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In toroidal magnetic confinement devices, such as tokamaks and stellarators, neoclassical
transport is usually an order of magnitude larger than its classical counterpart. However,
when a high-collisionality species is present in an stellarator optimized for low Pfirsch-
Schlüter current, its classical transport can be comparable to the neoclassical transport.
In this letter, we compare neoclassical and classical fluxes and transport coefficients
calculated for W7-X and Large Helical Device (LHD) cases. In W7-X, we find that the
classical transport of a collisional impurity is comparable to the neoclassical transport for
all radii. Even for the LHD case – which has not been optimized for low Pfirsch-Schlüter
current – the classical transport can still be comparable to the neoclassical at specific
radii.

The most developed concepts for achieving controlled thermonuclear fusion are the
tokamak and stellarator. Both the tokamak and the stellarator utilize a strong toroidal
magnetic field to confine a hot plasma in which fusion reactions take place.

When such a plasma is in a steady-state, loss of particles and energy mainly occurs as
a result of micro-turbulence, collisions, or direct losses of particles on unconfined orbits.
The two latter processes – and the resulting transport of particles and heat – is referred
to as collisional transport, and can be modeled within the framework of drift-kinetics.
Historically this is the dominant transport channel in the core of stellarators due to large
direct losses from unconfined orbits (Beidler et al. 2012).

Collisional transport can be further separated into two additive components: classical
transport, which is due to the gyro-motion of particles around the magnetic field-lines,
and neoclassical transport, which is due to the complex orbits carried out by the center
of gyration as it moves in the magnetic field. The latter typically leads to much larger
transport than the former (Pfirsch & Schlüter 1962), and also accounts for the large direct
losses in stellarators, with a very strong unfavorable scaling towards reactor-relevant
high temperatures. Thus, much effort has been devoted to reducing the neoclassical
transport in stellarators, resulting in optimized stellarators such as Wendelstein 7-X
(W7-X) (Nührenberg & Zille 1986), while classical transport is often neglected.

However, it has not been widely appreciated that, as a result of optimizing for
low neoclassical transport and Pfirsch-Schlüter current, the neoclassical transport of
impurities in W7-X can now be comparable to the often neglected classical transport.
The main purpose of the present note is to raise attention to this circumstance.

To understand why the classical transport is relevant in an optimized stellarator, we
employ recent analytical results on neoclassical transport for a collisional impurity(Braun
& Helander 2010; Helander et al. 2017; Newton et al. 2017) to show that the ratio of
classical to neoclassical fluxes is proportional to a geometrical factor (1.1), which turns
out to be larger than one in W7-X.

Motivated by these results, we present a general expression for the classical transport,
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using the linearized Fokker-Planck operator and allowing for an arbitrary number of
species. The employed collision operator is frequently used in modern neoclassical solvers,
and the results can thus be directly compared with the output from such codes. In the
final section, we look at a few example magnetic configurations, where compare the
magnitude of the classical transport to that of the neoclassical transport calculated with
the Sfincs† drift-kinetic solver (Landreman et al. 2014), and investigate the collisionality
dependence of the ratio of neoclassical to classical transport.

1. Motivation

Before performing a detailed analysis, it is useful to consider a simple (but experi-
mentally relevant) limit, where the importance of classical transport in a stellarator is
apparent. For this purpose, we summarize results from earlier work (Buller et al. 2018;
Braun & Helander 2010; Helander et al. 2017).

At fusion-relevant temperatures, the bulk hydrogen species of the confined plasma will
be in a low-collisionality regime. However, as the collisionality increases with charge,
high-Z impurities (with Z being the charge number) can still have high collisionality.
Such impurities can occur, for example, in experiments using tungsten plasma-facing
component, which is the favoured material for the divertor of future fusion reactors
(Bolt et al. 2002). These plasmas will thus be in a mixed-collisionality regime, with low-
collisionality bulk and high-collisionality impurity ions.

In this regime, the ratio of classical to neoclassical impurity particle fluxes calculated
from the mass-ratio expanded collision operator is given by a purely geometrical factor
(Buller et al. 2018)

〈Γz · ∇ψ〉C

〈Γz · ∇ψ〉NC
=

〈
j2⊥
〉 〈
B2
〉〈

j2‖

〉
〈B2〉 −

〈
j‖B

〉2 . (1.1)

Here, ψ is a radial coordinate (a flux surface label), 〈·〉 is the flux-surface average, Γz is
the flux of impurity ions, 〈Γz ·∇ψ〉(N)C is the radial (neo)classical impurity flux averaged
over the flux-surface, B is the magnetic field, B = |B|, and j is the current density, here
defined by B × j = ∇p(ψ), ∇ · j = 0; with j‖ and j⊥ being the current components
parallel and perpendicular to B, and p the total pressure.

