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Abstract

We perform a study of system-scale to gyro-radius scale electromagnetic modes in a pedestal-like
equilibrium using a gyrokinetic code ORB5, and compare to the results of a local gyrokinetic code,
GS2, and an MHD energy principle code, MISHKA. In the relevant large-system, short wavelength
regime, good agreement between the gyrokinetic codes is found. For global-scale modes, reasonable
agreement between MHD and the global gyrokinetic code is observed. There are various formulational
and implementational issues with using standard gyrokinetic codes in this limit, so even this level of
agreement is promising. In order to achieve this agreement it is important to keep the effect of magnetic
field strength fluctuations (which are not directly included in ORB5) in this case, where the gradient of
β is large. The pressure stability threshold does not change substantially between the MHD and global
gyrokinetic simulations. It is also noted that the main stabilising mechanism at short wavelength is the
diamagnetic drift, for which a two-fluid (rather than gyrokinetic) formulation would be sufficient.

1 Introduction

When sufficiently heating power is deposited into a tokamak plasma, a strong pedestal forms, and the
plasma enters an H-mode [1]. This edge transport barrier is responsible for significantly improving overall
confinement time, and is considered essential for fusion reactor ignition. Various attempts have been made to
understand the properties of the H-mode pedestal [2–4]. For example, the EPED model [5–7] is a predictive
model for the pedestal region and relies on two constraints on pedestal height and width: the peeling
ballooning mode, which is well understood [8, 9], and KBMs [10], which are less well understood. The
narrow width and large gradients of the pedestal means that local gyrokinetic modelling is not well-justified
for these KBMs, and we have been exploring the use of global gyrokinetic modelling for this task [11,12].

There are arguments that KBMs cannot be responsible for significant transport in the pedestal [13]: but
in this case, to explain why KBMs do not play a role, we must still be able to correctly model them. More
broadly, there are a range of electromagnetic instabilities that appear in the pedestal, and addressing KBMs,
which are reasonably simple ideal-MHD related instabilities, provides a pathway to a more comprehensive
understanding,

This work represents an attempt to explore some of the practical and theoretical questions that arise
when using global gyrokinetic codes to simulate electromagnetic instablities in the pedestal: a simplified
geometry allows us to focus on basic questions of instability drive and in particular, to avoid the question of
how to deal with the X-point and the boundary condition at the plasma wall.

Previous studies with ORB5 [14] and other global electromagnetic codes (for example, global GENE [15])
have already shown good agreement with MHD for global modes in the appropriate limits (as well as
comparisons of these modes between two gyrokinetic codes in the core region [16]). The aim of this paper is
to explore some finite-β effects that arise in equilibria with a strong pressure gradient, and to resolve both
long and short-wavelength effects (both kinetic and global effects) in a relatively simple setting.

The use of standard global gyrokinetic formalisms for simulating large scale electromagnetic modes is
problematic because the derivations of these models [17] order the perpendicular wavelength to be much
smaller than the scale-length of magnetic equilibrium variation. In general, the major radius, R, is used
as a proxy for the scale-length of variation of the system magnetic field, but actually derivatives of the
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magnetic field, like ∇B can vary by order 1 across the pedestal. That means although the formal ordering
parameter ρ/R is small (where ρ is the gyroradius), a detailed analysis may find that certain terms ordered
small are not negligible. We certainly must keep the variation of the magnetic field strength on the minor-
radius scale length, which is key to the instability drive. So for modelling low-mode number instabilities, with
wavelength comparable to the minor radius, global gyrokinetics is not well-justified. Drift-kinetic formalisms,
can, however, be motivated for these conditions, and because the gyrokinetic model reduces to this formalism
in certain limits, we can proceed by interpreting long-wavelength results in the framework of drift-kinetics.

