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Dear Editors,   
 
We are submitting our paper entitled ‘Towards V-based high-entropy alloys for nuclear 
fusion applications’ to Scripta Materialia for your consideration.   
 
In this work, we have designed and characterized a number of novel ternary V-Cr-Mn 
and quaternary V-Cr-Mn-Ti alloys. The aim of this work was to explore these 
compositions to determine suitability for applications in nuclear fusion, with a particular 
view for use in the blanket structure of a fusion reactor. We’ve used a variety of 
characterization techniques to elucidate the microstructures of the alloys.   
 
The following points state the key novelties associated with the work: 
 

 A suite of V-Cr-Mn and V-Cr-Mn-Ti alloys are produced, heat-treated and 
characterized in detail. To the author’s knowledge, these compositions have not 
been investigated previously.  Both systems are generally poorly characterized.    

 

 Our alloy design process is novel, in that we have used state-of-the-art predictions 
regarding elemental activation (from Gilbert et al., paper reference [2]) to inform our 
choice of elements with a view to build towards HEA compositions.   

 

 In both the as-cast and homogenised states, all the alloys comprised a single bcc 
matrix with small interstitial-containing precipitates. Achieving such stability in highly-
concentrated multicomponent bcc systems is relatively rare, and is promising from a 
fusion alloy development standpoint.    

 
This submission is original and is not being considered for publication elsewhere.  
 
Yours sincerely,  

 
Paul Barron 
PhD Student 
University of Manchester 
08/08/2019 
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Abstract

By mixing elements with favourable nuclear activation properties to create high-

entropy alloys, it may be possible to create a material that can withstand a nu-

clear fusion environment while minimising the radioactive waste produced. Such

a material could be used in the extreme thermal and irradiation conditions of

a fusion blanket. A suite of previously unexplored V-Cr-Mn and V-Cr-Mn-Ti

alloys have been fabricated then homogenised and the resultant microstructures

and phases were characterised. Results demonstrate that single-phase body cen-

tred cubic solid solution microstructures can be formed in highly-concentrated

alloys incorporating low-activation elements, which is promising for a fusion

alloy development standpoint.

Keywords: high-entropy alloys, refractory metals, transition metals

Nuclear fusion offers an alternative low-carbon energy source with poten-

tially abundant fuel. However, fusion reactors must minimise the amount of

harmful radioactive waste they produce in order to be considered a truly green

energy source. This criteria necessitates the use of low-activation alloys, made

from elements that will not remain radioactive for extended periods of time after

exposure to fusion neutrons.
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The structural material of a fusion reactor blanket also has to face a variety

of hostile conditions, including: extremes of neutron irradiation and temper-

ature, transient loading from plasma instabilities, and corrosion from coolant

systems[1]. These conditions necessitate the use of a material that is sufficiently

strong, with good irradiation and creep resistance. The blanket will also require

thousands of tons of material, precluding the use of extremely costly or scarce

elements as significant alloying additions, or alloys that cannot be processed

on large scales. Further restrictions are imposed by the aforementioned desire

to use low-activation elements. A selection of elements that could be used in

structural materials and the calculated time taken to reach low-level waste after

use in a fusion reactor blanket are given in Table 1 [2]. It is apparent that cer-

tain elements such as Ni or Zr which are commonly used for nuclear structural

applications would be unacceptable from a waste-management perspective.

Element
Time to safe

handling / yrs
Element

Time to safe

handling / yrs
Element

Time to safe

handling / yrs

C 41 V 12 Zn 920

N 5.6 × 104 Cr 14 Y 5.4

O 1.1 × 104 Mn 42 Zr 1.1 × 106

Mg 58 Fe 50 Nb 2.5 × 105

Al 87 Co 170 Mo 1.1 × 106

Si 10 Ni 4.6 × 105 Ta 13

Ti 6.3 Cu 1.2 × 103 W 14

Table 1: Calculated time taken to reach low-level waste after 14 years of pulsed operation in

the DEMO reactor blanket shield. Elements used in this study have been highlighted. Data

taken from [2]

Research efforts for fusion structural materials have been primarily focused

on reduced activation ferritic-martensitic (RAFM) steels and vanadium alloys[3,

4, 5]. However, RAFM steels have a relatively low maximum operating temper-

ature, limited by creep[6]. Their oxide dispersion strengthened counterparts of-

fer improved high temperature performance but large scale processing is still an

2
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issue[4]. V-based alloys containing other elements as minor (<10 at.%) additions

have been explored as an alternative to steels for fusion blanket applications[3].

However, high-entropy alloys (HEAs) containing multiple low-activation ele-

ments have received very little attention. A recent study by Ayyagari et al.[7]

examined the TaTiVZrX system, but here we avoid Zr owing to its activation

properties listed in Table 1. Investigation of more concentrated alloys cov-

ering unexplored compositional space may yield materials that are more pro-

cessable and have enhanced properties in comparison to the more conventional

alloys. Other HEAs have shown surprising toughness[8] and irradiation swelling

properties[9], so it is hoped that this work may form the basis for developing

fusion alloys with improved properties such as a larger operating temperature

window or easier processing.

