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Abstract.  For a tokamak plasma which encounters the onset of ‘stiff transport’ 

as the heating power increases, the determination of the radial extent of those stiff 

profiles and the resulting impact on energy confinement, is a subtle matter. The 

results depend on details of the heating profile and the transport model invoked. 

In this work we take a simple form for the heating profile, which has a variable 

width, together with a simple transport model, but allowing for several forms of 

the thermal diffusivity, to describe the non-stiff regions. This allows us to develop 

analytic solutions, leading to an energy confinement scaling law that takes 

account of stiff transport. Impurity radiative losses, which are anticipated to be 

necessary in a DEMO design, can also be considered in the model and the 

calculation is then used to quantify how much impurity radiation is permitted 

before the energy content starts to diminish. 

 

1. Introduction 

With increasing power input the temperature profiles in a tokamak plasma may 

well reach the threshold for the onset of ion or electron temperature gradient 

instabilities, predicted to lead to the sudden onset of a high level of energy 

transport. This essentially limits the gradient, a situation known as ‘stiff’ transport 

[Dimits et al., 2000, Suttrop et al., 1997]; i.e., there is no increase in the energy 

content with further increase in the input power. Indeed, modelling of energy 

confinement for the International Tokamak Experimental Reactor (ITER) being 

constructed at Cadarache in France anticipates this will be the case [ITER Expert 

Groups on Confinement and Confinement Modelling and Database, 1999, Doyle 

et al., 2007] and limits temperature gradients to this threshold value, known as 

the critical gradient. The plasma energy content is then simply calculated by 

assuming the input power suffices to achieve this threshold temperature profile at 
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all radii. Because this criterion is in fact a condition on the logarithmic 

temperature gradient, the profile depends critically on the edge temperature.  The 

base-line operational mode planned for ITER is the high confinement mode (H-

mode) and this is given by the temperature at the top of the edge transport barrier 

and is known as the ‘pedestal’ temperature.  However, as the input power 

increases towards the value needed for the fully stiff situation, only limited parts 

of the temperature profile will achieve the threshold value and the saturation of 

confinement with power is more gradual. A purpose of the present work is to 

explore this behaviour taking account of situations where different parts of the 

profile first experience the onset of stiffness.  

A remarkable experimental result reported by ASDEX Upgrade is that the energy 

content of a discharge appears unchanged as the radiative losses increase 

[Ochoukov et al., 2015]. This is of importance for future fusion power plant 

designs [Kotschenreuther et al., 2007, Ward, 2010, Lux et al., 2015, Lux et al., 

2016,  Zohm et al., 2019 a, Zohm et al., 2019 b ], where it appears necessary to 

introduce impurities to deliberately radiate a fraction of the lost power to limit 

damage from excessive heat fluxes on the surrounding structures.  It has been 

proposed that this is a consequence of core transport being stiff as the radiative 

power increases, which has been supported by some transport modelling of 

burning plasma [Fable et al., 2017]. We also investigate this further within the 

framework of our modelling above. 

In general, determining the radial extent of the stiff profiles, using a transport 

code, as the heating increases is a subtle calculation, the results depending on 

details of the heating profile and the transport model. In this work we use a simple 

model for the heating profile and consider several forms of the thermal diffusivity 

in the ‘non-stiff’ regions. This allows us to develop analytic solutions, leading to 

an energy confinement scaling law that takes account of stiff transport and 

impurity radiative losses and, furthermore, can be used to quantify how much 

impurity radiation is permitted before the energy content starts to diminish. 

As a first example, we assume that there is a net heating profile, 𝑃(𝑟),  that is a 

constant, 𝑃,  within a radius 𝑟0 and zero beyond that (thus the total power is given 

by 𝑃𝑇𝑜𝑡 = 2π2𝑃𝑟0
2𝑅). The background thermal diffusivity, 𝜒,  is  taken to be a 

constant in radius, 𝜒0.  An edge boundary condition, 𝑇 = 𝑇𝑎, on the temperature 

representing an edge H-mode pedestal is invoked. Thus, we are assuming that 

𝑃Tot > 𝑃LH , the threshold power for the L-H confinement transition [ITER 

Expert Groups on Confinement and Confinement Modelling and Database, 1999, 

Doyle et al., 2007]. The effect on the power dependence of the energy 

confinement of including impurity radiative losses, 𝑃Rad is accounted for by 
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considering the effect 𝑃Rad has on reducing the input power for a given value of 

the latter. 

The effect of the onset of regions of stiff transport, characterised by a normalised 

critical temperature gradient parameter, �̂� = 𝑐𝑎/𝑅 (where the critical gradient is 

given by dln𝑇/d𝑟 = −𝑐/𝑅), on the energy content of the plasma as a function of 

a normalised net heating power parameter  𝜆 = PTot/𝑛𝜒0𝑇𝑎  is then calculated. 

Here 𝑛 is the plasma density (taken to be constant in radius), 𝑅 the major radius 

of the tokamak and 𝑎 the minor radius, which allows us to introduce a normalised 

minor radius,  𝜌 = 𝑟/𝑎 .  This model is described in Section 2.   

As mentioned above, the appearance of regions of stiff temperature profiles can 

become quite complicated, even for the simple model described above. We shall 

discover below that there are then two main cases to address:  (i) �̂�𝜌0 > 1 (i.e., 

the heating profile is not too peaked) and (ii) �̂�𝜌0 < 1  (i.e., a more peaked heating 

profile), although this case actually splits into two sub-cases, (a) and (b), 

depending on whether  𝜌0 > 𝜌2c or 𝜌0 < 𝜌2c, respectively. Here 𝜌2c is a critical 

radius dependent on �̂� that controls whether stiffness sets in first at the plasma 

edge (case (a)), or an interior point (case (b)). These various situations are 

analysed in Section 3.  In Section 4 we extend this model by assuming the thermal 

diffusivity is gyro-Bohm in nature, 𝜒 ∝ 𝑇3/2. A refinement, in which an 

additional, radially increasing factor is inserted into 𝜒 in order to be more 

realistic, is considered in the Appendix.   

This approach is reminiscent of earlier work exploring the impact on energy 

confinement of the onset of ideal ballooning modes [Connor et al., 1984]. 

Using the results for the energy content as calculated for the various cases above, 

we can obtain the energy confinement as a function of input power and infer the 

impact of radiative losses on the performance of the device. These results are 

presented in Section 5.  

Finally, in Section 6 we summarise and discuss our results. Especially, we 

consider the implications of our results for describing the variation of tokamak 

confinement with heating power. Assessments of tokamak performance, 

particularly that of ITER, are often based on simple power-like scaling laws for 

energy confinement as a function of plasma and machine parameters, particularly 

input heating power, which do not recognise the possible appearance of a 

different regime associated with the onset of stiff behaviour. We propose a more 

complicated algebraic form for the energy confinement that fits our numerical 

calculations. 
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2. A Simple Transport Model 

We describe the temperature profile by a simple transport equation: 

                 
1

𝑟

d

d𝑟
(𝑟𝑛𝜒

d𝑇

d𝑟
) = −𝑃H + 𝑃Rad ≡ −𝑃  ,                       (1) 

where 𝑃H is the input power density and 𝑃𝑅𝑎𝑑 the radiative loss power density, so 

that 𝑃 is the net heating power density. We first consider 𝑃H, 𝑃Rad , n, and 𝜒 to be 

constant in 𝑟. 𝑃 is taken to be constant within a radius  𝑟0 and zero outside: 

 𝑃 = 𝑃0,    𝑟 < 𝑟0;     𝑃 = 0,    𝑟 > 𝑟0   .                                         (2) 

Thus 

d𝑇

d𝑟
= −

1

𝑟𝑛𝜒0
∫ 𝑃𝑟d𝑟 

𝑟

0
,                (3) 

increases radially outwards. Should it arrive at a radius where it reaches the 

critical gradient condition, then the temperature profile becomes ‘stiff’ and eqn. 

(3) is replaced by: 

    
1

𝑇

d𝑇

d𝑟
= −

𝑐

𝑅
  ,                             (4) 

with the number 𝑐 in the range 4 to 6. As we shall see below, this may occur at 

several radial points.  

To calculate the plasma energy content and confinement time, 𝜏𝐸, we define  

        𝑊 =
3

2
𝑛 ∫ 𝑇𝑟d𝑟

𝑎

0
;   𝜏𝐸 =

3

2
𝑛 ∫ 𝑇𝑟d𝑟

𝑎

0
/ ∫ 𝑃𝑟d𝑟

𝑎

0
  ,                                (5) 

so that the total plasma energy and pedestal energies are given by   

     𝑊Tot = 4π2𝑅𝑊 ;     𝑊Ped = 3π2𝑎2𝑅𝑛𝑇𝑎 ,                                (6) 

respectively. 