There are a range of more practical problems that can be answered with global gyrokinetic models as
implemented. We are using the ORB5 code [18,19] which is able to simulate the plasma from the magnetic
axis out to the last closed flux surface, and includes most of the relevant physics. A number of approximations,
however, are made, which may not be sufficiently accurate for large-scale MHD motion. For example, the
perpendicular derivative in the Poisson and Ampére’s equations are replaced by a derivative in the poloidal
plane. It is also conventional to run with an unshifted Maxwellian plasma distribution, which means that
the parallel current is not taken into account (an extension was under development at the time of this work
to allow shifted Maxwellians [20]). In general, large-scale modes are also difficult for numerical reasons, in
particular due to the cancellation problem [21,22]. Although ORB5 includes collisional physics, gyrokinetic
simulations will be collisionless in this paper.

Many gyrokinetic codes, especially global gyrokinetic codes such as ORB5 [18], allow only variation
of the field line direction, and ignore the perturbation to the magnetic field strength, which then results
in an artificial stabilising effect on ideal MHD instabilities, a stabilising effect from having a perturbed
magnetic curvature [23] (the global version of GENE has recently implemented variations to the magnetic
field strength [24]). The perturbed magnetic field direction is usually represented using the magnetic vector
potential parallel to the field line, A‖, and the resulting perturbed magnetic field is then largely perpendicular
to the unperturbed field, for short-wavelength perturbations. This simplifies the gyrokinetic equation and
allows gyrocentre motion to be expressed in terms of an effective potential [25–27]. However, ignoring the
B|| fluctuation leads to an underestimate of the KBM drive for β > 0 tokamak plasmas, and plasmas with
strong parallel currents. The relevant quantity controlling the strength of finite-β terms is the gradient of
β, which is often strong in the pedestal (due to the steep pressure profile) even when the local β is of order
1%. Parallel currents lead to a kink-mode drive, that may be directly quantified in MHD using the energy
principle.

The remainder of this paper begins (Sec. 2) by noting the relationship between gyrokinetics and drift-
kinetics, to explain why it is appropriate to simulate large-scale modes using a gyrokinetic code. Sec. 3
then discusses the compressional effects on the drive terms for KBMs, (reprising the account of Ref. [28])
and an argument is then provided for how to account for this effect in the ORB5 code (this method could
be adapted for other gyrokinetic codes that use the A‖ formalism [23]). Then a simplified equilibrium is
described(Sec. 4), allowing a practical study of the drive terms of KBMs. Simulations in ORB5, of this
simplified equilibrium, are then compared (Sec. 8) to GS2 [29], a local gyrokinetic code, and MISHKA [30]
(Sec. 7), an MHD energy principle code. The theory of Ref. [28], and in particular, simple diamagnetic drift
stabilisation, is shown to account for the short-wavelength stabilisation of the KBM seen in GS2 and ORB5
simulations.

2 Gyrokinetics versus drift-kinetics

In drift- and gyro-kinetic theory, the overall Lagrangian may be decomposed into an expression for the field
Lagrangian, which is the same for both theories (and just magnetic energy density where quasineutrality is
assumed, with the polarisation density for electrons being neglected), and a per-particle energy Lp. The long
wavelength drift-kinetic particle Lagrangian up to first order (keeping strong flow terms) may be written

Lp = (mv||b + qA).
dṘ

dt
+ µ

dθ

dt
−
(m

2
v2
|| + µB + qφ− m

B2
(∇φ)2

)
(1)

[31–33]. This first order expressions are sufficient to find the Euler-Lagrange equations for Ṙ and v̇|| to
first order [34]. This gives the currents in the plasma up to the order of the diamagnetic drifts, sufficient
to resolve MHD-ordered currents and plasma motion. Indeed two-fluid and MHD theory may be derived
directly from these equations, on taking moments and enforcing the highly-collisional limit.

