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Linear elasticity theory predicts a divergent strain field at the dislocation core, resulting from the
continuum approximation breaking down at the atomic scale. We introduce a minimum model that
includes elastic interactions and discrete lattice periodicity, and derive a set of equations that treat
the core of an edge dislocation from a solely geometric perspective. We find an analytical formula for
the displacement field of an arbitrary straight mixed dislocation and predict that the dislocation core
widens as the screw character becomes more dominant, in qualitative and quantitative agreement
with atomistic simulations of mixed dislocations in tungsten. The theory is based on a continuum
form of the multistring Frenkel-Kontorova model, and on the fact that a nearest neighbor model
captures to a substantial degree the part played by lattice discreteness; thus, we circumvent the
need to use adjustable parameters in the treatment of a dislocation core.

I. INTRODUCTION

Linear elasticity theory provides a mathematically
powerful description of how a crystalline material re-
sponds to stresses resulting from either applied external
forces or from internal sources, for example lattice de-
fects. Linear elasticity theory is valid under the assump-
tion that interatomic interactions are harmonic to the
lowest order. The linear elastic Green’s function method
enables a straightforward evaluation of elastic strain at
any point inside the material for arbitrary tractions or
displacement boundary conditions at the bounding sur-
face. In this picture, dislocations are the carriers of plas-
tic strain, acting as sources for elastic Green’s function
solutions in the form of boundary conditions defined at
slip planes [1].

However, the question about exactly how the plastic
strain should be defined to reflect the real atomic config-
uration in the core of a dislocation lies outside the realm
of linear elasticity. Textbook models of dislocations [2]
follow Volterra [3] and state that a plastically slipped
area, associated with a dislocation, ends abruptly inside
the crystal, leading to strain that is entirely localized
at the dislocation line in a delta-function-like form. An
unfortunate consequence of this approximation is that
elastic strain and stress fields are singular. They diverge
at the dislocation line, and this gives rise to ill-defined
energies and forces.

Several approaches have been developed to address this
point. In methods based on the Peierls-Nabarro model
[4–7], the plastic strain spreads out as a consequence of
non-linear interactions across the slipped surface. The
resulting methods offer highly accurate predictions of dis-
location core properties, but solving the models often
proves challenging [8–11]. Other approaches regularize
the singular plastic strain using a convolution of it with
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an isotropic non-singular function [12, 13]. The result-
ing strain and stress fields can be computed analytically,
but the atomic positions and lattice strains may not be
accurate in the dislocation core region.

The objective of this study is to present a first-
principles continuum model for the dislocation core in
a body-centered-cubic (bcc) lattice. The resulting model
is analytically tractable and offers a physical insight into
the microscopic structure of the core region of a disloca-
tion, combining the Peierls-Nabarro and regularization
approaches.

Starting from a simplified description of interatomic
bonding in the context of a discrete model, we relate the
functional form of the plastic strain directly to elastic
strain through a boundary value problem. By assert-
ing that the atomic model is equivalent to linear elastic-
ity theory far away from the dislocation core where the
continuum approximation applies, we are able to elimi-
nate the free parameters of the discrete model and arrive
at something akin to a lowest-order description of the
non-singular edge dislocation core. The derivation of the
model relates the multistring Frenkel-Kontorova model
[14], the Lubarda-Markenscoff variable core dislocation
theory [15, 16], and - naturally - the Peierls-Nabarro and
linear elasticity treatments into an internally consistent
picture. By virtue of its simplicity, we are able to inves-
tigate the model analytically, and find an exact solution
for the displacement field of a straight mixed dislocation.

We do not attempt to derive a continuum model for
the bcc screw dislocation core, as the first principles stud-
ies [17–19] show no appreciable spreading of the plastic
strain over any slip plane, other than possibly during the
migration process. The singular Volterra description of
the displacement field therefore appears adequate, with
the caveat that the core energy remains ill-defined. It
would be appropriate to note other approaches to regu-
larizing the dislocation core energy [20–23].

In Sec. II we present a derivation of the boundary value
problem for a mixed dislocation with a curved glide sur-
face. An analytical expression for the displacement field
of a straight mixed dislocation is given in Sec. III, pre-
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dicting that the edge dislocation core widens as the screw
character becomes more significant. In Sec. IV we present
a correction that takes into account the finite distance
between atomic rows at the opposite sides of the glide
surface. In Sec. V the analytical expression for the strain
field is compared to results derived from atomistic simu-
lations of mixed a/2[111](101) dislocations in bcc tung-
sten. The resulting theory is able to predict the variation
of strain in the dislocation core and the width of the core
in agreement with molecular dynamics simulations, of-
fering an analytical non-singular description of the core
of an arbitrary mixed dislocation free from adjustable
parameters.

II. A CONTINUUM MODEL FOR THE CORE
OF A DISLOCATION IN BCC LATTICE

Below we introduce the multistring Frenkel-Kontorova
[14] (MSFK) model, which provides a simplified descrip-
tion of interatomic bonding in a crystal lattice. The
MSFK model describes the periodicity of the lattice in
a mean-field picture: the motion of atoms is constrained
to a chosen direction, with atomic interactions modelled
by an effective pairwise periodic potential. In figurative
terms, we consider rows of atoms like beads threaded
on strings, trying to arrange themselves under the influ-
ence of mutual attraction and repulsion. By virtue of
its simplicity, the MSFK model lends itself well to ana-
lytical studies, including the investigation of dislocation
core properties. In the past it was applied to the inves-
tigation of structure and mobility of screw dislocations
[24–26], small defects of interstitial type [14, 27, 28] and,
more recently, edge dislocations [29].