We normalise 𝑇  to  𝑇𝑎,  the edge temperature at 𝑟 = 𝑎, introducing  

𝜏 =
𝑇

 𝑇𝑎
, 𝜌 =

𝑟

𝑎
,       𝜆 = 

𝑃𝑟0
2

𝑛𝜒0𝑇𝑎
≡ 𝜆𝐻 (1 −

𝑃Rad

𝑃H
),                      (7) 

so that eqn. (1) becomes 

1

𝜌

d

d𝜌
(𝜌

d𝜏

d𝜌
) = −

𝜆

𝜌0
2                                                           (8) 

where 𝜚0 = 𝑟0/𝑎. Condition (3) implies 

1

𝜏

d𝜏

d𝜌
= −�̂� , �̂� =

𝑐𝑎

𝑅
                        (9) 
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and 

   𝑊Tot =
𝑊Ped

2
𝐹(𝜌0, 𝜆, �̂�) ;  𝜏E =

𝑛𝑇𝑎

4𝑃H𝑟0
2 𝐹(𝜌0, 𝜆, �̂�) .                    (10)

                    

𝐹(𝜌0, 𝜆, �̂�) characterises the energy content as 𝜆  varies, but can also  be used to 

yield the effects of varying the fraction of radiated power, 𝛾 = 𝑃Rad/𝑃H, since 

the effect of radiative losses appears through the definition for 𝜆 in eqn. (7):  

                    𝜆 = 𝜆H(1 − 𝛾) ,  𝜆H = 
𝑃H𝑟0

2

  𝑛𝜒0𝑇𝑎
 .                    (11) 

Thus, a change in the function 𝐹(𝜌0, 𝜆, �̂�) as 𝜆 reduces can be interpreted as 

representing the effect of increasing radiative losses on 𝜏E. Interestingly, the 

effective stiffness parameter, �̂�, depends on aspect ratio, R/a, discriminating 

between conventional aspect ratio devices and spherical tokamaks (STs). 

 

3. Solutions for Peaked Heating Profiles 

To understand the significance of the various scenarios for the heating profile we 

consider the condition on  𝜆 for the onset of stiffness. Before the onset of stiffness, 

the solution of the transport equation for the temperature profile is: 

𝜏 = 𝜏0 −
𝜆

4

𝜌2

𝜌0
2 ,     0 < 𝜌 < 𝜌0                        (12) 

and 

𝜏 = 1 −
𝜆

2
ln𝜌,   𝜌0 <  𝜌 < 1 .                        (13) 

Matching results (12) and (13) at 𝜌 = 𝜚0, we obtain 

𝜏0 =
𝜆

4
+ 1 −

𝜆

2
ln𝜌0 .             (14) 

The onset condition for stiffness is given by eqn. (9). Substituting for 𝜏 from eqns. 

(12) and (13) and solving for 𝜆, we find  

𝜆c =
2𝑐̂𝜌0

2

[𝜌+
�̂�𝜌2

2
−𝑐̂𝜌0

2(
1

2
−ln𝜌0)]

 ,     0 < 𝜌 < 𝜌0                     (15) 

and 

       𝜆c =
2𝑐̂𝜌

(1+𝑐̂𝜌ln𝜌)
  ,    𝜌0 <  𝜌 < 1  ,                               (16)      
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where 𝜆c is the critical value of 𝜆 for the onset of a stiff temperature profile at a 

radius  𝜌.  These match at 𝜌 = 𝜌0 of course. While solution (16) first increases 

inwards, it has a maximum at 𝜌 = 1/�̂� < 1, so its lowest value may lie inside 

𝜌 = 1/�̂�   if  �̂�𝜌0 < 1. In fact, this situation gives rise to two possibilities, as will 

be discussed later.  Both solutions (15) and (16) suggest infinite values of 𝜆c may 

be needed at some radii, but since parts of the profile will already be stiff by the 

time these values are approached, these are spurious: these two solutions only 

pertain to the first onset of stiffness and are only used below to understand where 

this first happens. Following the onset of stiffness, the right-hand sides of eqns. 

(15) and (16) are modified as described below. As we will see, two main cases 

emerge: case (i) for �̂�𝜌0 > 1 and case (ii) for �̂�𝜌0 < 1, with the second dividing 

into two subcases, (ii a) and (ii b), depending on where  𝜌0 lies relative to another 

critical radius, 𝜌2c, to be defined below. These three scenarios are shown in Figs. 

1 (a) to (c), where the values of 𝜆c for the onset of the critical gradients are plotted 

against 𝜌. 

 

FIGURE 1. Schematic diagrams showing the critical values of 𝜆 for the onset of stiff 

temperature profiles, as a function of plasma radius, 𝜌. (a) case (i); (b) case (ii); subcase a; and 

(c) case (ii) subcase b. The dashed horizontal lines separate the different zones of 𝜆 used in 

calculating F, as defined in the text, leading to differing numbers of intersections as 𝜆 increases. 

 

(i) Case �̂�𝜌𝟎 > 𝟏 

In this case stiffness moves steadily inwards from 𝜌 = 1 where the critical 

gradient condition is first satisfied. This occurs when 

 𝜆 = 𝜆c
(1)

= 2�̂� .             (17) 

Thereafter the onset of the stiff profile 

  𝜏 = e𝑐̂(1−𝜌)                       (18) 

 occurs at  𝜌 = 𝜌1(�̂�, 𝜆, 𝜌0) , where 𝜌1 is given by  

          𝜆 = 2�̂�𝜌1e𝑐̂(1−𝜌1)              (19)  
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and steadily migrates inward as 𝜆  increases, since the condition (18) implies 

        2�̂�(1 − �̂�𝜚1)
d𝜌1

d𝜆
= 1,               (20)         

so that  d𝜌1/d𝜆 < 0 for case (i). 

First considering the situation 𝜌0 <  𝜌1, we match the solutions (13) and (18) at 

𝜌 = 𝜌1 and (12) and (13), which is now modified by the stiff region, at 𝜌 = 𝜌0 to 

obtain 

                    𝜏 = 𝑒𝑐̂(1−𝜌1) +
𝜆

2
[ln (

𝜌1

𝜌0
) +

1

2
] −

𝜆

4

𝜌2

𝜌0
2 ,    𝜌 < 𝜌0,           (21)              

                        𝜏 = e𝑐̂(1−𝜌1) +
𝜆

2
ln (

𝜌1

𝜌
),   𝜌0 < 𝜌 < 𝜌1                              (22) 

and 

𝜏 = e𝑐̂(1−𝜌);    𝜌1 < 𝜌 < 1.                      (23) 

(In general, when we mention matching to the transport solution, eqn. (13), it may 

be modified by the imposition of a new outer boundary condition due to the 

intervention of a stiff region.) 

Next, we consider the case  𝜌1 <  𝜌0 when matching to eqn. (12) to eqn. (18) 

yields a modified equation for   𝜌1: 

𝜆 (
𝜌1

𝜌0
) = 2�̂�𝜌0e𝑐̂(1−𝜌1) ,                      (24) 

together with 

𝜏 = e𝑐̂(1−𝜌1) +
𝜆

4𝜌0
2 (𝜌1

2 − 𝜌2),   0 < 𝜌 < 𝜌1                      (25) 

and 

𝜏 = e𝑐̂(1−𝜌),   𝜌1 < 𝜌 < 1.                               (26) 

              

Equation (25) implies 

−2�̂�𝜌1(1 + �̂�𝜌1)
d𝜌1

d𝜆
=

𝜌1
2

𝜌0
2 ,                     (27) 

again ensuring d𝜌1/d𝜆 < 0, so that 𝜌1 continues to migrate inwards. 