Due to the favourable activation properties of their constituent elements,

alloys in the V-Cr-Mn ternary and V-Cr-Mn-Ti system were investigated. The

nominal compositions are shown in Table 2. V and Cr were chosen because

of their high melting points, which will allow for good creep performance at

elevated temperatures in comparison to Fe-based alloys[6]. V and Cr show

complete mutual solubility, forming a bcc phase at all compositions below the

solidus[10]. A single bcc phase is considered highly desirable for adequate re-

sistance to neutron irradiation swelling[11, 12, 13]. Additionally, Cr provides

improved oxidation resistance in the binary system above around 30 wt.%[10].

Such environmental resistance will be useful in limiting corrosion in service as

well as in processing.

Mn was chosen as an extra element in working towards a HEA composition

because the binary V-Mn and Cr-Mn diagrams show a good solubility of Mn in

both Cr and V[14]. The V-Cr-Mn ternary is not well characterized, but the one

ternary diagram available in the literature seems to agree that Mn should have

good solubility in an alloy containing V and Cr.[15] Although the power of the

entropic stabilisation effect in HEAs is disputed [16, 17], the addition of Mn to a

mixture of V and Cr will increase the configurational entropy of a solid solution

of the elements and, therefore, should increase its high-temperature stability. It

3
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was hoped that the stability of the solid solution would be increased sufficiently

to allow for the introduction of higher concentration of elements like Ti (see

below) with less propensity to form damaging intermetallics, such as Laves

phases (which appear in the Ti-Mn and Ti-Cr binary [14]) or secondary solid

solutions.

Finally, Ti was added to act as an impurity getter in a similar manner to

the behaviour found in V-Cr-Ti alloys[3, 18, 19] and interstitial free steels[20].

A reduction of interstitial solute concentration is desirable as they are known

to cause embrittlement in vanadium alloys[21]. However, high quantities of

both Cr and Ti are known to embrittle vanadium alloys[22, 23]. Furthermore,

observation of the Ti-Mn and Ti-Cr binary phase diagrams suggests that Ti has

low solubility in these two elements[14]. For these reasons, the amount of Ti

added to the alloys was limited to 8 at.%.

Nominal Measured (EPMA)

V Cr Mn Ti V Cr Mn Ti

60 20 20 - 63.04 ± 0.07 20.58 ± 0.03 16.39 ± 0.09 -

40 20 40 - 39.4 ± 0.24 21.60 ± 0.17 39.01 ± 0.08 -

40 40 20 - 41.08 ± 0.22 43.20 ± 0.35 15.73 ± 0.14 -

33.33 33.33 33.33 - 32.80 ± 0.28 35.53 ± 0.29 31.68 ± 0.04 -

33 33 33 1 42.03 ± 0.03 40.89 ± 0.05 15.69 ± 0.07 1.38 ± 0.01

32.67 32.67 32.67 2 35.82 ± 0.16 36.08 ± 0.15 25.10 ± 0.11 3.00 ± 0.42

32 32 32 4 34.53 ± 0.02 32.09 ± 0.02 27.92 ± 0.02 5.45 ± 0.05

30.67 30.67 30.67 8 35.84 ± 0.18 29.95 ± 0.12 25.52 ± 0.03 8.68 ± 0.32

Table 2: Nominal and measured alloy compositions. Values are in at.% with absolute standard

errors shown.

Eight alloys were fabricated as ingots weighing approximately 25 g using an

arc melting process in an argon atmosphere. The ingots were inverted and

remelted three times to ensure homogeneity. Sections of each ingot were cut off,

wrapped in tantalum foil, and then encapsulated in a quartz ampoule backfilled

with low pressure argon. These samples then underwent a homogenisation heat

4
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treatment at 1200 °C for 100 hours, before quenching in water.

Secondary electron microscopy (SEM) specimens were prepared using stan-

dard metallographic techniques. The final polish was performed with an 0.06µm

oxide polishing suspension. Back scattered electron (BSE) images were obtained

using a Zeiss Ultra55 microscope at 10 kV. Transmission electron microscopy

(TEM) foils were produced by electropolishing punched sections of thin foils

in a 5% perchloric acid-methanol solution with a temperature of -40 °C using

a Tenupol 5 twin jet electropolisher at a voltage of 29 V. A ThermoScientific

Talos TEM with an accelerating voltage of 200 kV was used to produce annular

dark field (ADF) images and energy dispersive X-ray (EDX) maps. Wavelength

dispersive spectroscopy (WDS) was performed using a JEOL JXA-8530F FEG

electron probe microanalyser (EPMA). Quantification was performed at 20 kV,

10 nA for Ti Kα, V Kα, Cr Kα and Mn Kβ standardised against pure met-

als. 100 composition measurements were randomly taken from an area 500µm

in radius for each sample. Overlap corrections were applied to the raw X-ray

intensities where required (Ti Kβ on V Kα, V Kβ on Cr Kα) and corrected iter-

atively using the PAP phi-rho-Z matrix correction routine using NIST FFAST

mass absorption coefficients. X-ray maps were conducted at 10 kV and 163 nA

(V-40Cr-20Mn, Fig. 2) and 46 nA (V-Cr-Mn-8%Ti, Fig. 3). Vickers hardness

measurements were taken with a load of 9.8 N and dwell time of 10 s using a

Matsuzawa MMT-X indenter. Nine hardness measurements were made spaced

0.5 mm apart in a three by three grid formation.

