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1 Introduction

Fusion plasmas are characterized by the presence of high energy particles pro-
duced as a result of the fusion reactions, or generated by Ion Cyclotron Res-
onance, and neutral beam heating. The high performance of fusion devices
requires the confinement time of these particles to be long enough for them
to be thermalized and transfer energy to the bulk plasma before escaping the
core region. A number of issues related to the redistribution and loss of these
suprathermal particles was discovered. In tokamaks, one of the issues is the
excitation of global shear Alfvén modes with their discrete eigenfrequencies ex-
isting in the gaps of the Alfvén continuum. These modes bear a generic name
of gap modes. They can be driven by the free energy contained in the pressure
gradient of the fast particles via wave-particle interactions since their velocity
can be comparable with the Alfvén velocity: v ∼ vAlfvén = Btor/

√
µ0ρ, where

Btor is the toroidal magnetic field, and ρ is the plasma mass density. Toroidal
Alfvén Eigenmodes (TAEs) [1] is the name of modes located in the gap of con-
tinuum occurring due to the toroidicity which causes the coupling of m and
m + 1 poloidal harmonics. Being a global mode, TAEs can lead to fast parti-
cles redistribution in space at nearly constant energy, and therefore affect fast
particle confinement, reduce heating and current drive efficiency, cause damage
to the first wall, and decrease overall plasma performance. Therefore, a clear
understanding of the Alfvén modes dynamics is required for a careful operation
of a fusion reactor.

TAE studies in the presence of fast particles are complicated due to the fact
that the fast particle drive of the mode is changing since TAEs can cause redis-
tribution of the particles. In order to exclude the effect of the altering particles
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drive, the dynamic of the TAE modes can be investigated by launching elec-
tromagnetic waves by an external antenna and detecting the TAE response in
the form of resonance peaks with the saddle and pickup coils measuring per-
turbed radial and poloidal magnetic fields correspondingly with a synchronous
detection technique.

The numerical results of the TAE excitation by an external antenna pre-
sented in this paper were motivated by the experimental observations on the
JET tokamak, where excitation of TAE modes with an external antenna has
been very successful [2]. There, the in-vessel saddle coils were used to drive an
n=1 perturbation as an excitation source for the TAEs. The driving current is
typically ∼30A and is chosen to be such that the magnetic field perturbations
are of the order of δB/B ∼ 10−5, which is small enough to avoid magnetic
configuration distortion and direct changes in the fast particle confinement.

In order to detect the TAE modes, the applied frequency of the antenna
sweeps over the frequency position of the potential TAE gap until the mode is
detected via magnetic diagnostics. As an initial guess for a TAE frequency, a
rough estimate of ωTAE = vA/2qR can be made, where q is the safety factor
and R is the major radius, and typically is ∼ 100 − 200kHz. Once the mode
has been detected, frequency sweeps are reduced from the range which allows to
cover the whole toroidicity-induced gap to a range following the TAE resonance
full width. An example of the frequency sweep range transition can be seen in
the top figure in fig. 1 at t = 58s for discharge #42870. Knowing the response
over the full resonance width, the resonance frequency and the damping rates
determined as HWHM (half width at half maximum) of the resonant peak can
be calculated (fig. 1(bottom)). A more detailed overview of the JET antennas
used for the TAE excitation in the series of experiments used in this paper can
be found in [3] and references therein.

The analysis of the detected TAE peaks is based on a fitting of the transfer
function presented in detail in [4]. The transfer function describes the amplitude
of the output signal as a function of the frequency of the input signal:

H(iω) =
Y (iω)

X(iω)
=
F{y(t)}
F{x(t)}

,

where H(jω) is a transfer function, y(t) and x(t) are output and input signals,
F{y(t)} and F{x(t)} denote the Fourier transform of the signals. In order to
derive the transfer function for TAE detection, one simply needs to divide the
output signal from diagnostics (such as pick up coils) by the input antenna
current.

Presence of the Alfvén eigenmodes means existence of the poles in the derived
transfer function, so that it can be represented as:

H(jω) =

N∑
k=1

1

iω − pk
,

where N is a total number of resonances (corresponding to the total number of
the TAEs in one gap), ω is the frequency of the input signal, and pk = γk+ iω0k
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is a pole describing the k-th resonance. Fitting the transfer function to all the
available signals provides the values for ω0 – the TAE peak position, and γ –
its damping rate in the absence of the fast particle drive. An example of such
fit for discharge #42870 is shown in fig. 2, where orange lines correspond to the
fitted function and blue lines correspond to the raw signal.

