linearly with the loop radius \(\propto \rho \) and whereas the elastic self-energy varies super-linearly as \(\propto \rho \log \rho \) [48], one would expect the core energy to become less significant for larger loops. However, the singular nature of the core energy in combination with atomic discreteness would break the cylindrical symmetry of the system, subsequently introducing energy barriers in relation to its rotation around the Burgers vector.

B. Diffusion of interacting dislocation loops

The question about thermal evolution of interacting dislocation loops has recently attracted attention in the context of dipole tensor formalism as an efficient approximation for the long range elastic interaction between the loops [26, 49]. Here, we show that the internal degrees of freedom of loops, not explicitly treated by the dipole
tensor formalism, have a profound effect on the stochastic dynamics of loops, particularly where the loops form bound configurations confined by attractive elastic interactions.

Consider a pair of prismatic loops with unit Burgers vectors $\hat{b}_1 = \hat{b}_2 = \hat{z}$. The loop centers are separated by distance s in the glide direction and by Δx in the direction perpendicular to the Burgers vector direction, see Fig. 5a. In the absence of climb force, either loop can move or distort only in the glide direction.

While the stochastic simulations involve an explicit treatment of internal degrees of freedom of the loops, it is also instructive to consider the static properties of a simplified system of two loops. Following the discussion in Sec. III A, the internal degrees of freedom of the simplified system are reduced to the tilting modes only, thus keeping the loops otherwise flat and of ellipsoidal shape.

For a single loop the potential energy is invariant with respect to rotations around its Burgers vector. For a pair of loops the invariance is lifted by their elastic interaction: for a loop-pair separation constrained at s, the system has multiple tilting configurations corresponding to local energy minima, giving rise to a complex potential energy surface (PES) with several branches and crossing points.

In full analogy to the Born-Oppenheimer approximation of quantum physics [50], the internal degrees of freedom of loops evolve significantly faster (on the timescale of \sim ps) than the loop-pair separation (varying on the \sim ns timescale), and thus the notion of PES describes the system of interacting loops in the adiabatic approximation. Each PES branch represents a meta-stable tilting state for a given reaction coordinate s. Transitions between PES branches occur by the rotation of loop habit planes, which are therefore separated by energy barriers.

The energy of interaction between pairs of prismatic loops is computed in the order of ascending accuracy: in the dipole tensor approximation for a pair of pure prismatic loops, as exact elastic interaction between a pair of pure prismatic loops, and as exact elastic interaction between prismatic loops with relaxed internal degrees of freedom. Note that in the dipole tensor approximation the expression for the loop-loop interaction reduces to the Foreman-Eshelby expression [1, 2, 51]. The treatment of internal relaxation is explained in detail in Sec. A of Appendix. The energy of interaction between the loops is defined as the energy difference between the total energy of two loops minus the energy of isolated loops with the same orientation of the Burgers vector and the loop habit plane.

$$W^{int}(s) = W^{tot}(s) - \lim_{s \to \infty} W^{tot}(s).$$

(19)

Energies of elastic interaction are compared in Fig. 6 a) Two interacting loops b) metastable configurations of loops

FIG. 5. (a) Two prismatic loops defined using the coordinate system introduced in Sec. III B. Loop configuration (line) is free to deviate from the pure prismatic form (dashed) on the glide cylinder. (b) A selection of representative metastable configurations of interacting loops extracted from dislocation dynamics simulations, also showing the loop normal vectors. Configurations are ordered from bottom to top in the ascending order according to the total potential energy, and hence in the order of decreasing stability of a configuration.

FIG. 4. Top: Random walk trajectories of a hexagonal prismatic loop of radius $\rho = 4.5 \text{ nm}$ simulated for 200 K and 600 K. Bottom: Plots of diffusion coefficients as a function of temperature for different loop sizes ρ. Dashed lines are analytical predictions derived from the fluctuation-dissipation theorem $D_{COP} = k_B T/(\lambda L)$.

