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Abstract

We use deep neural networks to classify time series generated by discrete and continuous dynamical systems
based on their chaotic behavior. Our approach to circumvent the lack of precise models for some of the
most challenging real-life applications is to train different neural networks on a data set from a dynamical
system with a basic or low-dimensional phase space and then use these networks to classify time series of
a dynamical system with more intricate or high-dimensional phase space. We illustrate this extrapolation
approach using the logistic map, the sine-circle map, the Lorenz system, and the Kuramoto—Sivashinsky
equation. We observe that the proposed convolutional neural network with large kernel size outperforms
state-of-the-art neural networks for time series classification and is able to classify time series as chaotic or
non-chaotic with high accuracy.
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1. Introduction The size of the data sets is often large and
analysing these time series represents a huge com-
putational challenge and interest nowadays. For

»s some of the most challenging real-life applications a
precise dynamical system is unknown, which makes
the identification of the different dynamical regimes
impossible. On that spirit, machine learning has
been recently employed by Pathak et al. [I8 19] to

s perform model-free predictions of chaotic dynam-
ical systems. Moreover, deep learning requires a
large data set to adequately train the artificial neu-
ral network, which might not be available in some
cases due to the infinite dimensional phase space of

3 the system or experimental constraints.

Data and in particular time series are gener-
ated from numerous observations and experiments
across different scientific fields such as atmospheric
and oceanic sciences for climate predictions, nuclear
fusion for control and safety, biology and medicine
for diagnosis. Fourier transforms, radial basis func-
tions approximation and standard numerical tech-
niques have been extensively applied to perform
short and long term predictions of chaotic time se-
ries [T, 2] B, 4]. On the other hand, the spectacu-
lar success of machine learning and deep learning
techniques to image classification [5] [6], which have
recently surpassed human-level performance on the

ImageNet data set [7], has inspired the development In this paper, we address the aforementioned
of neural network techniques for time series fore- challenges by considering the problem of classify-
casting [8, 9] and classification [10]. Recently, deep ing time series generated by discrete and continu-
learning approaches have been used to solve partial ous dynamical systems according to their potential
differential equations in high dimensions [I1,12,13] ,, chaotic behavior. The problem can be stated as fol-
and identify hidden physics models from experi- lows: given a time series generated by a dynamical
mental data [14} [15] 16| [17]. system, can we determine whether the time series
has a chaotic or non-chaotic behavior ? Contrary to

*Corresponding author standard machine learning techniques, we choose to
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the classification of time series of a dynamical sys-
tem with a basic or low-dimensional phase space
to a more intricate or high-dimensional one. The
main challenge is to learn the chaotic features of
the training set, whose chaotic behavior can be de-
termined a priori using measures from dynamical
systems theory, without overfitting, and generalise
on a second data set, which behaves differently due
to the different dynamical behavior of the system.
The paper is organised as follows. We briefly
describe five different neural networks architectures
for time series classification in Section [2l Then, in
Section [3] we classify signals generated by discrete
dynamical systems and compare the accuracy of the
neural networks. Finally, Section [4] consists of the
classification of time series generated by the Lorenz
system and the Kuramoto—Sivashinsky equation.

2. Neural networks for time series classifica-
tion

Time series classification is one of the most chal-
lenging problems in machine learning with a wide
range of applications in human activity recogni-
tion [20], acoustic scene classification [21], and cy-
bersecurity [22]. Fawaz et al. provide a review of
the techniques used for time series classification and
compare different neural networks [23].

In this section, we describe five different archi-
tectures that we have considered for classifying time
series generated by discrete and continuous dynam-
ical systems. Three of these methods have been
studied by Wang, Yan, and Oates [I0] and are dis-
cussed in Sections 2.3] to 2.5 In the following sub-
sections, we assume that the input of the neural
network is a univariate time series X of size T' (in
practice we take T' to be one thousand). Each of the
time series is assigned a class label that we want to
recover using the different neural networks: Class 1
corresponds to a non-chaotic time series while Class
2 corresponds to a chaotic time series.

2.1. Shallow neural network

The first type of networks considered in this sec-
tion is shallow neural networks (ShallowNet), which
are simple and efficient networks for fitting func-
tions and perform pattern recognition. These net-
works differ from deep neural network since they
usually contain only one or two hidden layers. We
use MATLAB’s patternnet command from the
Deep Learning Toolbox to define a network with
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one hidden layer, containing one hundred neurons,
with the sigmoid as activation function. The net-
work is trained with the Scaled Conjugate Gradient
algorithm [24].

