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The low energy structures of irradiation-induced defects in materials have been extensively studied over
several decades, as these determine the available modes by which a defect can diffuse or relax, and how the
microstructure of an irradiated material evolves as a function of temperature and time. Consequently many
studies concern the relative energies of possible defect structures, and empirical potentials are commonly
fitted to, or evaluated with respect to these. But recently [Dudarev et al. Nuclear Fusion 2018], we have
shown that other parameters of defects not directly related to defect energies, namely their elastic dipole
tensors and relaxation volumes, determine the stresses, strains and swelling of reactor components under
irradiation. These elastic properties of defects have received comparatively little attention. In this study
we compute relaxation volumes of irradiation-induced defects in tungsten using empirical potentials, and
compare to density functional theory results. Different empirical potentials give different results, but some
clear potential-independent trends can be identified. We show that the relaxation volume of a small defect
cluster can be predicted to within 10% from its point-defect count. For larger defect clusters we provide
empirical fits as a function of defect cluster size. We demonstrate that the relaxation volume associated with
a single primary-damage cascade can be estimated from the primary knock-on atom energy. We conclude
that while annihilation of defects invariably reduces the total relaxation volume of the cascade debris, there
is still no conclusive verdict about whether coalescence of defects reduces or increases the total relaxation
volume.

Keywords: Radiation Induced Defects, Relaxation Volumes

I. INTRODUCTION

Just as it has been long acknowledged that the effect
of radiation on materials is inherently multi-scale both
in time- and spatial- dimension, so it is accepted that
to model these effects requires transfer of high quality
data from one model to the next1. The form of the data
required by a coarse-grained model varies, and a typi-
cal workflow in nuclear materials modelling involves find-
ing structural information about individual defects from
Density Functional Theory (DFT)2,3, information about
the cascade generation process from Molecular Dynam-
ics (MD)4–6, and about cascade evolution from object or
atomistic Kinetic Monte Carlo (KMC)7–9 or Cluster Dy-
namics (CD)10,11 simulations. This has proved successful
for modelling the experimentally observed size and dis-
tribution of irradiation-induced defects formed in pure
single crystalline materials9,12.

Recently we have shown that it is possible to compute
stresses and strains in reactor components on the macro-
scopic scale of centimetres and metres from the distribu-
tion of irradiation-induced defects13. As a source term,

this model only requires the spatially varying density of
relaxation volumes of defects, and so allows the direct
simulation of volumetric radiation-induced swelling and
the associated stresses from an atomistic or object-based
model. At the nanoscale, lattice swelling resulting from
the accumulation of radiation defects is experimentally
measurable using Micro-Laue diffraction14,15. Further-
more, X-ray diffraction measurements show that negative
lattice strain develops due to the accumulation of vacan-
cies in a material16. On a macroscopic scale, predicting
the stress state of reactor components arising from irra-
diation is fundamental to the successful engineering de-
sign of a nuclear fission or fusion power plant17–19. One
outstanding issue, which this paper is intended to ad-
dress, is to have good quality data for the relaxation vol-
umes of a variety of lattice defects, as while accessible
from simulation for years, reporting this information has
been somewhat neglected in favour of establishing ac-
curate values of formation energies and low-energy-state
structures. For example, a comprehensive compilation of
data on relaxation volumes and relaxation volume ten-
sors of individual self-interstitial and vacancy point de-
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fects derived from DFT calculations performed for all
the bcc metals in the Periodic Table has been reported
only recently13,20–22. Data for the relaxation volumes
of point defects available prior to these studies were de-
rived mostly from experimental measurements and semi-
empirical potential calculations23–27 and exhibited a de-
gree of variability associated with experimental uncer-
tainties or the choice of interatomic interaction poten-
tials. Accurate ab initio studies of relaxation volumes
of defects mostly involved vacancies in simple or noble
metals13,25,28–33.

Here we focus our attention on a single material, tung-
sten. Tungsten has been chosen as a divertor material
for ITER18,34,35 as it has a high melting point, high ther-
mal conductivity and high resistance to sputtering. For
our purposes tungsten is also well-suited to this prelim-
inary study of relaxation volumes as it is nearly elas-
tically isotropic36 at low temperatures. This simplifies
the expressions needed for an elastic analysis, but is
by no means a requirement of the atomistic techniques
used here20, and the data we present has no assumption
of isotropy. The finite temperature calculation of the
Helmholtz free energy and an anisotropic elasticity anal-
ysis are beyond the scope of the current paper. In sec-
tion II A, we compute the relaxation volumes of small de-
fect clusters, and compare the results obtained with sev-
eral embedded atom (EAM) potentials with those derived
from DFT. In section II B, we move on to larger lattice
defect objects. As the number of configurational degrees
of freedom becomes very large, we focus on a standard
set of idealised dislocation loops and voids, which often
form a basis set for object kinetic Monte Carlo (okMC) or
Cluster Dynamics (CD) simulations. In section II C we
introduce the orientation-dependent anisotropy of the re-
laxation. In section II D we consider interacting groups
of defect clusters generated in high energy collisions sim-
ulated by MD. Our goal is to understand the complex-
looking stress fields which arise in irradiated metals (see
figure 1) in terms of the simpler stress fields of their con-
stituent parts, which can then be used to predict volu-
metric swelling from the output of existing microstruc-
tural evolution codes such as okMC or CD.

Early estimates of formation volumes for point defects
in tungsten were established by Johnson38, using an em-
pirical potential. This work found a negative relaxation
volume for a vacancy (−0.21Ω0, where Ω0 is the atomic
volume), and a positive relaxation volume for the inter-
stitial (+1.13Ω0). DFT calculations by Kato et al.39 con-
firmed the relaxation volume for the vacancy as negative,
at−0.34Ω0, a figure which has since been reproduced sev-
eral times by independent DFT calculations. The relax-
ation volume of a 1/2〈111〉 interstitial defect was shown to
be large and positive in DFT calculations at +1.68Ω0
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in a small 4x4x4 supercell, later confirmed by other DFT
calculations20,21.

We demonstrate that empirical potentials give varying
results for the relaxation volumes of irradiation defects.
This is an expected result, as these properties of defects

FIG. 1. A typical configuration of defects produced by a col-
lision cascade event in tungsten, initiated by a 150keV PKA,
and simulated using the method described in section II D.
Vacancies (white spheres), and interstitials (red), were iden-
tified using a Wigner-Seitz defect analysis37. The von Mises
stress in a [211] plane intersecting the cascade is also shown.
Note that close to the defects the stresses can be as high as
100GPa, comparable to the shear modulus (µ = 160GPa).
In the study below, we analyse the complex stress fields of
individual defects and clusters of defects formed in cascades,
similar to those shown in this figure.

were never originally used as input data during the pa-
rameterization of potentials. The relaxation volumes do,
however, show systematic trends across potentials. It is
beyond the scope of this paper to provide a comprehen-
sive comparison of empirical potentials, instead our com-
parison will focus on three empirical potentials, which
should give an indication of the possible variation.

• The Derlet-Nguyen-Manh-Dudarev (DND)
potential40, has been shown to produce cas-
cade structures that are a good match to
experiment6,12,41–43.

• One of the four potential parameterizations devel-
oped by Marinica et al. (CEA-4)44, which has a
good balance between the predicted point- and ex-
tended defect properties. This potential was devel-
oped from the DND and AM0445 potentials with
additional fitting to the forces on atoms in disor-
dered systems.

• A new potential parameterization by some of the
authors (MNB)46, which is a development of the
smooth and highly-transferable Ackland-Thetford
potential47,48, corrected to give better properties
for vacancy-type structures.

We present simple empirical formulae for the relax-
ation volumes of defects that might be used for predicting
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stresses and strains in engineering components contain-
ing these defects13. As tungsten is (nearly) elastically
isotropic, it suffices to present results in terms of a single
relaxation volume, and the relaxation volume anisotropy
parameter, defined as the ratio of the smallest to largest
partial relaxation volumes. Simple formulae are required
to switch between this representation and the full dipole
tensor for the defect.

Finally in section III we compare our results with ana-
lytical formulae derived using linear elasticity and surface
energies, consider the differences between the empirical
potentials used and discuss routes for making predictions
for complex microstructures, and in section IV we com-
pare the predictive power of our results to earlier studies.