However, as atomic motion is constrained along one
direction only, the MSFK model is conceptually incom-
patible with elasticity theory, where the medium is free
to deform in any direction. We shall therefore use the
MSFK description only for the plastically slipped sur-
face while treating the elastic field of the dislocation in
the general linear elasticity approximation.

Consider an infinitely extended crystal lattice, con-
taining a dislocation with Burgers vector b, which here
without the loss of generality is chosen to point in the
Cartesian direction ẑ. Atoms in the lattice are spatially
partitioned along strings collinear with the Burgers vec-
tor. Atomic positions rn,j are indexed by their position
n within a string and by the vector-valued index j de-
noting the location of a string in a plane orthogonal to
the Burgers vector. The adjacent strings are offset by
the neighbor vectors h, see Fig. 1 for illustration. The
MSFK Lagrangian is then given by [14]:

L =
∑

j

∞∑
n=−∞

[
mż2

n,j

2 − α

2 (zn+1,j − zn,j − b)2

]

− mω2b2

2π2

∑
j,h

∞∑
n=−∞

sin2
[π
b

(zn,j − zn,j+h)
]
,

(1)

ŷ

ẑ

x̂

h

rn,j

rn,j+h

FIG. 1. Local bonding environment of an atom in the mul-
tistring Frenkel-Kontorova model. The atoms is at rj,n, and
the Burgers vector is collinear with ẑ. The atom interacts
quadratically with neighboring atoms in the same string (the
interaction is shown by springs) at rj,n±1. Neighboring atoms
in the surrounding strings at rj+h,n contribute a periodic si-
nusoidal interaction, reflecting the periodicity of the lattice
described in a mean-field picture. One out of six nearest
neighbour string vectors h is shown here.

where m is the atomic mass, α is the spring stiffness be-
tween neighboring atoms in the same string, and ω is
the periodic interaction strength between atoms in ad-
jacent strings. Below we consider the crystal in a state
of elastostatic equilibrium and neglect the kinetic energy
term.

The MSFK model contains two unknown force con-
stants α and ω. The linear isotropic elasticity theory
also contains two elastic constants, here chosen as Lamé’s
parameters µ and λ. We can therefore eliminate the un-
known force constants by asserting that the model should
be consistent with the isotropic elasticity theory. Under
the condition that the displacement field varies slowly on
the scale comparable with the distance between atoms,
the MSFK Lagrangian can be linearized with respect to
the strain field, and finally taken to the continuum limit
where it is matched to the Lagrangian of the isotropic
elasticity theory. This condition is not met in the imme-
diate vicinity of the highly strained dislocation core, but
we shall consider it met for the strings that are not im-
mediately adjacent to the glide surface of the dislocation.

The glide surface ∂Ω separates the crystal lattice into
the two bulk regions Ω±. Across the glide surface the
displacement field is discontinuous because of the plastic
slip introduced by the dislocation. The Lagrangian can
therefore be represented by a sum of three terms:

L = LΩ+ + LΩ− + L∂Ω. (2)

By asserting that Lagrangian LΩ± in the linear contin-
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uum limit must be identical to the Lagrangian of the
isotropic elasticity theory, we can match the two un-
known force constants of the MSFK model to elastic
constants. Through this, the dislocation core proper-
ties described by L∂Ω are entirely determined by elastic
constants and crystal lattice structure.

Details of the linearization procedure applied to LΩ±
are given elsewhere [29]. The continuous displacement
fields u±(r) for r ∈ Ω± are introduced as smooth inter-
polations of atomic displacements according to un,j =
u±(rn,j) for rn,j ∈ Ω±, leading to a continuum form of
the MSFK Lagrangian valid in the bulk regions, namely

LΩ± = −η2

∫
Ω±

dV
[
αb2u±2

z,z +mω2l2G
(
u±2

z,x + u±2
z,y

)]
,

(3)
where ui,j = ∂jui is the strain field, and η = 2/a3 is
the bcc atom number density with lattice constant a.
Parameter G stems from the product hihj = |h|Gδij =
lGδij [30], where G = 3 for the hexagonal lattice and
G = 2 for the square lattice [14], and l is the length of
the neighbor vector.

Consider next the Lagrangian of the linear elasticity
theory,

Lel
Ω = −1

2

∫
Ω

dV cijklui,juk,l, (4)

where summation over repeated indices is implied. For
the purpose of matching the two models, we only permit
displacements in the ẑ-direction, ui,j = δizuz,j , where δij

is the Kronecker delta symbol. The substitution of the
isotropic stiffness tensor cijkl = λδijδkl +µ(δikδjl +δilδjk)
leads to

Lel
Ω = −1

2

∫
Ω

dV
[
(λ+ 2µ)u2

z,z + µ(u2
z,x + u2

z,y)
]
, (5)

where the Cartesian indices are given explicitly and no
summation convention is implied. The yet undefined
force constants of the MSFK model are matched to elas-
tic constants by equating Eq. (3) to Eq. (5), namely

µ = mω2l2ηG (6a)
λ = αb2η − 2mω2l2ηG. (6b)

Having identified the force constants, we proceed with
defining the glide surface Lagrangian

L∂Ω = −mω
2b2

π2

∑
j∈Ω+

j+h∈Ω−

∞∑
n=−∞

sin2
{π
b

[
u+

z (rn,j)− u−z (rn,j + h)
]}
.

(7)

where the vector summation is taken only over pairs of
strings situated at the opposite sides of the glide sur-
face. The glide surface Lagrangian describes displace-
ment fields u±z of atomic strings interacting across the

plastic slip surface through a non-linear interaction law
resulting from (1).