For the sake of comparison with the ORB5 gyrokinetic theory, we take the vector potential A = A0+bA||,
with the perturbed fields A|| and φ taken one order smaller than A (With this assumption, it is still possible
to derive the reduced MHD equation for the vorticity [35,36]). We then have

Lp = (mv||b + qA0 + bA||).
dṘ

dt
+ µ

dθ

dt
−
(m

2
v2
|| + µB + qφ− m

B2
(∇φ)2

)
, (2)
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where b and B are found from A0, since B is not modified at first order by the introduction of this
perturbed field and the first order modification of b only modifies the drifts at second order. At this point
the gyrokinetic theory used in ORB5 (in the linear regime) is only different to this drift-kinetic Lagrangian
through the gyroaverages on the perturbed fields A|| and φ (also p|| is used as a dynamical variable rather
than v||). In the long-wavelength ordering gyroaveraging leads to a modification to the perturbed particle
motion two orders lower than that due to the perturbed motion itself, and to a modification to the current
at least one order lower than the perturbed currents (since some perpendicular currents nearly cancel).

As a result, running ORB5 with gyroaveraging suppressed, we can interpret the results as those of a
drift-kinetic code; despite the fact the code was designed to implement a gyrokinetic theory not fully valid
in the limit of system-scale motion, the code should correctly simulate large scale linear mode properties,
in the region where this drift-kinetic theory is valid, as long as the results are interpreted in a drift-kinetic
framework. In particular, growthrates and field properties are unmodified.

3 Gyrokinetic ballooning theory

In Ref. [28], a general derivation of (local) gyrokinetic ballooning theory for modes with large toroidal mode
number, N , is provided in certain limits (the derivation is self-contained except for the derivation of the
linear gyrokinetic equation, which is given in Ref. [37]). As explored in Ref. [38], an effective strong pressure
gradient limit is taken, and drift resonances do not play a role. This means that the kinetic effects can
be written in a simpler form: adiabatic response for the electrons and gyrofluid response for the passing
ions. There is a slightly more complicated correction involving trapped electrons, but this is generally small.
Therefore good agreement is expected between numerical gyrokinetic analysis and this simple analytic theory
in the large ρ∗ limit for high N modes. For low N modes, the global profile effects cannot be ignored, and
a more complete theory is needed.

Due to the strong pressure gradients, the theory regime of interest in this paper (at least at short
wavelength, where the diamagnetic term is large) is when the ion transit frequency is lower than the mode
frequency, but for simplicity the low frequency theory, where the converse is true, is described here (the
relevant outcomes are not modified by this substitution).

For low frequency modes, with frequencies lower than the electron and ion transit frequencies, equation
3.24 from Ref. [28] (ignoring trapped particles, and at wavelengths longer than the gyroscale) is derived by
placing solutions to the linearised gyrokinetic equation (in an extra step at the end of each iterative step in
equation 2.18 from Ref. [28]) in the quasi-neutrality equation (equation 2.31 from Ref. [28]):

L2
c

JB2

∂

∂χ

(
b

J

∂

∂χ
Φ

)
+

(
ω

ωA

)2 [
2ω∗pωk
ω2

Φ + (k2
⊥ρ

2/2)
(

1− ω∗p
ω

)
Φ

]
= 0, (3)

where ω∗p = NT0

e
d
dψ ln(n0T0) is the diamagnetic frequency, Lc is the connection length, ω2

A = v2
A/L

2
c is the

Alfvén frequency squared (vA is the Alfvén velocity), k⊥ is the perpendicular wave number and ψ is the
poloidal flux. The MHD limit corresponds to setting the final term to zero, with the first term corresponding
to field line bending stabilisation, and the curvature is the first term in the straight brackets. (Since we are
in SI units, factors of c that appear in ref [28] are absent). The only difference between this formula and the
MHD result is the replacement of ω2 by ω(ω − ω∗p). Therefore it should be possible to calculate the local
and large-N global results, where global effects are negligible, using this analytical formula, which includes
the diamagnetic drift frequency. For the cases of interest, the assumption that the wavelength is longer than
the ion gyroradius may be justified post-hoc: the diamagnetic drift stabilisation is sufficiently strong that
unstable modes have kρ� 1.