II. RELAXATION VOLUME OF DEFECT STRUCTURES

Relaxation volumes can be computed for isolated de-
fects and relaxed cascade configurations using several
methods. As a validating convergence study, we com-
pare three methods: the stress method, the cell relax-
ation method, and the free surfaces method:

• The stress method. The atom positions are relaxed
in a periodic supercell, with the vectors defining the
supercell repeat fixed. The stress is computed on
each atom and summed to give a single tensor for
the cell. The relaxation of a body free from sur-
face tractions due to the defect is predicted from
this stress using linear elasticity theory. The lat-
tice vectors of the simulation cell never need to be
updated.

• The cell relaxation method. As with the stress
method, the atoms are relaxed in a periodic super-
cell, and the stress is computed. From this a strain
is computed, but in contrast to the stress method
this is then applied to the supercell, changing its
shape and volume. The vectors defining the super-
cell repeat are updated and the relaxation process is
repeated until convergence, where the macroscopic
stress vanishes. This iterative process of relaxing
first the atoms and then the cell differentiates this
method from the stress method. We note here that
there is no a priori reason why the minimum energy
structure of a defect with one set of lattice vectors
is the same as the minimum with a different set.

• The free surface method. A large sphere of atoms
is constructed and relaxed, producing a body with
explicitly free surfaces49. Then a single defect is
constructed inside the sphere and the entire struc-
ture is relaxed again. The volume of a (distorted)
spheroid after relaxation is more difficult to com-
pute than with a periodic supercell, as it is not clear
where the surface should be drawn. However, the
volume enclosed by the convex hull of the atoms
Vhull is easy to compute using qhull50. From this

we can estimate that the volume of the sphere is
Vspheroid = Vhull(R + r)3/R3, where R is the max-
imum radius of atom positions on the convex hull,
and r = a0/4 is one quarter the lattice parameter,
which is half the distance between {100} planes in
a bcc crystal.51 We include this non-standard (
and sub-optimal ) brute-force method as a valida-
tion that the linear elasticity approach followed in
this work truly predicts the relaxation volume in a
body with explicitly free surfaces.

In this work we do not consider the method of Kanzaki
forces52,53, or the method of matching displacements54,55

for estimating relaxation volumes using the harmonic re-
gion of the crystal only.

To compute the stress due to a defect, and hence the
strain in an elastic medium we compute the dipole tensor
as the integrated stress over the cell21,56,57

Pij = −
∫
V

σij (r) d3r. (1)

In an atomistic simulation where the energy is more
easily accessible than the stress, we can compute this
quantity as the derivative of total energy with respect to
a homogeneous body strain,

Pij ≡ −
∂E

∂ε0ij
. (2)

The dipole tensor may also be expressed in terms of a
symmetric dual tensor, Ωkl, characterizing the volumetric
relaxation of the defect, and defined by the equation13,20

Pij ≡ CijklΩkl, (3)

where Cijkl are the elements of the fourth-rank tensor
of elastic constants. From this dual tensor we can find
the relaxation volume Ωrel of the defect characterizing
the volumetric relaxation of an elastic body free from
surface tractions56,

Ωrel = Tr Ω ≡
3∑
i=1

Ω(i), (4)

where Ω(i) are the three eigenvalues of the tensor Ωkl,
corresponding to the three partial relaxation volumes.
Hence we can find the elastic relaxation volume of the
defect using a constant-volume calculation, if the elastic
constants and dipole tensor of the defect are computed.

For an empirical potential, Pij can be computed sim-
ply and analytically. For the embedded-atom form we
compute the energy as a sum over pairwise and many-
body contributions: E =

∑
a Va + F [ρa], where Va =

1/2
∑
b V (rab) is a pairwise interaction, ρa =

∑
b φ(rab)

models the embedding electron density and F [ρ] is the
many-body embedding energy. The dipole tensor is

Pij = −
∑
a,b

(
1

2

∂V

∂r

∣∣∣∣
rab

+
∂F

∂ρ

∣∣∣∣
ρa

∂φ

∂r

∣∣∣∣
rab

)
rab,irab,j
rab

,

(5)
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where rab is the separation between atoms a and b and
rab,i is its ith Cartesian coordinate. This is a simple sum
over atoms and their neighbours, using the same first
derivatives as a force calculation, and so is trivially im-
plemented in any MD or atomistic MS code. The (fourth-
rank) elastic constant tensor can be computed analyti-
cally from the second derivative of energy with respect
to strain47. The computed elastic constants are given in
table II.

A plot showing the convergence of the numerical pro-
cedure for computing the relaxation volume of a 19-
interstitial loop with system size is shown in figure 2.
Extrapolating to infinite system size suggests all three
methods converge to the same result, though at any given
finite system size there will be an error, typically scaling
as inverse system size 1/n ( voids relaxed with explic-
itly free surfaces being an exception, converging as the
inverse radius of the free sphere 1/R. ) This 1/n conver-
gence was also observed recently by Varvenne & Clouet55,
who attributed this leading error term to the interac-
tion between periodic images. Some indicative data are
also given in table I proving that the stress method with
large supercells is suitable for the structures considered in
this work. Relaxation volumes computed with the EAM
potentials in this paper are computed using the dipole
tensor method at a converged supercell size. Relaxation
volumes computed with DFT were computed using the
full cell relaxation method.

A. Small defect structures

In this section we compute the elastic properties of
small defect clusters. For sufficiently small clusters we
can perform a fairly comprehensive survey of possible
structures, and so find the bounds of the variation of the
relaxation volumes. The question of which are the most
significant set of small clusters to use is rather more dif-
ficult. Generally, for a cluster containing N point de-
fects, we might expect to find only a small number of
structures within a few meV of the ground state. At
low temperatures these are the only ones which need to
be considered in equilibrium. But radiation damage is
an inherently non-equilibrium process. The system can
generally reduce its internal energy by coalescing clus-
ters, and the true equilibrium is only found when nearly
all defects have recombined or diffused to sinks. The
structures that may actually be found at some time after
the cooling of a displacement cascade could therefore be,
briefly at least, rather exotic.

Randomly generated interstitial clusters were gener-
ated by placing N additional atoms into an otherwise
perfect crystal, then relaxing. The extra atoms were
placed at random into [l,m, n]a0/4 crystal positions, with
0 ≤ lmn < 4, with the constraint that an atom was not
placed if another was already within a distance a0/2. All
extra atoms were placed in a central block of 2×2×2 unit
cells. The relaxation volumes as a function of formation
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FIG. 2. Above: Example convergence study for relaxation
volume of the 19 interstitial cluster computed using three
methods. All three methods converge to very similar values,
with a system size error inversely proportional to the number
of atoms in the simulation cell n. Best fit lines are indicated
to guide the eye. Calculations were performed with the MNB
potential. Other potentials and other defects show qualita-
tively similar results. Below: Geometry used for free-surface
calculations. An unsupported free sphere of atoms was con-
structed and relaxed, then a single defect was generated in
the centre and the atoms relaxed again. The volume before
and after the defect was placed was computed using qhull50.
One half of the sphere is shown37, together with high energy
atoms of the defect. Atoms are coloured by excess potential
energy from 0 eV (blue) to 2 eV (red). Atoms with energy
under 0.1 eV are not shown. In this image a 55 interstitial
loop is embedded in a sphere of 180000 atoms, and relaxed
with the MNB potential.

energy and cluster size are presented in figure 3. We have
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cell relaxation stress method free surfaces
1v -0.367 -0.368 -0.350
15vsph -3.599 -3.625 -3.731
65vsph -9.658 -9.760 -10.351
259vsph -21.634 -21.806 -24.291
1i〈111〉 1.399 1.400 1.415
19i〈111〉 22.045 22.062 22.222
55i〈111〉 60.325 60.250 60.705
199i〈111〉 209.946 209.283 210.947

TABLE I. Relaxation volumes for vacancy defects ( monovacancy, and 15,65,259 vacancy spheres ) and interstitial defects
( 1/2〈111〉 dumbbell, 19,55,199 〈111〉 interstitial loops ). The volumes are expressed in units of atomic volume, computed
using the MNB potential. The cell relaxation and stress method calculations used a 48× 48× 48 unit cell supercell. The free
surfaces method used a sphere with an initial radius of 28 unit cells. It is clear that the stress method does indeed reproduce
the relaxation volume of the defect in a body with traction free surfaces at large system size, and so is an acceptable faster
alternative to the full cell relaxation calculation.