$\rho = 2.0 \text{ nm}$

$\rho = 4.5 \text{ nm}$
for the various loop separations \(\Delta x \) using an example of two round loops with radii \(\rho = 4.09 \text{nm} \). Note that the choice of radii is consistent with loops being hexagonal and having the same area, as discussed in Sec. II B.

The exact interaction energy trend for pure prismatic pairs of loops broadly follows the PES trend, but does not reflect the full complexity of interaction between internally relaxed loops. The dipole approximation is consistent with the exact treatment, but only for loop separations several times larger than the sum of loop radii. The dipole tensor formalism becomes inaccurate for smaller separations, resulting in a qualitatively incorrect predicted interaction behavior, see the top two panels in Fig. 6.

A major effect of internal relaxation is found when we follow how the loops approach an elastically confined bound state from infinite separation. This reaction is fundamental to the formation of dislocation loop rafts. From Fig. 6 it is evident that loop interaction energy at large separations is positive. Therefore an energy barrier first has to be overcome before the loops can enter a bound state. This barrier here given by the maximum value of the chosen potential energy branch. In the pure prismatic loop picture the barrier is substantial, ranging from 8 eV, 2 eV, and 0.4 eV for separations \(\Delta x \) of 8 nm, 12 nm, and 20 nm, respectively. In contrast, the lowest PES branches have dramatically reduced barriers to trapping of 2 eV, 0.5 eV, and 0.1 eV, respectively, and as such may eventually be overcome by diffusion. In our earlier work based on a pure prismatic loop picture, where elastic interaction between the loops was described by the Foreman-Eshelby equation [2, 51], the trapping barrier had to be artificially lowered to facilitate elastic confinement of loops, as otherwise no formation of loop rafts would occur [1].

We also note that in the limit of large separation \(s \), only three PES branches form. The corresponding fundamental configurations of pairs of loops are shown in Fig. 5b, and their energy ordering is consistent with the separations \(\Delta x \) studied here.

This comparison demonstrates that the energy of interaction between prismatic loops is strongly affected by the internal degrees of freedom of the loops. Consequently, the competition between the elastic energy and the core energy plays a pivotal role in determining the landscape of binding energies of loops. This subtlety is neglected in any physical approximation where the dislocation loops are treated as being purely prismatic, or where they are treated as point-like objects defined only by their position in real space and involving no consideration of their internal degrees of freedom.

In what follows, we carry out stochastic dislocation dynamics simulations of interacting pairs of loops. The simulations start from large initial separations \(\Delta x \) and \(s \) at 200 K in an attempt to emulate various elementary interactions observed in experiment, see Section I, namely coalescence, repulsion, and mutual elastic confinement of interacting loops.

Case A: Coalescence of dislocation loops

The coalescence of dislocation loops was observed using TEM and was found to involve loops of comparable size [8], with diameters larger than 4 nm. To match experimental observations, two pure prismatic hexagonal ([111]) loops with \(\rho = 4.5 \text{nm} \) are introduced in a simulation cell with separations of \(\Delta x = 8 \text{nm} \) and \(s = 5 \text{nm} \), yielding a mutually attractive elastic force, see Fig 6. Note that the glide cylinders of the loops overlap slightly. Sequential snapshots taken during simulations are shown in Fig. 7a. The loops coalesce into a larger prismatic loop, with small debris released and ejected by a strong repulsive elastic force.
FIG. 7. (a) Snapshots taken from stochastic dislocation dynamics simulations of a loop coalescence reaction, for the initial loop-pair separations of $\Delta x = 8 \text{ nm}$ and $s = 5 \text{ nm}$, viewed at an angle from the $-\hat{y}$ direction. Note the occurrence of ejection of debris during loop coalescence. (b) Plot of the effective diffusion coefficient as a function of time. The dotted line is a reference value computed for a single loop with size $\rho = 4.5 \text{ nm}$.