The equivalent equation for the A‖ formalism in ORB5 can be derived by setting δB‖ = 0. This then
results in the effective drive term 2ωk being replaced by ωk + ωB (such that the first term in the square
brackets in Eqn. 3 can be written [ω∗p(ωk + ωB)/ω2]Φ , where ωk is the frequency related to the curvature
drift and ωB is the frequency related to the ∇B drift. In order to correct the growth rate in ORB5, we will
replace the grad-B drift in the code with the curvature drift; this is somewhat ad-hoc, and only justified
where drift-resonances and gyroaveraging do not play a key role. A more in depth derivation of this method
is provided in Ref. [23].

Note that MHD is a collisional theory; including sufficiently strong collisions, the gyrokinetic theory
reduces to standard fluid theory at long wavelengths. In the specific collisionless limit under discussion, the
only additional kinetic effect is the effect of the trapped particles, although this is relatively small [28].

3



4 Equilibrium

The base case is a relatively simple equilibrium designed to exhibit similar pressure-driven instabilities to a
plasma pedestal, with a moderate aspect ratio, R/a = 10/3. To simplify the numerics and interpretation, an
equilibrium with a circular outermost flux surface was chosen. The pressure profile is almost flat except for
a sharp step at mid-radius to simulate a pedestal-like region. The pressure-gradient in this region is strong
enough to drive an MHD instability. Unlike in an H-mode tokamak, where the pedestal is very close to the
outer last closed flux surface, this provides a substantial buffer region between the large pressure gradient
region and the boundary. For gyrokinetic simulations, we specified that Te = Ti and that the density was
constant. The pressure profile is then determined by the temperature profile, shown in Fig. 1 (we will
use s = [ψ/ψ0]1/2, where ψ is the poloidal flux, as a radial parameter) for the base case equilibrium. The
equilibrium parameters for the base case appear in Table 1. The numerical equilibrium is then determined
using the Grad-Shafranov [39] solver, CHEASE. The ion species is Deuterium.

We adopt the ORB5 conventions for describing the β and ρ∗ values of these equilibria, which we detail
to illustrate some potential pitfalls. The normalised pressure β is defined using β = 〈n〉T (s0)/(B2

0/µ0)
(note that this paper uses an SI electromagnetic formulation but some other ORB5 papers are in Gaussian
formulation), where B0 is the magnetic field at the axis, 〈n〉 denotes the volume-averaged electron density,
and T is the electron temperature in energy units. s0 is the radial position used for normalisation, for
which we choose s0 = 0.5. Note that this is not the same definition used in MHD, where all plasma species
contribute to the pressure, and a factor of 1/2 appears in the denominator, and a variety of volume averages
may appear. ORB5 defines ρ∗ = cs/a = (T (s0)mi)

1/2/qBa (minor radius a is defined as half the difference
between the major radius on the outboard and inboard midplane, which in this case is just the radius of the
circle defining the simulation boundary).

There are some practical issues to be overcome to allow a simple comparison of the gyrokinetic code with
MHD. For example, CHEASE generates an equilibrium with zero pressure at the outer boundary, which
would be problematic in a gyrokinetic code; a spatially uniform pressure is added to the profile after the
CHEASE run.

Figure 1: Temperature profile (Ti=Te) versus radial parameter s = (ψ/ψ0)1/2 for β = 0.0135.
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Parameter SI Code units
q at axis 1.05 1.05

Minor radius 0.3m 70ρi
Major radius 1m 233ρi
B at axis 0.956T B0

Te at axis 1147eV 1.368T0

Te pedestal height 757eV 0.947T0

ne 7.37× 1021 m−3 n0

qi e e
mi mD mD

Table 1: Profile parameters for the benchmark base case described in this chapter. mD is the mass of a
Deuterium ion and e is the absolute value of the electron charge. The values are also given in ORB5 code
units. The temperature pedestal height is defined as the difference between the core temperature and the
edge temperature.