method a0 c11 c12 c44 γ〈110〉 γ〈100〉 γ〈211〉 γ〈111〉 γ
DFT 3.186 3.229 1.224 0.888 0.200 0.245 0.215 0.219 0.229
MNB 3.1652 3.222 1.263 0.998 0.218 0.239 0.241 0.257 0.234
DND 3.1652 3.3881 1.304 1.031 0.150 0.187 0.185 0.161 0.174
CEA4 3.14339 3.265 1.262 1.004 0.157 0.183 0.187 0.201 0.177
expt 3.1652 3.324 1.279 1.018 0.229

method s〈110〉 s〈100〉 s〈211〉 s〈111〉 s
DFT 0.375 0.253 0.296 0.286 0.465 0.434 0.313 0.313 0.360
MNB 0.330 0.215 0.229 0.229 0.263 0.252 0.215 0.214 0.253
DND 0.150 -0.008 0.291 0.275 0.144 0.044 0.179 0.022 0.129
CEA4 0.125 0.018 0.210 0.210 0.075 0.056 0.064 0.063 0.100

TABLE II. The lattice constant a0 (in Å) and elastic constants (in eV/Å3) of bcc tungsten, from15. The surface energies γhkl
of bcc tungsten for the [hkl] surface are given in eV/Å2. The principal surface stresses shkl for the [hkl] surface ( two non-zero
eigenvalues of sij = γδij + ∂γ/∂εij) of bcc tungsten are given in eV/Å2. Average surface energy γ computed using equation
A4, and average surface stress s using the mean of the principal eigenvalues in equation A4. Experimental elastic constants
from ref58, and surface energy from ref59.

not put results from CEA4 on this scatter plot. CEA4
has a good deal of structure in its potential, which allows
for a very large number of metastable high energy defect
clusters to form. On figure 3, this would appear as an
almost structureless cloud and we conclude our method
of randomly generating interstitial clusters is not suited
to this potential.

DFT calculations of small interstitial clusters were per-
formed for this work using the VASP ab initio simulation
code, using the PAW method60–62 with semi-core elec-
trons included through the use of pseudo-potentials. It
is important to emphasize that the inclusion of semi-core
electrons in the valence states has a significant effect on
the predicted formation energies of self-interstitial atom
(SIA) defects for all the bcc transition metals2,63,64, and
play important role on the quality of inter-atomic poten-
tial in predicting non-equilibrium properties in tungsten
from cascade simulations65. Exchange-correlation effects
were described using the Perdew-Burke-Ernzerhof gener-
alised gradient approximation66. A kinetic energy cut-off
of 400 eV was used, with a 3×3×3 Monkhorst-Pack grid
for electron density k-points employed in the case with
super-cell (8x8x8) calculations (1024 + N atoms, with
N up to 22 atoms) for the 1/2〈111〉 and 〈100〉 interstitial
defects. The set of interstitial defect clusters used was

the same as in ref67, with the difference that in the ear-
lier work the energies reported were in the constant vol-
ume approximation employing the Varvenne et al. cell
size correction57, whereas here the full cell relaxation
method was used. A systematic study of fully-relaxed de-
fect formation volumes for the 〈110〉 self-interstitial clus-
ters within the underlying three-dimensional C15 Laves
phase structure68 was also performed. The small C15 in-
terstitial clusters in the bcc lattice of iron are known to
be highly stable in a comparison with the 1/2〈111〉 self-
interstitial defect clusters due to magnetic effects. Here
we include them for completeness, as their formation en-
ergy compared to interstitial loops may be affected by
the applied strain69.

Randomly generated vacancy clusters were produced
by removing atoms on a random path through an oth-
erwise perfect crystal. The path was allowed to move in
〈111〉 and 〈100〉 directions, and allowed to overlap itself.
A path of length L steps leads to ≤ L vacancies placed
in a loose cluster. These vacancy clusters were then re-
laxed and the lowest energy structures were passed to
DFT for a comparison calculation. It is important to
emphasize that in the present DFT calculations for both
SIA and vacancy clusters, the full cell relaxation method
has been adopted to investigate the relaxation volume of
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defect structures. Details of the DFT calculations can be
found in Ref.46. Results are shown in figure 4.

The slab model including a 18Åvacuum layer between
the top and bottom surfaces has been employed for calcu-
lations of W(100), W(110), W(111) and W(211) surface
energies where 15, 15, 24 and 24 atomic layers were used,
respectively, to ensure DFT convergence.

FIG. 3. Relaxation volumes of randomly generated intersti-
tial defect clusters for different numbers of interstitial atoms
in the defect, N . DFT values for energies and relaxation vol-
umes from Ref.13 are shown with filled circles. Crosses: the
values computed with MNB potential, open circles are the
values computed using the DND potential. Shaded ellipses
are drawn to guide the eye to the regions covered by data
generated uisng the relevant potentials. Note that the DND
potential tends to predict a higher formation energy and lower
relaxation volume of a defect cluster than the MNB potential.

Two trends are immediately apparent in figures 3 and
4. Firstly, we see that larger clusters have a lower forma-
tion energy per point defect. This is just an illustration
of the reduction in energy due to coalescence of individ-
ual point defects into a cluster of defects. But we also
can see that the magnitude of the relaxation volume re-
duces with cluster size. By coalescing, the volume strain
on the lattice required to accommodate small defects is
reduced.

The second trend we see is that the distribution of
relaxation volumes is small, of order ±0.1 atomic volume
per point defect, despite the random nature of the defect
cluster generation.

A visually striking consequence of this is that the scat-
ter plots for different potentials do not significantly over-
lap, but this is of limited physical significance as the offset
for each potential is a consequence of its fitting, and the
fitting did not consider relaxation volume.

The true physical significance of this result is that even
if the exact structure of a defect cluster is not known, its
relaxation volume can often be estimated from the num-
ber of point defects that it contains. The accuracy in
the estimate of the relaxation volume may be rather low,
as the different potentials given different offsets, but this
lack of accuracy will itself be small compared to the cur-

FIG. 4. Relaxation volumes of randomly generated vacancy
defect clusters for different numbers of vacant sites in the
defect, N . DFT values for energies are from Ref.46, the re-
laxation volumes were computed in this study, and are shown
with filled circles. Crosses: the values computed with MNB
potential, open circles with DND potential. Shaded ellipses
are drawn to guide the eye to the regions covered by the poten-
tials. Note that the DND potential tends to predict a lower
formation energy and smaller magnitude relaxation volume
than the MNB potential. The CEA potential predicts the
smallest relaxation volume. The MNB potential data have a
high degree of overlap with the DFT relaxation volume data.

rent accuracy in modelling the time-dependent evolution
of cascades.

Tabulated values of the relaxation volumes of low en-
ergy small defect clusters are given in table III.

B. Lowest energy defect structures

Having considered randomly-generated defect clusters,
we now turn our attention to larger low energy defects.
Experimentally, both the 〈100〉 and 1/2〈111〉 interstitial
and vacancy-type loops are observed in ion-irradiated
ultra-high purity tungsten foil in the TEM9,70. We will
consider these four loop types as idealised, planar, circu-
lar, prismatic loops, such as might be the basis set for
time-evolution in object kMC or CD. To these objects
we add the spherical voids. It may be that, especially
at larger sizes, the facetted voids, or hexagonal prismatic
loops have slightly lower energy71,72. For our purposes
it is not necessary to guarantee that we have the true
ground state of a defect cluster as we are attempting
to find trends that govern the variation in relaxation vol-
ume, independent to the choice of interatomic interaction
potential.