The corresponding time evolution of the diffusion coefficient of the resulting large loop is shown in Fig. 7b. We observe that the diffusion coefficient becomes constant over the interval of a few nanosecond and converges to a notably smaller value than the diffusion coefficient of single loop with $\rho = 4.5 \text{ nm}$. Using the $D_{\text{COP}} \sim 1/L$ scaling relation, the equivalent loop size of the loop produced by the coalescence of a pair of loops equals $\rho_{\text{eq}} \approx 7 \text{ nm}$. This is consistent with an estimate of the equivalent loop size obtained by removing a quarter of each loop’s circumference, leading to $\rho_{\text{eq}} \approx 3/2\rho$. While the relaxation volume of the loops is a conserved quantity, the length of the loop circumference is not; this example demonstrates clearly that the effective diffusivity of an ensemble of prismatic loops may reduce over time as a result of coalescence of loops.

Case B: Repulsion between the loops

An example of repulsive interaction between diffusing dislocation loops is obtained by placing the loops with separations of $\Delta x = 5 \text{ nm}$ and $s = 12 \text{ nm}$, using three different initial configurations shown in Fig. 5b. Fig. 8 shows the evolution of the corresponding interaction energies during the simulation performed without stochastic forces ($T = 0 \text{ K}$) and with stochastic forces ($T = 200 \text{ K}$) included, in comparison with the theoretical prediction derived from examining the corresponding potential energy surface.

As expected for repulsive configurations, we find that the distance between the loops gradually increases over the interval of time spanned by the simulation. Inspection of the loop-pair configuration shows that the cold ($T = 0 \text{ K}$) systems retain their initial orientation of the habit plane, which is consistent with the energy trajectories propagating along the distinct PES branches. On the other hand, the trajectories of the heated system ($T = 200 \text{ K}$) soon start overlapping, starting from $s \approx 20 \text{ nm}$, eventually becoming indistinguishable. The stochastic force supplies additional thermal energy to the loops, which is evidently sufficient to overcome the energy barrier between the different PES branches, enabling the loops to rotate and thus oscillate between various tilting configurations.

Case C: Elastic confinement of loops

Prismatic loops may exhibit strong elastic attraction and form an elastically confined configuration as seen in
Fig. 6. Depending on loop size and loop separation, the binding energy can vary from meVs to eVs, potentially surpassing the binding energy of dislocations to substitutional defects. Therefore it can be reasoned that elastic confinement of loops represents the key step leading to the stabilization of experimentally observed rafts of dislocation loops.

We adopt the initial setup corresponding to $\Delta x = 12\,\text{nm}$ and $s = 12\,\text{nm}$, for which the pair of loops exhibit mutual attraction. As in the repulsive case investigated above, the simulations were run for three initial loop configurations shown in Fig. 5b, corresponding to distinct branches of the potential energy surface. The evolution of the energy of interaction between the two loops as a function of their separation in comparison with the idealized PES is shown in Fig. 9.

In the absence of stochastic forces, the two-loop system is hindered from reaching the lowest energy state because it is unable to overcome the energy barrier associated with the rotation of the loop habit planes. In contrast, the addition of stochastic forces supplies the loops with additional energy, enabling the system to explore the potential energy landscape more freely to the point where it even oscillates around the global energy minimum. As in the loop repulsion case investigated above, the interaction energy derived using simulations involving elevated temperature is found to be shifted upwards by about 1.5 eV compared to the PES, as the Langevin thermostat adds additional energy to the system.

The COP trajectories of the two loops corresponding to conf. 1 state are shown in Fig. 10. After a brief initial relaxation time, the loops become mutually trapped in their relative frame by attractive elastic interaction, with their COP trajectories becoming strongly spatially correlated. The loop separation distance in the elastically confined state fluctuates around the global potential energy minimum as a result of the effect of stochastic force, in agreement with experimental observations and simulations reported in Figs. 3-5 of Ref. [1]. Interestingly, the simulated trajectories suggest that the bound two loops oscillate on a $\sim 0.5\,\text{ns}$ time-scale, thus evolving significantly slower than the tilt angle of the isolated loop, see Fig. 3.