The expressions (12 - 14), (21 - 23), (25) and (26) for 𝜏 can be used to calculate 

the function 𝐹(𝜆, �̂�, 𝜌0 ) characterising the plasma energy. It takes different forms, 
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dependent on 𝜆. It is useful to define several integrals that arise in calculating the 

various contributions to the plasma energy: 

𝐹(𝜌𝑎 , 𝜌𝑏) = 2 ∫ 𝜌𝜏d𝜌
𝜌𝑏

𝜌𝑎
 .                         (28) 

Thus, we have 𝐹𝑗(𝜌𝑎 , 𝜌𝑏), where 

            𝐹0(𝜌𝑎 , 𝜌𝑏) = 2 ∫ 𝜌dρ
𝜌𝑏

𝜌𝑎
; 𝐹1(𝜌𝑎 , 𝜌𝑏) = 2 ∫ 𝜌ln𝜌d𝜌

𝜌𝑏

𝜌𝑎
; 

    𝐹2(𝜌𝑎, 𝜌𝑏) = 2 ∫
𝜌3

𝜌0
2 d𝜌

𝜌𝑏

𝜌𝑎
 ;         𝐹3(𝜌𝑎 , 𝜌𝑏) = 2 ∫ e𝑐̂(1−𝜌)𝜌dρ

𝜌𝑏

𝜌𝑎
.                     (29)        

Specifically,  

𝐹0(𝜌𝑎 , 𝜌𝑏) = (𝜌𝑏
2 − 𝜌𝑎

2), 

 𝐹1(𝜌𝑎, 𝜌𝑏) = (𝜌𝑏
2 (ln𝜌𝑏 −

1

2
) − 𝜌𝑎

2 (ln𝜌𝑎 −
1

2
)) ,  

𝐹2(𝜌𝑎 , 𝜌𝑏) =
1

2𝜚0
2 (𝜌𝑏

4 − 𝜌𝑎
4) , 

𝐹3(𝜌𝑎 , 𝜌𝑏) =
2

𝑐̂2
[(1 + �̂�𝜌𝑎)e𝑐̂ (1−𝜌𝑎) − (1 + �̂�𝜌𝑏)e𝑐̂ (1−𝜌𝑏)].                      (30) 

For 𝜆 < 𝜆c
(1)

= 2�̂� , 

𝐹 = (1 +
𝜆

4
−

𝜆

2
ln𝜌0) 𝐹0(0, 𝜌0) −

𝜆

4
𝐹2(0, 𝜌0) + 𝐹0(𝜌0, 1) −

                                                       
𝜆

2
𝐹1(𝜌0, 1) ,                                                                 (31) 

so that  

 𝐹 = (1 +
𝜆

4
) −

𝜆𝜌0
2

8
.                                                        (32) 

For 𝜆c
(1)

< 𝜆 < 𝜆c
(2)

= 2�̂�𝜌0e𝑐̂(1−𝜌0), 

  𝐹 = {e𝑐̂(1−𝜌1) +
𝜆

2
[ln (

𝜌1

𝜌0
) +

1

2
]} 𝐹0(0, 𝜌0) −

𝜆

4
𝐹2(0, 𝜌0) + {e𝑐̂(1−𝜌1) +

             
𝜆

2
ln(𝜌1)} 𝐹0(𝜌0, 𝜌1) −

𝜆

2
𝐹1(𝜌0, 𝜌1) + 𝐹3(𝜌1, 1) ,                                             (33)    

so that  

  𝐹 = 2e𝑐̂(1−𝜌1) [
(1+𝑐̂𝜌1)

𝑐̂2
+

𝜌1
2

2
] −

2(1+𝑐̂)

𝑐̂2
+

𝜆

4
[𝜌1

2 −
𝜌0

2

2
]   ,                         (34)                    

where 𝜌1 is given by 

   𝜆 = 2�̂�𝜌1e𝑐̂(1−𝜌1)  .                                                                  (35)  
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For 𝜆c
(2)

< 𝜆, 

       𝐹 = [e𝑐̂(1−𝜌1) +
𝜆𝜌1

2

4𝜌0
2] 𝐹0(0, 𝜌1) −

𝜆

4
𝐹2(0, 𝜌1) + 𝐹3(𝜌1, 1),                            (36) 

leading to 

          𝐹 = 2e𝑐̂(1−𝜌1) [
(1+𝑐̂𝜌1)

𝑐̂2
+

𝜌1
2

2
] −

2(1+𝑐̂)

𝑐̂2
+

𝜆

8

𝜌1
4

𝜌0
2     ,                                             (37) 

where 𝜌1 is now given by   

                                      𝜆 (
𝜌1

𝜌0
) = 2�̂�𝜌0e𝑐̂(1−𝜌1).                                                       (38) 

Equation (24) implies 

−2�̂�𝜚𝜌1(1 + �̂�𝜌1)
d𝜌1

d𝜆
=

𝜌1
2

𝜌0
2 ,                     (39) 

again ensuring d𝜌1/d𝜆 < 0, so that 𝜌1 continues to migrate inwards. 

 

(ii) Case �̂�𝜌𝟎 < 𝟏 

In this case the critical value of 𝜆 for the onset of stiffness, given by eqn. (16), is 

satisfied at two values of 𝜌 , say 𝜌1 and 𝜌2, provided 𝜌0 < 𝜌2, as eqn. (16) only 

applies then.  Since the critical value of 𝜆 corresponding to 𝜌1 is 2�̂�, eqn. (16) 

implies that the corresponding value of 𝜌2 , which we denote by 𝜌2c, is given by  

𝜌2c(�̂�) = (1 + �̂�𝜌2𝑐ln𝜌2c).                     (40) 

                 

FIGURE 2. The variation of 𝜌2c with  �̂�; it is compared with 𝜌0 = 0.3 as an example. 
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Figure 2 shows 𝜌2c as a function of �̂�  which can be compared with 𝜌0 (𝜌0 =

0.3 is shown for comparison, as an example).      

Thus, if  𝜌0 > 𝜌2c stiffness first sets in at 𝜌 = 1, while if 𝜌0 < 𝜌2c,  it begins at 

an interior point. We thus define two sub-cases - (a): 𝜌0 > 𝜌2c and (b):  𝜌0 < 𝜌2c. 

 

Sub-case (a): 𝜌𝟎 > 𝜌2c 

As before, stiffness onsets at 𝜌 = 1 when 𝜆 = 2�̂� = 𝜆c
(1)

 and solution (18) for 𝜏 

holds until 𝜚1 satisfies condition (19) for a given 𝜆.  For smaller values of 𝜌, 𝜏 is 

given by eqn. (22). However, solution (22) will satisfy the condition for the onset 

of stiffness at a second point, 𝜌2 , given by 

𝜆c =
2𝑐̂𝜌2 e�̂�(1−𝜌1)

(1+𝑐̂𝜌2ln (𝜌2/𝜌1))
 ,                              (41) 

provided 𝜌2 > 𝜌0, of course. (Equation (41) is the modified form of eqn. (16), 

mentioned earlier.) Equation (19) for 𝜌1 then implies a relationship between 

 𝜌1 and 𝜌2:   

    𝜌2 = 𝜚1 (1 + �̂�𝜌2ln (
𝜌2

𝜌1
))   .                                                (42) 

The expression (41) still has a maximum at 𝜌 = 1/�̂� and differentiation of 

relation (42) shows that, because �̂�𝜌2 < 1 and �̂�𝜌1 > 1,   𝜌2 moves outwards 

towards 𝜌 = 1/�̂� , as 𝜌1 moves inwards towards the same point. The condition 

 𝜌2 = 𝜌0 defines �̅�1, a corresponding value for 𝜌1, from eqn. (42) and a critical 

value 𝜆c
(3)

  for 𝜆 from the relationship (30): 

   𝜆c
(3)

= 2�̂��̅�1e𝑐̂(1−�̅�1) ,                                       (43) 

where 

  𝜌0 = �̅�1 (1 + �̂�𝜌0ln (
𝜌0

�̅�1
)) .                           (44) 

Thus as 𝜆 increases there is a first onset of stiffness at 𝜌 = 1 when 𝜆 = 2�̂� = 𝜆c
(1)

; 

when 𝜆 > λc
(3)

there is a stiff region between  𝜌0 and  𝜌2 , with the region  𝜌2 <

𝜌 <  𝜌1  being governed by the transport solution (22). The stiff region between 

𝜌0 and  𝜌2  extends into the region 𝜌 <  𝜌0  as far as a radius  𝜌3 , with 𝜌3 

relabelling 𝜌1 in condition (19). 

This situation prevails until 𝜆 reaches the value at the maximum of eqn. (41) at 

 𝜌1 = 1/�̂�, namely  
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𝜆c
(4)

= 2e𝑐̂−1.             (45) 

Finally, for 𝜆 > 𝜆c
(4)

, the profile is stiff as far in as  𝜌 =  𝜌3. 

Consequently, for  𝜆 < 2�̂� = 𝜆c
(1)

, 𝜏 is given by eqns. (12) - (13) again. 

For  𝜆c
(3)

< 𝜆 < 𝜆c
(1)

 , we again have 𝜏 given by eqns. (21) – (23).  