In an earlier study [29], we proceeded under the as-
sumption that the atomic strings that interact non-
linearly are situated infinitesimally close to the glide
plane, with effectively no separation between them. This
approximation leads to an overestimation of the non-
linear interaction, and therefore to a highly localized plas-
tic strain field. In other words, the predicted width of
the dislocation core is severely underestimated in com-
parison with atomistic simulations, as we confirm later
in Sec. IV. This is a well documented issue associated
with applications of the Peierls-Nabarro models based
on stacking fault energies to describe non-linear interac-
tions in the core region, which can be rectified through
the use of more sophisticated, spatially non-local, func-
tionals of the stacking fault energy [31]. We note that in
the earlier study [29] we solved a simpler variation of the
boundary value problem which was derived qualitatively,
and therefore arrived at a less localized strain field.

In this study we take into account the finite separa-
tion between atomic strings in an approximate but ana-
lytically tractable manner. The idea is to first solve the
problem with strings being infinitesimally close, and sub-
sequently treat the finite separation as a perturbation to
the initial solution.

We begin by expressing the glide surface Lagrangian
(7) only in terms of the displacement fields at locations
very close to the glide surface. Assuming that the glide
surface is situated halfway between the string pairs rn,j

and (rn,j + h), that is at (rn,j + 1
2h), see Fig. 2, we

extrapolate the displacement fields from the string posi-
tions towards the glide surface as

u+
z (rn,j) ≈ u+

z (rn,j + 1
2h)− 1

2∇hu
+
z (rn,j + 1

2h)
u−z (rn,j + h) ≈ u−z (rn,j + 1

2h) + 1
2∇hu

−
z (rn,j + 1

2h),
(8)

where ∇h = hi∂i is the directional derivative operator.
Using the extrapolation rules given above, Lagrangian (7)
can be transformed into an expression compatible with
the continuum approximation

L∂Ω = −mω
2b

π2l

∫
∂Ω

dS

×
∑

h∈Neb(r)

sin2
{
π

b

[
u+

z − u−z − 1
2∇h

(
u+

z + u−z
)]}

,
(9)

where the vector summation is performed over the set
of strings Neb(r), which are the nearest neighbours of
a point r ∈ Ω+ and lie across the glide surface in Ω−.
The fields are evaluated infinitesimally close to the glide
surface in the direction of the surface normal vector. The
coordinate dependence of displacement fields in (9) is
omitted for brevity.

The above expression gives rise to a complicated
boundary value problem for which we have not yet been
able to find an analytical solution. Hence we shall first
find a solution corresponding to the limit of vanishing
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ŷ

x̂
ẑ

{h}

Ω−

Ω+
∂Ω

FIG. 2. Bcc lattice viewed in direction collinear with a
a/2[111] type Burgers vector. Solid circles represent MSFK
strings in a local bulk-like environment, and bordered circles
represent the strings adjacent to the glide surface. The glide
surface of the continuum model ∂Ω, the cross-section of which
is shown by the dashed line, is situated at mid-points of the
set of neighbor vectors {h} connecting pairs of strings lying
at the opposite sides of the glide surface (arrows).

separation between the strings situated at the opposite
sides of the glide plane L0

∂Ω = limh→0 L∂Ω. In this case
equation (9) reads

L0
∂Ω = −Zmω

2b

π2l

∫
∂Ω

dS sin2
[π
b

(
u+

z − u−z
)]
, (10)

and Z is the average number of neighbouring strings in-
teracting with a given string across the glide surface.
Z = 2 for hexagonal and square lattices, provided that
we neglect the curvature of the glide surface at the atomic
scale, see Fig. 2.

III. ANALYTICAL SOLUTION FOR THE
DISPLACEMENT FIELD OF A STRAIGHT

MIXED DISLOCATION

We now proceed to deriving the elastostatic equilib-
rium equations from the linear elasticity Lagrangian (4)
and the simplified glide surface Lagrangian (10). This
is accomplished by applying the virtual work principle.
The total variation of the Lagrangian is

δL0
∂Ω = Zmω

2

πl

∫
∂Ω

dS sin
[

2π
b

(
u+

z − u−z
)] (

δu−z − δu+
z

)
.

(11)
Similarly, the total variation of the linear elastic La-
grangian (4) is

δLel
Ω± =

∫
Ω±

dV cijklu
±
k,ljδu

±
i −

∫
∂Ω

dS cijklu
±
k,ln
±
j δu

±
i (12)

The total variation must vanish at equilibrium in accord
with the virtual work principle, namely

δL0
∂Ω + δLel

Ω+ + δLel
Ω− = 0. (13)

This results in a boundary value problem of the form

cijklu
±
k,lj(r) = 0 r ∈ Ω± (14a)

cijklu
±
k,l(r)n±j (r) = t±i (r) r ∈ ∂Ω (14b)

where

t±i (r) = ∓δizZ
mω2

πl
sin
[

2π
b

(
u+

z (r)− u−z (r)
)]
. (15)

The expression above represents an elastostatic equi-
librium problem complemented with traction boundary
conditions of the Peierls-Nabarro type for an arbitrarily
curved glide surface. We note that an equivalent elas-
todynamic problem can be formulated by retaining the
kinetic energy term in the Lagrangian (1), and using the
principle of least action instead.