IV. THE LIFETIME OF ELASTICALLY CONFINED LOOP CONFIGURATIONS

In Sec. III B above, we have explored the three types of fundamental reactions between prismatic dislocation loops. These reactions, namely loop coalescence, repulsion and mutual elastic trapping or confinement, have all been modelled using stochastic dislocation dynamics at $200\,\text{K}$. The simulations enable comparison with models developed earlier for modeling the thermal evolution of multiple loops, which involve the dipole approximation [9] and treat the loops as point objects, assuming that they remain purely prismatic over the duration of the simulation. In this paper we show that the internal degrees of freedom significantly influence the nature of interaction between the loops, with potentially significant implications for the lifetime of elastically confined loop configurations. We now analyze this effect quantitatively.

Introducing the probability density $P(s,t)$ of finding the two loops at separation s at time t, the equation of motion for this probability density, see Sec. B of Appendix, can be expressed as a Fokker-Planck equation...
\[
\frac{\partial P(s, t)}{\partial t} = -\frac{\partial J(s, t)}{\partial s},
\]
where \(J \) is the flux of the probability density

\[
J(s, t) = -\frac{2}{\beta BL} e^{-\beta V(s)} \frac{\partial}{\partial s} \left(e^{\beta V(s)} P(s, t) \right),
\]
where \(\beta = 1/(k_B T) \) and \(V(s) \) refers to a branch of the potential energy surface. It is sufficient to consider the \(s \in [0, +\infty) \) interval of variation of \(s \) as the potential energy surface is symmetric.

Consider now the pair of loops at an energy minimum at \(s_{\text{min}} \). At equilibrium steady state the flux vanishes, \(J = 0 \), leading to the probability acquiring the form of the Gibbs distribution \(P(s) \sim \exp \left(-\beta V(s) \right) \). Similarly, the escape process from the energy minimum at \(s_{\text{min}} \) to a very far separation along the glide direction \(s_{\text{far}} \gg s_{\text{min}} \) can be considered to proceed slow enough to preserve the steady-state, leading to a constant flux \(J = J_0 \). The steady-state flux is found by solving Eq. (21) for the derivative and subsequently integrating from \(s_{\text{min}} \) to \(s_{\text{far}} \), namely

\[
\left[e^{\beta V} P \right]_{s_{\text{min}}}^{s_{\text{far}}} = -\frac{J_0 \beta BL}{2} \int_{s_{\text{min}}}^{s_{\text{far}}} ds e^{-\beta V}.
\]
Using \(P(s_{\text{min}}) \gg P(s_{\text{far}}) \), the escape flux can be found as

\[
J_0 \approx \frac{2}{\beta BL} \frac{e^{\beta V(s_{\text{min}})} P(s_{\text{min}})}{\int_{s_{\text{min}}}^{s_{\text{far}}} ds e^{\beta V}}.
\]

Assuming that the probability density decays rapidly outside the potential well associated with the energy minimum, the probability \(p \) of finding the pair of loops in an elastically confined state is derived by integration over the well width \(\pm \delta s \), using the method of steepest descent

\[
p = \int_{s_{\text{min}} - \delta s}^{s_{\text{min}} + \delta s} ds P(s) = P(s_{\text{min}}) \int_{s_{\text{min}} - \delta s}^{s_{\text{min}} + \delta s} ds e^{-\beta(V(s_{\text{min}}) - V(s))}
\approx \frac{P(s_{\text{min}})}{2} \int_{-\infty}^{+\infty} ds e^{-\beta V''(s_{\text{min}})s^2/2}
= \frac{P(s_{\text{min}})}{2} \left(\frac{2\pi}{\beta V''(s_{\text{min}})} \right)^{1/2}
\]
where \(V''(s_{\text{min}}) \) is the second derivative of \(V(s) \) evaluated at the stationary point \(s_{\text{min}} \). Similarly, the integral term in Eq. (23) peaks at the point \(s_{\text{max}} \) corresponding to the maximum barrier height. Applying the same approach as in Eq. (24), the escape rate \(\Gamma \) can be finally expressed as