2.2. Convolutional neural network

Convolutional neural networks (ConvNet) have
first been introduced to perform handwritten
digit [25] and have been successfully applied to im-
ages and time series [6 26]. We apply a similar
technique to classify one dimensional time series
and consider a network composed of two convolu-
tional layers of five features and kernel size of a
hundred, followed by a rectified linear unit (ReLU),
a maximum pooling and two fully connected layers
of respective size one hundred and two. The ReLU
activation function is chosen because it is easy to
optimise due to its piecewise linearity [27, Chap. 6].
Moreover, a dropping out unit (dropout) is added
after the maximum pooling layer to improve the
generalisation ability of the network [28]. The ar-
chitecture of the network is shown in Figure

Traditional implementations of convolutional
neural networks usually consider a higher number
of features and a much smaller kernel size [10] [23].
A highlight of the neural network considered in this
section is the large kernel size of the convolutional
layer (one hundred), which we determined neces-
sary by experimentation to overcome the overfitting
issue on the data sets discussed in Sections [Bl and A
Moreover, we also choose to use a reduced number
of features for computational purposes.

2.8. Multi layer perceptrons

Multi layer perceptrons (MLP) are standard deep
neural network architectures in the field of machine
learning and essentially consist of fully connected
layers separated by a nonlinear activation function.
Wang, Weizhong and Oates [10] use a structure of
three hidden layers of five hundred neurons, with
dropout at each layer followed by a rectified lin-
ear unit, to perform time series classification (a
Python implementation using TensorFlow is avail-
able in [29]).

2.4. Fully convolutional neural network

As explained in Section [2.2] convolutional neural
networks have shown good efficiency on image clas-
sification problems. The fully convolutional neural
network (FCN) architecture considered in [I0] is a
succession of three convolutional blocks, followed
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Figure 1: A convolutional neural network architecture for time series classification. Figure adapted from [23].

by a global averaged pooling layer [30]. The blocks
are composed of a convolution layer of kernel size
8, 5, and 3, a batch normalization layer [31] and a
ReLu activation layer. The fully convolutional neu-
ral network studied by [I0] is implemented in [29].

2.5. Residual network

The last network considered by Wang, Weizhong
and Oates [10] in the context of time series clas-
sification is a residual network (ResNet). Resid-
ual networks are examples of very deep neural net-
work and are designed by stacking the convolutional
blocks arising in the FCN (see Section . Then,
the ResNet is created by assembling three blocks
of the FCN to generate a residual block. Three
residual blocks are then stacked and followed by a
global average pooling layer and a softmax layer to
output the classification of the different input time
series. Reference [29] provides a practical Python
implementation.

3. Discrete dynamical systems

In this section we consider two discrete dynamical
systems called the logistic map and the sine-circle
map. The first one is the logistic map, popular-
ized by Robert May [32], which is defined by the
sequence

Tnit1 = an(l - xn)’ xo = 0.5, (1)

where p is the bifurcation parameter varying be-
tween zero and four. This system exhibits periodic
or chaotic behavior depending on the value of pu.
Periodic and chaotic signals of the logistic map are
plotted in Figure [2}

0 I

50 100 150 200
n

Figure 2: A periodic (top) and a chaotic (bottom) signal
of the logistic map of size two hundred with x4 = 3.5 and
© = 3.8, respectively.
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The bifurcation diagram showing the orbits of the
logistic map is represented in Figure [3| (top). The
behavior of the attractors for different parameters
1 has been extensively studied [33, Chap. 10] and a
highlight is the period-doubling cascade happening
for p € [0, 3.54409].

0.8
0.6

Tn
0.4

1

Figure 3: Bifurcation diagrams of the logistic map (top) and
the sine-circle map (bottom).

The second dynamical system considered in this
section is the sine-circle map [34, Chap. 6], which
is sometimes referred to as the circle map. It takes
the form of the following nonlinear map

Opi1 = O, +Q— % sin(2760,) mod [1], 6y = 0.5,

(2)
where 0 = 0.606661 and p € [0, 5] is the parame-
ter that measures the strength of the nonlinearity.
Similarly to the logistic map, iterating Equation
leads to periodic or chaotic signals depending on
the bifurcation parameter p chosen. Figure {4 il-
lustrates two signals with different behaviors, gen-
erated using a bifurcation parameter of pu = 2.1
(top) and p = 2.3 (bottom). The bottom panel
of Figure [3] shows the bifurcation diagram of the
sine-circle map.