Consider now the case of a straight dislocation of mixed
edge-screw character, lying in the xz-plane with Burgers
vector b ‖ ẑ. Let the dislocation character angle θ rep-
resent the angle between the line tangent vector and ŷ,
such that orientations θ = 0◦ and 180◦ correspond to
pure edge, and θ = 90◦ and 270◦ to pure screw dislo-
cations. The outward normal vector to the glide plane
is then n±j = ∓δyj and boundary term (14b) for i = z
simplifies to

czyklu
±
k,l(r) = Zmω

2

πl
sin
[

2π
b

(
u+

z (r)− u−z (r)
)]
. (16)

Next we substitute the definition of the isotropic stiffness
tensor into equation (16)

czyklu
±
k,l = [λδzyδkl + µ(δzkδyl + δzlδyk)]u±k,l

= µu±z,y + µu±y,z

= 2µε±zy,

(17)

where εij = 1
2 (ui,j +uj,i) is the elastic strain tensor. This

leads to the boundary term

2µε±zy(r) = Zmω
2

πl
sin
[

2π
b

(
u+

z (r)− u−z (r)
)]
. (18)

Using expressions for the shear modulus (6a) and (6b)
derived above, and the dimensionless core structure con-
stant

p = Z
2ηl3G, (19)

we collate the constants and arrive at the final expression
π

p
ε±zy(r) = sin

[
2π
b

(
u+

z (r)− u−z (r)
)]
. (20)

Summarizing, the boundary value problem for a flat
glide plane is defined by equations

cijklu
±
k,lj = 0, r ∈ Ω± (21a)
ε±xy = 0, r ∈ ∂Ω (21b)
ε±yy = 0, r ∈ ∂Ω (21c)

π

p
ε±zy = sin

[
2π
b

(
u+

z − u−z
)]
, r ∈ ∂Ω (21d)
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The substitution of the core structure constant (19)
also results in a more compact notation for the glide plane
Lagrangian (10)

L0
∂Ω = −2µbp

π2

∫
∂Ω

dS sin2
[π
b

(
u+

z − u−z
)]
. (22)

Now we focus on solving the boundary value problem
defined by Eqns. (21) above. The singular Volterra dis-
placement field uv

i (r), which can be obtained from the
Burgers displacement formula [2], simultaneously satis-
fies the elastostatic equilibrium condition (21a) and the
two traction-free conditions (21b) and (21c), with the
exception of the points where the strain field is diver-
gent. We can hence solve the combined boundary value
problem (21) by convolving the Volterra field with a non-
singular distribution function. This distribution function
removes the divergence of the singular Volterra field, and
must be chosen such that the non-linear traction condi-
tion (21d) is met. The traction-free and elastostatic con-
ditions remain satisfied because taking a partial deriva-
tive or performing a convolution are linear operations,
both acting on the displacement field.

We find an exact solution for the strain field of a
straight mixed dislocation by convolving the Volterra dis-
placement field with a Cauchy-Lorentzian distribution

ui(x, y, z) =
∫ ∞
−∞

ds ρ(s− z)uv
i (x, y, s), (23)

where

ρ(s) = 1
πκ

(
κ2

s2 + κ2

)
(24)

is the Cauchy-Lorentzian distribution with width κ > 0,
where the latter depends on the dislocation character.
The above convolution approach exemplifies the link
between the Peierls-Nabarro and Lubarda-Markenscoff
variable core dislocation models [15, 32].

A full analytical solution describing the MSFK dis-
placement field of a dislocation is given in the Appendix.
The solution shows that the width of the core κ increases
at θ → 90◦ or 270◦ or, in other words, as the screw char-
acter of the dislocation becomes more dominant:

κ(θ) = b

8p
√

1 + tan2 θ

(
1

1− ν + tan2 θ

)
. (25)

The solution satisfies all the conditions of the boundary
value problem (21). For θ → 0◦ or 180◦ the solution
reduces to the known form, describing a straight edge
dislocation [16, 29, 33].

IV. CORE BROADENING DUE TO FINITE
INTERATOMIC SEPARATION EFFECTS AT

THE GLIDE PLANE

We now consider a perturbation approach, to correct
the above result for the finite separation between string

pairs lying adjacent to the glide plane. First, we rewrite
the glide plane Lagrangian (9) using the displacement
field symmetry relations u+

z −u−z = 2u+
z and u+

z,y = u−z,y,
see Appendix A. Furthermore, we take hx and hz compo-
nents as zeros, as their absolute values are significantly
smaller than hy. The resulting solution depends solely on
the elevation of atomic strings above or under the glide
plane h = |hy| = |h · ŷ|, namely

L∂Ω = −2µbp
π2

∫
∂Ω

dS sin2
[π
b

(
2u+

z + hu+
z,y

)]
. (26)

We see that the effect of the glide plane elevation h
softens the role of disregistry, leading to a solution with
a broader core. It is desirable to express this effect as
an approximate scaling law for an effective core struc-
ture constant ph ≤ p that we can apply to the analytical
solution found for the h→ 0 limit above. This is a min-
imization problem: we seek to find an effective structure
constant ph that most closely captures the core broad-
ening as a function of h. Assuming that the glide plane
Lagrangian provides a reliable measure of the core width,
we recast the problem in terms of a condition on the La-
grangian

L0
∂Ω(ph) = L∂Ω(p). (27)

In effect, we seek to find a scaled core structure con-
stant ph, for which the energy of the unperturbed solution
is equal to the energy of the perturbed system. We use
the analytical expression for the displacement field found
above in the limit h → 0 in both cases, which could be
considered as the first step in a self-consistent solution
scheme. Owing to the already approximate nature of the
approach taken so far, there is little reason to go beyond
this first-order approximate step.