We construct the prismatic loops and spherical voids
using the procedure proposed in73. Formation energies
and relaxation volumes for the interstitial defects are pre-
sented in figure 5, and for vacancy defects in figure 6. The
formation energies are included here as a comparison to
previous studies, and to provide a complete empirically
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method Ωrel/Ω0

character N=1 2 3 4 5 6 7
DFT vac -0.32 -0.84 -1.21 -1.28 -1.48 -1.53 -1.69
MNB vac -0.36 -0.85 -1.29 -1.60 -1.88 -2.27 -1.96
DND vac -0.11 -0.17 -0.51 -0.58 -0.68 -0.96 -1.10
CEA4 vac -0.18 -0.22 -0.28 -0.32 -0.35 -0.45 -0.46
DFT i〈111〉 1.57 3.00 4.34 5.73 7.06 8.35 9.56
MNB i〈111〉 1.40 2.65 3.92 5.08 6.25 7.39 8.63
DND i〈111〉 1.31 2.41 3.48 3.85 4.53 5.76 6.45
CEA4 i〈111〉 1.25 2.38 4.57 4.80 6.06 7.36 6.97
DFT i〈100〉 1.77 3.39 4.91 6.25 7.77 9.00 10.70
DFT i C15 3.92 6.59 8.19 9.37 11.00

TABLE III. The relaxation volumes (Ωrel/Ω0) of the lowest energy vacancy and interstitial clusters containing N point defects,
1 ≤ N ≤ 7. These relaxation volumes were computed using full relaxation of the simulation cell and atom positions.

parameterized data set for future multiscale modelling
studies. We find that our answers agree with results given
in Refs.72,73 to order of the symbol size.

We can see from figure 5 that the relaxation volume of
a large interstitial loop tends to limN→∞Ωrel/Ω0 = N ,
where Ω0 is the atomic volume. This result confirms that
the volume per atom in an edge dislocation, which is a
semi-infinite plane of atoms embedded in a crystal lattice,
must be Ω0. What is more surprising is the slow rate at
which the result converges to this answer. Though the
vertical scale in figure 5 is chosen to exaggerate the ef-
fect, nevertheless it can be that loops need to be well over
one hundred point defects, perhaps even over one thou-
sand before this limit can truly be said to be reached.
To give the reader an idea of the spatial scale involved, a
circular 1/2〈111〉 dislocation loop containing one thousand
interstitials has the diameter of 8.5nm. A second inter-
esting feature of figure 5 is that the relaxation volume is
not necessarily a monotonic function of the number of
interstitial atoms N .

A regression analysis of the relaxation volume as a
function of size for interstitial loops suggests that an ex-
cellent fit can be found for the empirical form

Ωrel/Ω0 = N + b0
√
N lnN + b1

√
N + b2. (6)

We fit this using least squares fitting to
(Ωrel/Ω0 − N)/

√
N , and find error bar estimates

using bootstrapping74. Fits for the relaxation volumes
and formation energies are given in tables IV and V
respectively. Formation energies have been fitted to
Ef/
√
N using the same least squares method.

In figure 6 we see that the relaxation volume of a large
vacancy loop tends to limN→∞Ωrel/Ω0 = −N , and again
may be non-monotonic. At small cluster sizes N < 30,
however, it is not clear if there should be a single func-
tion describing the relation between the relaxation vol-
ume and point defect count N . Small vacancy loops are
unstable with respect to their transformation to open
platelets73 and subsequently to spherical voids, particu-
larly for the DND and CEA-4 potentials, so the small-
est relaxed vacancy clusters may not be strictly classi-
fied as ‘loops’. We have omitted small vacancy clusters

which show significantly different elastic properties to
large loops.

A regression analysis of relaxation volume and for-
mation energy of the C15 structures computed using
DFT are tabulated in table VII. The formation energy
is fitted to Ef = a0N + a1N

2/3 + a2, indicating that
the energy is driven by both volume and surface energy
terms. The relaxation volume is well fitted by this same
form, Ωrel/Ω0 = b0N + b1N

2/3 + b2. It is not required
that the relaxation volume per C15 interstitial tends to
limN→∞Ωrel/Ω0 = N , as the structure is not bcc. We
note that the C15 structures are higher energy than the
1/2〈111〉 interstitial dislocation loops. Our fitting suggests
that at larger defect sizes C15 will be less stable than dis-
location loops.

A regression analysis of relaxation volume and forma-
tion energy of voids are tabulated in table VI. A re-
gression analysis of the relaxation volume of a void as a
function of void size suggests that an excellent fit can be
found for the form Ωrel/Ω0 = b0N

2/3 + b1, for N > 5.
The two-thirds power implies that the elastic relaxation
of a void is driven by the minimization of the surface
energy of the void, and the resulting elastic contraction
of the material around it. Results for the relaxation vol-
umes are given in table VI, and the DFT fit is shown
on figure 6. The MNB potential predictions are in excel-
lent agreement with the DFT results for the relaxation
volume. The relaxation volumes of the lowest energy va-
cancy clusters for 1 ≤ N ≤ 7 are given in table III. We
analyse the relaxation volume of the void using linear
elasticity theory in section III B. The formation energy
in table VI is fitted to Ef = a0N

2/3 +a1, indicating that
the energy is driven by surface energy alone.

C. The anisotropy of the elastic relaxation

In equation 4 we expressed the total relaxation volume
as the sum of the three partial relaxation volumes. These
three partial volumes, plus the corresponding eigenvec-
tors, completely specify the tensor Ωkl, and hence the
dipole tensor through eq. (3).
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method structure a0 a1 a2
DFT i〈111〉 4.838 ± 0.039 6.18 ± 0.17 3.62 ± 0.23
DFT i〈100〉 6.021 ± 0.032 4.76 ± 0.13 8.23 ± 0.17
MNB i〈111〉 3.394 ± 0.007 7.081 ± 0.052 1.80 ± 0.16
MNB i〈100〉 4.773 ± 0.018 1.10 ± 0.13 9.76 ± 0.36
MNB v〈111〉 4.155 ± 0.016 −0.01 ± 0.12 6.03 ± 0.38
MNB v〈100〉 5.588 ± 0.034 −2.27 ± 0.25 3.20 ± 0.84
DND i〈111〉 3.456 ± 0.025 10.11 ± 0.17 −0.74 ± 0.50
DND i〈100〉 1.479 ± 0.036 15.87 ± 0.25 −3.32 ± 0.69
DND v〈111〉 4.684 ± 0.079 5.05 ± 0.60 2.82 ± 2.5
DND v〈100〉 4.01 ± 0.28 15.0 ± 1.8 −64.6 ± 4.9
CEA4 i〈111〉 2.706 ± 0.033 21.55 ± 0.23 −11.31 ± 0.71
CEA4 i〈100〉 7.149 ± 0.080 −3.33 ± 0.53 16.12 ± 1.6
CEA4 v〈111〉 4.675 ± 0.075 3.08 ± 0.54 15.17 ± 1.9
CEA4 v〈100〉 1.99 ± 0.22 31.4 ± 1.7 −126.3 ± 6.7

TABLE IV. Linear regression fits for the formation energy (in eV) of interstitial and vacancy loops fitted to the form Ef =

a0
√
N lnN + a1

√
N + a2. The DFT values shown are from this study using the cell relaxation method. Note that the fits

should only be considered accurate in the ranges covered by the points in figures 5, 6.

method structure b0 b1 b2
DFT i〈111〉 −1.983 ± 0.007 2.614 ± 0.026 −3.195 ± 0.035
DFT i〈100〉 −1.977 ± 0.003 2.698 ± 0.011 −3.330 ± 0.015
MNB i〈111〉 0.008 ± 0.002 0.738 ± 0.010 −0.179 ± 0.021
MNB i〈100〉 −0.420 ± 0.007 0.622 ± 0.048 2.13 ± 0.16
MNB v〈111〉 0.253 ± 0.002 −0.480 ± 0.008
MNB v〈100〉 −0.155 ± 0.003 1.053 ± 0.015
DND i〈111〉 −0.061 ± 0.016 −1.566 ± 0.096 2.95 ± 0.23
DND i〈100〉 −1.348 ± 0.006 3.534 ± 0.032
DND v〈111〉 0.112 ± 0.009 −5.462 ± 0.055 25.07 ± 0.26
DND v〈100〉 0.377 ± 0.081 −6.83 ± 0.49 39.43 ± 1.22
CEA4 i〈111〉 −0.050 ± 0.018 7.44 ± 0.12 −22.20 ± 0.32
CEA4 i〈100〉 0.845 ± 0.027 −0.94 ± 0.17 1.60 ± 0.44
CEA4 v〈111〉 0.384 ± 0.015 −0.19 ± 0.10 2.08 ± 0.33
CEA4 v〈100〉 0.554 ± 0.041 −0.14 ± 0.32 13.9 ± 1.2

TABLE V. Linear regression fits for the relaxation volume (Ωrel/Ω0) of interstitial and vacancy loops fitted to the form

Ωrel/Ω0 = ±N+b0
√
N lnN+b1

√
N+b2, where the positive and negative signs are for interstitial and vacancy loops respectively.