However, while TAEs excited with an antenna were clearly visible in the
limiter phase of the discharge, they disappeared when the X-point formed in
the magnetic configuration, possibly due to an increase in the damping rates [5].
This effect can be seen in fig. 1. There, the TAE frequency of 150 kHz and a
damping rate γ/ω ≈ 1.5% can be detected in the earlier stage of the discharge,
and disappear after the transition to an X-point configuration occurring at t ≈
51.3s. Similarly, the TAE can again be detected after the transition back to
the limiter configuration around t ≈ 58.2s. It has to be clarified that the TAEs
exist in toroidal plasmas, independent of whether or not the driving source is
present in the experiment, and the commonly used formulation of TAEs not
existing simply means that the modes don’t have a high enough amplitude to
be detected by the magnetic diagnostics or cause a significant redistribution of
particles.

The previous studies (e.g. [6], [7], [8]) were performed to better understand
the dynamics and damping mechanisms of global AE modes, showing that the
damping rates increase significantly with shaping of the plasma and the gap
between plasma and the external antenna, strongly depend on the variation of
the plasma profiles at the edge, and are independent of the edge shear.

The aim of the present work is to investigate in detail the effect of the X-point
geometry on the efficiency of the TAE excitation with the external antenna and
the damping rate. In the first part of the paper the influence of the near-LCFS
(Last Closed Flux Surface) layer from the core side on the damping of the TAE
modes is investigated using the linear resistive MHD code CASTOR [9]. The
second part of the paper discusses the influence of the TAE behaviour in the
limiter and X-point geometries including the scrape-off layer (SOL) in the non-
linear reduced MHD code JOREK [10]. The code allows to fully represent not
only the core of the plasma, but the realistic geometry including the wall, the
antenna, and the X-point with the SOL. The effects of the distance between
the antenna and the width of the SOL on the TAE resonance behaviour were
studied.

2 Dependence of the damping rate on the near-
LCFS layer

Code description In the first part of the paper the behaviour of the TAE
in proximity of the separatrix with plasma’s boundary approaching the sepa-
ratrix from the core side is studied. Here, three codes are used in order to
first reconstruct the equilibrium, then reconstruct the Alfvén continuum for a
given equilibrium and density profile, and then calculate the plasma response
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to an external antenna signal. The electron density profile was measured in
these discharges with the LIDAR diagnostics, while the ion mixture nT : nD
was measured by the relative intensity of Tα and Dα spectral lines of T and
D atoms at the plasma edge, and also by Neutral Particle Analyzer and Ac-
tive TAE diagnostics from the variation in VA [11]. The EFIT code [12] was
used in order to first reconstruct the experimental equilibrium. Further, the
CSCAS [13] code was used for calculation of the the radial structure of the n=1
Alfvén continuum determined for the given input density and equilibrium pre-
viously procduced by EFIT. In CSCAS, an approximation of the dependence of
the radial velocity to be singular and logarithmic in nature is used according to
a model proposed in [14][15]. This approximation is only correct for the ideal
MHD model, therefore plasma resistivity is not considered, and the resulting
ideal continuum can only be used as a tool for finding an approximate TAE
frequency and the location of TAE gap. This is due to an effect known as the
Alfvén paradox [16] which exposses that the resistive MHD continuum is not
identical to the ideal MHD continuum even when η → 0.

The analysis of the plasma response to the sweeping antenna signal was per-
formed with the code CASTOR. The set of linearised resistive MHD equations
solved by CASTOR is as follows:

∂ρ1

∂t
= −∇ · (ρ0v1)

ρ0
∂v1

∂t
= −∇p1 + (∇×B0)× (∇×A1) + (∇×∇×A1)×B0

ρ0
∂T1

∂t
= −ρ0v1 · ∇T0 − (Γ− 1)ρ0T0∇ · v1

∂A1

∂t
= v1 ×B0 − η∇×∇×A1,

where ρ, p, v and T are plasma mass density, pressure, fluid velocity and tem-
perature, B and A are magnetic field and magnetic vector potential, η is the
resistivity, and Γ is the specific heat ratio. The values with a subscript 0 de-
note the equilibrium quantities, and the ones with a subscript 1 denote the
perturbations. Assuming that the variables evolve exponentially in time (as
a(r, t) = a(r)eλt ), this system can be rewritten in a form of an eigenvalue
problem of the form:

R · u = λS · u (1)

where R and S are complex matrices, and u is a vector of variables. The version
of CASTOR used in this work [17] includes the external antenna which works
as a driving source of a given frequency ωd. The system of equations can be
represented instead of an eigenvalue problem in the following form:

(R− iωdS) · u = ad(ωd), (2)
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where ad(ωd) is a driving term. This system provides a stationary state solution.
With the drive frequency ωd sweeping around the TAE frequency imitating the
experiment, the radial structure, frequency, and damping rate of the TAE can
be determined. In the following simulation a realistic Spitzer resistivity profile
was used, while the palsma viscosity is not taken into account.

Case setup The equilibrium produced by the EFIT code from JET discharge
#42870 discussed earlier was used in this work. For the analysis, two equilibria
at t = 52.3s and t = 54.8s with the plasma in the X-point configuration were
analyzed. Here the plasma boundary is taken to be a closed field-line flux-surface
approaching the separatrix. Both CASTOR and CSCAS can model shaped
equilibria closely approaching the separatrix, but cannot take into account the
actual X-point due to the choice of the straight-fieldline fluxsurface coordinate
system.

The Alfvén continua for both equilibria taken at the times t = 52.3s and
t = 54.8s were reconstructed using the CSCAS code, with the equilibriua re-
constructions corresponding to the X-point phase of the discharge at t = 52.4s
and t = 54.8s are illustrated in fig. 3. The Alfvén continuum with the q and
normalised density profiles for the equlibria at t = 54.8s are illustrated in fig. 4.
The experimental electron density in this moment was equal to 5 · 1019m−3.
It can be seen that the TAE gap is closed due to an overlap with a contin-
uum branch near the boundary. This means that the antenna signal of any
frequency across the TAE gap will experience a strong continuum absorption
when the propagating signal’s frequency equals the local Alfvén frequency when
crossing the continuum lines.

In order to exclude the effect of the continuum absorption, the original ex-
perimental density was varied in order to make the gap open to exclude the
crossings and, therefore, the strong damping. Here the equilibrium at t = 54.8s
will be taken as an example. The original fitted experimental density illustrated
on the right in the fig. 5 in green, together with the corresponding Alfvén con-
tinua on the left in the same figure also in green, was modified. Two modified
density profiles (corresponding to blue and red lines in the same plot) were
chosen such that only the outer part of the continuum was changed, varying
the width of the open TAE gap. While varying density, the equilibrium is kept
constant, meaning that the pressure profile doesn’t change, and the change of
the density profile leads to a compensating change of the temperature profile.
The uncertainty in the measured data allows such an assumption of a density
variation in the pedestal region. The resulting Alfvén continua are on the right
in the fig. 5 in red and blue, and an open gap in the normalised frequency range
of ω/ωA ≈ 0.23− 0.4 in the case in red and in the range ω/ωA ≈ 0.23− 0.47 in
the blue case is now present.

The sensitivity of the plasma response to the edge density profile is seen
in the fig. 6 where the plasma response as a function of the applied antenna
frequency is demonstrated with the use of the CASTOR code. It can be seen in
the figure that the response corresponding to the original density profile (solid
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line) doesn’t allow to identify the TAE, whereas clear TAE peaks corresponding
to two new density profiles are visible. According to [18], a possible effect of
the TAE damping induced in the open continuum gap in the proximity of the
continuum tips can be taking place. Therefore, in this work it was decided to
study the sensitivity of the TAE peaks to the shape of the density in the edge.
The two different modified density profiles with lower density in proximity of
the separatrix were chosen, leading to the different widths of the gaps.

One of the important parameters in the CASTOR code used here which
influences the TAE damping in the absence of the continuum damping is the
plasma resistivity. It defines the resistive damping, and, therefore, the width
of the TAE peak, as illustrated in fig. 7. It can be seen that the damping

approximately scales as ≈ η
1/2
norm. For the following studies in this chapter, the

resistivity of η = 2.6×10−8Ωm was chosen, comparable to the experimental one
of η ≈ 5× 10−8Ωm.

A study of the convergence of the damping rate/peak heights on the radial
resolution of the grid (the number of points in the radial direction) was per-
formed. As was discussed above, in ideal MHD sound and Alfvén waves both
cause singularities at the radial positions where the antenna frequency coin-
cides with the local continuum frequency. The radial width of this singularity
is determined by the strength of the damping mechanisms in plasma, therefore,
resistivity in CASTOR. Therefore, the grid resolution in the simulations should
be high enough to resolve the width of the near-singularity. The dependence of
the maximal absorbed power (height of the TAE peak) on the grid resolution
is shown in fig. 8. Simulations presented hereafter are performed with a radial
resolution of six hundred radial cubic finite elements that was sufficient in order
to achieve a good convergence.

The goal of the presented work is to study the effect of the transition from
the X-point to limiter configuration on the TAE stability/damping rate. For
this purpose, the original equilibria was ”cut” along a certain flux surfaces so
that there are only closed field lines in the modelling domain. This maximal
outermost flux surface taken into account (which will be called ψmax in this
work) can be chosen arbitrarily. Therefore, by varying ψmax = 0.95, ..., 0.995
with ψmax = 1 corresponding to a separatrix, it is possible to evaluate the
change of the TAE damping rate with plasma simulation boundary approaching
the separatrix.

For a fixed ψmax the simulation with the CASTOR code was performed by
sweeping the frequency of the applied antenna signal, mimicking the experiment.
As an example, let us consider an equilibrium at t = 54.8s and the first density
profile corresponding to the Alfvén continuum in fig. 5 in red. The sweep across
the open gap around 0.25−0.4 ω/ωA results in response functions corresponding
to different fixed ψmax are illustrated in fig. 9a). Two TAE response peaks can
be identified: the first minor peak with a lower frequency at f ≈ 100kHz, and the
second main peak with a higher frequency at f ≈ 130kHz. The corresponding
damping rates of the two identified peaks calculated as HWHM are illustrated
in fig. 9b). The damping rates of the first minor peak are not indicated for
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the ψmax = 0.99, 0.995 as the damping rates are so high that the peak is not
distinguishable. The main resonance at f ≈ 130kHz shows a damping rate
similar to the experimental values of 1-2.5% in this discharge. The damping rate
increases by a factor of three with the boundary approaching the separatrix, i.e
as ψmax → 1. Mode structures for both TAEs at t = 54.8s are illustrated in
fig. 10 and fig. 11 respectively.

It is worth mentioning that the Alfvén continua discussed before did not
include sound waves with frequencies ωS = k‖

√
Γp/ρ. The inclusion of them

is illustrated in fig. 13 as a combination of Alfvén and sound continua in black
in comparison with the same continua but only with inclusion of the Alfvén
waves in red. This will result in the overlap of the sound continuum with the
toroidicity-induced open Alfvén gap leading to the change of the damping rate
due to the absorption of the antenna wave energy by the sound wave at the
locations where the antenna frequency matches the local sound wave frequency.

Sound waves were included in all the simulations described in this chapter.
Their inclusion can be noticed if looking closely at the mode structure of the
parallel velocity, where sharp singularities correlate to the crossings of the sound
continuum discussed above. In comparison, the mode structures corresponding
to the same case but with Γ set to zero is illustrated in fig. 12. To determine the
influence of the damping due to the sound waves, a set of simulations for the
main TAE peak at f ≈ 130kHz without the inclusion of the sound waves was
performed by setting Γ = 0. The results are demonstrated in the fig. 14. It can
be seen in the figure that even though the sound waves have an influence on the
damping rates, the difference does not change the global trend of the damping
rate increase with increase of ψmax. The influence of the sound waves increases
with the value of the poloidal beta, which in this case is βp = 0.74.

Similarly to the example above, for four cases total with both two equilibria
and two density profiles the frequency sweeps across the TAE gap range were
performed, and in each case two TAEs are identified. Only one TAE can be
traced in the experiment, but it is likely that the dominant resonance with
higher frequency is measured.

The damping rates for the first TAE with lower frequency and the second
TAE peak with higher frequency for all four cases are shown in fig. 15 and
in fig. 16 respectively. Overall, damping rates of 1-3% of the main resonance
are consistent with the experimental observations for the same discharge. It
can also be seen in these figures that damping rates for the first density are
overall higher for both TAE peaks in both equilibria due to the fact that the
first density is higher at the edge, which leads to lower temperatures and higher
resistivities taking into account constant pressure. The effect is less pronounced
for the lower frequency peak since it is localised closer to the core, and the
change of resistivity in the edge does not influence it as much as the higher
frequency peak. The sudden decrease in the damping rate for ψmax increasing
from 0.97 to 0.98 can be explained by the change of q profile: the maximal
value of q changes from q = 4 to q = 5, therefore the mode structure and
consequently frequency changes. As expected, the damping rate increases when
approaching the separatrix. This result indicates that one aspect of the difficulty
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of excitation of the TAE modes in X-point geometry is an increased damping
from the region inside the separatrix. However, the increased damping with the
plasma boundary approaching the separatrix is not general, and depends on the
density profile shape.

2.1 TAE excitation in X-point geometry

The previous section was concentrating on the change of the TAE behaviour
with the plasma boundary approaching the separatrix from the core side. In
the second part of the paper the causes of the TAE damping are studied in the
JOREK code in full X-point geometry.

Code description The simulations were performed using the non-linear MHD
code JOREK. The MHD model used in this work is a single-fluid visco-resistive
reduced MHD. The reduced model is deduced [19] from the standard MHD equa-
tions by substituting B = Bφ + Bp = F0∇φ +∇ψ × ∇φ and v = v|| + v⊥ =
v||B +R2∇φ×∇u, therefore assuming constant in time toroidal magnetic field.
Here, F0 = B0R0 is the strength of the magnetic field at the geometric axis
R = R0, and φ is a toroidal angle. The resulting set of equations describes
the evolution of the 7 variables, namely, ρ - mass density, T - temperature, ψ -
poloidal magnetic flux, v|| - parallel velocity, u - electric potential, j - toroidal
current, and w - vorticity:

∂ρ

∂t
= −∇ · (ρv) +∇(D⊥∇⊥ρ) +∇2(D⊥hyp∇2

⊥ρ)

∂ (ρT )

∂t
= −v · ∇ (ρT )− (γ − 1)ρT∇ · v

+∇(κ⊥∇⊥T ) +∇2 · (κ⊥hyp∇2
⊥T )

∂ψ

∂t
= ηj +R [ψ, u]− F0

∂u

∂φ

ρB2 ∂v‖

∂t
+ ρv‖

∇ψ
R2

∂∇ψ
∂t

= −ρ|B|2
[
u, v‖

]
− 1

2
ρv‖

[
u,B2

]
− ρ F0

2R2
∂3

(
v2
‖B

2
)

+
1

2
ρ
[
ψ, v2

‖|B|
2
]
− F0

R2
∂3p−

1

R
[p, ψ]

R∇ ·
[
R2ρ∇⊥

(
∂u

∂t

)]
=
[
R4ρw, u

]
− 1

2

[
R2ρ,R2|∇⊥u|2

]
−
[
R2, p

]
+ [ψ, j]− F0

R

∂j

∂ψ
+ µR∇2w

w = ∆polu

j = ∆∗ψ.

A temperature-dependent Spitzer-like resistivity has been used in the siula-
tions: η = η0(T/T0)−3/2, with η0 = 2.6× 10−9Ωm. The value of the resistivity
was required to be lower than experimental in order to avoid high damping.
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The value of the viscosity was set to 4 × 10−9kg/(m·s), and hyper-diffusivities
D⊥hyp = 10−8m4/s and κ⊥hyp = 5×10−15kg·m/s) were used in the simulations.

Cubic Bezier finite elements are used for the spatial descritisation in the
poloidal plane, while a Fourier representation is used in the toroidal direction.
The choice of the finite elements in poloidal plane allows a very flexible dis-
cretization with the geometry including the accurate representation of the X-
point. Finite elements are constructed in such a way that they are aligned with
the flux surfaces of the initial equilibrium, which allows to accurately represent
the fast parallel transport in the SOL. The time descritisation uses the im-
plicit Crank-Nicolson scheme such that the time step necessary for simulations
is not restricted by the grid size. The simulations were performed with a time
step of δt = 0.5/

√
µ0ρ0s which is sufficiently small to resolve the typical TAE

frequencies (up to 200kHz).
The JOREK code is coupled with the STARWALL code which allows to

include active coils [20] enabling the simulation of the excitation of TAE modes
with an external antenna in full X-point geometry, including the scrape-off layer.

Unlike CASTOR, the JOREK code was used in a time dependent mode.
The plasma-vacuum-antenna system is evolved in time until a stationary state is
obtained. The plasma behaves as a driven oscillator, and therefore the response
function will look differently for a resonant and off-resonant cases. An example
of such temporal evolution of the kinetic energy of n = 1 mode for a limiter
case is illustrated in fig. 17. Here, the dashed curve in grey corresponds to the
resonant case with frequency f = 114kHz, and the solid black curve corresponds
to the off-resonant case with f = 120kHz. In this example it can be seen that
plasma behaves as a driven damped harmonic oscillator, with its non-resonant
response initially growing, but eventually settling down to a steady pattern.
Contrarily, its resonant response amplitude grows monotonically until it reaches
its final value. The time needed for the steady solution to be reached is inversely
proportional to the damping present in the system. The typical simulation time
therefore depends on the chosen resistivity, and requires ≈ 103 Alfvén times in
this set of simulations.

Case setup In order to isolate a specific effect of the presence of the scrape-
off layer (SOL) the initial equilibrium taken from the JET shot #42870 at the
moment of time t = 54.88s which corresponds to the X-point phase of the
discharge was analyzed in two ways. In the first case the plasma boundary was
set at the flux surface ψnorm = 0.995, therefore not including the SOL, and in
the second case the whole equilibrium with a real X-point and the SOL was
taken. The examples of the grids for both cases are illustrated in fig. 18. The
n=0 mode of the equilibrium and initial profiles are kept constant throughout
the simulation for both cases, only allowing excitation of the n=1 mode without
a change of the Alfvén continuum. The density profile, and, therefore, Alfvén
continuum correspond to the ones referred to as first modified density profile
used previously in the studies with the CASTOR code shown in fig. 5 in red.
The scans across the frequency range performed for both cases together with
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the corresponding CASTOR case are shown in fig. 19. In the no-SOL case
(marked with squares in the figure), two TAE peaks are found which are split
into a main resonance with a frequency f1 = 114kHz and a smaller peak just
at the upper edge of the TAE gap with a frequency f2 = 136kHz. Since in the
no-SOL case the X-point geometry is not taken into account, the result can be
compared to the one produced by the CASTOR code for the same equilibrium.
The case analyzed with the CASTOR code is presented in the same figure in a
line with star markers with the height of the peak normalized to the same value
as the main resonance in the no-SOL JOREK case. The two peaks demonstrate
good agreement with the main TAE peak in CASTOR having a slightly higher
frequency of f = 125kHz, and a higher damping rate of γ/ω = 0.9% in CASTOR
versus γ/ω = 2% in JOREK . The increased damping in JOREK is probably
caused by the viscosity, which is absent in CASTOR. The peaks in both codes
have a similar mode structure illustrated in fig. 20.

If in the no-SOL case the strong resonance observed both in the experiment
and in the CASTOR code is recovered, it disappears in the case with the SOL
and X-point included. The result of the simulation for this case with X-point is
illustrated in fig. 19 in a line with circular markers. As can be seen, only one of
the two original resonances remains, namely the secondary peak at f2 = 136kHz.

The 2D poloidal mode structures for the no-SOL and SOL cases are shown
in fig. 21. Note that the amplitude of the modes in the figure have different
scales. In the case with no SOL included (top row), the first mode exhibits
a ballooning structure, meaning that mode is localised at the low-field side,
whereas the second mode with a higher frequency is an anti-ballooning one
(i.e. its amplitude is higher on the high-field side). Comparing the dominant
modes in the no-SOL and SOL cases (on the left in the fig. 21, top and bottom
respectively) it is clearly visible that the mode disappears, when the second
mode with a higher frequency (on the right in the figure) remains.

As in the case with the CASTOR code, the necessary poloidal resolution has
to be used in the simulations to properly resolve the thin resistive layer. The
results of the simulations performed with a different poloidal resolution of the
grid are shown in fig. 22, while the frequency of the antenna and its position were
not changed. A resolution of 101 poloidal points was used in the simulations
without the X-point, while the X-point cases required a more accurate grid with
151 points.

Antenna position The effect of the distance between the antenna and the
plasma could influence the identification of the mode. A scan of the antenna
position was performed while keeping the antenna shape and frequency of the
oscillation constant. Note that in both cases the antenna remains outside of
the JOREK grid. The results of the scan for both SOL and no-SOL cases are
illustrated in fig. 23. In both cases the amplitude of the mode has significantly
increased (by more than 50% in the SOL case and by 3̃0% in the no-SOL case)
with antenna getting closer to the plasma boundary.

For two different antenna positions the frequency scans were performed, with
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results presented in fig. 24. As expected, the damping rate does not depend on
the antenna position. However, moving of the antenna closer only influences the
amplitude of the mode, therefore complicating the identification of the mode.

Influence of the SOL width A possible explanation of the increased damp-
ing in the X-point phase of the discharge is the existence of the SOL. A set of
simulations with the SOL width being varied from 0cm (corresponding to the
case of no SOL present) to 2cm was performed in attempt to follow the evolution
of the TAE mode. Note that the SOL width here denotes the actual physical
width of the SOL in the midplane taken into account in the simulations, not
the e-folding length. In the fig. 25(left) the midplane temperature and density
profiles are illustrated, with the close ups on profiles in the SOL region on the
right of the figure.

The results of the SOL width scan are presented in fig. 26. In the figure,
the initial response peaks of the kinetic energy of n = 1 TAE mode with the
SOL width dSOL = 0cm corresponding to the no-SOL case discussed above
at f = 113kHz (main peak) and f = 137kHz (secondary peak) are shown
in circular markers. While the secondary peak remains at its place with the
increase of the SOL width, the main peak is experiencing a strong damping
with its amplitude gradually decreasing with the increase of the SOL width. The
related mode structures corresponding to the main peak are shown in fig. 27,
with the dominant m = 1 and m = 2 components being majorly damped.

A possible explanation of the increased damping in the SOL is existence
of an Alfvén continuum on the line-tied open field lines in analogy to what
was proven to exist in [21] for coronal loops, which could cause the continuum
damping of the mode in the SOL. If the theory applies to the tokamak case, one
would expect a sudden change in the damping rate with the increase of the SOL
width once the resonant surface is included in the SOL. To check this theory,
the damping rates can be calculated knowing the peak width as was done in
the previous section, and the results can be shown in fig. 28(bottom) with the
amplitude of the main peak evolution (top). In can be denoted from the figure
that the damping increment is a smooth function, which disagrees with the
suggestion of the existence of the continuum. Therefore, the main cause of the
increased damping coming from the SOL region is believed to be a wave cut-off
by the SOL with short fieldline lengths, but this assumption requires further
investigation.

3 Conclusions

This paper discusses the effect of disappearance of the TAE mode peaks occur-
ring with the transition from the limiter phase of the discharge to the X-point
phase observed experimentally on JET with the saddle coils used as an external
TAE antenna and made an attempt to identify the reasons causing this effect.

In the first part of the paper the influence of the near-SOL layer from the
plasma core side with the use of the linear resistive MHD code CASTOR was
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studied. The results for two different magnetic configurations and two density
profiles chosen such that the gap in Alfvén continuum is kept open to exclude the
continuum damping were obtained. In both cases two TAE resonances located
in the open gap were identified, with damping rates of up to 6% for the first
minor peak with lower frequency and of 1 − 3% for a major peak with higher
frequency, which are comparable values with the typical experimental results.
The TAE with a lower frequency does not exhibit any specific trend with the
domain boundary approaching the separatrix. However, the main TAE peak
with the higher frequency in all four cases has a trend of the increased damping
coming from the near-SOL region.

The second part of the paper was concentrated around a study of the pres-
ence of the separatrix and the SOL on the mode behaviour in the non-linear re-
sistive MHD code JOREK coupled to the STARWALL code, allowing to directly
model the experiments with the sweeping antenna signal. Including X-point and
SOL, the results similar to the ones obtained before in the experiment were re-
covered, namely the absence of the detectable mode in the X-point case. The
influence of the distance between the plasma and the antenna and the damping
in the SOL were addressed. The antenna positioning had affected the TAE am-
plitude with the move from 10 cm to 1cm away from the boundary causing the
mode amplitude increase by 30%. It was shown that the dominant effect on the
damping of the original mode observed in the limiter configuration is caused by
the change of the SOL width.

This work has been carried out within the framework of the EUROfusion Consortium and
has received funding from the Euratom research and training programme 2014-2018 under
grant agreement No 633053. The views and opinions expressed herein do not necessarily
reflect those of the European Commission. The authors are very grateful to X. Garbet, M.
Becoulet and S. Pinches for usefull discussions in preparing the manuscript of this paper.
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Figure 1: Example of the experimental determination of the TAE resonance in the
JET discharge #42870 with external antenna being used as an active AE diagnostic
as explained in [2]. From top to bottom: 1) Blue line: frequency of the externally
applied perturbation as a function of time, orange line - tracked TAE frequency as a
function of time. 2) Current in the pick-up coils. 3) Relative damping rate of the
TAE if it is detected. Note that the time interval 51.4 − 58.2s corresponds to the X-
point phase of the discharge, with the thich green vertical lines corresponding to the
transition moment. The TAE mode could not be tracked in this interval of time.
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Figure 2: Example of the experimental determination of the TAE resonance in the
JET discharge #42870 based on the technique discussed in [4]. The technique is based
on the fitting (solid orange lines) of the transfer function to the experimental magnetic
data (blue dotted lines). The absolute value as a function of antenna frequency (top)
and the complex plane representation (bottom) of the pick-up coil signal are illustrated.

Figure 3: Plasma equilibria reconstructed with the EFIT code for equilibria taken at
t = 52.4s (left) and t = 54.8s (right). Black lines correspond to the flux surfaces, blue
line - to the real JET limiter.
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Figure 4: Ideal n=1 Alfvén continuum reconstructed with the CSCAS code for the
equilibrium taken at t = 54.8s, together with the corresponding experimental density
(red dashed line) and q (blue dash-dotted line) profiles. The experimental density profile
was obtained with the LIDAR diagnostics.

a) b)

Figure 5: a) Fitted experimental (green, labeled ”experiment”) and 2 modified, red
(labeled ”1”) and blue (labeled ”2”), density profiles for equilibrium taken at t = 54.8s.
b) Ideal n=1 Alfvén continua corresponding to the three different density profiles illus-
trated in a). It can be seen that the experimental profile corresponds to the continuum
with a closed TAE gap, therefore not allowing the TAE identification due to the strong
continuum damping. Therefore, the modified density profiles were chosen in such a
way that the the TAE is less open (like in the case of the first modified profile), or
more open (like in the case of the second modified profile).
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Figure 6: Dependence of the absorbed by plasma power calculated in the CASTOR
code as a function of the applied antenna frequency for the three density input profiles
shown in fig. 5(a). The response function corresponding to the initial experimental
density (in green solid line) shows that the TAE in this case in undetectable.
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Figure 7: Dependence of the absorbed by plasma power from sweeping antenna sig-
nal on the plasma resistivity. The increase of the damping as a function of plasma
resistivity suggests the dissipative nature of the TAE damping in the absence of the
continuum damping.
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Figure 8: Dependence of the amplitude of the TAE peak on the number of the grid
points. The good convergence is achievable from the grid number of 601 points which
is used in the simulations.
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Figure 9: Example of calculation of the a) frequency scan, dependence of the power
absorbed by the plasma as a function of the applied antenna signal, and b) the damping
rate, determined as HFHM of the TAE response peak. Both are calculated for different
normalised poloidal fluxes ψmax at the boundary of the computational domain.
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Figure 10: Mode structure of the first n=1 TAE peak for the equilibrium at t = 54.8s
corresponding to the lower resonant frequency. Top row shows the real and imaginary
parts of the radial component of the velocity as a function of s =