We now want to classify signals generated by
the logistic and sine-circle maps according to their
chaotic and non-chaotic behavior. Our main goal,
and challenge, is to find a neural network that is
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Figure 4: A periodic (top) and a chaotic (bottom) signal of
the sine-circle map of size two hundred with x = 2.1 and
© = 2.3, respectively.

able to learn the features characterising chaotic sig-
nals of the logistic map and generalise on signals
generated by the sine-circle map. To do this, we
first generate two data sets by computing signals of
length one thousand of the logistic and sine-circle
maps for five thousand different values of the pa-
rameter u. To construct our training set we employ
a sampling technique that satisfies a uniform distri-
bution across the two thirds of the logistic map data
set, which we use as a training set for our machine
learning algorithms. The other one third of the data
set is then used as a validation set to check that the
training has been successful. Then, the five neural
networks described in Section [2| are used to classify
the time series of the sine-circle data set.

The classification of the time series is done using
two measures from dynamical systems theory. The
first measure is the Lyapunov exponent which is
defined as

A= lim
n—-+oo

N oelfe)l®
=0

for a discrete dynamical system z,1 = f(z,) and
expresses the exponential separation, viz. d(t) =
doe™, of two nearby trajectories originally sepa-
rated by distance dy = ¢ < 1 at time t = 0. The
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Figure 5: Lyapunov exponents (left) and Shannon entropy
(right) of the logistic map. A time series is chaotic if its Lya-
punov exponent is greater than zero and its entropy greater
than 0.75. The horizontal black lines in the plots indicate
these thresholds.

second measure is the Shannon entropy which uses
the probability distribution function of a trajectory
to quantify a range of accessible states for a dynam-
ical system and relates to the potential topological
transitivity of the system [34, Chap. 9]. Hence, we
expect a chaotic system to have well distributed tra-
jectories in space compared to a periodic one and
the aim is then to count the number of accessible
states for the system. Thus, we define the Shannon
entropy of a time series x,, to be

1

Sn = *w ;pr log(pr), (4)
where p, is the probability to be on the state r
reached by the system with p, = %#{xi =rll <
i < N} and N is the number of sample points.
Here, the entropy Sy has been normalised to lie
in [0,1] so that the entropy of a constant signal
Sy — 0 while the entropy of a chaotic time series
SN — 1.

We classify a given signal as chaotic when its Lya-
punov exponent is strictly positive and its entropy
is greater than a given threshold, experimentally
set at 0.75 (see also Figure, and non-chaotic oth-
erwise. It is crucial to classify the training data
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set accurately in order to reduce misclassifications
on the testing set. On that note, by using the
Shannon entropy in addition to the Lyapunov expo-
nent as a measure of chaos we gained an incremen-
tal improvement in accuracy. This is because the
Lyapunov exponent was misclassifying some quasi-
periodic signals as chaotic.

The Lyapunov exponent and the Shannon en-
tropy of the logistic map as a function of the bifur-
cation parameter p are illustrated in Figure In
real applications, computing these quantities over
the whole range of parameters and in some cases
without knowing the expression of the underlying
dynamical system can be unfeasible or computa-
tionally expensive, which justifies the approach of
using a machine learning algorithm to perform the
classification automatically.

The average classification accuracy of the neural
networks ShallowNet, ConvNet, MLP, FCN, and
ResNet is reported in Table [I While the Shal-
lowNet and ResNet architectures outperforms the
convolutional neural network ConvINet on the logis-
tic map data set with a score above 99%, they are
only able to classify correctly signals from the sine-
circle dynamical system with an accuracy less than
65%. The convolutional network however seems to
override overfitting issues on the training set by
capturing the main features of chaotic and periodic
signals and gets an average classification score of
83.5%. It is of interest to notice that the shallow
neural network reaches an accuracy greater than
state-of-the-art time series classification networks
on the sine-circle data set despite its simplicity. Im-
proving the accuracy of ConvNet on the sine-circle
map might be challenging since this dynamical sys-
tem could lead to behaviors of signals that are not
available in the training set of the logistic map (e.g.
the regime p € [1,1.3] in Figure [3| (bottom)).