For 𝜆c
(3)

< 𝜆 < 𝜆c
(4)

 ,  

𝜏 = e𝑐̂(1−𝜚);  𝜌1 < 𝜌 < 1  ,                           (46) 

as in eqn. (18), but solution (22) now has a restricted range: 

                        𝜏 = e𝑐̂(1−𝜌1) +
𝜆

2
ln (

𝜌1

𝜌
) ; 𝜌2 < 𝜌 < 𝜌1   .                                       (47) 

Matching a stiff solution at 𝜚 = 𝜚2 to solution (47) we have  

           𝜏 = e𝑐̂(1−𝜌1+𝜌2−𝜌) +
𝜆

2
ln (

𝜌1

𝜌2
) e𝑐̂(𝜌2−𝜌);  𝜌3 < 𝜌 < 𝜌2  .                            (48) 

The radius 𝜌3 is set by the onset of stiffness in the region 𝜌 < 𝜌0. Matching the 

stiff solution (48) to the transport solution defined by eqns. (12) – (13) leads to 

an equation for 𝜌3: 

𝜆𝜌3

𝜌0
= 2�̂�𝜌0 [e𝑐̂(1−𝜌1+𝜌2−𝜌3) +

𝜆

2
ln (

𝜌1

𝜌2
) e𝑐̂(𝜌2−𝜌3)]                           (49) 

and an expression for 𝜏: 

         𝜏 = 𝑒𝑐̂(1−𝜌1+𝜌2−𝜌3) +
𝜆

2
ln (

𝜌1

𝜌2
) e𝑐̂(𝜌2−𝜌3) +

𝜆

4

(𝜌3
2−𝜌2)

𝜌0
2 , 𝜌 < 𝜌3.                     (50)         

Finally, for 𝜆 > 𝜆c
(4)

, the profile is stiff as far in as  𝜌 =  𝜌3, with 𝜌3 relabelling 

𝜌1 in condition (19): 

        
𝜆𝜌3

𝜌0
= 2�̂�𝜌0e𝑐̂(1−𝜌3) ,             (51) 

so that  

                𝜏 = e𝑐̂(1−𝜌),    𝜌3 < 𝜌 < 1                          (52)                 

and 

𝜏 = e𝑐̂(1−𝜌3) +
𝜆

4

(𝜌3
2−𝜌2)

𝜌0
2 , 𝜌 < 𝜌3.                               (53) 

It remains to calculate the corresponding function 𝐹. 
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For 𝜆 < 2�̂� = 𝜆c
(1)

 it is again given by expression (32) and for 𝜆c
(3)

> 𝜆 > 𝜆c
(1)

 by 

the result (34).   

For 𝜆c
(3)

< 𝜆 < 𝜆c
(4)

, we have, using eqns. (46 - 48) and (50) for 𝜏, 

𝐹 = 𝐹3(𝜌1, 1) + (e𝑐̂(1−𝜌1) +
𝜆

2
ln(𝜌1)) 𝐹0(𝜌2, 𝜌1) −

𝜆

2
𝐹1(𝜌2, 𝜌1) +

             [e𝑐̂(𝜌2−𝜌1) +
𝜆

2
ln (

𝜌1

𝜌2
) e𝑐̂(𝜌2−1)] 𝐹3(𝜌3, 𝜌2) + [e𝑐̂(1−𝜌1+𝜌2−𝜌3) +

                    
𝜆

2
ln (

𝜌1

𝜌2
) e𝑐̂(𝜌2−𝜌3) +

𝜆

4

𝜌3
2

𝜌0
2] 𝐹0(0, 𝜌3) −

𝜆

4
𝐹2(0, 𝜌3)   ,                               (54) 

with 𝜆 = 2�̂�𝜌1e𝑐̂(1−𝜌1)  ,   𝜌2 = 𝜚1(1 + �̂�𝜌2ln (𝜌2/𝜌1)),   and   𝜆𝜌3/𝜌0 =

2�̂�𝜌0 [e𝑐̂(1−𝜌1+𝜌2−𝜌3) +
𝜆

2
ln(𝜌1/𝜌2)e𝑐̂(𝜌2−𝜌3)], 

which reduces to   

𝐹 = 2e𝑐̂(1−𝜌1+𝜌2−𝜌3) [
(1+𝑐̂𝜌3)

𝑐̂2
+

𝜌3
2

2
] + 2e𝑐̂(1−𝜌1) [

𝜌1
2

2
−

𝜌2
2

2
+

(1+𝑐̂𝜌1)

𝑐̂2
−

              
(1+𝑐̂𝜌2)

𝑐̂2
] −

2(1+𝑐̂)

𝑐̂2
+

𝜆

4
(𝜌1

2 − 𝜌2
2) +

𝜆𝜌3
4

8𝜌0
2 +

                    𝜆ln (
𝜌1

𝜌2
) [e𝑐̂(𝜌2−𝜌3) (

(1+𝑐̂𝜌3)

𝑐̂2
+

𝜌3
2

2
) −

(1+𝑐̂𝜌2)

𝑐̂2
−

𝜌2
2

2
]  .                               (55) 

Finally, for   𝜆 > 𝜆c
(4)

  ,   using eqns. (52) and (53) for 𝜏,                           

         𝐹 = 𝐹3(𝜌3, 1) + (e𝑐̂(1−𝜌3) +
𝜆

4

𝜌3
2

𝜌0
2) 𝐹0(0, 𝜌3) −

𝜆

4
𝐹2(0, 𝜌3)  ,                  (56) 

with 𝜌3 now given by 𝜆𝜌3/𝜌0 = 2�̂�𝜌0e𝑐̂(1−𝜌3), 

so that   

                   𝐹 = 2e𝑐̂(1−𝜌3) [
(1+𝑐̂𝜌3)

𝑐̂2
+

𝜌3
2

2
] −

2(1+𝑐̂)

𝑐̂2
+

𝜆𝜌3
4

8𝜌0
2 .                                     (57) 

  

Sub-case (b): 𝝆𝟎 < 𝝆𝟐𝐜 

In this case the onset of stiffness occurs at the internal point 𝜌0 and as 𝜆 increases 

beyond this critical value, a stiff region,  𝜌2 >  𝜌 > 𝜌3, opens out around 𝜌0 

before the onset of stiffness at 𝜌1 = 1. Further increases in 𝜆 lead to a similar 

evolution to that in sub-case (a); the transport-controlled region between 𝜌2 and 

𝜌1 shrinking and eventually disappearing, with a stiff profile covering the entire 

region 1 >  𝜌 > 𝜌3. 

According to eqn. (16) the onset of stiffness at  𝜌 = 𝜌0 occurs when 



 

 
13 

𝜆 = 𝜆c
(5)

=
2𝑐̂𝜌0

(1+𝑐̂𝜌0ln𝜌0)
  .             (58) 

As 𝜆 increases beyond 𝜆𝑐
(5)

, the outer limit of stiffness, 𝜌2, is determined by 

matching a stiff solution to the transport-controlled solution (13), 

𝜏 = 1 −
𝜆

2
lnρ,   𝜌2 <  𝜌 < 1 ,                      (59) 

yielding the equation: 

𝜆 =
2𝑐̂𝜌2

(1+𝑐̂𝜌2ln𝜌2)
   .                    (60) 

The form of the stiff solution within 𝜌2 >  𝜌 > 𝜌3 is obtained by matching it to 

the solution (59) at  𝜌 = 𝜌2: 

                 𝜏 = (1 −
𝜆

2
ln(𝜌2)) e𝑐̂(𝜚2−𝜌),       𝜌2 >  𝜌 > 𝜌3    .                                     (61) 

This can then be matched to solution (12) at  𝜌 = 𝜌3 to determine  𝜏0 and hence 

the form of 𝜏, which then provides an equation for  𝜌3 by imposing the stiffness 

condition. We find 

  𝜏 = e𝑐̂(𝜌2−𝜌3) (1 −
𝜆

2
ln(𝜌2)) +

𝜆

4

(𝜌3
2−𝜌2)

𝜌0
2   ,     𝜌 < 𝜌3                                   (62) 

and that  𝜌3 is determined by: 

𝜆𝜌3

𝜌0
= 2�̂�𝜌0e𝑐̂(𝜌2−𝜌3) (1 −

𝜆

2
ln(𝜌2)) .                              (63) 

When 𝜆 = 𝜆c
(1)

  there is the onset of stiffness at 𝜌 = 1, so that, as in eqns. (46) 

and (47), 

𝜏 = e𝑐̂(1−𝜌);  𝜌1 < 𝜌 < 1                             (64) 

and 

                        𝜏 = e𝑐̂(1−𝜌1) +
𝜆

2
ln (

𝜌1

𝜌
) ; 𝜌2 < 𝜌 < 𝜌1  .                                        (65) 

This modifies eqn. (60) for 𝜚2(𝜆), which becomes 

𝜆 =
2𝑐̂𝜌2 e�̂�(1−𝜌1)

(1+𝑐̂𝜌2ln (𝜌2/𝜌1)
   .                                                (66) 

The stiff solution (61) is also modified: 

                  𝜏 = [e𝑐̂(1−𝜌1) −
𝜆

2
ln (

𝜌2

𝜌1
)] e𝑐̂(𝜌2−𝜌),      𝜌3 < 𝜌 < 𝜌2,                            (67)   
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as are the results (62) and (63):  

   𝜏 = e𝑐̂(1−𝜌1+𝜌2−𝜌3) −
𝜆

2
ln (

𝜌2

𝜌1
) e𝑐̂(𝜌2−𝜌3) +

𝜆

4

(𝜌3
2−𝜌2)

𝜌0
2   ,    𝜌 < 𝜌3                       (68) 

and       

    
𝜆𝜌3

𝜌0
= 2�̂�𝜌0 [e𝑐̂(1−𝜌1+𝜌2−𝜌3) −

𝜆

2
ln (

𝜌2

𝜌1
) e𝑐̂(𝜌2−𝜌3)]  .                                   (69) 

Finally, when 𝜆 = 𝜆c
(4)

, the stiff region stretches inwards as far as 𝜌3: 

          𝜏 = e𝑐̂(1−𝜌),        𝜌3 < 𝜌 < 1 ,                          (70) 

with  𝜌3 now given by eqn. (63). 