Note that the fits should only be considered accurate in the ranges covered by the points in figures 5, 6.

method a0 a1 b0 b1
DFT 7.18 ± 0.05 −7.72 ± 0.16 −0.49 ± 0.04 −0.23 ± 0.13
MNB 7.35 ± 0.06 −7.4 ± 3.0 −0.50 ± 0.01 −0.77 ± 0.40
DND 5.25 ± 0.05 −1.9 ± 2.3 −0.31 ± 0.02 0.3 ± 1.1
CEA4 5.56 ± 0.06 −3.2 ± 2.8 −0.122 ± 0.003 0.10 ± 0.12

TABLE VI. Linear regression fits for the formation energy (in eV) and relaxation volume Ωrel/Ω0 of vacancy clusters and

voids. The relaxation volume is fitted to the form Ωrel/Ω0 = b0N
2/3 + b1, indicating this too is driven by surface energy. The

DFT data use the lowest energy structures for 1 ≤ N ≤ 10, the EAM data use the lowest energy structures for 6 ≤ N ≤ 10
and spherical voids for 15 ≤ N ≤ 1067. The energy is fitted to the form Ef = a0N

2/3 + a1, indicating a domination by surface
energy.

method a0 a1 a2 b0 b1 b2
DFT 2.37 ± 0.06 7.39 ± 0.20 4.92 ± 0.29 1.22 ± 0.01 0.39 ± 0.03 0.87 ± 0.04

TABLE VII. Linear regression fits for the formation energy (in eV) and relaxation volume Ωrel/Ω0 of interstitial clusters in the

C15 structure. Relaxation volume are fitted to Ωrel/Ω0 = b0N + b1N
2/3 + b2. The structures taken were those used in ref67,

using the cell relaxation method, with sizes 2 ≤ N ≤ 22. Energies are fitted to Ef = a0N + a1N
2/3 + a2, as suggested by ref67,

indicating terms dependent on volume and surface area.
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FIG. 5. Formation energy and relaxation volume of low en-
ergy interstitial defect clusters. All clusters and loops are of
circular shape. DFT values for formation energies are ex-
trapolated with lines fitted to Ef = a0

√
N lnN + a1

√
N + a2

(see table IV). DFT values for relaxation volumes are ex-

trapolated with lines fitted to |Ωrel/Ω0| = N + b0
√
N lnN +

b1
√
N + b2 ( see table V ). Note that the energies for ideal

interstitial defects computed with the potentials are very sim-
ilar, but the relaxation volumes differ considerably, with the
DND potential typically predicting smaller values and CEA4
larger.

For cubic crystals, it is straightforward to invert the
matrix equations and recover the dipole tensor. For the
perfect defect cluster shapes considered in section II B,
one eigenvector describes both the Burgers vector and
normal of the loops, and so this task can be accomplished
simply and analytically.

For a b =1/2[111] loop with the {111} habit plane (as
is the lowest energy case in tungsten), the dipole tensor
has the general form

P1/2[111] =

 a b b
b a b
b b a

 , (7)

where a and b are numerical parameters with units of
energy. The dipole tensor for other symmetry related
1/2〈111〉 loops is found by taking negative signs in the off-
diagonal elements as appropriate. In a cubic crystal, we
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extrapolated line fitted to Ef = a0N
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can readily find the elastic compliance tensor (S ≡ C−1).
Its representation as a matrix in Voigt notation has the
simple form:

S =



c11+c12
d

−c12
d

−c12
d 0 0 0

−c12
d

c11+c12
d

−c12
d 0 0 0

−c12
d

−c12
d

c11+c12
d 0 0 0

0 0 0 1
c44

0 0

0 0 0 0 1
c44

0

0 0 0 0 0 1
c44

 (8)

with d = c211 + c11c12 − 2c212, and hence, using equation
3 for tensor Ωkl, we find the partial relaxation volumes

Ω(1) = Ω(2) =
a

c11 + 2c12
− b

c44

Ω(3) =
a

c11 + 2c12
+ 2

b

c44
. (9)

We can define a single dimensionless measure of the
anisotropy of relaxation for the structures considered
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here as a ratio of the smallest to largest (magnitude)
partial relaxation volumes,

α ≡ Ω(1)

Ω(3)
. (10)

The value α = 1 indicates that all the three partial re-
laxation volumes are equal, as should be the case for a
spherical void. A value in the interval 0 < α < 1 indicates
that the principal lattice relaxation is along the Burgers
vector, but there are also smaller relaxations in the two
orthogonal directions with the same sign (i.e. compres-
sive or tensile ) as the principal relaxation. The value
α = 0 indicates that the only lattice relaxation is along
the Burgers vector. A value α < 0 indicates that the
principal lattice relaxation is along the Burgers vector,
but there are also smaller relaxations in the two orthog-
onal directions with the opposite sign (i.e. compressive
or tensile ) as the principal relaxation.

For a 1/2〈111〉 loop, the anisotropy parameter is

α1/2〈111〉 =
c44a− (c11 + 2c12)b

c44a+ 2(c11 + 2c12)b
. (11)

Given the value of α and the total relaxation volume Ωrel
we can reconstruct the dipole tensor for a 1/2[111] loop as

P11 = P22 = P33 = a =
c11 + 2c12

3
Ωrel

P12 = P23 = P31 = b =
c44(α− 1)

3(1 + 2α)
Ωrel (12)

The same process can be followed for a [001] loop, for
which the dipole tensor is

P[001] =

 a 0 0
0 a 0
0 0 a′

 . (13)

This gives partial relaxation volumes

Ω(1) = Ω(2) =
c11a

d
− c12a

′

d

Ω(3) = −2c12a

d
+

(c11 + c12)a′

d
, (14)

and the anisotropy coefficient

α〈100〉 =
c11a− c12a

′

−2c12a+ (c11 + c12)a′
. (15)

The parameter d is defined above. Given α and the total
relaxation volume Ωrel, we can also reconstruct the dipole
tensor for a [001] loop as

P11 = P22 = a = d
c12(α− 1) + c11α

(c211 + c11c12 + 2c212)(1 + 2α)
Ωrel

P33 = a′ = d
c11 + 2c12α

(c211 + c11c12 + 2c212)(1 + 2α)
Ωrel

P12 = P23 = P31 = 0 (16)

For spherical voids the coefficient αsphere = 1. The

dipole tensor for a spherical void can be reconstructed
as20

P11 = P22 = P33 =
c11 + 2c12

3
Ωrel = KΩrel

P12 = P23 = P31 = 0, (17)

where K is the bulk modulus.
We choose to present a parameterization required to

fully reconstruct the dipole tensor as the pair of values
{Ωrel, α}. The latter is plotted in figure 7. Fits to this
data are given in table VIII.
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D. Cascade simulations

The final set of configurations we consider are taken
from the MD cascade simulations dataset provided for
the IAEA Visualisation Challenge75. The simulations
were evolved using a stiffened DND potential76 until a
simulated time 40ps. The simulation cell was initially
a perfect crystal, with damping applied to atoms with
kinetic energy over 10 eV77, and with an additional ther-
mostat at the boundaries of the supercell78. One atom
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method structure α0 α1 α2 α3