\[
\Gamma \equiv \frac{J_0}{p} \approx \left(\frac{V''(s_{\text{min}})}{V''(s_{\text{max}})} \right)^{1/2} e^{-\beta \Delta V}
\]
where \(\Delta V = V(s_{\text{max}}) - V(s_{\text{min}}) \) is the energy barrier that the pair of loops has to overcome in order to separate. The inverse of the escape rate equals the lifetime of the confined state of the loops. Under these conditions, a small variation of \(\Delta V \) can significantly affect the lifetime.

Consider now the choice of the potential branch \(V(s) \). We use three different tilting configurations to investigate the effect of internal degrees of freedom on the confinement lifetime. First, the pure prismatic pair of loops is a reference configuration to models involving no internal degrees of freedom. Next, the freely tilting loop-pair is represented by the lowest energy curve of the PES. Finally, the tilting of each loop is fixed ad-hoc at an angle of 30° each (unfavourable in energy, see conf. 1 in Fig. 5b), in an attempt to mimic the habit plane locking observed in molecular dynamics. The corresponding lifetimes of elastically confined loop configurations are listed in Tab. II for circular loops with \(\rho = 4.09 \text{ nm} \) and \(\rho = 1.8 \text{ nm} \), which are equivalent to hexagonal loops with \(\rho = 4.5 \text{ nm} \) and \(\rho = 2 \text{ nm} \). In either case the separation between the two loops in the plane perpendicular to the glide cylinders is chosen as \(\Delta x = 12 \text{ nm} \).

Tab. II shows that the lifetime of loops depends strongly on the loop size and temperature. For \(\rho = 4.5 \text{ nm} \) the pair of loops is effectively unable to escape from the elastically confined state, as the lifetime is dominated by the escape barrier of \(\approx 10\text{ eV} \). On the other hand, the lifetime of an elastically confined configuration involving smaller loops \(\rho = 2 \text{ nm} \) is comparable with experimental timescales even at low temperatures.

The specific form of configuration of interacting dislocation loops is found to have a most significant effect on its lifetime. An approximation where the loops are treated as pure prismatic objects underestimates the escape time in comparison with the case of freely rotating loops by several orders of magnitude. In contrast to that, the pair of loop with the orientation of their habit planes fixed at 30° has a significantly longer lifetime in comparison with a freely rotating pair of loops, and it only breaks apart at relatively high temperatures. This offers a possible explanation for why the experimentally observed rafts of loops remain stable over an appreciable temperature range, while a simple estimate based on the purely prismatic picture of interacting loops predicts much shorter lifetimes [1]. The loop habit plane reorientation not only changes the barrier that the system needs to overcome in order to escape, but most importantly it strongly lowers the curvature of the potential energy barrier, see Fig. 6, hence further increasing the lifetime of an elastically confined configuration by several orders of magnitude.

V. CONCLUSION

The stochastic motion of prismatic dislocation loops diffusing in the glide direction is successfully simulated using dislocation dynamics that also includes the stochas-
TABLE II. The lifetime of an elastically confined pair of dislocation loops computed for some selected loop radii \(\rho \) and temperatures \(T \) assuming the separation between the loops in a plane perpendicular to their glide cylinders of \(\Delta x = 12 \text{ nm} \). Three distinct configurations of pairs of loops are considered.