4. Continuous dynamical systems

We now consider continuous dynamical systems
of ordinary and partial differential equations that
exhibit temporal and spatiotemporal chaos, respec-
tively. The aim here is to determine whether a neu-
ral network trained on a low dimensional dynamical
system is able to generalise and classify time series
generated by a higher dimensional dynamical sys-
tem. We will first consider the Lorenz system since
it is one of the most typical continuous dynami-
cal systems with a chaotic behavior which has been
widely studied in the twentieth century [35].
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Table 1: Classification score on the logistic and sine-circle maps data sets. The neural networks are trained on logistic signals

and the accuracy is averaged over five training cycles.

Networks  ShallowNet

ConvNet

MLP FCN ResNet

99.5
64.9

Logistic
Sine-circle

93.6
83.5

83.4
60.2

95.3
54.0

99.0
54.6

4.1. Lorenz system

The Lorenz system [36] consists of the following
three ordinary differential equations:

i=oly—a), (50)
y=x(p—2)—vy, (5b)
z=uzy — Bz. (5¢)

The parameters o = 10, 8 = 8/3, and p € [0, 250]
yield convergent, periodic, and chaotic solutions.
We numerically solve Equation using MAT-
LAB’s function ode45 with [z,y,z] = [1,1,1] as
initial condition. Integrating the equations for
t € [0,100] we obtain time series for x(t), y(t), and
z(t) of length one thousand, and we carry out this
operation for five thousand values of the bifurcation
parameter p in the range [0, 250].

The time series z(t), y(t), and z(¢t) are normal-
ized by the linear transformation x(t) — (z(t) —
m)/(M —m), where M and m are respectively the
maximum and minimum of the time series, such
that their range are in the interval [0, 1] (see time
series in Figure@ for p = 70). Figurem depicts four
time series of the variable z(t) generated by numer-
ically solving Equation for p = 15, 28, 160, and
180.

We classify the time series of the Lorenz sys-
tem as chaotic or non-chaotic according to the sign
of the Lyapunov exponent at the corresponding
regimes of the bifurcation parameter p in order to
generate training and testing data sets for the neu-
ral networks. Here, we compute the Lyapunov ex-
ponents for the time series of the variable x(t) start-
ing from some initial condition x(0) as follows

A= lim lim%log <M> (6)

t—+400 e—0 €

where |2(0) — z.(0)| < € < 1. Figure [§] shows the
Lyapunov exponents of the variable z(t), which de-
termine the classification of the testing set of time
series given to the neural networks described in Sec-
tion[2] For example, the chaotic time series plotted
in Figure[7] (d) corresponds to a bifurcation param-
eter of p = 180 and has a strictly positive Lyapunov

0 10 20 30 40 50

0 10 20 30 40 50

0 . . . .
0 10 20 30 40 50

Figure 6: Normalized time series of the z, y, and z com-
ponents of the Lorenz system with bifurcation parameter
p="T0.
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Figure 7: Normalized time series of the  component of the Lorenz system with bifurcation parameter p = 15 (a), 28 (b), 160

(c), and 180 (d).

exponent as shown in Figure |8} For continuous dy-
namical systems the Shannon entropy did not ap-
pear to be a precise measure of chaotic behavior, so
we do not consider it in this case.

10

0o—F
100
A20F s
30 [ .

-40 b

50 . .
0 50 100 250

Figure 8: Lyapunov exponents of the z(t) component of the
Lorenz system for o = 10, 8 = 8/3, and p € [0,250]. A pos-
itive Lyapunov exponent (points above the horizontal black
line) indicates a chaotic solution to the Lorenz equations.

The different neural networks are trained on time
series of the x component of the Lorenz system and
tested on the y and z components. Similarly to the
logistic map data set (see Section, the x compo-
nent set is divided in the following way: two thirds
for training and one third for validation. We then
compare the classification accuracy of the networks
described in Section [ on the two data sets. The
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results are presented in Table

The convolutional neural network ConvNet (see
Section outperforms the other networks on all
the testing sets composed by time series of the =z,
y, and z components of the Lorenz system. In par-
ticular, it is able to generalise well on the z compo-
nent by determining whether a given time series is
chaotic or not correctly with an average accuracy of
79.4%. The other neural networks seem to overfit
the training set and fail to classify time series of the
z component correctly. Note that the y component
of the Lorenz system is highly correlated with the x
component, unlike the z component (see Figure @,
which explains the relative good classification accu-
racy (above 75%) of all the neural networks on the
y component.