Again matching eqn. (70) to solution (12) determines 𝜏0 and hence 𝜏 for the 

region 𝜌 < 𝜌3: 

                                  𝜏 = e𝑐̂(1−𝜌3) +
𝜆

4

(𝜌3
2−𝜌2)

𝜌0
2   ,     𝜌 < 𝜌3 .                    (71)  

It remains to calculate the corresponding functions 𝐹. 

For 𝜆 < 𝜆c
(5)

, result (32) still holds. 

For 𝜆c
(1)

> 𝜆 > 𝜆c
(5)

 we use eqns. (59), (61) and (62) to obtain 

     𝐹 = 𝐹0(𝜌2, 1) −
𝜆

2
𝐹1(𝜌2, 1) + e−𝑐̂(1−𝜌2) (1 −

𝜆

2
ln(𝜌2)) 𝐹3(𝜌3, 𝜌2) +

           [e𝑐̂(𝜌2−𝜌3) (1 −
𝜆

2
ln(𝜌2)) +

𝜆

4

𝜌3
2

𝜌0
2] 𝐹0(0, 𝜌3) −

𝜆

4
𝐹2(0, 𝜌3),                            (72) 

with         𝜆 = 2�̂�𝜌2/(1 + �̂�𝜌2ln𝜌2)   and   𝜆𝜌3/𝜌0 = 2�̂�𝜌0e𝑐̂(𝜌2−𝜌3)(1 −

(𝜆/2)ln(𝜌2)), 

so that 

       𝐹 = (1 +
𝜆

4
) (1 − 𝜌2

2) +
𝜆𝜌3

4

8𝜌0
2 + 2 [e𝑐̂(𝜌2−𝜌3) (

(1+𝑐̂𝜌3)

𝑐̂2
+

𝜌3
2

2
) −

(1+𝑐̂𝜌2)

𝑐̂2
 ] −

                    𝜆ln(𝜌2) [e𝑐̂(𝜌2−𝜌3) (
(1+𝑐̂𝜌3)

𝑐̂2
+

𝜌3
2

2
) − (

(1+𝑐̂𝜌2)

𝑐̂2
+

𝜌2
2

2
) ]  .                        (73)                                                                         

For 𝜆c
(4)

> 𝜆 > 𝜆c
(1)

 we have, taking account of results (64), (65), (67) and (68),  

            𝐹 = 𝐹3(𝜌1, 1) + [e𝑐̂(1−𝜌1) +
𝜆

2
ln(𝜌1)] 𝐹0(𝜌2, 𝜌1) −

𝜆

2
𝐹1(𝜌2, 𝜌1) +

                         [e𝑐̂(1−𝜚1) −
𝜆

2
ln (

𝜚2

𝜚1
)] e−𝑐̂(1−𝜚2)𝐹3(𝜚3, 𝜚2)  +
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          [e𝑐̂(1−𝜌1+𝜌2−𝜌3) −
𝜆

2
ln (

𝜌2

𝜚1
) e𝑐̂(𝜌2−𝜌3) +

𝜆

4

𝜌3
2

𝜌0
2] 𝐹0(0, 𝜌3) −  

𝜆

4
 𝐹2(0, 𝜌3),  (74)

                           

with 𝜆 = 2�̂�𝜌1e𝑐̂(1−𝜌1) , 𝜆 = 2�̂�𝜌2/(1 + �̂�𝜌2ln(𝜌2/𝜌1))   and 𝜆𝜌3/𝜌0 =

2�̂�𝜌0[e𝑐̂(1−𝜌1+𝜌2−𝜌3) − (𝜆/2)ln(𝜌2/𝜌1)e𝑐̂(𝜌2−𝜌3)], 

which reduces to 

     𝐹 −
2(1+𝑐̂)

𝑐̂2
+

𝜆𝜌3
4

8𝜌0
2 +  

𝜆

4
( 𝜌1

2 − 𝜌2
2) + 2e𝑐̂(1−𝜌1+𝜌2−𝜌3) [

(1+𝑐̂𝜌3)

𝑐̂2
+

𝜌3
2

2
] +

                  2e𝑐̂(1−𝜌1) [
(1+𝑐̂𝜌1)

𝑐̂2
+

𝜌1
2

2
−

(1+𝑐̂𝜌2)

𝑐̂2
−

𝜌2
2

2
] −

                  𝜆 ln (
𝜌2

𝜌1
) [e𝑐̂(𝜌2−𝜌3) (

(1+𝑐̂𝜌3)

𝑐̂2
+

𝜌3
2

2
) − (

(1+𝑐̂𝜌2)

𝑐̂2
+

𝜌2
2

2
) ] .                    (75)                    

Finally, for  𝜆 > 𝜆c
(4)

 , using results (70) and (71), we obtain     

            𝐹 = 𝐹3(𝜌3, 1) + [e𝑐̂(1−𝜌3) +
𝜆

4

𝜌3
2

𝜌0
2] 𝐹0(0, 𝜌3) −

𝜆

4
𝐹2(0, 𝜌3),          (76) 

with  𝜆𝜌3/𝜌0 = 2�̂�𝜌0e𝑐̂(1−𝜌3)  , 

or 

  𝐹 = 2e𝑐̂(1−𝜌3) [
(1+𝑐̂𝜌3)

𝑐̂2
+

𝜌3
2

2
] −

2(1+𝑐̂)

𝑐̂2
+

𝜆𝜌3
4

8𝜌0
2    .                       (77) 

 

4. A Gyro-Bohm Model 

A more realistic model for the basic diffusivity is gyro-Bohm, which has a 

temperature dependence 𝜒~𝑇3/2.  With this form the transport equation (1) can 

still be readily integrated, but for the function 𝑢 =  𝜏5/2,  rather than 𝜏 itself.  The 

structure of the results for 𝑢 are identical to those for 𝜏 if we make the 

replacements   

   𝜆 → �̅�   =  5 𝜆 /2;    �̂� → 𝑐̅ = 5 �̂� /2.                      (78) 

Here 𝜆  is now defined with 𝜒0 → 𝜒𝑎 = 𝜒(𝑟 = 𝑎). 𝑢 satisfies the same stiffness 

condition as 𝜏 when expressed in terms of 𝑐̅. However, the integrals involved in 

the normalised plasma energy function 𝐹 must be expressed in terms of 𝜏 = 𝑢2/5, 

which is a complication. The fact that 𝑐̅ is significantly greater than �̂� means that 

physically sensible values for 𝑐̅ correspond to 𝑐̅𝜌0 > 1, i.e., generally we need 

only consider the results for case (i). 