First we evaluate the unperturbed Lagrangian L0
∂Ω(ph)

(22), using the expression for the displacement field in the
near vicinity of the glide plane (A5c):

L0
∂Ω(ph) = c

∫
∂Ω

dS sin2
(

2π
b
u+

z

)
= clx

∫ ∞
−∞

dz κ2
h

κ2
h + z2

= clxπκh,

(28)

where lx is the dislocation length in the x direction, and
κh is the dislocation core width (25), but with p replaced
with the yet unknown parameter ph. Prefactor c is in-
troduced for brevity, where c = −2µbp/π2. Similarly,
we evaluate the perturbed Lagrangian L∂Ω(p) defined in
Eq. (26), using the expression for the strain field in the
vicinity of the glide plane (A6b):

L∂Ω(p) = c

∫
∂Ω

dS sin2
[π
b

(
2u+

z + hu+
z,y

)]
≈ clxπκ+ clxπh

2
√

1 + tan2 θ

(
3− 2ν
2− 2ν + tan2 θ

)
,

(29)
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TABLE I. Structure constant p (dimensionless) and the dis-
location core width κ (in Å units) shown as functions of the
dislocation character. We give the values of the core width
without the height correction κ(θ), with the height correction
κh(θ), and with the approximate height correction κh′(θ), re-
spectively, using the structure constants from Eqs. (19), (30),
and (31). The dislocation core width diverges as θ → ±90◦.

angle θ (◦) p ph(θ) κ(θ) κh(θ) κh′(θ)
0 (pure edge) 0.306 0.138 1.54 3.42 3.42
15 0.306 0.139 1.57 3.46 3.48
30 0.306 0.140 1.66 3.61 3.68
45 0.306 0.144 1.88 3.99 4.16
60 0.306 0.148 2.44 5.04 5.41
75 0.306 0.152 4.40 8.89 9.77
90 (screw) 0.306 0.153 ∞ ∞ ∞

where we have performed a series expansion in h at 0
to first order to obtain an analytically solvable integral.
Equating expressions (28) and (29) enables solving for
the perturbed structure constant ph:

ph(θ) =
bp
(
1− ν sin2 θ

)
2hp

[
(3− 2ν)− sin2 θ

]
+ b(1− ν sin2 θ)

. (30)

In Table I we give values of the perturbed structure
constant ph and the corresponding core width κh for
a range of dislocation character angles θ. Material pa-
rameters are chosen appropriately for the a/2[111](101)
edge dislocation in bcc tungsten, where p =

√
3/(4
√

2),
h = a/

√
2, b =

√
3a/2, ν = 0.28, and a = 3.14 Å. We

find that the core width effectively doubles as a result of
the height correction. Notably, the angular dependence
of ph(θ) has a minor effect on the core width and may
therefore be neglected, leading to a simplified expression
for the perturbed structure constant:

ph(θ) ≈ ph(0) = bp

b+ 2hp(3− 2ν) . (31)

In conclusion, above we derived an approximate ana-
lytical expression describing the broadening of the dislo-
cation core due to the finite separation between atoms at
the glide plane. The effect of broadening is substantial
for a straight mixed dislocation, and must be taken into
account to describe displacement fields in better agree-
ment with atomistic simulations. Atomic displacement
fields derived from molecular dynamics simulations and
analytical solutions are compared below.

V. COMPARISON OF ANALYTICAL
SOLUTIONS AND ATOMISTIC SIMULATIONS

The continuum displacement fields derived from ana-
lytical solutions given above are compared to the data
derived directly from atomistic simulations performed
using the lammps [34] molecular dynamics program.
We simulate a mixed tungsten dislocation dipole of

a/2[111](101) type using the embedded-atom model po-
tential by Marinica et al. [35].

The simulation cell was initialized with a pristine bcc
lattice oriented along the basis set x = 2

3 [121], y = [101],
and z = [111] in the units of lattice parameter a. Periodic
boundary conditions were applied in all three directions,
and the simulation cell vectors were chosen as

cx = nxx + nkk

cy = nyy

cz = nzz.

(32)

The kink vector nkk causes the cell to acquire a tri-
clinic shape, thus forcing the dislocation tangent vectors
to be collinear with cx, while the Burgers vector remains
at b = a/2[111] and the glide plane remains parallel to
the xz-plane. The dislocations increasingly acquire the
screw character as nk increases. For nk = 0 this setup
reduces to an orthogonal cell, and for nk = 1 it reduces
to single-kink boundary conditions [21, 36].

To generate displacement fields suitable for compari-
son with analytical solutions given above, we initialized
a dipole of mixed a/2[111](101) dislocations with k = b.
We refer to Fig. 3 for a sketch of the geometry used in
atomistic simulations.

nxx

nzz

nkk

nyy

θ
b

FIG. 3. Triclinic simulation cell (dashed line) containing
a dipole of mixed dislocations inclined at a character angle
of θ, as seen looking along the −y direction. The coordinate
system is defined in Eq. (32). The Burgers vector is not drawn
to scale.

We chose the cell dimensions of (nx, ny, nz) =
(15, 34, 99). An additional half-plane of atoms was in-
troduced to enable the formation of a dislocation dipole,
leading to a simulation involving 405000 atoms in the
cell. The dislocation dipole was initialized by displacing
atoms according to the Volterra displacement field of a
mixed dislocation dipole. We used a relaxation proce-
dure consisting of three steps for the purpose of escaping
shallow energy minima. First, the atomic configuration
was relaxed statically. Subsequently, the system was an-
nealed at a temperature of 900 K for 5 ps, before the final
static relaxation. This setup was repeated over a broad
range of nk values, spanning an interval of dislocation
character angles θ from 0◦ to 85◦.

Atomic strains uz,z were extracted along atomic rows
collinear to b, for the atomic rows immediately above and
below a dislocation glide plane.