Cylindrical stability criteria suggest that zero global magnetic shear, sm = (r/q)(dq/dr), would be
expected to be the most unstable [40], but the actual toroidal MHD equilibrium with the pressure profile
given and q ∼ 1 is stable. This appears to be due to the strong Shafranov shift, which leads to a large local
shear at the outboard mid-plane, where the drive is strongest.

To ensure a strong instability, an equilibrium with small local magnetic shear in the unstable outboard
region was created. Near the outboard mid-plane, radially displaced field lines are aligned with the unper-
turbed lines, so flux-tubes of high-pressure plasma can slip between the existing field lines without needing
to bend. We quantify the alignment of the field lines by considering the phase of a field-aligned mode, which
may be written as P = N(ζ − qχ) + K, where χ is the poloidal angle-like coordinate and ζ is the toroidal
angle. Here K = 0 is for a mode with zero radial wavenumber at the outboard midplane. We attempt to
create an equilibrium where lines of constant phase, in the poloidal plane, of field-aligned modes at some fixed
toroidal mode number N are nearly perpendicular to the flux surfaces for a range of χ near the outboard
midplane.

An initial parallel current profile is chosen such that q roughly of order 1: this is much smaller that typical
pedestal-top q values, but, for this cylindrical, moderate aspect-ratio configuration, results in a field line pitch
(ratio of poloidal to toroidal magnetic field strength) in the pedestal region comparable to typical tokamak
configurations. The current profile in the equilibrium is modified such that ∇[q(R,Z)χ(R,Z)].∇s = 0 in
the outboard quarter (χ = −π/4 to χ = π/4), which results in straightening of lines of constant qχ on the
outboard side as can be seen in Fig. 2. This involves running the CHEASE equilibrium code with a con-
stant plasma current density to find an initial guess for the equilibrium. Based on the approximate relation
between the q and toroidal current I, an updated current profile is chosen that would result in straight lines
of constant qχ at χ = π/4, if the equilibrium shape was fixed. The CHEASE equilibrium code could then be
run again with the corrected current profile (but other parameters fixed). The resulting current profile has
a sharp peak roughly proportional to the pressure gradient. We tried iterating this procedure again, but it
lead to CHEASE not finding an equilibrium solution.
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Figure 2: Lines (in black) of constant qχ for (a) an equilibrium with zero global shear and (b) an equilibrium
with low local shear on the outboard side (with ∇[qχ].∇s ∼ 0). Blue traces are flux surfaces at s = 0.5 and
1.

Figure 3: (a) Safety factor before and after the procedure to minimise the local shear. (b) The toroidal
current density on the outboard midplane before and after the procedure to minimise the local shear.

Although constant qχ lines are nearly straight on the outboard side, lines of constant χ are strongly bent.
It is the combination of q and the shape of χ(R,Z) that allows MHD modes, which are elongated along the
field line but have little bending energy (which would otherwise stabilise the mode), to grow.

This procedure is not of course necessary for generating an equilibrium with a strong instability; we could
simply have imposed an appropriate current profile without explanation. However, we hope the discussion
illuminates aspects of pedestal physics. In particular, to explain the dependence of pedestal stability on
the current profile; the current profiles have a large bootstrap component and are difficult to predict and
measure.

The global gyrokinetic formalism is expected to agree with MHD and local gyrokinetics for small ρ∗ in
the appropriate, and opposite, limits (low-N for MHD and high-N for local gyrokinetics). We performed a
ρ∗ scan to examine system-size effects, by rescaling the base-case parameters. To permit this, B was scaled
proportional to 1/ρ∗ and density was scaled proportional to 1/ρ∗2, but other parameters were kept fixed

(including R). This means that both β and vA/R = (T/m)
1/2

/Rβ1/2 are kept fixed, so MHD instability
growth rates (for fixed toroidal mode number) are constant in units of seconds. Note that many of the runs
were done with small ρ∗ = 1/800 rather than the base case value 1/70.