The expressions for 𝑢 can be used to construct 
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𝐹 = 2 ∫ 𝜚 𝑢2/5(𝜌)d𝜌
1

0
   .                                                           (79)  

  

We define  

  𝐹1(𝑢0, 𝜌𝑎 , 𝑏) = 2 ∫ 𝜚 (𝑢0 − 𝑏𝜌2)2/5𝜌𝑎

0
d𝜌 

                                          =
5

7𝑏
[𝑢0

7/5
− (𝑢0 − 𝑏𝜚𝑎

2)7/5 ] ,                                   (80)  

              𝐹2(𝜌𝑎, 𝜌𝑏, 𝑢1, 𝑑 ) = 2 ∫ 𝜚
𝜌𝑏

𝜌𝑎
(𝑢1 − 𝑑 ln𝜌)2/5d𝜌                                        (81) 

            = (
𝑑

2
)

2/5

e2𝑢1/𝑑 [Γ (
7

5
,

2𝑢1

𝑑
− ln𝜌𝑎

2) − Γ (
7

5
,

2𝑢1

𝑑
− ln𝜌𝑏

2)]                        (82) 

and 

                𝐹3(𝜌𝑎 , 𝜌𝑏) = 2 ∫ e𝑐̂(1−𝜌)𝜌d𝜌
𝜌𝑏

𝜌𝑎
        

                       =
2

𝑐̂2
[(1 + �̂�𝜌𝑎)e𝑐̂ (1−𝜌𝑎) − (1 + �̂�𝜌𝑏)e𝑐̂ (1−𝜌𝑏)] .                            (83) 

For  �̅� < �̅�c
(1)

= 2𝑐:̅ 

                𝐹 = 𝐹1 (1 +
�̅�

4
−

�̅�

2
ln 𝜚0 , 𝜌0,

�̅�

4𝜌0
2) +𝐹2 (𝜌0, 1,

�̅�

2
 )  ,                                  (84) 

so that 

𝐹 =
20𝜌0

2

7�̅�
[(1 +

�̅�

4
−

�̅�

2
ln 𝜚0)

7/5

− (1 −
�̅�

2
ln 𝜚0)

7/5

] +

                            (
�̅�

4
)

2/5

exp (
4

�̅�
) [Γ (

7

5
,

4

�̅�
 ) − Γ (

7

5
,

4

�̅�
− 2 ln 𝜚0 )]  ;                          (85)  

for �̅�c
(1)

< �̅� < �̅�c
(2)

: 

                  𝐹 = 𝐹3(𝜌1, 1) + 𝐹2 (𝜌0, 𝜌1,, 𝑒𝑐(̅1−𝜌1) +
�̅�

2
ln𝜚1,

�̅�

2
 ) +

                                      𝐹1 (e𝑐(̅1−𝜌1) +
�̅�

2
(ln (

𝜚1

𝜚0
) +

1

2
) , 𝜌0,

�̅�

4𝜌0
2),                             (86) 

leading to 

𝐹 = 
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20𝜌0
2

7�̅�
[(e𝑐(̅1−𝜌1) +

�̅�

2
(ln (

𝜚1

𝜚0
) +

1

2
))

7/5

− (e𝑐(̅1−𝜌1) +  
�̅�

2
ln (

𝜚1

𝜚0
))

7/5

] +

 (
�̅�

4
)

2/5

𝜌1
2exp (

2

𝑐�̅�1
) [Γ (

7

5
,

2

𝑐�̅�1
 ) − Γ (

7

5
,

2

𝑐�̅�1
+ 2 ln (

𝜚1

𝜚0
) )] +  2 e𝑐̂(1−𝜌1) (1+𝑐̂𝜚1)

𝑐̂2    
−

                                      
2(1+𝑐̂)

𝑐̂2
.                                                           (87)                                                   

Here we recall �̂� = 2𝑐̅/5  is to be used in the last term and where  𝜌1 is given by 

  �̅� = 2𝑐̅𝜌1e𝑐(̅1−𝜌1) .                               (88) 

For �̅� > �̅�c
(2)

 we have: 

𝐹 = 𝐹3(𝜌1, 1) + 𝐹1 (e𝑐(̅1−𝜌1) +
�̅�𝜌1

2

4𝜌0
2 , 𝜌1,

�̅�

4𝜌0
2)   ,                               (89) 

with the result 

                   𝐹 =
20𝜌0

2

7�̅�
[(e𝑐(̅1−𝜌1) +

�̅�𝜌1
2

4𝜌0
2)

7/5

− e(7𝑐/̅5)(1−𝜌1)] + 

                                                 2 e𝑐̂(1−𝜌1) (1+𝑐̂𝜚1)

𝑐̂2
−

2(1+𝑐̂)

𝑐̂2
 ,                                        (90) 

where 𝜌1 is now given by 

  �̅� (
𝜌1

𝜌0
) = 2𝑐̅𝜌0e𝑐(̅1−𝜌1)   .                                                          (91) 

In the above, Γ(𝑎, 𝑏 ) = ∫ e−𝑡𝑡𝑎∞

𝑏
d𝑡 is the Incomplete Gamma Function 

[Abramowitz, & Stegun, 1972]. 

This simple gyro-Bohm model suffers from having a thermal diffusivity that 

decreases radially outwards, whereas experiment suggests otherwise. To remedy 

this, we have modified the above analysis by including an additional, radially 

increasing, factor so that  𝜒~(1 + 𝛼𝜚2)𝜏3/2, with 𝛼 ~ 0(1) , a constant. This 

analysis is described in the Appendix. 

 

5. Confinement Results 

The various equations for the radii  𝜌1,2,3(�̂�) are solved numerically using Python 

[Virtanen et al., 2019] and Brent’s method [Brent, 1973] for the root solver. For 

both transport models it is useful to plot the various functions 𝐹(𝜆, 𝑐,̂  𝜌0) (or 

𝐹(�̅�, 𝑐̅, 𝜌0)) , normalised to the ‘fully-stiff’ limit 𝐹∞ attained as 𝜆 → ∞, against 
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�̂� = 𝜆/𝜆c (or �̂� = �̅�/�̅�c ), i.e., normalised to the relevant critical value,  𝜆c = 2𝑐 ̂, 

or �̅�c = 2𝑐̅ . 

The quantity 𝐹∞  follows from taking the limit 𝜌1 (or  𝜌3, as appropriate) → 0. 

This leads to 

𝐹∞ =
2e�̂�

𝑐̂2
−

2(1+𝑐̂)

𝑐̂2
  ,                  (92) 

which is a rapidly increasing function of 𝑐 ̂. The results for the functions F are 

shown in Fig. 3 for the constant 𝜒 model and in Fig. 4 for the gyro-Bohm one, 

covering a range of relevant values of �̂� and 𝜌0.  For these we choose 𝜌0 =

0.33, 0.66 and 1.0 , ranging from a more centrally localised heating profile to one 

that is constant in radius.  Since we expect c = 4 – 6 and  the inverse aspect ratio,  

a /R , to typically range from 0.3 for conventional tokamaks to 0.6 for STs, we 

select  �̂�  = 1.375, 2.75 and 4.125  as being representative. This corresponds to 

𝑐 ̅ = 3.438, 6.875 and 10.313.  For the constant 𝜒 model this involves all three 

cases: (i), (ii a) and (ii b), while for the gyro-Bohm model only case (i) is needed 

for such plausible values of 𝑐 and 𝜌0 (although central heating by ECRH might 

involve the other two cases).  

                

FIGURE 3. The variation of the function 𝐹(�̂�, 𝑐,̂ 𝜌0), normalised to the asymptotic value, 𝐹∞, 

characterising the plasma energy content, for the constant 𝜒 case, as a function of 𝜆/2�̂�, 

representing the power dependence. 𝜌0 = 0.33, 0.66 and 1.0 , ranging from more centrally 

localised heating to being constant in radius.    �̂�  = 1.375, 2.75 and 4.125  covering the range 

of critical gradients and aspect ratios from conventional tokamaks to spherical tokamaks  
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FIGURE 4. As for Figure 3, but for the gyro-Bohm model and in terms of �̅�, with the   

corresponding values  𝑐 ̅ = 3.438, 6.875 and 10.313.  

 

It is interesting to consider the special case of centrally localised heating, such as 

central electron cyclotron heating (ECRH), and investigate the limit of 𝜌0 → 0. 

Figure 5 shows the results for a sequence 𝜌0 = 0.01  to 1.0  for the constant 𝜒 

case and 𝑐̅ = 1.375. 

 

 

FIGURE 5. The convergence of  𝐹(�̂�, , 𝑐,̂ 𝜌0) to an asymptotic form for a sequence of values  

of 𝜌0 approaching zero (𝜌0 = 1.0 → 0.01  for the constant 𝜒 model with �̂�=1.375. 

 

The impact of the modified gyro-Bohm model described in the Appendix on the 

function 𝐹 is presented in Fig. 6 for 𝜌0 = 0.45 and c̅ = 6.875, with the 𝜒 profile 

parameter taking the values  𝛼 = 1 and 2; the simple gyro-Bohm (𝛼 = 0) and the 

constant χ (with the equivalent value of c) models are shown for comparison; this 

also allows a direct comparison of the two basic models . 

Commented [CJW1]:  

Commented [CJW2R1]:  
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FIGURE 6. The effect of the 𝜒 profile parameter, 𝛼 , of the improved gyro-Bohm model on 

the plasma energy content 𝐹 for 𝜌0 = 0.45 and 𝑐̅ = 6.875 with 𝛼 =  1, and 2. The simple 

gyro-Bohm case (𝛼 = 0) and the constant 𝜒 case (for the equivalent value of c) are shown for 

comparison. 