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Pure prismatic</th>
<th>Lowest PES</th>
<th>(30^\circ) fixed tilt</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho = 4.5 \text{ nm}, T = 200 \text{ K})</td>
<td>(\sim 10^{509} \text{ yr})</td>
<td>(\sim 10^{505} \text{ yr})</td>
<td>(+\infty)</td>
</tr>
<tr>
<td>(\rho = 4.5 \text{ nm}, T = 600 \text{ K})</td>
<td>(\sim 10^{75} \text{ yr})</td>
<td>(\sim 10^{75} \text{ yr})</td>
<td>(\sim 10^{117} \text{ yr})</td>
</tr>
<tr>
<td>(\rho = 2.0 \text{ nm}, T = 200 \text{ K})</td>
<td>4 s</td>
<td>18 min</td>
<td>3 yr</td>
</tr>
<tr>
<td>(\rho = 2.0 \text{ nm}, T = 300 \text{ K})</td>
<td>5 (\mu \text{s})</td>
<td>0.3 s</td>
<td>5 min</td>
</tr>
<tr>
<td>(\rho = 2.0 \text{ nm}, T = 400 \text{ K})</td>
<td>0.2 ms</td>
<td>6 ms</td>
<td>0.5 s</td>
</tr>
<tr>
<td>(\rho = 2.0 \text{ nm}, T = 600 \text{ K})</td>
<td>0.005 ms</td>
<td>0.1 ms</td>
<td>0.8 ms</td>
</tr>
</tbody>
</table>

Thermal forces treated using the Langevin equation formalism. The dependence of the diffusion coefficient of a dislocation loop on temperature is consistent with molecular dynamics simulations.

Reactions involving interacting dislocation loops, including loop coalescence, repulsion and the formation of an elastically confined pairs of loops, are well reproduced using the stochastic dislocation dynamics framework proposed above. The internal degrees of freedom of interacting loops result in the formation of complex potential energy landscape of states with distinctly tilted loop habit planes, separated by potential barriers. The addition of thermal energy through stochastic Langevin forces acting on dislocation lines enables interacting loops to switch between the tilted configurations, allowing the system to explore the entire energy landscape of excited states.

In comparison to the purely prismatic case of interacting loops first explored by Foreman and Eshelby [51], the reorientation of the habit plane of interacting loops is found to strongly affect the rates of reactions resulting in the elastic confinement of loops. For one, the potential barrier for the elastic trapping a loop approaching another loop from a distance is strongly reduced, making it much more likely for loops to form elastically trapped configurations. Secondly, the lifetime of the elastically confined state increases by several orders of magnitude, bringing the estimated lifetime into broad agreement with experimental observations. The habit plane reorientation effect highlights the pivotal significance of including internal degrees of freedom of loops in the treatment of microstructural evolution, to achieve a physically consistent description of dynamics of complex dislocation microstructures.

ACKNOWLEDGMENTS

MB and SLD gratefully acknowledge stimulating discussions with D.R. Mason and D. Rodney. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under Grant Agreements No. 633053 and No. 755039. Also, it has been partially funded by the RCUK Energy Programme (Grant No. EP/P012450/1). The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Appendix A: Potential energy surface of the loop-pair

Given a vector \(z \) containing all the node positions, we define a set of local energy minima that depend parametrically on the distance between the loops

\[
V_S(s) = \{ W^{\text{tot}}(z) \mid z \in Z \text{ is a local minimum} \}, \quad (A1)
\]

where

\[
Z = \{ z \mid z^{(2)}_{\text{COP}} - z^{(1)}_{\text{COP}} = s \} \quad (A2)
\]

refers to the set of nodal positions for which the separation between the loops is \(s \). In other words, the loop separation is held constant, whereas the remaining internal degrees of freedom are varied to find local potential energy minima.