We found the atomic strains to be stacked in symmet-
ric (a) and asymmetric (b) configurations in alternating
order. An explanation for this effect is that atomic planes
alternate in height along the [121] direction, such that the
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FIG. 4. Dislocation core width plotted as a function of the
dislocation character angle, measured as the full width at half
maximum (FWHM) along the Burgers vector direction. The
molecular dynamics (MD) core widths are extracted from the
first atomic rows immediately above or below the glide plane,
which are under compression or tension, respectively.

apparent glide plane position in (a) is centered between
atomic rows under compression and tension, while in (b)
it is significantly closer to the atomic row under tension
[29].

Atomistic dislocation core widths are measured from
the full-width at half maximum (FWHM) of Lorentzian
distributions fitted to the atomistic strain field. Sim-
ilarly, continuum dislocation core widths are extracted
by fitting Lorentzian distributions to the analytical uz,z

strain field given by Eq. (A4) evaluated at an offset of h
in the y direction, consistent with the average height of
atomic rows above or below the glide plane. This process
is repeated for three types of continuum models, listed
below in the order of ascending accuracy:

1. Volterra, p→ 0

2. MSFK, without height correction, p =
√

3/(4
√

2)

3. MSFK, with height correction, ph from Eq. (30)

In Fig. 4 we compare the atomistic dislocation core
widths to predictions derived from the continuum model
over an interval of dislocation character angles θ. We
show the core widths of the atomically computed ten-
sile or compressive fields averaged over the two stacking
configurations, as well as an overall averaged value. Com-
parisons show that the Volterra model consistently un-
derestimates the dislocation core widths by about 50% on
average. This is expected, as the Volterra strain field di-
verges at the dislocation core. The MSFK model without
the height correction shows improved agreement, but the
predicted core widths are still underestimated on average
by about 30%. In contrast, the MSFK model, including
the height correction, yields the dislocation core widths
within 10% to 20% agreement to the average atomistic
core widths over the entire range of character angles.
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FIG. 5. Comparison between the strain fields derived from
molecular dynamics (MD) and predicted by the MSFK and
Volterra continuum models for the a/2[111](101) mixed dis-
location in tungsten at a few selected dislocation angles. The
strain of the atomic row under tension is plotted with nega-
tive sign. The atomistic structure (inset), colored according
to the potential energy of atoms and seen in the normal di-
rection to the glide plane, reveals the formation of kinks at
large dislocation character angles.

The interpretation of atomistic core widths involves
an element of subtlety. The strain field in the dislocation
core exhibits a strong degree of asymmetry between the
regions that are under compressive and tensile stresses.
It is partially a feature of atomic bonding; for a crys-
tal lattice under an equal amount of compressive or ten-
sile stress, the absolute tensile strain is greater than the
absolute compressive strain. A strongly peaked strain
field translates to a more compact dislocation core, con-
sequently one would expect the dislocation core under
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FIG. 6. MSFK prediction of the strain field assuming a
mixed dislocation with staircase line shape (dotted), as an ap-
proximation to the kinked line found in atomistic simulations.
Pictured here are the strain fields of two kinked lines centered
at differing points, see the main text. The MSFK prediction
exhibits a similar substructure to the atomistic strain field
at equivalent inclination, providing a clear evidence of kink
formation.

tension to be narrower. This is indeed the case for char-
acter angles of θ / 65◦, as is readily seen in Fig. 4. At
larger character angles inversion occurs, and the disloca-
tion core under compression becomes narrower. To ex-
plain this finding, we need to take a closer look at the
strain fields computed atomistically.

In Fig. 5 we show plots of the core strain fields de-
rived from atomistic simulations and continuum mod-
els for a few selected dislocation character angles. The
strain field derived from atomistic simulations at low an-
gles is in excellent agreement with the MSFK continuum
model. For the angles above θ ≈ 60◦ the effect of kinks
becomes more pronounced; an internal substructure of
multiple peaks appears as the separation between the
kinks increases, see the inset in Fig. 5. As the kinks
become well separated, most of the dislocation line lo-
cally acquires the pure screw character, with short edge
dislocation segments connecting straight screw disloca-
tion segments [37]. The dislocation line does not acquire
a mixed character uniformly, and hence the continuum
model description assuming a straight mixed dislocation
line becomes invalid.

Fig. 6 shows the continuum strain field of a disloca-
tion line where kinks have been introduced deliberately
in the form of a staircase, assuming the kink height of√

2/3a = 2.56 Å and kink separation of 27 Å to yield
the average dislocation character angle of θ = 84.6◦.
The approximate MSFK strain field was obtained from
a numerical convolution of the Volterra model strain
field with a Lorentzian kernel with an ad-hoc width
κh(θ = 60◦) = 5 Å. The strains labeled as kink.1 or
kink.2 are computed from dislocations centered at a kink
or at a screw-segment midpoint, respectively. The result-
ing strain fields show a characteristic substructure similar
to that of the atomistic strain fields, providing evidence
that the substructure can be readily explained by the
effect of formation of kinks.

We note that the strain fields computed using the ap-

proximate form for ph given by Eq. (31) are practically in-
distinguishable from the character-dependent height cor-
rection that uses ph from Eq. (30). We therefore recom-
mend using the approximate expression and take advan-
tage of its simplicity.

VI. CONCLUSION

We have derived a continuum model for the straight
dislocation of mixed character in a bcc lattice. We found
an exact analytical solution for the strain field of an ar-
bitrary mixed dislocation, which is non-singular and is
valid in the entire space including the core region, and
which satisfies both the elastostatic equilibrium condi-
tion and the Peierls-Nabarro traction condition. We em-
phasize that the continuum model is based on a simple
description of the periodic crystal lattice and is free from
adjustable parameters.