 

It is also illuminating to plot how 𝜌1, 𝜌2 and 𝜌3 (where appropriate) migrate as 𝜆 

increases, as shown in Fig.7(a) to 7(c) for some typical situations from cases (i), 

(ii a) and (ii b), respectively. These results indicate how the onset of stiffness 

develops as the net heating power increases and the stored plasma energy 

eventually saturates. 

         

                                                                                                                   (a) 
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   (b) 

                                                                                                                

 

                      (c)  

FIGURE 7. The evolution of  𝜌1,2,3(�̂�), the radii where the transitions to ‘stiff’ transport 

occur, as functions of the parameter �̂�, representing the net heating power for the case of a 

constant thermal diffusivity. (a)  𝜌0 = 0.6 , �̂� = 2.75   represents case (i); (b)  𝜌0 = 0.25 , �̂� =

2.75   represents case (ii a); (c) 𝜌0 = 0.3 , �̂� = 1.75 represents case (ii b). 𝜌2𝑐 is also shown. 

 

To investigate the effect of radiative losses, we have calculated 𝛾, the fractional 

reduction in  𝜆, before  𝐹 falls to 90% of its value, as a function of 𝜆𝐻, 

corresponding to the additional heating power, 𝑃H , as defined in eqn. (11). From 

eqn. (11)  this value of 𝛾 can be interpreted as the fraction of impurity radiative 

power, 𝑃Rad,  to 𝑃H (at constant 𝑃H), that is allowed before the plasma energy is 

significantly reduced. This is plotted as a function of the normalised heating 

power,  𝜆H, in Fig. 8  for the gyro-Bohm model and representative values of 

𝑐 ̅ and 𝜌0 (𝑐 ̅ = 3.438, 6.875 and 10.132  with 𝜌0 = 0.33 and 0.66). 
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FIGURE 8.  Allowed fraction of impurity radiative power, 𝛾 =  𝑃Rad/𝑃H before plasma 

energy content 𝐹(�̅�, 𝑐̅, 𝜌0) falls to 90%  of its value as a function of �̅�H, which corresponds to 

the heating power 𝑃H, in the case of the gyro—Bohm model∶  𝜌0 = 0.33 and 𝜌0 = 0.66 and , 

with  𝑐̅ = 3.438, 6.875  and 10.312. 

  

These results indicate how the onset of stiffness develops as the net heating power 

increases and rate at which the stored plasma energy eventually saturates. Given 

the results for 𝐹, one could also infer how a normalised energy confinement 

time, �̂�E,Rad = 𝐹(𝜆H(1 − 𝛾))/𝜆H,  (or just 𝐹(𝜆H(1 − 𝛾))) varies with 𝜆H, 

indicating the variation with net heating power, P, and with  𝛾, showing the 

impact of impurity radiative losses. In the absence of radiative losses, so that 𝛾 =

0 , this provides the basic normalised confinement time of course.  However, here 

we only illustrate these effects for  𝐹 itself, as shown in Fig. 9 for the gyro-Bohm 

transport model.  The parameters chosen are 𝑐 ̅ = 6.875 and 𝛾 =

0, 0.25, 0.5, 0.75 and  0.9. Figure 9(a) is the case 𝜌0 =

0.66   and  Fig. 9(b) is  ρ0 = 0.33. 

           

                                                                                                                (a) 
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                                                                                                                 (b) 

FIGURE 9.  The effect of the impurity radiation fraction, 𝛾 = 𝑃Rad/𝑃H, on  the normalised 

energy content, 𝐹(�̅�,   �̂�,  𝜌0) ,   with �̅�𝐻,  representing the heating power, 𝑃H,  and �̅� =

�̅�H(1 − 𝛾) representing the net heating allowing for impurity radiation, for the gyro-Bohm 

model with  𝑐̅ = 6.875 and   𝛾 = 0, 0.2, 0.7 and  0.9   for:  (a) 𝜌0 = 0.33  and  (b) 𝜌0 = 0.66 

. 

 

6. Discussion and Conclusions 

We have explored the effect of the onset of stiff temperature profiles on the 

plasma energy and energy confinement time as the net heating power, i.e., the 

difference between the applied heating power and the radiated power, increases 

and deduced how impurity radiation energy losses affect these results. 

Two models for transport in any diffusive regions of the radial profile are 

considered: constant 𝜒 and gyro-Bohm, though a modified gyro-Bohm model 

which incorporates an additional radial profile factor is discussed in the 

Appendix; density is taken to be constant in radius, r. The net heating profile is 

‘box-like’: constant for  𝑟 < 𝑟0 and zero beyond (𝜚0 = 𝑟0/𝑎 = 0.33, 0.66, 1.0 are 

taken as representative of more or less localised heating, respectively; for the case 

of central ECRH, it may be narrower of course, and is investigated separately. An 

H-mode edge pedestal temperature is taken, implying the heating power exceeds 

the L-H threshold value [ITER Expert Groups on Confinement and Confinement 

Modelling and Database, 1999, Doyle et al., 2007]. 

The condition for the onset of stiffness in the temperature profile is given by 

dln𝑇/d𝑟 = −𝑐/𝑅, where typically 𝑐~4 − 6 . For the constant 𝜒 case this leads 

to a more useful normalised parameter,  �̂� = 𝑐𝑎/𝑅; for the gyro-Bohm case this 

is replaced by  𝑐̅ = 5𝑐𝑎/2𝑅. We can expect �̂� to range from about 4/3 to 4 as 𝑎/𝑅 

ranges from 2/3 for an ST to 1/3 for a more conventional tokamak; 
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correspondingly 𝑐̅ ranges from about 10/3 to 10 for the gyro-Bohm model. Thus, 

we see STs are more resilient to stiff profiles. 

We have considered how the plasma energy content varies as the heating power 

increases.  We have defined a quantity 𝐹 , the normalised plasma energy 𝑊Tot =

6π2𝑅 ∫ 𝑛𝑇
𝑎

0
𝑟d𝑟, is relative to the pedestal energy, 𝑊Ped = 3π2𝑛𝑇𝑎𝑅𝑎2. The net 

heating power is parametrised by a quantity 𝜆 = 𝑃𝑟0
2/𝑛𝜒0𝑇𝑎(or �̅� = 5𝑃𝑟0

2/

2𝑛𝜒𝑎𝑇𝑎 for the gyro-Bohm case). To interpret this more physically, we can re-

write 𝜆 in terms of macroscopic quantities: 

𝜆 =
3

2

𝑃Tot𝜏Con𝑑

𝑊Ped
,                                         (93) 

where 𝑃Tot is the total net heating power (i. e., subtracting the total core radiation 

loss power) and 𝜏Cond = 𝑎2/𝜒0  (or 𝑎2/𝜒𝑎  for the gyro-Bohm model, where 

𝜆 is replaced by �̅� ) is a confinement time  corresponding to the thermal 

conduction mechanism. 

We have explored how the function 𝐹 responds to 𝜆 or �̅� , as appropriate. In fact, 

to unify the results on a single plot, it is useful to consider �̂� = 𝐹/𝐹∞, where  

𝐹∞ = 2e𝑐̂/�̂�2 − 2(1 + �̂�)/�̂�2, the value of 𝐹 as 𝜆 → ∞, as a function of �̂� =

𝜆/2�̂�; here the onset of stiffness at the plasma edge corresponds to  �̂� = 1.  Note 

�̂� = �̂̅�,  at given values of 𝑃 and 𝑐 , where �̂̅�, is  the corresponding quantity for 

the gyro-Bohm model, so the same scale can be used to compare the dependence 

on net heating power. The functions �̂� are parametrised by 𝜌0 and �̂� (or 𝑐̅,  as is 

appropriate to the gyro-Bohm model). Furthermore, they take different forms for 

𝜌0�̂� > 1 (case (i)) or 𝜌0�̂� < 1 (case (ii)). In fact, case (ii) sub-divides according 

as to whether 𝜌0 > 𝜌2c(�̂�) (sub-case (a)) or 𝜌0 < 𝜌2c(�̂�) (sub-case (b)], as 

explained in Fig.1;  𝜌2c(�̂�) as a function of �̂� is shown in Fig. 2. These cases 

correspond to different regions experiencing the onset of stiffness. In case (i) this 

begins at the plasma edge, in case (ii a), a second, interior, region subsequently 

emerges about 𝜌0, whereas in case (ii b) it appears there first.  