Equation 1.1 also enters into the ratio of classical and neoclassical transport at yet
higher collisionalities: in the Pfirsch-Schlüter regime, where both bulk and impurity ions
are collisional, which is readily shown using the expression for neoclassical transport
derived by Braun & Helander (2010) together with the expression for classical transport
derived by Buller et al. (2018). For stellarators optimized for low j‖/j⊥ (such as W7-
X), the (1.1) ratio will be large and classical transport will thus dominate at high
collisionality. This will be verified by numerical simulations in Sec. 3.

2. Linearized Fokker-Planck operator

In this section, we write down the classical particle and heat transport due to a
linearized Fokker-Planck operator. The flux-surface averaged radial classical transport

† Available at: https://github.com/landreman/sfincs (verified 2019-01-28)

https://github.com/landreman/sfincs
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is given by

ΓC
a ≡ 〈Γa · ∇ψ〉

C ≡
〈
b×∇ψ
ZaeB

·Ra

〉
, (2.1)

QC
a ≡ 〈Qa · ∇ψ〉C ≡

〈
b×∇ψ
ZaeB

·Ga

〉
, (2.2)

where we have introduced the friction force and energy-weighted friction force

Ra ≡
∫

d3vmavC[fa], (2.3)

Ga ≡
∫

d3v
mav

2

2
mavC[fa]. (2.4)

Here, C[fa] =
∑
b Cab[fa, fb] is the Fokker-Planck collision operator, accounting for the

collisions of all species ’b’ with species ’a’; fa the distribution function of species ’a’, with
mass ma and charge Zae, with e the elementary charge; the integral is over all velocities
v. In a confined plasma, the distribution functions are close to a Maxwell-Boltzmann
distribution fa0, such that fa = fa0 + fa1, and fa1 satisfies fa1/fa0 � 1. For later
reference, we also define the classical conductive heat flux qCa = QC

a − 5
2TaΓ

C
a , where Ta

is the temperature of species ’a’.

For a magnetized plasma, it is useful to separate out the dependence of the distribution
function on the gyrophase. Only the gyrophase-dependent part of f , which we denote by
f̃ , contributes to R and G perpendicular to the magnetic field, and thus to the classical
fluxes (2.1)-(2.2). For a magnetized plasma with an isotropic Maxwellian, it is well-known
that (Hazeltine 1973)

f̃a1 = −ρa · ∇fa0, (2.5)

where ρa = B × vma/(ZaeB
2) is the gyro-radius vector.

With (2.5), we can readily evaluate the classical transport given by (2.1)-(2.4). Lately in
stellarator research, the importance of flux-surface variation of the electrostatic potential
has been recognized (Garćıa-Regaña et al. 2017); such effects can be incorporated into
the classical transport by including the flux-surface varying part of the potential in the
Maxwell-Boltzmann distribution f0 (Hinton & Wong 1985)

f0 = η(ψ)
( m

2πT

)3/2
exp

(
−mv

2

2T
− ZeΦ̃

T

)
, (2.6)

where Φ is the electrostatic potential, Φ̃ = Φ− 〈Φ〉, and we have introduced the pseudo-
density

η(ψ) ≡ ne
ZeΦ̃
T , (2.7)

with n the density. In terms of gradients of η, T and Φ, the gradient in (2.5) thus becomes,

∇f0 = ∇ψ∂f0
∂ψ

= ∇ψf0

[
d ln η

dψ
+
Zae

Ta

∂Φ̃

∂ψ
+
ZaeΦ̃

Ta

d lnTa
dψ

+

(
mav

2

2Ta
− 3

2

)
d lnTa

dψ

]
.

(2.8)

With this f0, the resulting classical fluxes can be calculated analogously to Ref. (New-
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ton & Helander 2006), resulting in

Γa =
ma

Zae2

∑
b

1

τabnb

[〈
nanb

|∇ψ|2

B2

〉
M00
ab

(
Ta
Za

d ln ηa
dψ

− Tb
Zb

d ln ηb
dψ

)
+

〈
nanb

|∇ψ|2

B2
eΦ̃

〉
M00
ab

(
d lnTa

dψ
− d lnTb

dψ

)
+

〈
nanb

|∇ψ|2

B2

〉 ((
M00
ab −M01

ab

) Ta
Za

d lnTa
dψ

−
(
M00
ab −

maTb
mbTa

M01
ab

)
Tb
Zb

d lnTb
dψ

)]
,

(2.9)

qa = −Tama

Zae2

∑
b

1

τabnb

[〈
nanb

|∇ψ|2

B2

〉
M01
ab

(
Ta
Za

d ln ηa
dψ

− Tb
Zb

d ln ηb
dψ

)
+

〈
nanb

|∇ψ|2

B2
eΦ̃

〉
M01
ab

(
d lnTa

dψ
− d lnTb

dψ

)
+

〈
nanb

|∇ψ|2

B2

〉 ((
M01
ab −M11

ab

) Ta
Za

d lnTa
dψ

−
(
M01
ab +N11

ab

) Tb
Zb

d lnTb
dψ

)]
,

(2.10)

where M jk
ab are the Braginskii matrix elements (Braginskii 1958), defined in Appendix A,

using the same notation as Helander & Sigmar (2005); the collision time τab is defined as

1

τabnb
≡
√

2Z2
aZ

2
b e

4 lnΛ

12π3/2ε20m
1/2
a T

3/2
a

, (2.11)

where lnΛ the Coulomb logarithm, and ε0 the vacuum permittivity. These expressions
are valid for all collisionalities. In (2.9) and (2.10), the effect of Φ̃ is to induce a weighting
over the flux-surface due to the flux-surface variation of na and its radial gradient. Note
that the radial electric field (from 〈Φ〉 and Φ̃) does not contribute in the above expression,
even when d ln η

dψ is expressed in terms of (2.7).

In (2.9) – (2.10), the |∇ψ|2 factors corresponds to the j⊥ factor in (1.1), while the j‖
factor in (1.1) arises due to the neoclassical transport (Braun & Helander 2010; Helander
et al. 2017). In the following section, we will evaluate the above expression for example
magnetic configurations.

3. Comparison to neoclassical calculations

In this section, the classical fluxes in (2.9) and (2.10) will be compared to the neoclas-
sical fluxes calculated by the drift-kinetic solver Sfincs, which has the option to use the
same collision operator and definition of f0. This allows us to assess the relative impor-
tance of classical and neoclassical particle transport of any species across collisionality
regimes.

As indicated at the end of Sec. 1, we expect classical transport to dominate at high
collisionality in a stellarator optimized for low parallel current. To study the transition to
the high-collisionality asymptotes in more detail, we artificially change the collisionality
at a flux-surface (rN = 0.88, where rN =

√
ψt/ψt,LCFS, with ψt the toroidal flux and

ψt,LCFS its value at the last-closed flux-surface) in a W7-X standard configuration, studied
by Mollén et al. (2015), and a Large Helical Device (LHD) impurity hole discharge
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(#113208, t = 4.64 s, at rN = 0.6), studied by Mollén et al. (2018). To make the scan
computationally feasible, effects of Φ̃ and the radial electric field are not included (the
radial electric field is set to 10−3 ≈ 0 in the simulations). Both effects can reduce or
enhance the neoclassical transport, but do not affect the classical transport strongly. As
Φ̃ = 0, the density is a flux-function, and ηa = na.

For each point in the collisionality scan, we calculate the neoclassical and classical
transport coefficients of the hydrogen bulk ion and a carbon impurity. The transport
coefficients for the (neo)classical fluxes are defined such that

Γ (N)C
a = −na

(
D

(N)C
a,ni

d lnni
dψ

+D(N)C
a,nz

d lnnz
dψ

+D
(N)C
a,T

d lnT

dψ

)
, (3.1)

where a = i, z for ions and impurities, and we have neglected the effects of electron
collisions on the ion fluxes due to the small electron-to-ion mass-ratio, and assumed that
the ions have the same temperature T ≡ Ti = Tz.

The results of the collisionality scan are shown in Fig. 1, with the collisionality defined
as

ν̂ab =
G+ ιI

B0

√
2Ta/ma

1

τab
. (3.2)

As seen in the left panels of Fig. 1, the impurity transport coefficients in the W7-X geom-
etry are dominantly classical already for ν̂CC & 1, and the cross-species contributions are
classically-dominated already for ν̂CC & 0.1, for both the bulk and the impurity ions. On
the other hand, in LHD – which has not been optimized for low |j‖|/|j⊥| – the classical
transport is at least an order of magnitude smaller than the neoclassical transport for
both species at the same collisionalities, and only becomes comparable to the neoclassical
at collisionalities approximately 10 times higher.