MNB i〈111〉 -0.195 −0.144 ± 0.001 0.189 ± 0.006 −0.212 ± 0.018
MNB i〈100〉 0 0.196 ± 0.007 2.320 ± 0.050 −2.47 ± 0.14
MNB v〈111〉 -0.195 0.020 ± 0.003 0.514 ± 0.017 −0.331 ± 0.044
MNB v〈100〉 0 0.567 ± 0.041 −3.16 ± 0.25 19.78 ± 0.66
DND i〈111〉 -0.203 −0.255 ± 0.004 0.270 ± 0.030 −0.216 ± 0.089
DND i〈100〉 5.826 ± 0.075 −19.51 ± 0.47 17.6 ± 1.1
DND v〈111〉 -0.203 −0.226 ± 0.004 0.557 ± 0.029 3.67 ± 0.11
DND v〈100〉 0 −0.254 ± 0.064 5.50 ± 0.36 −0.9 ± 1.3
CEA4 i〈111〉 -0.199 −0.128 ± 0.004 0.036 ± 0.028 −0.069 ± 0.081
CEA4 i〈100〉 0 0.157 ± 0.033 4.57 ± 0.21 −4.63 ± 0.56
CEA4 v〈111〉 -0.199 −0.028 ± 0.002 0.103 ± 0.012 −0.961 ± 0.030
CEA4 v〈100〉 0 0.091 ± 0.023 −3.01 ± 0.16 36.8 ± 0.51

TABLE VIII. The dimensionless relaxation volume anisotropy parameter α, as defined by the ratio of the smallest to the largest
partial relaxation volume ( see equation 10 ), for idealised circular prismatic loops, fitted to α = α0 +α1 lnN/

√
N +α2/

√
N +

α3/N . The constant term α0 is derived using linear elasticity (equations 11 and 15), using the computed values for elastic
constants ( see table II ).

was given an initial energy of 50-150keV, representing a
primary knock-on event, and the final temperature was
under 1K. A full description of the methodology is de-
tailed in Refs.6,41 . The cascade configurations were re-
laxed at constant volume using the procedure detailed in
Ref.13 with different EAM potentials, and the relaxation
volume computed using the stress method.

The results for the energy and relaxation volume as
a function of the number of Frenkel pairs produced are
shown in figure 8. We see that there is a slight tendency
for a lower energy per Frenkel pair for the largest cas-
cades. This may indicate that the largest cascades ( in
terms of Frenkel pairs produced ) are associated with the
largest dislocation loops, and the largest loops have the
lowest formation energy per point defect. The relaxation
volume shows a clear correlation with the Frenkel pair
count, but for individual cascades there can be consid-
erable variation. This is consistent with the preceding
results, if the defect clusters are weakly interacting, as
the relaxation volume should be determined by the de-
gree of clustering rather than the total number of defects.
On the basis of these simulations, it is reasonable to give
a single relaxation volume per cascade. We find from the
relaxed cascades

Ωrel/Ω0 = b0NFP , (18)

with b0 = 0.77 ± 0.01 for MNB and b0 = 0.50 ± 0.02 for
DND.

Finally we can establish the predictive quality of the
tabulated data presented here by using tables III,V,VI
to estimate the relaxation volume of a cascade config-
uration. After the initial Wigner-Seitz analysis of the
cascade configuration, clusters of interstitials and vacan-
cies were grouped where pairs of like-character point de-
fects were separated by nearest- or next-nearest neigh-
bours. As many clusters are too small to perform a DXA
analysis79, we assert that all the interstitial loops are of
1/2〈111〉 type. The relaxation volume for each defect is
then looked up, and the total volume summed. The re-
sult is displayed in figure 9. While there is some scatter

for MNB potential, and possibly additional relaxation
within the cascade for the DND potential, it is clear that
the simple empirical fits for mesoscale defect relaxation
volume give a reasonable estimate of the cascade relax-
ation volume. This is an important result for the trans-
ferability of our approach. It indicates that even in the
extreme case of high-energy defects formed close together
in a cascade, the interaction between defects has a small
effect on their relaxation volumes, and so elastically at
least the defects can be treated as quasi-independent.
This therefore demonstrates that the relaxation volume
is a ‘good’ phase field for multiscale modelling, in the
sense that it is additive with respect to the concentration
of defects in the underlying microstructure.

III. DISCUSSION OF RESULTS

A. A comparison with isotropic linear elasticity

In section II C we defined the anisotropy parameter
in the partial relaxation volumes of idealised loop de-
fects considered in section II B. The expected values of
the anisotropy parameter can be computed using linear
elasticity as follows. The dipole tensor for a dislocation
loop with normal n̂ and Burgers vector b and area A in
isotropic elasticity is given by20,80

Pij = A [µ (binj + bjni) + λbknkδij ] , (19)

where µ = (c11 − c12)/2 and λ = c12 are the shear mod-
ulus and Lamé constant. Einstein summation over re-
peated indices is assumed. If the normal and Burgers
vector are parallel, as is the case here, this expression
simplifies to

Pij = ±NΩ0 [2µninj + λδij ] , (20)

where the sign is positive for the interstitial loop and
negative for a vacancy loop. For the 1/2[111] loop this
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reduces further to

P11 = P22 = P33 = ±KNΩ0

P12 = P23 = P31 = ±2µ

3
NΩ0 (21)

and so, substituting into equation 9, we can identify the
relaxation volume for a 1/2〈111〉 loop in isotropic linear
elasticity as Ωrel = ±NΩ0 and its anisotropy as α =
(−c11 + c12 + c44)/(2c11 − 2c12 + c44) = −1/5. This
negative value is significant, as it indicates that for a
1/2〈111〉 interstitial loop the lattice expansion is negative
in directions orthogonal to the Burgers vector. Values of
α computed using computed elastic constants are given
in table VIII. Note that all the potentials give α ∼ −0.2.

Similarly, for a 1/2[001] loop we find P11 = P22 =
±λNΩ0, P33 = ±(2µ+λ)NΩ0, and P12 = P23 = P31 = 0,
and so the relaxation volume computed for a 〈100〉 loop
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in isotropic linear elasticity is also Ωrel = ±NΩ0 but its
anisotropy is α = 0.

B. Relaxation volume of a vacancy cluster

In this subsection, we derive an analytical formula for
the relaxation volume of a mesoscopic spherical vacancy
cluster, treating the problem in the linear elasticity ap-
proximation. The approach that we adopt here broadly
follows the analysis by Wolfer and Ashkin81.

The elastic displacement field around a spherical va-
cancy cluster, taken in the isotropic elasticity approxi-
mation, is

u(r) =
C

r2
n +Drn, (22)

where C and D are constant factors that we will derive
from boundary conditions, and n = r/r. The strain and
stress fields associated with the spherical vacancy cluster
are13,81

εij(r) =
C

r2
(δij − 3ninj) +Dδij ,

σij(r) = 2µ
C

r2
(δij − 3ninj) + 3KDδij , (23)

where, as above, µ is the shear modulus of the material,
and K is the bulk modulus.

We now find the relaxation volume of a spherical va-
cancy cluster of radius a embedded in a concentric spher-
ical isotropic elastic medium of radius R. Boundary con-
ditions for surface tractions at the surface of the vacancy
cluster (r = a) and at the outer surface (r = R) have the
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form

σijnj |r=a = −4µ
C

r3
ni + 3KDni

∣∣∣∣
r=a

= −pa +
2s

a
,

σijnj |r=R = −4µ
C

r3
ni + 3KDni

∣∣∣∣
r=R

= −pR −
2s

R
,

(24)

where pa is the pressure of gas accumulated inside the
vacancy cluster (for example helium or hydrogen), pR
the external pressure, and s is the orientation-average
surface stress. The surface stress sij is a tensor quan-
tity related to the surface energy by the Shuttleworth
relation sij = γδij + ∂γ/∂εij , which can be readily com-
puted in atomistic simulation as sij = (1/A)∂(Aγ)/∂εij ,
see Ref82. This will have two non-zero eigenvalues which
may be computed for each surface orientation. Here we
assume an orientation average, s will give a good ap-
proximation for the total relaxation volume. From the
boundary conditions we find

C =

a3R3

((
pa −

2s

a

)
−
(
pR +

2s

R

))
4µ (R3 − a3)

D =

a3

(
pa −

2s

a

)
−R3

(
pR +

2s

R

)
3K (R3 − a3)

, (25)

which in the limit of zero external pressure (pR = 0) and
R� a simplify to

lim
pR=0,R�a

C =
a3

4µ

(
pa −

2s

a

)
lim

pR=0,R�a
D = 0.

Substituting the coefficients (equation 25) back into
equation 22 gives the magnitude of the displacement at
the outer surface u(R), and hence the change in volume.

Ωrel =
4π

3
(R+ u(R))3 − 4π

3
R3

After some rearrangement we find

Ωrel =
−4πR3

3(3K)3

(
pR +

2s

R

)
×

((
pR +

2s

R

)2

− 9K

(
pR +

2s

R

)
+ 27K2

)

− πa3

µ(3K)3

((
pR +

2s

R

)
−
(
pa −

2s

a

))
×
(
pR +

2s

R
− 3K

)2

(3K + 4µ) (26)

The first term is the response of the outer surface to the
external pressure and its surface energy, independent of

the presence of the void in the interior. The second term
is the relaxation volume due to the void,

Ωrel = − πa3

µ(3K)3

((
pR +

2s

R

)
−
(
pa −

2s

a

))
×
(
pR +

2s

R
− 3K

)2

(3K + 4µ) (27)

In the limits pR = 0 and R � a, this simplifies to an
expression for the relaxation volume of a spherical void
in an elastic medium, which is filled with gas at pressure
pa

lim
pR=0,R�a

Ωrel =
πa3 (pa − 2s/a) (3K + 4µ)

3Kµ

=
3πa3

µ

(
1− ν
1 + ν

)(
pa −

2s

a

)
, (28)

where ν = c12/(c11 + c12) = λ/(2λ + 2µ) is Poisson’s
ratio.

If the internal pressure in the vacancy cluster is zero
(pa = 0), or in other words if there in no helium or hydro-
gen gas inside the vacancy cluster, the relaxation volume
is negative and is proportional to the surface area of the
cluster

Ωrel ' −6π

(
1− ν
1 + ν

)
sa2

µ
. (29)

The radius of a spherical void can be related to the num-
ber of vacancies N it contains,

NΩ0 =
4πa3

3
,

where Ω0 = a3
0/2 is the volume per atom for a bcc metal,

given the lattice constant a0, so we could also write

Ωrel ' −
(

243π

8

)1/3 (
1− ν
1 + ν

)
s a2

0

µ
N2/3. (30)

From this equation it follows that the relaxation vol-
ume per vacancy in a vacancy cluster (a void containing
no gas) is negative and varies, as the average surface
stress, as the inverse third power of the number of va-
cancies contained in the cluster

Ωrel
NΩ0

∼ −sN−1/3. (31)

As a result, the relaxation volume of a void per vacancy
vanishes in the macroscopic limit N � 1.

We can compare the relaxation volumes computed us-
ing atomistic relaxations to the predictions from the
above surface energy model, by substituting the elastic
constants and spherically-averaged surface energies γ and
stresses s, as computed in section A and tabulated in II.
If we use a similar surface model for the formation energy,
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we find the formation energy per vacancy varies as the av-
erage surface energy and the the inverse third power of
the number of vacancies that it contains

Ef ' 4πγa2

' (9π)
1/3

γa2
0N

2/3

Ef/N ∼ γ N−1/3. (32)

The comparison is shown in table IX. We conclude that
the relaxation volume and formation energy of voids in
tungsten are well reproduced by a simple surface model.

C. A comparison of the empirical potentials used

It is instructive to consider why two potentials which
give very similar energies of formation for lattice de-
fects nevertheless give quite different elastic properties.
As shown in equation 5, the dipole tensor depends on
the first derivative of the potential, and for the pairwise
part V (rab) at least this is straightforward to analyse.
The MNB potential descends from the smooth Ackland-
Thetford form47,48, whereas the DND potential is based
on a piecewise cubic spline form. This latter form has
a continuous second derivative, but discontinuous third,
leading to cusps in the second derivative. In the case of
the DND potential, this second derivative swings from
large positive to negative values. This in turn means
that small changes in relative atom positions leads to
large changes in the forces on the atoms. The MNB po-
tential, by contrast, has a fairly flat first derivative. The
CEA-4 potential44, which is also a cubic-spline form, but
included fitting to forces during its construction, shares
this flat first derivative for near equilibrium atom sep-
arations, but with more structure for greatly distorted
structures. This is illustrated in figure 10.

D. Estimating the relaxation volume per collision cascade

In section II D we found that the relaxation volume per
cascade is proportional to the number of Frenkel pairs
contained. We can make an estimate for the relaxation
volume per cascade if we make the assumption that the
lattice defects are isolated and idealised. Sand et al6

suggest that clusters should be produced in cascades with
a frequency given by the power-law

f(N) = A/Ns, (33)

and in ref85 give exponents for large clusters for
interstitial-type and vacancy clusters in bulk tungsten
cascade simulations as sI = 1.6 and sV = 2.0 respec-
tively. The expected relaxation volume per Frenkel pair
is then

Ωrel/NFP =

Nmax∑
N=1

qI(N)ΩI(N) + qV (N)ΩV (N)

(34)
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FIG. 10. The first derivative of the pairwise part of selected
empirical potentials, in the effective gauge47,83 where ρeq =
1, F [0] = F [1] = 0. The MNB potential is descended from
the smooth Ackland-Thetford form47,48, whereas the DND
potential is a piecewise cubic spline which did not consider
the first derivative during fitting. Vertical lines are drawn at
first and second nearest neighbour positions. Note that the
DND potential is not unstable at short separation, as might
be inferred from this plot, as it is stabilised by its many-body
part. In MD simulations the ZBL correction is also generally
applied at short range76,84. The Ackland-Thetford pairwise
potential is very similar to the MNB.

with qI/V (N) being the weighting for an intersti-
tial/vacancy cluster containing N point defects,

qI(N) =
N−SI∑Nmax

N=1 N1−SI

, qV (N) =
N−SV∑Nmax

N=1 N1−SV

.

(35)

Note that
∑Nmax

N=1 NqI(N) =
∑Nmax

N=1 NqV (N) = 1. We
use a limit, Nmax, for the number of point defects in a
single defect, as an infinite sized defect cannot be pro-
duced in a single subcascade41,86.

As a first order approximation we can write the relax-
ation volumes of interstitial/vacancy clusters using their

leading terms, ΩI(N)/Ω0 ∼ N + b
(I)
0

√
N logN + b

(I)
1

√
N

and ΩV (N)/Ω0 ∼ b
(V )
0 N2/3. Then we can write down

the relaxation volume per Frenkel pair for the cascade as

Ωrel/Ω0/NFP = 1 + b
(I)
0 wI,0 + b

(I)
1 wI,1 + b

(V )
0 wV

where

wI,0 =

∑Nmax

N=1 ln(N)N1/2−sI∑Nmax

N=1 N1−sI

wI,1 =

∑Nmax

N=1 N1/2−sI∑Nmax

N=1 N1−sI

wV =

∑Nmax

N=1 N2/3−sV∑Nmax

N=1 N1−sV
.

(36)

The coefficients wI,0, wI,1, wV , which determine the rela-
tive importance of interstitial and vacancy contributions
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Ωrel/Ω0/N
2/3 Ef/N

2/3

fit to simulation data surface stress model fit to simulation data surface energy model
DFT -0.49 -0.66 7.18 7.08
MNB -0.50 -0.41 7.35 7.14
DND -0.31 -0.20 5.25 5.31
CEA4 -0.12 -0.16 5.56 5.33

TABLE IX. The leading order constant for the relaxation volumes and formation energies (eV) in the limit of a large spherical
void found by fitting to simulation data, as given in table VI and using a simple model using surface properties only (equations
30 and 32).

to the relaxation volume, are plotted in figure 11. For the
tungsten cascades we consider Nmax ∼ 1000, sI = 1.6
and sV = 2.0 and so wI,0 ' 0.40, wI,1 ' 0.15 and wV '
0.44. We find in this work b

(I)
0 = 0.008, b

(I)
1 = 0.738 and

b
(V )
0 = −0.50 for the MNB potential ( see tables V and

VI ), and so expect Ωrel/Ω0/NFP ∼ 0.89.
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FIG. 11. Relaxation volume coefficients for cascades char-
acterized by power-laws for the size-frequency distributions
of interstitial loops and vacancy clusters, with power law in-
dices sI and sV . The relaxation volumes per point defect for

a cascade can be written as Ωrel/Ω0/NFP = 1 + b
(I)
0 wI,0 +

b
(I)
1 wI,1 + b

(V )
0 wV Vertical lines indicate the power indices

measured using MD for 150keV PKA cascades in tungsten85.

We could get a slightly better estimate for the to-
tal cascade relaxation volume by using the ΩI/V (N)
given by the values for the smallest clusters in table
III and the full expressions given by the fits in tables
VI, and V for larger clusters. This gives the values
Ωrel/Ω0/NFP = 0.87 for MNB. For DND and CEA4 the
prefactor is 0.80 and 1.31 respectively. Though not a
perfect match to the observed total relaxation volumes
computed in section II D, this simple calculation returns
that MNB has a larger relaxation volume than DND, and
that both have a scaling factor a little under unity.

IV. IMPLICATIONS FOR MODELLING
MICROSTRUCTURAL EVOLUTION UNDER
IRRADIATION

We noted earlier that, in agreement with the analy-
sis performed in Refs.26,27, the fact that the relaxation
volume of a self-interstitial atom defect is positive and
fairly large whereas the relaxation volume of a vacancy
is negative and relatively small, represents the fundamen-
tal reason why metals expand and swell under irradiation.
The dynamics of accumulation of defects, involving their
recombination and coalescence, gives rise to a fairly com-
plex picture of microstructural evolution, where internal
stresses and strains as well as the volume of a reactor
component exposed to irradiation vary as functions of
time. For example, some volumetric expansion occurs ef-
fectively instantaneously as a result of the generation of
defects in collision cascades87–90, see Fig. 1, due to the
fact that the total (positive) relaxation volume of all the
self-interstitial defects produced in a cascade is greater
than the (negative) relaxation volume of all the vacan-
cies. This is confirmed by the analysis given in section
III D above, which also shows that no notion of diffusion-
mediated microstructural evolution is required to arrive
at the conclusion that the production of defects in cas-
cades gives rise to swelling.

Using the equations for relaxation volumes of defect
clusters given above, it is possible to evaluate the degree
of volumetric expansion of a material even in the limit
where the voids formed under irradiation are too small
to be visible in an electron microscope. Also, the for-
mulae for defect relaxation volumes are directly applica-
ble for computing the volumetric expansion of an evolv-
ing microstructure simulated using object kinetic Monte
Carlo9,91,92.

In the mesoscopic limit, the relaxation volumes of dis-
location loops, of either self-interstitial and vacancy na-
ture, can be evaluated as line integrals over the loop
perimeters20,93

Ωrel = −1

2

∮
Γ

b · (r× dl),

dΩrel
dt

= −
∮

Γ

b · (v × dl), (37)

where r and v are the position and velocity of a point
on a dislocation line, and the choice of the sign before
the integral depends on the Burgers vector convention20.
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Equation (37), together with the formula for the relax-
ation volume of a void or a gas bubble (28), enables eval-
uating volumetric swelling in the limit where radiation
defect objects are mesoscopic or even macroscopic. In
this limit, the degree of volumetric swelling may be as-
sessed by analysing the relaxation volume of dislocation
loops, which are often readily seen in electron microscope
images, rather than the void component of microstruc-
ture.

The treatment of dynamics of diffusion-mediated evo-
lution of microstructure is beyond the scope of this paper,
although it would be appropriate to note that equation
(37) for the rate of variation of relaxation volume of dislo-
cations provides a link between diffusion-mediated mod-
els for microstructural evolution81,94–96, and the stress
and strain based treatment of radiation induced volu-
metric swelling of a material given above in this paper.

V. CONCLUSIONS

In this paper we have computed the relaxation volumes
of a broad variety of lattice defects in tungsten, using
three empirical potentials and density functional theory.
We have presented the data in a number of scatter plots,
but have also presented tabulated data for empirical fits
to the results. It is hoped that the data in this form is
readily applicable to a range of coarse grained models,
which involve either the elastic interactions between de-
fects or the stresses and strains induced by the defect
population.

We have found that there is some considerable varia-
tion in the absolute values of relaxation volumes of de-
fects compared across the EAM potentials we have con-
sidered. This is because the elastic properties of defects
were never considered in the parameter fitting. We were,
however, able to identify some cross-potential trends.
The relaxation volume per point defect varies accord-
ing the specific configuration of the defect cluster, but
for small defect clusters (N < 10) is likely to remain in
the range ±10%. This means that knowing the point de-
fect content of a cluster and its character ( vacancy- or
interstitial- type ) is sufficient to predict the relaxation
volume of a cluster. Larger defect clusters (N > 10) are
most stable as dislocation loops, categorised by a Burg-
ers vector, or in the case of vacancies are more stable as
voids (N < 6×105 for MNB or N < 3×106 for CEA472,
and we find N < 8 × 106 for DND). 1/2〈111〉 and 〈100〉
dislocation loops and voids are sufficiently dissimilar to
require their own representation of relaxation volume as a
function of defect size, to predict their elastic properties.

We showed in section II D that the relaxation volume
of a cascade is proportional to the number of Frenkel
pairs it contains, with a positive coefficient around unity.
The structure in the relaxation volume per point defect
is to some extent averaged out by the range of sizes of
defects produced in a cascade. The expected number
of Frenkel pairs per cascade is itself proportional to the

PKA energy, according to the NRT formula97, a result
broadly confirmed by MD simulation4,98, though the con-
stant of proportionality is now widely held to be some-
what smaller than that given by the NRT model. The
recent arc-dpa model99,100 predicts the number of Frenkel
pairs per cascades produced in a defect-free material at
low energy to be slightly above the line of proportionality
seen at high energy, but we can still say that as a rule-
of-thumb, the relaxation volume per cascade increases
roughly linearly with the PKA energy. As the defect mi-
crostructure evolves, annihilation between vacancy- type
and interstitial- type will reduce the total relaxation vol-
ume. This is a much more significant effect than devia-
tions in proportionality of the total volume of initial de-
fects to the PKA energy, but it will nevertheless preserve
approximately the linear dependence of relaxation vol-
ume with Frenkel pair count. Coalescence of small defect
clusters will have a smaller effect on the linear depen-
dence of the relaxation volume with Frenkel pair count.
As we have found a potential-dependent non-monotonic
variation of the relaxation volume of individual disloca-
tion loops with point defect count N , it is not clear at
this point whether coalescence will increase or decrease
the relaxation volume. DFT calculations of the dipole
tensors of large loops may be able to answer this ques-
tion in the future.
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Appendix A: Average surface energy

In this appendix we find the average surface energy
suitable for a spherical void given calculated values of the

surface energy on facets. As we are working with cubic
crystals, we expand the surface energy in cubic harmonics

Ymn(x, y, z) =
(
x4 + y4 + z4

)m (
x2y2z2

)n
, (A1)

where x, y, z are direction cosines, so that the surface
energy at a general direction is interpolated as

g(x, y, z) =
∑
mn

amnYmn(x, y, z) (A2)

We can fit available surface data to the lowest orders of
Ymn. It is most common in the literature to see data
for 〈110〉, 〈100〉, 〈211〉, and 〈111〉 planes, in which case it
suffices to take 0 ≤ m,n ≤ 1. Writing the surface energy
for the 〈110〉 plane as γ〈110〉, and similarly for the others,
we find

a00 = −γ〈100〉 + 2γ〈110〉

a10 = 2(γ〈100〉 − γ〈110〉)

a01 = 27(γ〈100〉 + 3γ〈111〉 − 4γ〈211〉)

a11 = −54(γ〈100〉 + 3γ〈111〉 − 6γ〈211〉 + 2γ〈110〉).(A3)

The spherically-averaged surface energy,γ, can be found
by integrating over the surface of the sphere:

γ =
1

4π

∫ π

θ=0

∫ 2π

φ=0

g(sin θ cosφ, sin θ sinφ, cos θ) sin θdθdφ

= a00 +
a01

105
+

3a10

5
+
a11

231

=
1

385

(
86γ〈100〉 + 128γ〈110〉 + 27γ〈111〉 + 144γ〈211〉

)
.

(A4)

It should be noted that two assumptions are made here,
firstly that voids are unfacetted, and secondly that the
surface energy varies smoothly with the orientation of
the facet, so this interpolation should not be applied un-
critically to other cases. However, this simple expression
does give a single value for surface energy suitable for use
in our analytical calculations of void relaxation volumes.