The potential energy surfaces defined by Eqs. (A1)-(A2) are found by the numerical minimization of energy of a simplified system of two loops. The internal degrees of freedom are reduced to tilting modes only, leading to the following parameterization of the dislocation loop:

\[
r(\psi) = \begin{pmatrix}
\rho \cos \psi \\
\rho \sin \psi \\
u \sin \psi + v \cos \psi
\end{pmatrix}, \quad (A3)
\]

where \(\psi \in [0, 2\pi) \) is the parameterization variable, and \(u \in \mathbb{R} \) and \(v \in \mathbb{R} \) are tilting amplitudes. The normal vector of the parameterization is independent of \(\psi \) and is free to point in any direction, while the loop relaxation volume is constant as \(\Omega_{\text{rel}} = A \cdot b = \pi \rho^2 b \). Thus the loop habit plane may tilt freely within the glide cylinder. The above parameterization may also be used to include tilting in the dipole-tensor approximation [26], though for carrying out a dynamic simulation one would also need an approximate analytic expression for the self-energy of...
a mixed ellipsoidal loop. Some expressions suitable for this purpose are already available in literature \[55, 56\], but they are relatively limited in comparison with the general case addressed here.

The total potential energy of interacting loops is computed using the non-singular de-Wit formula \[30\], including the line tension core energy \((3)\). The energy has multiple stationary points at a given separation \(s\), which are not trivially identified. Here the total energy was minimized over tilt amplitudes of both loops \(\{u^{(1)}, v^{(1)}, u^{(2)}, v^{(2)}\}\) using the BFGS \[57\] implementation in SciPy \[58\] for a broad range of initial tilt configurations. While this approach does not consistently identify all the stationary points, it still gives a qualitative overview of the potential energy landscape.

All the energy minima identified in this way are shown in Fig. 6. Multiple potential energy branches belonging to distinct tilt configurations are found. Note that transitions at a crossing may involve a significant change in tilting, and thus would involve a transition over a large energy barrier.

Appendix B: Langevin equation of motion for the loop-loop separation

Assuming that the relaxation of internal loop degrees of freedom occurs on a much shorter time-scale than the COP diffusion, the adiabatic equation of motion for the individual loop COP is derived from the two equations of motion for the loops

\[
B\dot{z}_{\text{COP}}^{(1)} = -\frac{1}{L^{(1)}} \frac{\partial V(s)}{\partial z_{\text{COP}}^{(1)}} + F_s^{(1)} \\
B\dot{z}_{\text{COP}}^{(2)} = -\frac{1}{L^{(2)}} \frac{\partial V(s)}{\partial z_{\text{COP}}^{(2)}} + F_s^{(2)},
\]

where \(V \in V_s\) is a branch of the PES, and the total stochastic force \(F_s^{(i)}\) with strength \(\sigma_{\text{COP}}^{(i)}\), acting on loop \(i\) is derived following Sec. II using

\[
\langle F_s^{(i)}(t)F_s^{(i)}(t') \rangle = \frac{\sigma_s^2}{L^{(i)}} \delta(t-t'),
\]

leading to \(\sigma_{\text{COP}}^{(i)} = \sigma_s/\sqrt{L^{(i)}}\). The total energy derivative is evaluated using the chain rule with \(s = z_{\text{COP}}^{(2)} - z_{\text{COP}}^{(1)}\), and the two equations of motion \((B1)\) are subtracted to yield

\[
B\dot{s} = -V'(s) \left(\frac{1}{L^{(2)}} + \frac{1}{L^{(1)}} \right) + F_s^{(2)} - F_s^{(1)}.
\]

The equation of motion \((B3)\) simplifies further for the case \(L^{(1)} = L^{(2)} = L\):

\[
BL\dot{s} = -2V'(s) + F_s,
\]

where \(F_s\) is the net stochastic force with standard deviation \(\sigma = \sigma_s\sqrt{2L}\), following the sum theorem of Gaussian distributed variables. Note that the expectation value of the loop velocity over independent trajectories is temperature-independent as the stochastic force has zero mean:

\[
\langle \dot{s} \rangle = -\frac{2}{BL} V'(s).
\]

References:

