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Abstract
The effect of plasma shaping on scrape-off layer (SOL) plasma turbulence is investigated through

a rigorous validation exercise. Two- and three-dimensional simulations of the SOL plasma dynam-

ics in three TCV limited discharges are carried out with the GBS code. These discharges realize

an almost circular magnetic equilibrium, an elongated equilibrium, and an elongated equilibrium

with negative triangularity. For the three plasma discharges, three simulations are performed, con-

sidering (i) a three-dimensional model with explicit dependence on elongation, triangularity, and

inverse aspect ratio; (ii) a circular three-dimensional model in the infinite aspect ratio limit; and

(iii) a two-dimensional model which assumes cold ions, infinite aspect ratio, and k‖ = 0. Ten val-

idation observables common to simulations and experimental measurements from a reciprocating

probe located at the TCV outer mid-plane are identified and the agreement between experiment

and numerical results relative to each observable is evaluated. The composite metric introduced

by P. Ricci et al. in [Phys. Plasmas 18, 032109 (2011)] is then used to assess the overall agree-

ment between simulations and experimental measurements. It is found that the shaping model

implemented in GBS improves the description of SOL plasma turbulence taking into account the

impact of elongation and triangularity and that, in general, three-dimensional simulations are in

better agreement with experimental measurements than the numerical results obtained with the

two-dimensional model.

∗Electronic address: fabio.riva@ukaea.uk
†See author list of S. Coda et al., Nucl. Fusion 57, 102011 (2017)

2

mailto:fabio.riva@ukaea.uk


I. INTRODUCTION

Simulation codes are playing an increasingly important role in optimizing and predicting

the performance of present and future fusion devices. To limit potential errors arising from

the use of the simulation results, there is an increasing motivation in the fusion community

in developing and applying verification and validation (V&V) procedures [1–3]. Verification

is “the process of determining that a model implementation accurately represents the devel-

oper’s conceptual description of the model and the solution to the model”, while validation

is “the process of determining the degree to which a model is an accurate representation

of the real world from the perspective of the intended uses of the model” [4]. In other

words, verification and validation address the two questions “Does the code solve correctly

the equations?” and “Does a model have the right equations?”, respectively [5].

In the past few years, great effort was devoted to the development of V&V procedures for

plasma turbulence simulations. A common approach used for verifying plasma simulation

codes is code to code comparison (also known as code benchmark, see, e.g. Refs. [6–11]).

More recently, a rigorous verification methodology based on the method of manufactured

solutions was ported to the fusion community [12]. This procedure, generalized also to

particle-in-cell codes [13], is now routinely used to assess the correct implementation of a

model in a simulation code (see, e.g., Refs. [14–16]). Verification procedures are also used to

quantify the numerical errors affecting simulation results (e.g., estimating the discretization

error introduced by the use of a finite grid resolution). To this end, several methodologies

have been ported to the fusion community in the recent past, including procedures based

on convergence studies (see, e.g., Refs. [12, 13]).

Guidelines for performing a rigorous validation in the context of magnetic confinement fusion

energy were laid down by the seminal works of Terry et al. [17] and Greenwald [18]. Main

objectives of validation procedures include: the quantification of the degree of agreement of

the code results, and therefore of the physics model, with experimental data to assess the

maturity of our understanding of fusion-relevant systems; the comparison between different

models to determine the most suitable one for describing a physical system; and the identifi-

cation of parameter regimes where improvements to the current available models are needed.

For carrying out a validation exercise, both Terry et al. [17] and Greenwald [18] works iden-

tify the following key steps: (i) the selection of a number (the more, the better) of physical
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quantities common to simulation results and experimental measurements to be compared

(typically referred as validation observables); (ii) the organization of the observables in a

hierarchy based on the importance of the assumptions required for their evaluation, and

therefore of their reliability; (iii) the evaluation of the agreement between experiments and

simulations relative to each observable; and (iv) the definition of a composite metric, which

combines the results for each observable and how stringent each observable is for comparison

purposes, to quantify the overall agreement between simulations and experimental measure-

ments. In performing these tasks, particular importance should be given to estimating and

including in the metric the uncertainties affecting experimental measurements and numeri-

cal results. In this regard, it is clear that verification must precede validation.

An overview of best practices for the development of validation metrics and examples of

their applications to fusion relevant problems are given in Refs. [19–22]. Among a number

of examples, we consider here the validation methodology introduced by Ricci et al. in

Refs. [23, 24], used for validating plasma turbulence simulations of the TORPEX device [25]

against experimental measurements. This methodology can be summarized as follows. First,

a number of independent and relevant physical quantities, common to the experiment and

the simulations, should be identified and analyzed using the same technique. The values of

the j−th observable at points i = 1, ..., Nj (the index i can be used to discretize time and/or

multidimensional spatial coordinates), as coming from experimental measurements or simu-

lation results, are denoted as ei,j and si,j, respectively. Second, the measure of the distance

dj between experimental measurements and simulation results for the j−th observable is

computed as

dj =

√√√√√ 1
Nj

Nj∑
i=1

(ej,i − sj,i)2

∆e2
j,i + ∆s2

j,i

, (1)

where ∆ej,i and ∆sj,i are the uncertainties affecting ei,j and si,j, respectively. The level of

agreement Rj between simulations and experiments with respect to the observable j is then

given by

Rj = tanh [(dj − 1/dj − d0)/λ] + 1
2 , (2)

such that Rj = 0 denotes perfect agreement and Rj = 1 complete disagreement. Here

d0 and λ are parameters used to set the threshold level for agreement and sharpness of

transition from agreement to disagreement, respectively. In the following we consider d0 =

1 and λ = 0.5, as suggested in Ref. [24]. This choice implies that Rj ≈ 0.5 when the
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discrepancy between the j−th experimental and numerical observables is comparable to

their uncertainties. Finally, the overall agreement between simulations and experiments is

measured by introducing a composite metric

χ =
∑
j RjHjSj∑
j HjSj

, (3)

which combines the level of agreement of each observable, Rj, with its weight, HjSj, which

defines how stringent each observable is for comparison purposes, such that χ = 0 means

perfect agreement and χ = 1 complete disagreement. Here Hj and Sj denote the weight of

each observable j according to the number of assumptions made for its evaluation and the

level of confidence characterizing its measurement, respectively. More precisely, Hj accounts

approximately for the uncertainties related to model assumptions and/or to combinations

of measurements, which are often needed to estimate the validation observables from the

simulation results and the raw experimental data [26], and are generally very challenging to

evaluate. In practice, the observables are organized into a hierarchy based on the number

of assumptions required for their evaluation, hj. Since the higher the hierarchy level of an

observable is, the lower its importance in the comparison metric should be, Hj is a decreasing

function of hj. Following Ref. [23], we define Hj = 1/hj. On the other hand, the quantity

Sj is used to assess the precision of the measurement of the j−th observable and should

be a decreasing function of the experimental and simulation uncertainties. Reference [23]

proposes

Sj = exp
(
−
∑
i ∆ej,i +∑

i ∆sj,i∑
i |ej,i|+

∑
i |sj,i|

)
. (4)

Finally, Ref. [23] also introduces the index

Q =
∑
j

HjSj, (5)

used to assess the quality of the comparison itself. The idea is that a validation is more

reliable with a large number of observables and if their weight HjSj is large.

The goal of the present paper is twofold. First, we apply for the first time the validation

methodology proposed in Ref. [23] to turbulence in tokamak scrape-off layer (SOL) con-

ditions. More precisely, we simulate the turbulent SOL plasma dynamics in three limited

discharges realized on the TCV tokamak [27] with different equilibrium magnetic shapes.

We then use the composite metric χ to rigorously validate the numerical results against ex-

perimental measurements. Second, we assess the maturity of our understanding of plasma
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shaping effects on SOL turbulence, thus validating the shaping model recently introduced

in GBS [28]. As a matter of fact, there is experimental evidence that plasma shaping plays

a strong role in regulating plasma turbulence, both in the core and in the SOL [29, 30]. In

particular, plasma shaping might affect, e.g., the thermal loads on the first wall, one of the

important issues the fusion program is facing today [31]. We note that, while the properties

of SOL plasma turbulence in TCV have been investigated in the past both experimentally

and numerically (see e.g., Refs. [32–36]), and the physics mechanisms behind the effect of

plasma shaping on turbulence are discussed in Ref. [28], the present work focuses on the

application of the rigorous validation methodology discussed above to investigate the impact

of plasma shaping on SOL plasma dynamics.

For our simulations we use three different models, all based on the drift-reduced Braginskii

equations [37, 38], considering (i) a three-dimensional model of SOL plasma turbulence in

non-circular magnetic geometry, where we use the analytical equilibrium model discussed

in Ref. [28] to introduce the dependence of the magnetic field on tokamak inverse aspect

ratio, Shafranov’s shift, elongation, and triangularity; (ii) a three-dimensional model in cir-

cular magnetic geometry and in the infinite aspect ratio limit; and (iii) a two-dimensional

model in circular geometry and in the cold ion and k‖ = 0 limits. All these models are

implemented in the GBS code [39, 40], which has been subject to a rigorous verification

procedure [12, 40]. Three different simulations are carried out with each model, considering

three TCV plasma discharges with (i) an almost circular magnetic equilibrium, (ii) plasma

elongation κ = 1.53, and (iii) plasma elongation κ = 1.57 and triangularity δ = −0.19.

The simulation results are then compared with TCV experimental measurements obtained

with a horizontal reciprocating probe located at the tokamak outer mid-plane [41]. For this

purpose, ten observables are considered. The composite metric χ is finally used to quantify

the level of agreement between the simulations and the experiments for the three models

and assess the maturity of our understanding of plasma shaping effects on SOL turbulence.

The present paper is structured as follows. After this introduction, in Sec. II we discuss the

three models considered for this study. Then, in Sec. III we illustrate the TCV experimental

setup, the probes used to collect the experimental measurements, and the simulations we

carried out. In Sec. IV we present the validation observables considered for our analysis

and the agreement between experimental measurements and numerical results with respect

to every single observable. Finally, the validation metric χ and the quality factor Q are
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computed for the three models and discussed in Sec. V. We note that the present paper is

an extension of the work illustrated in Chapter 7 of Ref. [42].

II. SIMULATION MODELS

Since the tokamak SOL is characterized by rather low temperatures and relatively high

collisionality, a fluid model based on the Braginskii equations [37] is typically employed to

describe the plasma dynamics in this region. Moreover, because SOL turbulence occurs

on timescales much slower than the gyromotion and it is usually characterized by spatial

variations that occur on scale lengths longer than the ion gyroradius, the drift approxima-

tion is often adopted. The set of equations to describe plasmas in such conditions, known

as drift-reduced Braginskii equations [38], was implemented in the GBS code to simulate

plasma turbulence at the tokamak periphery [39, 40].

GBS is a three-dimensional flux-driven, two-fluid, turbulence code that solves the drift-

reduced Braginskii equations numerically by using finite differences for the spatial discretiza-

tion and a standard fourth-order Runge–Kutta method for the time advance. Increasingly

complex magnetic configurations were considered in developing GBS. Initially, the code was

used to simulate linear devices such as LAPD [43] and simple magnetized toroidal devices

such as TORPEX [44]. GBS was then extended to limited SOL tokamak circular geome-

tries [39]. More recently, the capabilities of simulating non-circular geometries and diverted

configurations were also introduced [28, 45].

For our study, we consider the GBS model in the electrostatic limit and we employ the

Boussinesq approximation to simplify the vorticity equation (the validity of this assumption

in modelling the SOL plasma dynamics is discussed in Refs. [46–49]). The resulting system

7



of equations writes

∂n

∂t
=− 1

B
{φ, n}+ 2

eB
[C (pe)− enC (φ)]−∇ ·

(
nv‖eb

)
+Dn(n) + Sn, (6)

∂ω

∂t
=− 1

B
{φ, ω}+ 2B

min
C (pe + pi)− v‖i∇‖ω + B2

min
∇ ·

(
j‖b

)
+ B

3min
C (Gi) +Dω(ω), (7)

∂v‖e
∂t

=− 1
B

{
φ, v‖e

}
+ 1
me

[
e∇‖φ−

∇‖pe
n
− 0.71∇‖Te + ej‖

σ‖
− 2

3n∇‖Ge

]

− v‖e∇‖v‖e +Dv‖e(v‖e), (8)
∂v‖i
∂t

=− 1
B

{
φ, v‖i

}
− v‖i∇‖v‖i −

1
min
∇‖ (pe + pi)−

2
3min

∇‖Gi +Dv‖i(v‖i), (9)

∂Te
∂t

=− 1
B
{φ, Te}+ 4Te

3eB

[
C (pe)
n

+ 5
2C (Te)− eC (φ)

]
− v‖e∇‖Te + STe

+ 2Te
3

0.71
∇ ·

(
j‖b

)
en

−∇ ·
(
v‖eb

)+∇‖
(
χ‖e∇‖Te

)
+DTe(Te), (10)

∂Ti
∂t

=− 1
B
{φ, Ti}+ 4Ti

3eB

[
C(pe)
n
− 5

2C(Ti)− eC(φ)
]
− v‖i∇‖Ti + STi

+ 2Ti
3

∇ ·
(
j‖b

)
en

−∇ ·
(
v‖ib

)+∇‖
(
χ‖i∇‖Ti

)
+DTi(Ti), (11)

where ω = ∇2
⊥φ + ∇2

⊥Ti/e is the plasma vorticity, j‖ = en(v‖i − v‖e) the parallel current,

pe = nTe and pi = nTi the electron and ion plasma pressures, χ‖e and χ‖i the parallel

electron and ion thermal conductivities, B the norm of the magnetic field, b the unitary

vector oriented in the direction of B, and σ‖ = 1.96e2nτe/me the Spitzer conductivity, with

τe the electron collision time. The density and temperature sources, Sn, STe , STi , are used

to mimick the particles and heat outflow from the core. The gyro-viscous contributions

are included in the model through the Gi = −η0i[2∇‖v‖i + C (φ) /B + C (pi) /(enB)] and

Ge = −η0e[2∇‖v‖e + C (φ) /B − C (pe) /(enB)] terms, with ηi and ηe the gyro-viscous coef-

ficients [37]. Moreover, small perpendicular diffusion terms of the form DA(A) = DA∇2
⊥A,

with A = n, ω, φ, v‖i, v‖e, Te, Ti, are introduced for numerical stability reasons. Here the

Poisson brackets are defined as {φ,A} = b · (∇φ×∇A), the curvature operator as

C (A) = B/2 [∇× (b/B)]·∇A, the perpendicular Laplacian as∇2
⊥A = −∇·[b× (b×∇A)],

and the parallel gradient as ∇‖A = b · ∇A. Equations (6)-(11) are completed by a set of

boundary conditions describing the plasma dynamics at the magnetic pre-sheath entrance,

as detailed in Refs. [50, 51].
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The dependence on the magnetic field geometry enters in the model through the norm of the

magnetic field B, the direction of the unit vector b, and the differential operators {φ,A},

C(A), ∇‖(A), and ∇2
⊥(A). A model for expressing these quantities in limited, non-circular

magnetic geometries has been recently introduced in GBS [28]. This model can be used to

investigate the effect of plasma elongation, κ, and plasma triangularity, δ, on SOL turbu-

lence. The magnetic field depends also on the tokamak major radius, R0, the inverse aspect

ratio, ε = a/R0 (a is the tokamak minor radius), the safety factor at the magnetic axis, q0,

and at the last closed flux surface (LCFS), qa.

In order to validate the shaping model in Ref. [28] against experimental measurements and

gain a deeper insight on the SOL turbulence properties, in the following we consider: (i)

Eqs. (6)-(11) with the magnetic equilibrium given in Ref. [28], referred to as “Shaping model”

in the following, (ii) Eqs. (6)-(11) with a circular equilibrium in the infinite aspect ratio limit,

ε = 0, and with negligible Shafranov’s shift (the model is described in Ref. [51]), referred

to as “Circular model”; and (iii) Eqs. (6)-(11) in the cold ion and ε = 0 limits, reduced to

a two-dimensional model assuming k‖ = 0, referred to as “2D model”. More precisely, the

“2D model” equations write

∂n

∂t
=− 1

B0
{φ, n}+ 2

eRB0

(
∂pe
∂y
− en∂φ

∂y

)
− σncs

R
exp

(
Λ− eφ

Te

)
+Dn(n) + Sn, (12)

∂ω

∂t
=− 1

B0
{φ, ω}+ 2B0

miRn

∂pe
∂y

+ σcsω
2
cimi

eR

[
1− exp

(
Λ− eφ

Te

)]
+Dω(ω), (13)

∂Te
∂t

=− 1
B0
{φ, Te}+ 4Te

3eRB0

(
1
n

∂pe
∂y

+ 5
2
∂Te
∂y
− e∂φ

∂y

)

− 2σTecs
3R

[
1.71 exp

(
Λ− eφ

Te

)
− 0.71

]
+DTe(Te) + STe , (14)

where cs =
√
Te/mi is the sound speed, B0 the norm of the magnetic field at the outer

mid-plane of the LCFS, ωci = eB0/mi the ion cyclotron frequency, y = aθ the poloidal

coordinate, Λ ≈ 3.2 for deuterium plasmas, and σ = R/Lc ≈ 1/(2πqa), with θ the poloidal

angle and Lc ≈ 2πqR the connection length. Note that the “2D model” equations correspond

to Eqs. (B6)-(B8) in Ref. [24].
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III. EXPERIMENTAL AND SIMULATION SETUPS

The TCV experiment is a tokamak with major and minor radii R0 = 0.88 m and a = 0.25 m,

respectively [27]. By being equipped with sixteen independent shaping and positioning coils,

TCV has unique capabilitities of exploring a wide range of magnetic geometries, including

negative triangularities, second-order X points, and more exotic plasma shapes [52]. For

this reason, TCV is an ideal test bed for validating the plasma shaping model introduced in

Ref. [28] against experimental measurements.

In the following we consider the three TCV inner-wall limited deuterium plasma discharges

#54147, #55391, and #55394. The experimental parameters measured for the three dis-

TABLE I: Tokamak major radius, inverse aspect ratio, edge safety factor, plasma elongation and

triangularity, toroidal magnetic field on axis, plasma density and electron temperature at the LCFS,

and sound Larmor radius, for the three TCV plasma discharges #54147, #55391, and #55394.

The magnetic equilibrium parameters are obtained by best fitting the profiles shown in Fig. 1 with

the shaping model in Ref [28].

Discharge R0 [m] ε qa κ δ B0 [T] na [1018 m−3] Te,a [eV] ρs0 [mm]

#54147 0.875 0.34 3.3 1.57 -0.19 1.44 6± 2 37± 15 0.61

#55391 0.870 0.30 3.4 1.07 0.00 1.45 4± 1 36± 16 0.60

#55394 0.865 0.30 3.2 1.53 0.00 1.46 5± 1 41± 14 0.63

charges are summarized in Table I and the poloidal cross sections of their magnetic surfaces

are shown in Fig. 1. The plasma has an almost circular magnetic equilibrium in the discharge

#55391, an elongated equilibrium in the discharge #55394, and an elongated equilibrium

with negative triangularity in the discharge #54147. The thick blue continuous lines, repre-

senting the LIUQE [53] reconstruction of the LCFS, are best fitted by the model discussed

in Ref. [28] (red dashed lines), showing a good agreement of the fitting with the magnetic

reconstruction. We note that the three discharges have similar safety factors, qa, densities,

na, and temperatures, Te,a, at the LCFS. This allows us to decouple the influence of plasma

shaping on the SOL dynamics from other effects [28].

The experimental measurements discussed in the following are obtained with a horizontal

reciprocating probe located at the tokamak outer mid-plane. This diagnostic provides high
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FIG. 1: Poloidal cross sections of the magnetic surfaces for the three TCV plasma discharges

#54147 (left panel), #55391 (middle panel), and #55394 (right panel). The blue lines indicate the

LIUQE reconstruction, with thin continuous lines denoting the core flux surfaces, thick continuous

lines denoting the LCFS, and dashed lines denoting the open field line region. The red dashed

lines represent the reconstruction of the LCFS with the shaping model discussed in Ref. [28].

spatial resolution measurements of time-averaged and fluctuating physical quantities. It is

equipped with a probe head having ten electrostatic pins (two are used as a swept double

probe and provide measurements of Isat, n, and Te, one is used to obtain direct measure-

ments of Isat, five are used as floating Langmuir probes to measure Vfl, and the last two are

used to measure the poloidal Mach number). Taking the difference of two of the Vfl pins, it

is possible to estimate the poloidal electric field Eθ. Radial profiles related to the measured

quantities are obtained by sampling the measured time traces in intervals of 1 ms. For a

more detailed description of the reciprocating probe we refer to Refs. [41, 54].

To assess the reliability of the models illustrated in Sec. II, we compare nonlinear GBS sim-

ulations based on the three TCV plasma discharges discussed above with experimental TCV

measurements. For each TCV plasma discharge we perform three simulations, one with the

“Shaping model”, one with the “Circular model”, and one with the “2D model”. For our

simulations we consider perpendicular diffusion coefficients DA ≈ 0.1 m2s−1, with A indi-

cating all evolved fields. The particle and temperature sources are assumed poloidally and

toroidally constant, with radial dependence Sn(x), STe(x), STi(x) ∝ exp [−(x− a+ σ)2/σ2],

where σ = 2.5ρs0 and ρs0 is the sound Larmor radius reported in Table I and x is the radial
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coordinate, and we adjust the amplitude of the sources such that the simulated plasma densi-

ties and temperatures agree within uncertainties with the experimental measurements at the

LCFS. We use q0 = 1 for the “Shaping model” simulations. The radial domain extends from

the inner radius xi = a−30ρs0 to the outer radius xo = a+70ρs0. Ad hoc boundary conditions

are applied at xi and xo, with Neumann’s boundary conditions used for n, v‖e, v‖i, Te, and Ti,

and Dirichlet’s boundary conditions for ω and φ. To mitigate the impact of these boundary

conditions on the simulation results, the two regions extending from x = xi to x = a, and

from x = a+ 2.5 cm to x = xo are considered as buffers and are not included in the analysis

of the results. Moreover, for the three-dimensional simulations we consider an ion to electron

temperature ratio Te/Ti = 1 at the LCFS, as indicated by typical charge exchange measure-

ments in TCV. We note that, since the three-dimensional simulations require three rather

large numerical grids (Nx, Ny, Nz) = (128, 1280, 196), (128, 1280, 188), (128, 1280, 200), with

z the toroidal coordinate and Nx, Ny, and Nz the number of grid points in x, y, and z, respec-

tively, heavy electrons, mi/me = 800, and a reduced parallel electron thermal conductivity,

χ‖e ≈ 5 · 105 m2s−1, are used to considerably decrease the computational cost. For the two-

dimensional simulations we use the numerical grid (Nx, Ny) = (128, 512), with the poloidal

direction extending over a distance 2πa/q. Finally, we also note that, to investigate the

effect of the uncertainty of input parameters, we performed an additional “Shaping model”

simulation of the plasma discharge #54147 using σ‖ ten times smaller than its estimated

Spitzer value.

IV. VALIDATION OBSERVABLES

To validate the GBS simulations discussed in Sec. III against TCV experimental measure-

ments, we consider the following observables: the time-averaged plasma density, electron

temperature, and ion saturation gradient lengths, Ln, LTe , and Ljsat ; the root mean square

(RMS) of jsat fluctuations normalized to the jsat time-averaged profile, δjRMS
sat /j̄sat, the RMS

profiles of floating potential and of electric field fluctuations, δV RMS
fl and δERMS

θ ; the δjsat
and δVfl probability distribution functions (PDF); and the jsat and Vfl power spectral-slopes,

αjsat and αVfl . Concerning the experimental measurements, we note that n and jsat are ob-

tained both from direct Isat and double probe measurements, Te is obtained using the double

probe only, Vfl is obtained from one of the floating Langmuir probes, while Eθ is obtained
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by comparing the measurements of two poloidally separated floating potential Langmuir

probes (i.e., we assume no difference in plasma temperature between the two electrodes).

All measurements are taken twice, with the probe entering and exiting the plasma, providing

at each radial position four independent measurements of n and jsat and two independent

measurements of all other plasma quantities.

Concerning the numerical results, these are obtained with simulations in turbulent quasi-

steady state on time intervals of approximately 200µs. We note that n and Te are di-

rect output of GBS, Eθ is obtained by combining GBS time-traces of φ at two different

poloidal locations, and we assume jsat ∝ n
√
Te + 2Ti, consistently with Ref. [55], and

Vfl = φ − [Λ − log(1 + Ti/Te)/2]Te. However, since the “2D model” does not evolve the

ion temperature, we assume Ti = Te in evaluating jsat and Vfl from the two-dimensional

results. In the following subsections, we discuss in more detail the evaluation of all observ-

ables, focusing on their uncertainties, their hierarchy level, h, their level of agreement, R,

and their accuracy parameter, S.

A. Gradient scale lengths

Some of the main uncertainties affecting the design and operation of future fusion devices

are closely related to our ability of predicting the characteristic gradient lengths of SOL

equilibrium profiles. Therefore, three of the validation observables considered in our study

are the characteristic gradient lengths Ln, LTe , and Ljsat . For the plasma density, this is

defined as Ln = −n̄/∂xn̄, where n̄(x) is the time-averaged plasma density radial profile.

Similar definitions apply to LTe and Ljsat .

In TCV, the time-averaged radial profiles are evaluated by considering time-average windows

of 1 ms. The value of the characteristic gradient lengths are then obtained by best-fitting the

radial profiles with an exponential. More specifically, taking the plasma density as an exam-

ple, we best-fit each of the four indipendent measurements assuming n̄(x) ∝ exp(−x/Ln).

We then compute Ln as the average of the four resulting values. We note that, while decay

lengths in the SOL are known to be non-exponential [54, 56, 57], in our analysis we best-fit

the radial profiles with a single exponential for simplicity. The uncertainty arising from such

simplification should therefore be taken into account in ∆eLn , as discussed in the following.

We consider two different sources of uncertainty affecting these measurements. The first
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TABLE II: Plasma density, electron temperature and ion saturation current gradient scale lengths

and corresponding total uncertainties.

#54147 #55391 #55394

Ln [cm] LTe [cm] Ljsat [cm] Ln [cm] LTe [cm] Ljsat [cm] Ln [cm] LTe [cm] Ljsat [cm]

Experimental 2.3±0.6 6.3±12.6 1.8±0.6 5.3±2.4 6.4±6.1 3.4±1.1 2.2±0.8 3.4±2.5 1.7±0.5

“Shaping model” 2.0±0.1 3.1±0.2 1.6±0.1 2.4±0.1 3.7±0.1 1.8±0.1 2.2±0.1 3.1±0.1 1.7±0.1

“Circular model” 3.9±0.1 5.2±0.2 2.9±0.1 3.7±0.1 4.8±0.1 2.7±0.1 3.8±0.2 5.3±0.3 2.8±0.1

“2D model” 13.8±0.4 21.7±0.6 10.4±0.3 14.2±0.5 22.2±0.6 10.7±0.3 14.0±0.5 22.0±0.7 10.6±0.4

source is due to the best-fitting of the radial profiles with an exponential, referred to as

∆efitLn , while the second source is due to the uncertainties on the measurements of n̄k(x),

referred in the following as ∆emeasLn . For our validation, we take ∆efitLn as given by the 95%

confidence interval of the exponential fit of n̄(x) and we define ∆emeasLn as the standard

deviation of the four individual measurements. Finally, we obtain the total experimental

uncertainty on Ln as ∆e2
Ln = (∆efitLn)2 + (∆emeasLn )2 if ∆emeasLn > ∆efitLn , while we consider

∆eLn = ∆efitLn otherwise. The same procedure is used for LTe , Ljsat , and the corresponding

uncertainties. The resulting experimental gradient scale lengths and the corresponding total

uncertainties are reported in Table. II. We see that elongation and negative triangularity

reduce the experimental gradient scale lengths, consistently with the results reported in

Ref. [28].

Concerning the numerical results, the time-averaged profiles for the three-dimensional sim-

ulations are obtained by performing the toroidal- and time-averages of n, Te, and Isat at

the outer equatorial mid-plane. Similarly, for two-dimensional simulations the poloidal-

and time-averages profiles are considered. The characteristic gradient lengths and ∆sfitL ,

with L = Ln, LTe , Ljsat , are then obtained by best-fitting the time-averaged profiles with

an exponential, as discussed for the experimental measurements. Since the simulation re-

sults are evaluated on time intervals shorter than those considered for the experimental

measurements, among the simulation uncertainties we also account for statistical fluctua-

tions, ∆sstatL . The values of ∆sstatL are obtained by averaging the simulation results on two

sub-intervals of approximately 100µs, computing L for each sub-interval, and evaluating

∆sstatL as the standard deviation of the two resulting gradient scale lengths. Finally, we use

∆s2
L = (∆sfitL )2 + (∆sstatL )2 if ∆sstatL > ∆sfitL , while we consider ∆sL = ∆sfitL otherwise. We
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TABLE III: Level of agreement between simulations and experiments with respect to gradient scale

lengths.

#54147 #55391 #55394

RLn RLTe RLjsat RLn RLTe RLjsat RLn RLTe RLjsat

“Shaping model” 0.00 0.00 0.00 0.09 0.00 0.31 0.00 0.00 0.00

“Circular model” 1.00 0.00 0.82 0.00 0.00 0.00 0.90 0.00 0.98

“2D model” 1.00 0.09 1.00 1.00 0.99 1.00 1.00 1.00 1.00

note that here we neglect numerical uncertainties and uncertainties due to input parameters

on gradient scale lengths. The numerical uncertainties introduced by the time and space

discretization are neglected because they are rather small, of the order of the grid spac-

ing, for typical GBS simulations [12]. The propagation of uncertainties on input parameters

through model equations are neglected because they are typically smaller than ∆sfitL (for the

three-dimensional simulations this was assessed by performing a sensitivity scan in plasma

resistivity, as discussed at the beginning of this section, while for the two-dimensional simu-

lations this is discussed in detail in Ref. [58]). The resulting gradient scale lengths and the

corresponding total uncertainties are reported in Table. II. We see that elongation and neg-

ative triangularity decrease the gradient scale lengths obtained with the “Shaping model”.

This is in qualitative agreement with experimental measurements. Moreover, by compar-

ing the three-dimensional simulation results for the plasma discharge #55391, we observe

that Shafranov’s shift and ε effects reduce the SOL width, consistently with Ref. [28]. For

the two-dimensional simulations, we note that the “2D model” over-predicts the gradient

scale lengths in all cases, both if compared to experimental measurements and to three-

dimensional simulation results. To carry out a more quantitative comparison, in Table III

we present the level of agreement between simulations and experiments with respect to the

gradient scale lengths. Concerning the non-circular TCV discharges, we see that the “Shap-

ing model” is generally in better agreement with the experimental measurements than the

“Circular model”. On the other hand, the “Circular model” is in slightly better agreement

than the “Shaping model” with the experimental measurements for the #55391 plasma dis-

charge. This seems to suggest that Shafranov’s shift and ε effects introduced in the “Shaping
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TABLE IV: Accuracy parameters for the gradient scale lengths.

#54147 #55391 #55394

SLn SLTe SLjsat SLn SLTe SLjsat SLn SLTe SLjsat

“Shaping model” 0.85 0.26 0.83 0.73 0.54 0.81 0.83 0.68 0.86

“Circular model” 0.90 0.33 0.88 0.77 0.57 0.83 0.86 0.72 0.87

“2D model” 0.94 0.62 0.93 0.87 0.79 0.90 0.93 0.88 0.94

model” over-stabilize the SOL plasma turbulence. In general, two-dimensional simulations

completely disagree with experimental measurements.

In Table IV we report the accuracy parameters. In most cases, uncertainties on gradient

scale lengths are rather small and SL is typically larger than 0.7. On the other hand, for

the plasma discharges #54147 and #55391, large experimental uncertainties on measuring

T̄e (reported in Table II) significantly reduce SLTe .

Finally, as discussed in Ref. [26], hL = 2 for Ln, LTe , and Ljsat . Indeed, the only assumption

made to obtain the gradient scale lengths for the n̄, T̄e, and j̄sat profiles is that the time-

averaged radial profiles are exponentially decaying and the uncertainties introduced by this

assumption are taken into account in ∆eL and ∆sL.

B. Fluctuation amplitudes

Important quantities used to characterize plasma turbulence in the tokamak SOL are related

to the amplitude of the fluctuations. Therefore, in our validation we also consider the RMS

jsat fluctuations normalized to the jsat background, δjRMS
sat /j̄sat, the RMS floating potential

fluctuations, δV RMS
fl , and the RMS poloidal electric field fluctuations, δERMS

θ .

Concerning the uncertainties affecting the experimental measurements, taking δjRMS
sat /j̄sat

as an example, we compute (δjRMS
sat /j̄sat) for each independent measurements of jsat. We

then evaluate ∆eδjRMS
sat /j̄sat as the standard deviation of the four resulting values. The same

procedure is used to evaluate ∆eδV RMS
fl

and ∆eδERMS
θ

. We neglect other sources of uncer-

tainty.

Concerning the numerical results, we consider three sources of uncertainty. The first one
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FIG. 2: Radial profiles of RMS jsat fluctuations normalized to the jsat background for the three

plasma discharges #54147, #55391, and #55394.

(∆snumδA , with δA = δjRMS
sat , δV RMS

fl , δERMS
θ ) is introduced by discretizing the model equa-

tions in time and space, and it is evaluated by applying the solution verification procedure

described in Ref. [12] to typical GBS simulations. We find that, for a resolution similar

to the one used in this study, ∆snum
δjRMS
sat /j̄sat

≈ 0.3δjRMS
sat /j̄sat, ∆snum

δERMS
θ

≈ 0.1δERMS
θ , and

∆snum
δV RMS
fl

≈ 0.2δV RMS
fl . The second source of uncertainty (∆sinpδA ) is related to the propa-

gation of uncertainties on input parameters. Since a tenfold increase of the plasma resis-

tivity in typical GBS simulations generally leads to a 10% increase of SOL fluctuations, we

assume ∆sinpδA = 0.1δA. The last source of uncertainty (∆sstatδA ) is due to statistical fluc-

tuations. This is evaluated by splitting the synthetic time traces into two sub-intervals,

computing δjRMS
sat /j̄sat, δV RMS

fl , and δERMS
θ on each sub-interval, and evaluating ∆sstatδA as

the standard deviation of the resulting values. The total uncertainties are then computed

as ∆s2
δA = (∆snumδA )2 + (∆sinpδA )2 + (∆sstatδA )2.

The radial profiles of δjRMS
sat /j̄sat, δV RMS

fl , and δERMS
θ and the corresponding total uncertain-

ties are displayed in Figs. 2, 3, and 4, respectively. We see that, in general, GBS simulations

underestimate jsat fluctuations. This is consistent with previous observations, as discussed

in Ref. [59]. On the other hand, Eθ fluctuations are overestimated by all three models. In

Fig. 3 we also observe that better agreement is found for δV RMS
fl , in particular for the “2D

model”.

To investigate more quantitatively the agreement between experimental measurements and

simulation results with respect to the fluctuation amplitudes, in Tables V and VI we present
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FIG. 3: Radial profiles of RMS Vfl fluctuations for the three plasma discharges #54147, #55391,

and #55394.

FIG. 4: Radial profiles of RMS Eθ fluctuations for the three plasma discharges #54147, #55391,

and #55394.

TABLE V: Level of agreement between simulations and experiments with respect to RMS fluctu-

ations.
#54147 #55391 #55394

RδjRMS
sat /j̄sat

RδV RMS
fl

RδERMS
θ

RδjRMS
sat /j̄sat

RδV RMS
fl

RδERMS
θ

RδjRMS
sat /j̄sat

RδV RMS
fl

RδERMS
θ

“Shaping model” 0.94 0.95 0.99 1.00 1.00 0.81 0.85 0.29 1.00

“Circular model” 1.00 0.34 1.00 1.00 0.99 0.89 0.99 0.08 1.00

“2D model” 1.00 0.00 1.00 1.00 0.03 0.96 1.00 0.00 1.00
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TABLE VI: Accuracy parameters for the RMS fluctuations.

#54147 #55391 #55394

SδjRMS
sat /j̄sat

SδV RMS
fl

SδERMS
θ

SδjRMS
sat /j̄sat

SδV RMS
fl

SδERMS
θ

SδjRMS
sat /j̄sat

SδV RMS
fl

SδERMS
θ

“Shaping model” 0.83 0.78 0.58 0.84 0.87 0.90 0.84 0.86 0.88

“Circular model” 0.84 0.78 0.65 0.85 0.87 0.89 0.85 0.86 0.88

“2D model” 0.85 0.78 0.65 0.86 0.86 0.89 0.88 0.85 0.88

RδA and SδA. The simulation results and the experimental measurements typically disagree

for δjRMS
sat /j̄sat and δERMS

θ , while a better agreement is found for δV RMS
fl , in particular for

the “2D model”. Concerning the accuracy of the observables, we note that SδA > 0.5 for all

models and plasma discharges, implying that the experimental and numerical uncertainties

are rather small. Finally, as discussed in Ref. [26], we take hδA = 2.

C. Probability distribution functions

To gain a deeper insight on the properties of SOL plasma turbulence, in our validation

we also consider the experimental and numerical δjsat and δVfl PDFs, shifted such that

they have the same mean and normalized to the same area, at the three locations x − a =

0.5 cm, x − a = 1.2 cm, and x − a = 1.9 cm. The uncertainties affecting the experimental

measurements are evaluated as the standard deviation between the two δjsat and δVfl PDFs

resulting from the probe entering and exiting the plasma. Concerning the numerical results,

typical GBS simulations indicate that the numerical error affecting δjsat and δVfl PDFs is

smaller than 0.02. The statistical error affecting the three-dimensional simulation results

has similar amplitude, while for the two-dimensional simulations it is negligible. Therefore,

in the following we consider the conservative values ∆sPDF (δjsat) = ∆sPDF (δVfl) = 0.02 and

∆sPDF (δjsat) = ∆sPDF (δVfl) = 0.04 for the two- and three-dimensional simulation results,

respectively.

The resulting PDFs and the corresponding uncertainties are displayed in Figs. 5 and 6. We

observe that, despite some small differences, in particular near the center of the distributions,

the simulation results and the experimental measurements are in quite good agreement.

The agreement between simulations and experiment is confirmed by computing the values

of R shown in Table VII. Indeed, at least for all three-dimensional simulations, R < 0.2. In
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FIG. 5: PDF of δjsat at the three radial positions x−a = 0.5 cm, x−a = 1.2 cm, and x−a = 1.9 cm

for the three plasma discharges #54147, #55391, and #55394.
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FIG. 6: PDF of δVfl at the three radial positions x−a = 0.5 cm, x−a = 1.2 cm, and x−a = 1.9 cm

for the three plasma discharges #54147, #55391, and #55394.
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TABLE VII: Level of agreement between simulations and experiments with respect to the δjsat

and δVfl PDFs.

#54147 #55391 #55394

RPDF(δjsat) RPDF(δVfl) RPDF(δjsat) RPDF(δVfl) RPDF(δjsat) RPDF(δVfl)

“Shaping model” 0.01 0.03 0.00 0.02 0.03 0.18

“Circular model” 0.03 0.02 0.00 0.04 0.06 0.08

“2D model” 0.57 0.03 0.17 0.01 0.95 0.00

TABLE VIII: Accuracy parameters for the δjsat and δVfl PDFs.

#54147 #55391 #55394

SPDF(δjsat) SPDF(δVfl) SPDF(δjsat) SPDF(δVfl) SPDF(δjsat) SPDF(δVfl)

“Shaping model” 0.82 0.79 0.82 0.79 0.82 0.82

“Circular model” 0.82 0.79 0.82 0.79 0.82 0.82

“2D model” 0.86 0.85 0.87 0.84 0.86 0.86

Table VIII we present the parameter S. Wee see that 0.79 < S < 0.87, indicating that the

uncertainties affecting the PDFs are small. Finally, as discussed in Ref. [26], we take h = 2

for the δjsat and δVfl PDFs.

D. Power spectral-slopes

The last two observables considered in our comparison are the jsat and Vfl power spectral-

slopes, αjsat and αVfl . These are obtained by fitting the jsat and Vfl power spectral densities

(PSD) between 12 kHz and 200 kHz with a power function. More specifically, taking jsat as

an example, we compute the jsat PSD at the three locations x− a = 0.5 cm, x− a = 1.2 cm,

and x − a = 1.9 cm. The results are then best-fitted between f = 12 kHz and f = 200 kHz

assuming PSDjsat(f) ∝ fαjsat . The same procedure is used to obtain αVfl .

Concerning the uncertainties affecting the experimental measurements, we consider the stan-

dard deviation between the two αjsat and αVfl resulting from the probe entering and exiting

the plasma, ∆emeas. In addition, we consider the uncertainty related to best-fitting the jsat
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TABLE IX: Ion saturation current and floating potential spectral-slopes and corresponding total

uncertainties at x− a = 0.5 cm.

#54147 #55391 #55394

αjsat αVfl αjsat αVfl αjsat αVfl

Experimental -2.5±0.4 -2.4± 0.5 -1.7±0.4 -1.9±0.4 -1.8±0.4 -2.2±0.4

“Shaping model” -1.6±0.1 -1.3±0.1 -1.25±0.05 -1.2±0.1 -1.4±0.1 -1.2±0.1

“Circular model” -1.20±0.04 -1.3±0.1 -1.3±0.1 -1.3±0.1 -1.2±0.1 -1.3±0.1

“2D model” 1.16±0.01 -1.74±0.01 -1.20±0.02 -1.76±0.03 -1.19±0.01 -1.76±0.01

TABLE X: Ion saturation current and floating potential spectral-slopes and corresponding total

uncertainties at x− a = 1.2 cm.

#54147 #55391 #55394

αjsat αVfl αjsat αVfl αjsat αVfl

Experimental -2.3±0.3 -2.3±0.6 -1.8±0.4 -2.4±0.3 -2.7±0.4 -2.7±0.4

“Shaping model” -1.5±0.1 -1.4±0.1 -1.1±0.1 -1.1±0.1 -1.3±0.1 -1.2±0.1

“Circular model” -1.2±0.1 -1.2±0.1 -1.3±0.1 -1.2±0.1 -1.2±0.1 -1.2±0.1

“2D model” -1.03±0.01 -1.77±0.02 -1.07±0.02 -1.84±0.02 -1.06±0.01 -1.82±0.01

TABLE XI: Ion saturation current and floating potential spectral-slopes and corresponding total

uncertainties at x− a = 1.9 cm.

#54147 #55391 #55394

αjsat αVfl αjsat αVfl αjsat αVfl

Experimental -2.2±0.4 -1.4±1.0 -1.8±0.4 -2.6±0.6 -2.6±0.7 -2.6±0.4

“Shaping model” -1.8±0.1 -1.9±0.1 -1.33±0.05 -1.5±0.1 -1.5±0.1 -1.7±0.1

“Circular model” -1.4±0.1 -1.6±0.1 -1.5±0.1 -1.6±0.1 -1.5±0.1 -1.6±0.1

“2D model” -1.19±0.02 -2.03±0.02 -1.25±0.02 -2.10±0.02 -1.18±0.01 -2.05±0.02
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TABLE XII: Level of agreement between simulations and experiments with respect to the jsat and

Vfl spectral-slopes.

#54147 #55391 #55394

Rαjsat RαVfl Rαjsat RαVfl Rαjsat RαVfl

“Shaping model” 0.89 0.53 0.23 1.00 0.98 1.00

“Circular model” 1.00 0.74 0.03 0.98 0.99 1.00

“2D model” 1.00 0.03 0.40 0.03 1.00 0.46

TABLE XIII: Accuracy parameters for the jsat and Vfl spectral-slopes.

#54147 #55391 #55394

Sαjsat SαVfl Sαjsat SαVfl Sαjsat SαVfl

“Shaping model” 0.89 0.81 0.86 0.87 0.86 0.88

“Circular model” 0.89 0.80 0.86 0.86 0.86 0.88

“2D model” 0.90 0.84 0.87 0.90 0.87 0.91

and Vfl PSDs, ∆efit. This is evaluated as given by the 95% confidence interval of the best-fit

of the PSDs. Finally, we assume ∆e2 = (∆efit)2 + (∆emeas)2 if ∆emeas > ∆efit, while we

consider ∆e = ∆efit otherwise.

Concerning the simulation results, we consider both the uncertainties related to best-fitting

the PSDs with the power function, ∆sfit, and to the finite time-statistics, ∆sstat. The

former are evaluated as discussed for the experimental PSDs. The latter are obtained by

splitting the time traces in two sub-intervals, computing αjsat and αVfl on each sub-interval,

and evaluating ∆sfit as the standard deviation of the two resulting values. We note that

numerical and input uncertainties are neglected here since for typical GBS simulations they

are smaller than ∆sfit.

The resulting power spectral-slopes and the corresponding total uncertainties are shown

in Tables IX, X, and XI. We observe that the three-dimensional models overestimate the

power spectral-slopes, while agreement within uncertainties is found for the αVfl obtained

with the “2D model”. This is confirmed by computing the level of agreement, as presented in
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Table XII. Indeed, RαVfl
< 0.5 for the “2D model”. In Table XIII we present the parameters

S. We see that S > 0.8, indicating that the uncertainties affecting the power spectral-slopes

are small.

Finally, as discussed in Ref. [26], h = 2 for the jsat and Vfl PSDs. Since the only assumption

made to evaluate the power spectral-slopes from Isat and Vfl measurements is that the PSDs

are a power function of the frequency, and the uncertainty resulting from this assumption is

taken into account in ∆e and ∆s, we use h = 2 also for αjsat and αVfl .

V. RESULTS AND DISCUSSION

We now assess quantitatively the agreement between the three models presented in Sec. II

and TCV experimental measurements by computing the metric χ and the quality factor Q.

This combines the levels of agreement R, the hierarchy levels h, and the accuracy parameters

S illustrated in Sec. IV. The results are presented in Table XIV.

Concerning the “Shaping model”, we observe that 0.4 < χ < 0.5 for all the considered TCV

discharges, showing that this model is able to describe equally well circular and non-circular

tokamak plasma discharges. On the other hand, the agreement between experimental mea-

surements and simulation results decreases by assuming a circular magnetic geometry in the

infinite aspect ratio limit for the two negative triangularity and elongated plasma discharges

#54147 and #55394, respectively. This indicates that the shaping model implemented in

GBS improves the description of SOL plasma turbulence taking into account the impact

of elongation and triangularity. Considering the circular discharge #55391, the “Circu-

lar model” is in slightly better agreement with the experiment than the “Shaping model”.

Moreover, considering the two-dimensional model, we observe that χ > 0.5 for all the three

plasma discharges. This indicates that the two-dimensional model considered in this study

is not suitable to describe plasma turbulence in the TCV SOL. While this is a very clear

results for this two-dimensional model, we speculate that a better agreement between two-

dimensional simulations and experimental measurements could be obtained by considering

different closures for the parallel terms (as shown for example in Refs. [33, 34]).

Since the uncertainties for all the observables are rather small (with some specific excep-

tions) and all the observables are at the second level of the validation hierarchy, Q is about

constant in our comparison. In particular, Q ≈ 4, which is close to the maximum value
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TABLE XIV: Combined metric χ and quality factor Q, considering the ten observables discussed

in Sec. IV.

#54147 #55391 #55394

χ Q χ Q χ Q

“Shaping model” 0.45 3.72 0.48 4.02 0.45 4.16

“Circular model” 0.64 3.83 0.42 4.06 0.63 4.21

“2D model” 0.59 4.11 0.56 4.33 0.75 4.43

Q = 5 that can be obtained by ten observables with H = 0.5. The Q values reported in

Table XIV can be compared with the Q that would be obtained by comparing exclusively the

agreement of the experimental and simulation SOL gradient scale lengths, that is Q ≤ 1.5.

Finally, we note that, to investigate the sensitivity of χ on d0 and λ, we also computed χ for

d0 = 0.5, 1.0, 1.5 and λ = 0.5, and for d0 = 1.0 and λ = 0.1, 0.5, 1.0. We find that, while the

exact value of χ depends on d0 and λ, the conclusions obtained in this work are not affected

by varying these parameters.

The rigorous validation exercise presented herein shows that the model introduced in Ref. [28]

constitutes an effective improvement of our capabilities to describe SOL turbulence in elon-

gated magnetic equilibria with finite triangularity. This increases the reliability of our nu-

merical results, showing that GBS simulations are a suitable tool for investigating SOL

plasma turbulence in limited non-circular magnetic geometries. However, while quantities

of primary importance, such as the density and temperature scale lengths, are well repre-

sented by our model, significant discrepancies persist in other observables, in particular for

what concerns the level of fluctuations and the PSDs. These discrepancies can be related

to, e.g., the use of a fluid model or the coupling of the SOL dynamics with the core plasma.

We expect that the improvement of our model and a series of rigorous validation exercises

will allow us to identify the reasons behind these discrepancies.

The present work provides a concrete example of application of the validation methodology

introduced by Ricci et al. in Refs. [23, 24] to SOL plasma turbulence in tokamaks, showing

that this methodology is able to discriminate among different models and assess the most

suited to describing the experimental measurements. On the other hand, it is much more

25



difficult to judge a single model in absolute terms, since establishing if the observed level of

agreement is acceptable or not depends on the specific purposes of the simulations.
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