For β scans, the base-case pressure profile is scaled by a constant proportional to β. The preliminary
current profile used was kept fixed during the scan, but the local-shear reduction technique was used for
each value of β to define the final equilibrium current profile.
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5 Numerical Parameters

Simulations were undertaken with a time step of Ωci, which was sufficiently small to avoid numerical in-
stability, and also found to be sufficient for convergence. The field grid sizes chosen for the three spatial
coordinates were Ns = 256, Nχ = 256 and Nφ = 256, for N = 20. These grid sizes were chosen after under-
going convergence tests. As toroidal mode numbers were increased, the number of grid points in the χ and
φ directions also had to be increased, such that the value was more than 4 times the toroidal/poloidal mode
number (Since at least four points per wavelength are required to describe a wave [41]). Simulations were
performed for each toroidal mode number, and at each flux surface a range of poloidal mode numbers with
|m| − nq ≤ 10 were resolved. The number of numerical markers was kept fixed at 8× 107, after performing
convergence tests.

6 Drive Strength

Firstly, to verify that the basic interchange method has the right strength in the gyrokinetic formulation,
electron-ion simulations were run with the standard drift terms active and with a ‘corrected’ drift term
for which the ∇B drift was replaced by the curvature drift to ensure that the MHD drive strength was
recovered. This increased drive strength would be provided by δB‖ in a self-consistent simulation. This was
accomplished by doubling the pressure gradient in the ORB5 equilibrium input file. The simulation results
were then compared to a similar simulation performed in MISHKA, a linear MHD stability code.

ORB5 simulations run without the modified drive term showed no mode present, even though a strong
MHD instability was verified using MISHKA. With the modified drive terms, however, a mode can be seen
growing at a rate comparable to the MHD growth rate (these will be compared quantitatively later). The
electrostatic potential of the observed mode is shown in Fig. 4. The mode resolved in ORB5 is centred
on the outboard midplane at the region of greatest pressure gradient (pedestal-like region) as expected for
kinetic ballooning modes and is similar to the mode observed in MISHKA.

Figure 4: 2D poloidal cross-section of the electrostatic potential versus R and Z for (a) ORB5 and
(b)MISHKA where N = 30 and ρ∗ = 1

800 . The grey lines are the same flux surfaces in both plots. The ORB5
result is at late time, and has converged to an eigenmode. Maximum absolute amplitudes are normalised to
1 for these eigenmodes.

Regions of strong electrostatic potential are concentrated in the pedestal-like region of the plasma (Fig.
5), centred at the point of greatest pressure gradient. As N is decreased, the mode widens until it extends
beyond the region of strong pressure gradient (e.g the N = 10 curve). For MHD modes, there is usually
an increase in radial wavelength associated with an increase in poloidal wavelength; WKB analysis suggests
that mode extent should scale like a fractional power of the poloidal wavelength for confined modes [42,43].
There are some minor differences between the mode shapes between ORB5 and MISHKA that we don’t
analyse in detail here.

We have that the parallel electric field E‖ = −~h ·∇φ+∂A‖/∂t, and this is exactly zero in ideal-MHD. For
gyrokinetics, a small non-zero parallel electric field is expected to develop; at long wavelength, this maintains
electron pressure balance along the field line. The MHD-like nature of the mode resolved in the gyrokinetic
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a) b)

Figure 5: Maximum electrostatic potential φ on the flux surface versus radial parameter s for three different
values of N in a) MISHKA and b) ORB5 with ρ∗ = 1/800. (The peak value is normalised to one)

simulation was verified by checking that E‖ is small in magnitude compared to the inductive field
∂A‖
∂t , and

this was indeed the case, especially at long-wavelength as seen in Fig 6.