The shape and the width of the strain field in the core
region of a dislocation is in agreement with atomistic ref-
erence simulations performed for a mixed a/2[111](101)
dislocation in tungsten over a broad interval of disloca-
tion character angles from θ = 0◦ up to approximately
θ = 60◦. At larger character angles, atomistic simula-
tions predict the formation of well separated kinks, and
this invalidates the representation of a dislocation as a
straight linear object. Nevertheless, the average width
of the dislocation core predicted by analytical solution
remains consistent with the atomistic simulations, con-
firming the validity of the solution and its suitability for
a coarse-grained description of the dislocation core.

ACKNOWLEDGMENTS

This work has been carried out within the frame-
work of the EUROfusion Consortium and has received
funding from the Euratom research and training pro-
gramme 2014-2018 and 2019-2020 under Grant Agree-
ments No. 633053 and No. 755039. Also, it has been par-
tially funded by the RCUK Energy Programme (Grant
No. EP/P012450/1). The views and opinions expressed
herein do not necessarily reflect those of the European
Commission. Useful discussions with Andrew J. London
and Daniel R. Mason are gratefully acknowledged.

Appendix A: Analytical solution

Below we give an analytical solution to the displace-
ment field of a straight mixed dislocation, and explore
some limiting cases given in the main part of the paper.

We start by defining the following coordinate transfor-
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mations

m = tan θ

ym =
√

1 +m2y

zm = z −mx
(A1)

that provide the more compact notation required for the
presentation of the analytical formulae below. The dis-
placement field of a mixed straight dislocation with Burg-
ers vector b ‖ ẑ has the form

u±x (r)= − b

4π(1− ν)(1 +m2)

(
mymzm[z2

m + (ym ∓ κ)2]
(y2

m + z2
m + κ2)2 − 4y2

mκ
2

)
(A2)

u±y (r)= b

8π(1− ν)
√

1 +m2

(√
1 +m2 − 2

[
z2

m + (ym ∓ κ)2] [z2
m + κ(κ± ym)

]
(y2

m + z2
m + κ2)2 − 4y2

mκ
2

(A3)

− (1− 2ν) ln
[
z2

m + (ym ± κ)2
])

u±z (r)= ± b4 + b

4π(1− ν)(1 +m2)

(
ymzm[z2

m + (ym ∓ κ)2]
(y2

m + z2
m + κ2)2 − 4y2

mκ
2

)
− b

2π arctan
(

zm

ym ± κ

)
, (A4)

where u+
i is valid for y > 0, and u−i is valid for y < 0.

The displacement fields are defined in the limit where the
coordinates are close to the glide plane, namely

lim
y→0±

u±x (r) = 0 (A5a)

lim
y→0±

u±y (r) =
b
[√

1 +m2 − 2− (1− 2ν) ln
(
z2

m + κ2)]
8π(1− ν)

√
1 +m2

(A5b)

lim
y→0±

u±z (r) = ± b

4π

[
π − 2 arctan

(zm

κ

)]
. (A5c)

The strain fields in the vicinity of the glide plane are also
well-defined, for example the uz components of the strain

field are

lim
y→0±

u±z,x(r) = ± bmκ

2π (z2
m + κ2) (A6a)

lim
y→0±

u±z,y(r) =
bzm

[
2(1 +m2) + (1− ν)−1]

4π
√

1 +m2(z2
m + κ2)

(A6b)

lim
y→0±

u±z,z(r) = ∓ bκ

2π (z2
m + κ2) . (A6c)

Solution of the boundary value problem also involves the
uy,z strain component in the limit approaching the glide
plane:

lim
y→0±

u±y,z(r) =
bzm

[
(1− ν)−1 − 2

]
4π
√

1 +m2(z2
m + κ2)

. (A7)

Finally, the width of the dislocation core, as shown by
Eq. (25), is obtained by substituting the u±z component of
the displacement field (A5c) and the u±z,y and u±y,z strain
fields (A6b) and (A7) into the boundary value problem
(21d), subsequently solving them for κ(θ).
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male supérieure, Vol. 24 (1907) pp. 401–517.

[4] R. Peierls, “The size of a dislocation,” Proceedings of the
Physical Society 52, 34 (1940).

[5] F. R. N. Nabarro, “Dislocations in a simple cubic lattice,”
Proceedings of the Physical Society 59, 256 (1947).

[6] G. Schoeck, “The Peierls model: progress and limita-

tions,” Materials Science and Engineering: A 400, 7–17
(2005).

[7] Y. Zhang and A. H. W. Ngan, “Dislocation-density dy-
namics for modeling the cores and Peierls stress of curved
dislocations,” International Journal of Plasticity 104, 1–
22 (2018).

[8] V. V. Bulatov and E. Kaxiras, “Semidiscrete variational
peierls framework for dislocation core properties,” Phys-
ical Review Letters 78, 4221 (1997).

[9] H. Wei, Y. Xiang, and P. Ming, “A generalized Peierls-
Nabarro model for curved dislocations using discrete
Fourier transform,” Communications in computational



10

physics 4, 275–293 (2008).
[10] G. Liu, X. Cheng, J. Wang, K. Chen, and Y. Shen,

“Atomically informed nonlocal semi-discrete variational
Peierls-Nabarro model for planar core dislocations,” Sci-
entific Reports 7, 43785 (2017).

[11] B. A. Szajewski, A. Hunter, and I. J. Beyerlein, “The
core structure and recombination energy of a copper
screw dislocation: a Peierls study,” Philosophical Mag-
azine 97, 2143–2163 (2017).

[12] W. Cai, A. Arsenlis, C. R. Weinberger, and V. V. Bula-
tov, “A non-singular continuum theory of dislocations,”
Journal of the Mechanics and Physics of Solids 54, 561–
587 (2006).