4.2. Kuramoto—Sivashinsky equation

In this section, we consider the Kuramoto—
Sivashinsky (KS) equation, which is an example of
a fourth-order nonlinear partial differential equa-
tion, which exhibits spatiotemporal chaos. This
equation was originally derived by Kuramoto [37]
[38, B9] and Sivashinsky [40, 41l [42] to model in-
stabilities in laminar flame fronts and arises in a
wide range of physical problems such as plasma
physics [39], flame propagation [40], or free surface
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Table 2: Classification score on the Lorenz system. The network is trained on & component of the Lorenz system and the

accuracy is averaged over five training cycles.

Networks ShallowNet ConvNet MLP FCN ResNet
Lorenz X 98.5 97.9 90.2 80.3 97.8
Lorenz Y 75.9 93.0 75.5  74.6 85.7
Lorenz Z 58.2 79.4 54.9  65.5 70.7

film flows [43] 44] 45]. In particular, we study the
Kuramoto—Sivashinsky system normalized to the
interval [0, 27]:

1 2
Ut + 4umxmz +« |:uzm + 2 (uz) :| 0, (7)
u(z,0) =wuo(x), wu(z+2m1t)=u(x,t),
where z € [0,27], t € RY, and « is the bifurcation
parameter.

We refer to the study of the attractors by Hy-
man and Nicolaenko [46] and follow the approach
of Papageorgiou and Smyrlis [47] 48] by considering
the initial condition ug(2) = — sin(z) to ensure that
the integral of the solution over the spatial domain
vanishes. Varying the bifurcation parameter « in
Equation yields a wide range of attracting solu-
tions such as periodic, bimodal, travelling wave, or
chaotic, numerically studied in [46].

We spatially discretise Equation using the
Fourier spectral method with the 2/3 dealiasing
rule [49] and temporally using the ETDRK4 scheme
of Cox and Matthews [50]. We use the stiff partial
differential equation integrator [51] in the Chebfun
software [52] with a spectral resolution of 512 and a
time step of 2.5 x 10~% to numerically solve Equa-
tion (7)) for ¢ € [0,10]. The regimes we considered
are listed below based on the values of the bifurca-
tion parameter a:

1. One hundred values of a are uniformly dis-
tributed in each of the following intervals:
[18,22], [23,33], [43,45], [56,65], [95,115].
These intervals are chosen to cover a wide
range of behaviors according to [46].

2. Five hundred values of a are uniformly dis-
tributed in [120, 130].

This leads to a data set of one thousand realisations,
equally divided between chaotic and non-chaotic
behavior.

Figure [9] shows oscillatory solutions to the KS
equation for & = 20 (a), 44 (b) and a quadrimodal
solution (c). A chaotic solution to the KS equation

355

360

365

370

375

is depicted in Figure |§| (d). This spatiotemporal
chaotic behavior is hard to analyse because of the
high dimensionality of the system, i.e. the large
number of Fourier modes of the solutions. Thus, we
analyse the behavior of the solutions by considering
the energy time series

2m
&= [ uwt?ds Q
0
normalized by the transformation £(t) — (E(t) —
m)/(M —m), where

2m
m = min/ u(z,t)? de,
t€[0,10] /g

2m
M = max/ u(z,t)? de,
t€(0,10] Jo

such that it lies in the interval [0,1]. The normal-
ized energy time series of the solutions to the KS
equation for o = 20, 44, 100, and 125 is plotted in
Figure [9] (e) to (h), respectively. These figures il-
lustrate the relation between £(t) and the behavior
of the solution u(z,t).

Similarly to Section we train the convolu-
tional neural network described in Section 2.2] on
the = component of the Lorenz system and test it
on the time series from the data set of the KS equa-
tion described above. The global accuracy that we
obtain to classify the time series between chaotic
and non-chaotic is 94.4%. The accuracy for the dif-
ferent classes of attracting solutions in the testing
set is reported in Table [3]

We observe that the convolutional neural net-
work classifies correctly time series of bimodal,
highly oscillatory, trimodal, and quadrimodal so-
lutions, corresponding to a € [23,33], [43,45],
[56,65], [95,115], as non-chaotic with an accuracy
of 96.4%, 99.2%, 95.4%, and 99.6%, respectively.
Moreover, the network gets a score of 99.8% on
the set of chaotic time series. However, the energy
time series of low-frequency periodic solutions to
the Kuramoto—Sivashinsky equation for a € [18, 22]
are misclassified by the neural network since only
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Figure 9: Solutions to the KS equation with o = 20 (a), 44 (b), 100 (c), and 125 (d). The right panels show the corresponding
normalized energy £(t). The chaotic solution depicted in (d) has been zoomed to ¢ € [0.9,1]. (c) and (g) illustrate the transient
regime of the solution for ¢ € [0, 0.5] before convergence to the global quadrimodal attractor.
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Table 3: Classification results of the energy time series of the
KS equation for various . The convolutional neural network
ConvNet is trained on the  component of the Lorenz system.
The classification score is reported for the different intervals
of a composing the data set and averaged over five training
cycles.

Range of @  Solutions behavior  Accuracy
18, 22] periodic 54.8
[23, 33] bimodal 96.4
[43,45] periodic 99.2
[56, 65] trimodal 95.4
[95,115] quadrimodal 99.6
[120, 130] chaotic 99.8

54.8% of them are identified as non-chaotic. We ex-
pect this misclassification to be due to qualitative
differences between the corresponding energy time
series of the KS equation and the periodic time se-
ries of the Lorenz system. In particular, the KS
data set contains periodic time series with low fre-
quency oscillations in this regime (see Figure[d] (b)),
while the Lorenz system generates periodic time se-
ries with high frequency oscillations (see Figure
(c)). The neural network is then unable to clas-
sify features that are not present in the training set
and hence fails to extrapolate to the low frequency
periodic time series of the Kuramoto—Sivashinsky
equation.

4.8. Accuracy dependence on the training data set
size and the time series length

We test the robustness of the convolutional neu-
ral network on the classification problem of the KS
equation by studying how the accuracy depends on
the size of the training data set and length of the
time series. Figure shows the effect of the size
of the training data set on the classification score
of ConvNet. We observe that the neural network
achieves an accuracy between 85% and 95% when
the the amount of training data available is greater
than 10%.

In Figure [L1] we analyse the classification ability
of ConvNet on shorter time series. The network is
trained on time series of the x component of the
Lorenz system of same length, whose chaotic classi-
fication is obtained using the Lyapunov exponent.
The idea here is that the Lyapunov exponent will
be estimated less accurately for shorter time series
and hence this will affect the accuracy of the net-
work. It is interesting that for all the lengths of the
time series we considered the convolutional neural
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Figure 10: Classification score of the KS data set versus
the amount of training data (percentage of five thousand
realisations). The classification scores are averaged over ten
training cycles of the ConvNet neural network on time series
of the z component of the Lorenz system.

network reaches an average accuracy greater than
80% on the KS problem.
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Figure 11: Accuracy of the classification of KS time series
with respect to the length of the time series (percentage of
one thousand). The classification scores are averaged over
ten training cycles of the ConvNet neural network on time
series of the x component of the Lorenz system.

Overall, our results show the robustness of Con-
vNet on this problem. In particular, this network is
able to generalize well on time series generated by
the KS equation and achieve a classification score
greater than 80%, independently of the size of the
training data set or length of the time series.

Conclusions

For some of the most challenging real-life appli-
cations the expression of a precise underlying dy-
namical system is unknown or the phase space of
the system is infinite dimensional, which makes the
identification of the different dynamical regimes in
phase space unfeasible or in the best case scenario
computationally expensive. For this reason, in this
study we have introduced a deep learning approach
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for classifying time series generated by discrete and
continuous dynamical systems. Our approach is to
train our neural network on a given dynamical sys-
tem with a basic or low-dimensional phase space
and generalise by using this network to classify time
series of a dynamical system with more intricate or
high-dimensional phase space.

The proposed convolutional neural network with
large kernel size is able to learn the chaotic features
of these systems and classify with high accuracy
while state-of-the-art neural networks tend to over-
fit the training data set. In detail, our approach
has been applied to classify time series generated by
the sine-circle map and the Kuramoto—Sivashinsky
equation, using the logistic map and the Lorenz sys-
tem as training data sets, respectively. We observed
a classification accuracy greater than 80% on both
systems despite the inability of the network to clas-
sify time series with features that are not present
in the original training set. Finally, this study sug-
gests that deep learning techniques, which can gen-
eralise the knowledge acquired from a training set
to a different testing set, can be valuable to classify
time series obtained from real-life applications.

There are many directions in which the present
results can be pursued further. First of all, at-
tempting to classify time series obtained from real-
life applications is crucial. On that respect, the
effect of noise in the training and testing data sets
is an important aspect to be considered and study
the influence of the noise to the accuracy of the
networks to classify the time series. We hope to
address such an analysis in our future work.
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