Figure 6: E‖ and
∂A‖
∂t versus radial parameter s for the eigenmode resolved in ORB5 with N = 30, ρ∗ = 1

800
along the outboard midplane.

7 Comparison with MISHKA

Note that all simulations in ORB5 described from this point include the modified drive term. Fig. 7 shows
the growth rates of kinetic ballooning modes for the benchmark case in both MISHKA and ORB5, with three
different values of ρ∗, 1

800 , 1
400 and 1

200 . The three ORB5 curves appear to match each other closely for low
N and so it can be concluded that convergence had been achieved; therefore, any remaining difference from
the MISHKA curve at low N is not due to finite system-size effects. The ORB5 growth rate curves have
similar magnitudes and qualitative behaviour to the MHD growth rates for low N , but a somewhat larger
critical N value than MHD. At larger N , the peak growthrate increases towards the MHD growth rate as
ρ∗ decreases (and the N value where this peak occurs increases), but is still somewhat below the infinite-N
balloning growthrate resolved in the MHD simulation. So overall the gyrokinetic model is slightly more
stable than MHD; possible reasons for the differences between the MHD growth rates and ORB5 growth
rates are discussed in the conclusions.
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The low-N drop off in growth rate for KBMs is due to global effects associated with the finite width of
the pedestal, absent in local gyrokinetic simulations. Fig. 4 shows that the radial mode extents of low-N
modes are comparable to the width of the region of large pressure gradient, and this is consistent with a
drop in mode growthrate, as the mode is then not fully localised at the radial position with maximum local
growth rate. For higher-N , the global gyrokinetic growth rate decreases due to the diamagnetic drift [28],
an effect which is captured by local gyrokinetics, but not ideal-MHD (the infinite-N ideal-MHD ballooning
equation may be found by setting ω∗p = 0 in equation 3, and the growthrate then becomes independent of
N).

Figure 7: Growth rate vs N for ρ∗ = 1
800 , 1

400 , 1
200 and the MISHKA scan for the same equilibrium.
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Figure 8: Growth rate vs β for N = 30, ρ∗ = 1
800 in MISHKA (blue curve, crosses) and in ORB5, for both

the gyrokinetic model (red curve, circles) and the drift kinetic model (green curve, squares).

A scan over β was then performed (Fig. 8) for N = 30, and ρ∗ = 1/800. This β scan was achieved
by scaling the height of the pressure pedestal, while keeping the edge temperature fixed. For both global
gyrokinetic and MHD simulations, there is a critical-β, below which ballooning modes do not grow. The
critical-β is the same for the ORB5 simulations and the MISHKA simulations. The drift-kinetic scan,
performed by neglecting gyroaveraging, has a higher critical-β than either MHD or global gyrokinetics: the
very good agreement in critical β between gyrokinetics and MHD is perhaps fortuitous, since it is only in
the limit where gyroaveraging has a negligible impact that agreement is expected. Note that we are looking
here at relatively large N where (WKB-) ballooning theory would be expected to be valid. We have not
examined the ρ∗ dependence of the critical β value.

8 Local Comparison

One effect that is missing from the basic MHD formalism compared to gyrokinetic formalisms is diamagnetic
drift stabilisation. The frequency associated with the diamagnetic frequency (the velocity divided by the
wavenumber) is proportional to N , which results in an effect that causes the growth rate to reduce as N
increases (the diamagnetic drift is opposite to the ∇B and curvature drifts that drive the instability). A
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formulation of the diamagnetic drift frequency is given in Section 3, as

ω∗p =
NT0

e

d

dψ
log(n0T0). (4)

The diamagnetic drift frequency is −N ×1.0895×105s−1 for the base equilibrium, at the point of largest
temperature gradient. Note that the values are negative, as the diamagnetic drift is in the opposite direction
to the grad-B and curvature drifts. The diamagnetic frequency is proportional to the logarithmic pressure
gradient.