√
ψ, bottom row

– toroidal component of the velocity. Different symbols correspond to the different
poloidal harmonics.
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Figure 11: Mode structure of the second n=1 TAE peak for the equilibrium at t = 54.8s
corresponding to the higher resonant frequency. Top row shows the real and imaginary
parts of the radial component of the velocity as a function of s =

√
ψ, bottom row

– toroidal component of the velocity. Different symbols correspond to the different
poloidal harmonics.
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Figure 12: Mode structure of the n=1 TAE peak for the equilibrium at t = 54.8s
without inclusion of the sound waves. Top row shows the real and imaginary parts of
the radial component of the velocity as a function of s =

√
ψ, bottom row – toroidal

component of the velocity. Different symbols correspond to the different poloidal har-
monics.

Figure 13: Alfvén continuum with inclusion of the sound waves (in black) and without
them (in red).
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Figure 14: Damping rates as a function of ψmax for the two modified density profiles
as illustrated in fig. 6 and with (Γ = 5/3) or without (Γ = 0) inclusion of the sound
waves.
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frequency.
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Figure 16: Damping rates as a function of ψmax for the second TAE peak with the
lower frequency.
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Figure 17: Temporal evolution of the kinetic energy of n = 1 mode for a resonant
case with applied antenna frequency ω = 114kHz (in dashed gray) and an off-resonant
case with frequency with applied antenna frequency ω = 120kHz (in black).
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Figure 18: The grids used in the JOREK simulations in the case without the SOL
(left) and with the SOL (right).
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Figure 19: Frequency scan across the TAE gap for an equilibrium at t = 54.8s. In
squares - kinetic energy of the n=1 mode in the JOREK simulation without the SOL.
In circles - kinetic energy of the n=1 mode in the JOREK simulation with the SOL.
In stars - power absorbed by the plasma calculated via the CASTOR code. Height of
the peak is normalised to the peak of the JOREK no-SOL case.
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Figure 20: Mode structures of the main TAE peaks in JOREK (top row) and CASTOR
(bottom row) simulations. Real and imaginary parts are presented in the left and the
right columns respectively.
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Figure 21: Poloidal cross-sections representing the mode structure of electric potential
of the n = 1 mode; top row – in the case without inclusion of the SOL, bottom row
– with SOL inclusion; left column – mode structure of the TAE with lower frequency,
right column – with the higher frequency. The mode structures at the top row clearly
demonstrates the ballooning (left) and anti-ballooning (right) behaviour of the mode.
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Figure 22: Dependence of the kinetic energy of the n=1 mode on the poloidal resolution
of the grid.
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Figure 23: Dependence of the kinetic energy of n = 1 mode on the distance between
antenna and the plasma.
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Figure 24: Dependence of the kinetic energy of n = 1 mode on the applied frequency
of the antenna for the no-SOL case with two different antenna positions: 12.5cm and
17.5cm away from the plasma boundary
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Figure 25: Left: Midplane density (dashed line) and temperature (solid line) profiles.
Right: density (top) and temperature (bottom) profiles in the near-SOL and SOL-region
for different midplane SOL widths.
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Figure 26: Kinetic energy of the n=1 mode as a function of the applied frequency for
the different midplane SOL widths. It can be seen in the figure how the main TAE
peak located at f = 113kHz in the no-SOL case gradually decreases with the increase
of the SOL width until eventually it cannot be distinguished.
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Figure 27: Radial structure of the real (left) and imaginary (right) parts of n =
1 potential of the primary TAE peak for different midplane SOL widths. Different
symbols correspond to the different poloidal harmonics.
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Figure 28: Mode amplitude (top) and damping rate (bottom) as a function of the
midplane SOL width. The gradual decrease of the of both the mode amplitude and the
damping rate refutes the assumption of the continuum damping on the open field lines
as was illustrated for coronal loops in [21].
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