4. Discussion

We have seen that the neoclassical and classical transport coefficients can become
comparable in W7-X even at modest impurity collisionality (ν̂CC & 0.1 − 1), although
these simulations do not include effects of electrostatic potential variation on the flux-
surface, collisions with electrons or the effects of a radial electric field. To assess the
relative importance of neoclassical and classical transport in realistic scenarios with these
effects included, we consider two cases in which the full neoclassical behaviour has been
analyzed by Mollén et al. (2018): a high-mirror W7-X scenario, and the LHD case of
the previous section with an additional helium impurity. The results are shown in Fig. 2
(left panels, W7X; right panels, LHD). We note that in the W7-X case, the classical to
neoclassical neon flux ratio is around 0.5 in magnitude at most radii, and is not very
sensitive to the effects of Φ̃.

In the LHD case, the classical to neoclassical flux ratio for helium is mostly in the
range of 10−2, while it is order unity in the deep core (rN ≈ 0.2). The flux ratio for
carbon reaches unity values at several radial locations (rN 6 0.3 and 0.6 . rN . 0.8).
For outer radii, Φ̃ has a very large effect on the carbon fluxes: when Φ̃ is set to zero, the
neoclassical carbon flux becomes 40 times smaller than the classical flux in the region
rN ∈ [0.6, 0.8]. This region coincides with a region of carbon collisionalities in the range
of [0.07, 0.4] – which is where the neoclassical DC,ni coefficient changes sign in Fig. 1.

The scope for a detailed comparison with the results in the previous section is limited,
as the non-trace helium impurity strongly affects the transport of carbon in this LHD
simulation, and the W7-X case of the previous section corresponds to a different magnetic
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Figure 1: The neoclassical ( ) and classical ( ) transport coefficients as defined in
(3.1), plotted against the impurity-impurity collisionality. Left column: W7-X standard
case. Right column: LHD impurity-hole case. The classical coefficients were calculated
using (2.9), while the neoclassical coefficients were calculated using Sfincs.

configuration. Nevertheless, the classical fluxes are comparable to the neoclassical fluxes,
and clearly cannot be neglected in an analysis of the collisional transport.

Based on this conclusion, we have implemented the classical fluxes (2.9)-(2.10) as a
post-processing step to the neoclassical codes Sfincs and Dkes, see the supplementary
material for an example implementation in python.

As a final remark, we note that since the neoclassical transport in W7-X is sufficiently
low to be comparable to the classical, the transport due to micro-turbulence can become
relatively more important. It may thus be necessary to consider the effect of turbulence
on stellarator impurity transport in the future, which is often neglected due to the com-
putational expense of simulating turbulence in stellarator geometry. Recent experimental
studies by Langenberg et al. (2018) and Geiger et al. (2019) already point strongly in
that direction.

SB and IP were supported by the International Career Grant of Vetenskapsr̊adet
(Dnr. 330-2014-6313) and IP by Marie Sklodowska Curie Actions, Cofund, Project INCA
600398. SB’s visit to Greifswald was supported by Chalmersska forskningsfonden. This
work has been carried out within the framework of the EUROfusion Consortium and
has received funding from the Euratom research and training programme 2014-2018 and
2019-2020 under grant agreement No 633053. The views and opinions expressed herein
do not necessarily reflect those of the European Commission.
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Figure 2: Neoclassical ( ) and classical ( ) fluxes for different species in W7-X (left)
and LHD (right) as a function of normalized radius rN . Filled (open) symbols show the
flux with (without) the effect of Φ̃ included. The lowest panels show the ratio of the
classical and neoclassical transport.

Appendix A. Braginskii matrix elements

The Braginskii matrix elements are defined by

M jk
ab =

τab
na

∫
v2L

(3/2)
j (x2a)Cab

[
mav2
Ta

L
(3/2)
k (x2a)fa0, fb0

]
, (A 1)

N jk
ab =

τab
na

∫
v2L

(3/2)
j (x2a)Cab

[
fa0,

mbv2
Tb

L
(3/2)
k (x2b)fb0

]
, (A 2)

where v2 is any Cartesian velocity component, fa0 is a Maxwellian, xa = v/
√

2Ta/ma,

L
(3/2)
k are Sonine polynomials, where the polynomials relevant to classical particle and

heat transport are

L
(3/2)
0 (x2a) = 1, (A 3)

L
(3/2)
1 (x2a) =

5

2
− x2a. (A 4)
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The corresponding relevant matrix elements are

M00
ab =−

(
1 + ma

mb

)(
1 + maTb

mbTa

)
(

1 + maTb
mbTa

)5/2 , (A 5)

M01
ab =− 3

2

1 + ma
mb(

1 + maTb
mbTa

)5/2 , (A 6)

M11
ab =−

13
4 + 4maTbmbTa

+ 15
2

(
maTb
mbTa

)2
(

1 + maTb
mbTa

)5/2 , (A 7)

N11
ab =

27

4

ma
mb(

1 + maTb
mbTa

)5/2 . (A 8)

(A 9)
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