Figure 9: Growth rate vs effective toroidal mode number Neff (Neff = N (ρ∗/ρ∗0)) for several different values
of ρ∗ in ORB5, the theory described in Ref. [28] and the GS2 simulations.

We plot the analytical prediction for the growthrate (the Tang curve in Fig. 9) based on the relationship
ω2

MHD = ω(ω + ω∗p), where ωMHD is the infinite-MHD ballooning growth rate. Fig. 9 shows that the GS2
and ORB5 results are a good match to this simple theory (For ORB5 this is the case for the higher values
of N , where global effects are small). The relevant perpendicular length scale for the local code (and for
micro-physics effects like diamagnetic drift stabilisation) is the ion gyroradius, so the local and global results
should be compared at the same wavenumber in inverse gyroradius units. A simple way to do this (avoiding
questions of where and how gyroradius or wavenumber are normalised), is to use an effective Neff = Nρ∗/ρ∗ref,
which is proportional to k⊥ρi: this is used as an x-axis in Fig. 9. For large N , short wavelength, and small
ρ∗ the ORB5 results also quite closely match the GS2 results as expected. Again, the decrease in growth
rates for low-Neff for the ORB5 simulations is due to the global effects.

9 Conclusions

We have performed a comparison of MHD stability with local and global gyrokinetic codes, and a simplified
diamagnetic-drift stabilisation estimate, for a simple equilibrium with a narrow pressure-step.

To recover correct growth rates in ORB5, it is necessary to include the effects of B|| fluctuations, by
setting the grad-B drift equal to the curvature drift in the code. This approach allows KBMs (at least in
certain regimes) to be simulated correctly in codes using an A‖ formalism. The need to include effects related
to B|| fluctuations for KBM modelling has been previously noted elsewhere [44–46].

Secondly, the small parallel electric field, and the similarity of growthrates and eigenfunctions between
ORB5 results and the ideal MHD theory in the appropriate regime indicates that the modes growing in the
ORB5 simulations may be regarded as kinetic ballooning modes. The MHD equilibrium defined is sufficiently
pedestal-like to serve as a good proxy for a true pedestal (for the purposes of theory and numerical study)
while getting around the problems with using a real pedestal equilibrium, such as the boundary effect.

In the local gyrokinetic limit (short wavelength and small ρ∗), the ORB5 results match the GS2 growth
rates as expected. As can be seen from Fig. 9, the growth rate at high toroidal mode number is well
approximated by using the theory provided in Ref. [28], which involves applying a diamagnetic drift correction
to the MHD growth rate. On this basis, other kinetic effects appear to be not important.

In the MHD limit (long wavelength), there is a significant difference between MISHKA and ORB5 growth
rates. There are several reasons why this might be so (beyond simple methodological errors):

• These ORB5 simulations use an unshifted local Maxwellian as the equilibrium distribution function.
This means that the background parallel current in the plasma is not consistently included and hence
forces arising from J0‖ × δB⊥ are not accurately calculated (i.e. kink drive is absent).
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• The long wavelength limit of the gyrokinetic equation could be fundamentally not appropriate for
modelling MHD motion.

• The B‖ effects are included in a way that may not be valid at long wavelength.

• The effects of trapped particles, which are absent in the collisional limit of MHD, may play an important
role under these conditions (and more generally collisional effects may be important).

• The derivation in the short-wavelength used to show that MHD and gyrokinetics should agree in certain
parameter regimes does not apply for long-wavelength modes.

• MISHKA uses an approximation for the plasma inertia (although this does not effect the critical-β).

• A seemingly innocuous approximation used in ORB5, such as approximation of the perpendicular
wavenumber as the poloidal wavenumber, or slight inconsistencies in the equilibrium treatment, actually
has a significant effect.
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