WDS analysis suggests that there is a difference between the intended alloy

composition and what is found in practice (see Table 2). In particular, the at.%

of Mn is lower than expected in all alloys. This is likely to be caused by the low

vapour pressure of Mn, leading to evaporation during the arc melting process.

BSE images (Fig. 1) of the alloys show a microstructure consisting of a light

grey matrix with darker precipitates. The precipitates found in the ternary

alloys (Fig. 1 (a) to (d)) are a mixture of larger, more rounded shapes which

appear along grain boundaries, and smaller long and thin precipitates that are

intragranular. The quaternary alloys have much finer precipitates (Fig. 1 (e) to

5
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(h)). The matrix appeared as a single phase in all alloys. This was confirmed to

be bcc (a = 2.90 - 3.04 Å) through X-ray (see supplementary information) and

TEM diffraction. These microstructures and lattice parameters are consistent

with observations of a bcc Ti-V-Cr-Mn alloy with differing composition, used

for hydrogen storage[24].

WDS was utilised to determine the composition of the matrix and precipitate

phases. The matrix appeared to be a homogeneous mixture of the constituent

metals in both the ternary (Fig. 2) and the quaternary alloys (Fig. 3). The

main difference between the two types of alloy was in the composition of the

precipitates. The ternary precipitates were depleted in Mn and Cr, and also con-

tained large amounts of oxygen. No segregation of other interstitial impurities

(namely carbon and nitrogen) was observed. However, the precipitates in the

Ti-containing alloys were extremely Ti rich relative to the matrix and were also

enriched in all three impurity elements studied. This suggests that the addition

of Ti to these alloys acts as a getter for these interstitial impurities, forming

Ti-[C,O,N] type precipitates similar to those found in V-4Cr-4Ti.[3, 18, 19]

TEM was used to check for smaller scale elemental segregation as shown

in Fig. 4. No segregation was found, indicating a homogeneous bcc phase

across all lengthscales. Diffraction patterns of the precipitates could not be

obtained owing to the electropolishing procedure preferentially removing the

matrix, leaving precipitates that were too thick for diffraction.

Hardness values were found to range from 348 to 456 HV in the homogenised

state (see supplementary information). Hardness decreased slightly after ho-

mogenisation for all alloys. The Ti containing alloys were all harder than

their equiatomic ternary equivalent, V-Cr-Mn, which may indicate the solute

strengthening caused by introducing Ti[22, 23] is the more dominant effect com-

pared to the softening from gettering interstitial impurities[21]. A high ductile-

to-brittle temperature and embrittlement by interstitial elements are foreseeable

issues with these alloys, as they are with most refractory-based alloys. Hence, in

order to assess their suitability for manufacture and service, larger-scale mechan-

ical property and processibility investigations are needed alongside long-term

6
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Figure 1: Representative BSE images of alloy (a)V-20Cr-20Mn (b)V-20Cr-40Mn (c)V-40Cr-

20Mn (d)V-Cr-Mn (e)V-Cr-Mn-1%Ti (f)V-Cr-Mn-2%Ti (g)V-Cr-Mn-4%Ti (h)V-Cr-Mn-

8%Ti

7
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Figure 2: WDS map of alloy V-40Cr-20Mn showing: (a)BSE image (b) secondary electron

image (c)V (d)Cr (e)Mn (f)C (g)N (h)O

8
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Figure 3: WDS map of alloy V-Cr-Mn-8%Ti showing: (a)BSE image (b)Ti (c)V (d)Cr (e)Mn

(f)C (g)N (h)O

9
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Figure 4: Alloy V-Cr-Mn: (a)ADF image (b)V map (c)Cr map (d)Mn map. Alloy V-Cr-

Mn-4%Ti precipitate: (e)ADF image (f) Ti map (g)V map (h)Cr map (i)Mn map.

ageing experiments.

To summarise, this study has found that a suite of alloys fabricated from low-

activation elements consists of a single bcc phase, with precipitates forming from

interstitial impurity elements. The results are promising for the development

of high-entropy alloys for use in fusion applications due to the observation of

only a single metallic matrix phase after homogenisation. Such microstructures

provide an excellent launchpad for the future development of specialist alloys

for fusion applications.

10
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