[13] G. Po, M. Lazar, D. Seif, and N. Ghoniem, “Singularity-
free dislocation dynamics with strain gradient elasticity,”
Journal of the Mechanics and Physics of Solids 68, 161–
178 (2014).

[14] S. L. Dudarev, “Coherent motion of interstitial defects in
a crystalline material,” Philosophical Magazine 83, 3577–
3597 (2003).

[15] V. A. Lubarda and X. Markenscoff, “Variable core model
and the peierls stress for the mixed (screw-edge) disloca-
tion,” Applied physics letters 89, 151923 (2006).

[16] V. A. Lubarda and X. Markenscoff, “Configurational
force on a lattice dislocation and the Peierls stress,”
Archive of Applied Mechanics 77, 147–154 (2007).

[17] L. Ventelon, F. Willaime, E. Clouet, and D. Rodney,
“Ab initio investigation of the Peierls potential of screw
dislocations in bcc Fe and W,” Acta Materialia 61, 3973–
3985 (2013).

[18] L. Dezerald, L. Ventelon, E. Clouet, C. Denoual, D. Rod-
ney, and F. Willaime, “Ab initio modeling of the two-
dimensional energy landscape of screw dislocations in bcc
transition metals,” Physical Review B 89, 024104 (2014).

[19] L. Dezerald, D. Rodney, E. Clouet, L. Ventelon, and
F. Willaime, “Plastic anisotropy and dislocation trajec-
tory in bcc metals,” Nature Communications 7, 11695
(2016).

[20] A. H. W. Ngan, “A generalized Peierls-Nabarro model for
nonplanar screw dislocation cores,” Journal of the Me-
chanics and Physics of Solids 45, 903–921 (1997).

[21] E. Clouet, L. Ventelon, and F. Willaime, “Dislocation
core energies and core fields from first principles,” Phys-
ical review letters 102, 055502 (2009).

[22] E. Clouet, “Elastic energy of a straight dislocation and
contribution from core tractions,” Philosophical Maga-
zine 89, 1565–1584 (2009).

[23] E. Clouet, “Dislocation core field. I. modeling in
anisotropic linear elasticity theory,” Physical Review B
84, 224111 (2011).

[24] S. Chiesa, M. R. Gilbert, S. L. Dudarev, P. M. Der-
let, and H. Van Swygenhoven, “The non-degenerate core
structure of a 1/2 〈111〉 screw dislocation in bcc tran-
sition metals modelled using Finnis–Sinclair potentials:
The necessary and sufficient conditions,” Philosophical
Magazine 89, 3235–3243 (2009).

[25] M. R. Gilbert and S. L. Dudarev, “Ab initio multi-string
Frenkel–Kontorova model for a b = a/2[111] screw dis-
location in bcc iron,” Philosophical Magazine 90, 1035–
1061 (2010).

[26] M. R. Gilbert, BCC metals in extreme environments:
Modelling the structure and evolution of defects, Ph.D.
thesis, Oxford University, UK (2010).

[27] P. M. Derlet, D. Nguyen-Manh, and S. L. Dudarev,

“Multiscale modeling of crowdion and vacancy defects in
body-centered-cubic transition metals,” Physical Review
B 76, 054107 (2007).

[28] S. L. Dudarev, “The non-Arrhenius migration of intersti-
tial defects in bcc transition metals,” Comptes Rendus
Physique 9, 409–417 (2008).

[29] M. Boleininger, T. D. Swinburne, and S. L. Dudarev,
“Atomistic-to-continuum description of edge dislocation
core: Unification of the Peierls-Nabarro model with lin-
ear elasticity,” Phys. Rev. Materials 2, 083803 (2018).

[30] In a previous derivation [29] the summation was re-
stricted to only consider neighboring strings within the
integration domains Ω+ or Ω−. This distinction is not
necessary in the continuum limit as surface effects will
already be captured as tractions upon application of the
variational principle.

[31] G. Liu, X. Cheng, J. Wang, K. Chen, and Y. Shen, “Im-
provement of nonlocal Peierls-Nabarro models,” Compu-
tational Materials Science 131, 69–77 (2017).

[32] C. L. Hall and X. Markenscoff, “On approaches to mod-
elling lattice dislocations,” Philosophical Magazine Let-
ters (2011).

[33] M. Lazar, “Non-singular dislocation continuum theories:
strain gradient elasticity vs. Peierls–Nabarro model,”
Philosophical Magazine 97, 3246–3275 (2017).

[34] S. Plimpton, “Fast parallel algorithms for short-range
molecular dynamics,” Journal of computational physics
117, 1–19 (1995).

[35] M.-C. Marinica, L. Ventelon, M. R. Gilbert, L. Proville,
S. L. Dudarev, J. Marian, G. Bencteux, and F. Willaime,
“Interatomic potentials for modelling radiation defects
and dislocations in tungsten,” Journal of Physics: Con-
densed Matter 25, 395502 (2013).

[36] T. D. Swinburne, S. L. Dudarev, S. P. Fitzgerald, M. R.
Gilbert, and A. P. Sutton, “Theory and simulation of the
diffusion of kinks on dislocations in bcc metals,” Physical
Review B 87, 064108 (2013).

[37] K. Kang, V. V. Bulatov, and W. Cai, “Singular orienta-
tions and faceted motion of dislocations in body-centered
cubic crystals,” Proceedings of the National Academy of
Sciences 109, 15174–15178 (2012).

https://doi.org/ 10.1016/j.actamat.2013.03.012
https://doi.org/ 10.1016/j.actamat.2013.03.012
https://doi.org/ 10.1103/PhysRevB.89.024104
https://doi.org/10.1038/ncomms11695
https://doi.org/10.1038/ncomms11695
https://doi.org/ 10.1103/PhysRevMaterials.2.083803