Results for �̂�(�̂�, 𝜌0, �̂� ) are presented in Fig. 3 for the  constant 𝜒 model and in 

Fig. 4 for the gyro-Bohm one (with appropriate re-definitions), for a physically 

reasonable range of the parameters. For the constant 𝜒 model this involves 

encountering all three cases, whereas for the gyro-Bohm model, only case (i) 

generally occurs. The result of allowing 𝜌0 ≪ 1, relevant to central ECRH, is 

shown in Fig. 5 for the constant 𝜒  model. Figure 6 shows the impact of the profile 

parameter 𝛼  of the improved gyro-Bohm model, described in the Appendix, on 

the plasma energy content (note that this plot is for 𝐹/𝐹∞;  𝐹 itself is proportional 
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to a further factor (1 + 𝛼)). Increasing 𝛼 (i.e. broadening the 𝜒 profile) makes 

the onset of stiffness progressively somewhat smoother than the simple gyro-

Bohm case; the constant 𝜒 case (for the equivalent value of c) is sharper than the 

simple gyro-Bohm. 

For the constant 𝜒 model, we show in Figs. 7(a) –(c) how the regions of stiffness 

(defined by up to three transition radii, 𝜌1, 𝜌2 and 𝜌3) evolve in relation to 𝜌0 for 

representative values of �̂� and 𝜌0 . Here 𝜌1 represents the onset of a stiff region 

at the edge, while 𝜌2 and 𝜌3 define the limits of an interior stiff region. As the 

input power increases, i.e. 𝜆 increases, 𝜌1 (or 𝜌3 if appropriate) approaches zero 

asymptotically, so that 𝐹 → 𝐹∞, corresponding to a completely stiff profile. At 

low values of  𝜆, before stiffness sets in, 𝐹 takes the value unity, corresponding 

to the pedestal energy value, plus a linear dependence on  𝜆 for the constant 𝜒 

model, before saturation eventually sets in, whereas for the gyro-Bohm model, it 

has a more complex dependence: linear in 𝜆 at first, increasing as 𝜆2/5 at larger 

𝜆, before saturation starts to occur. The stiffness onset, which occurs when 𝜆 =

2�̂�  (or �̅� = 2𝑐)̅ is also more gradual for the gyro-Bohm model. However, the 

variation of 𝐹 with 𝜆 at the onset of stiffness becomes sharper as the heating 

becomes more localised. This is emphasized by allowing 𝜌0 → 0; Fig. 5 shows 

how the onset of stiffness becomes sharper and sharper, approaching an 

asymptotic limit. 

One can also define a normalised energy confinement time, �̂�𝐸. Since  

                  𝜏E =
𝑊Ped

𝑃H,Tot
𝐹(𝜆, �̂�, 𝜚0),                                                      (94) 

eqn. (93) implies 𝜏E(𝜆H) = 3𝜏Cond𝐹(𝜆, �̂�, 𝜚0)/2𝜆H , where 𝜆H represents just the 

applied heating power. Thus, we define �̂�E(𝜆H) = 𝐹(𝜆, �̂�, 𝜚0)/𝜆H. If no impurity 

radiation is present, so that 𝜆 =𝜆H,   �̂�E represents the normal confinement time. 

It is in fact clearer to show just 𝐹(𝜆, �̂�, 𝜚0); examples for the more realistic gyro-

Bohm transport model are illustrated in Fig. 9, where the 𝛾 = 0 case (𝛾 =

𝜆Rad/𝜆H) shows the power dependence of the plasma energy content predicted 

by the modelling. For the energy confinement time itself, this case reflects the 

effects of diffusive transport at intermediate values of 𝜆H leading to a 𝜆H
−3/5

power 

dependence, as anticipated for gyro-Bohm transport, with a sharper inverse power 

dependence as stiffness sets in, eventually varying like 1/𝜆H. 

The pedestal energy may also have some power dependence, but we only make 

some brief comments on that here. The pedestal energy appears to increase with 

higher values of 𝛽Pol, the poloidal beta [Chapman et al., 2015, Connor et al., 
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2016]; indeed a scaling 𝑇Ped ∝ 𝛽Pol
1/2

 was found [Kirk et al., 2009, Maggi et al., 

2016]. This would imply 𝑊 ∝ 𝐹2, but the situation may be more complex. 

The results for 𝐹(𝜆, �̂�, 𝜚0) can also be used to infer the effect of 𝑃Rad on the 

plasma energy and confinement.  For a given level of heating power, 𝑃H, 

introducing the impurity radiative losses can be expected to diminish the plasma 

energy. The amount can be quantified by seeing the effect on 𝐹(𝜆, �̂�, 𝜚0) by 

reducing 𝜆 from  𝜆𝐻 (defined in terms of just  𝑃H) to  𝜆𝐻(1 − 𝑃Rad/𝑃H) at 

constant 𝜆𝐻. To be precise, we consider what reduction in 𝜆 from 𝜆𝐻  to 𝜆1, say, 

reduces 𝐹(𝜆, �̂�, 𝜚0) by 90% as a function of 𝜆 = 𝜆𝐻. The quantity 𝛿𝜆 = 𝜆H − 𝜆1 

then represents 𝜆Rad = 3𝑃Rad𝜏Cond/2𝑊Ped, which determines the acceptable 

radiative power. Thus, this value of  𝛾 = 𝜆Rad/𝜆H at fixed   𝜆H is equivalent to 

the ratio of the acceptable level of radiative power relative to the heating, as a 

function of the latter. Figure 8 shows the variation of 𝛾 (at fixed �̅�H) with �̅�H for 

the more realistic gyro-Bohm 𝜒 model. Clearly the results are rather insensitive 

to the width of the heating profile, but the radiative losses have a much greater 

effect on the plasma energy content at the larger values of �̂�. Figure 9 shows the 

equivalent impact of various levels of 𝛾 on the normalised plasma energy content, 

𝐹, as a function of �̅�H, showing how it moderates at the larger values of the 

heating power. 

It is useful to fit these numerical results with a simpler analytic form that describes 

the effect of heating power on confinement. We construct a form for 𝐹 that 

correctly recovers the linear form  of the  analytic, small  �̅� expansion of eqn. 

(84), merges into the �̅�2/5 form, characteristic of gyro-Bohm transport, at 

somewhat larger values, before starting to saturate after the onset of critical 

gradients at �̅� = 2𝑐̅. Eventually, it reaches the large �̅�, asymptotic limit in eqn. 

(92). A reasonably good fit is  

    𝐹𝑓𝑖𝑡 = 1 +
{

�̅��̂�

10
[1−2{1−𝜌0

2}ln𝜌0
2]+𝑏(𝐹∞−1)�̂�3/2}

1+𝑎�̂�3/5+𝑏�̂�3/2
, �̂� = �̅�/2𝑐̅ ,                           (95) 

where 𝑎 and b are fitting parameters, dependent on 𝑐̅ and 𝜚0. 

Figure 10 shows a comparison of the fit (95) with the form of eqns. (85), (87) and 

(90) for the parameters of Fig. 4 for optimised values of 𝑎 and b. For given values 

of 𝑐,̅  𝑎 and b depend on 𝜚0 as shown in Fig. 11, where the mean square errors 

characterising the ‘goodness of fit’ are also shown. Thus, the fit (95) for the 

plasma energy content includes a dependence on the heating profile. The 

dependence on the critical gradient parameter, 𝑐̅ ,  is complicated, but for a given 

stiff transport mode this value is well defined.  
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FIGURE 10.  Comparisons of the fit function (94) for  𝐹(�̅�/2𝑐̅,   𝑐̅,  𝜌0)  with the 

numerical results for the gyro-Bohm mode for 𝜌0 = 033, 0.66 and 1.0, with  𝑐̅ =

3.438,  6.875 and 10.313. The values of 𝜌0  are common in each column and 

increase from left to right and the values of  𝑐̅  are common in each row and increase 

from top to bottom. 
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FIGURE 11. The variation of the coefficients 𝑎 and 𝑏 used in the fitting function (94) with 

𝜌0  for 𝑐̅ = 3.438, 6.875 and 10.313. The left-hand column is for a, the middle column for b 

and the right-hand column shows the mean square error in the fits. The values of 𝑐̅  are common 

in each row and increase from top to bottom. 

Since 𝜆 = 𝜆H(1 − 𝛾), eqn. (95) also shows how impurity radiative losses affect 

confinement. The resulting confinement time scaling follows from τ̂E,Rad =

F(λH(1 − γ))/λH. This expression could be helpful in DEMO studies [Lux et al., 

2015, Lux et al., 2016]. 

 

So far, we have emphasized the effect of input power on the scaling of   𝐹  and �̂�𝐸,  

but the dependence on other machine parameters, such as appear in a typical ITER 

confinement scaling [Doyle et al., 2007] or ST scaling [Buxton et al., 2019],  

namely magnetic field,  B, plasma current, I, R, n, R/a, etc., would follow from 



 

 
29 

introducing such dependencies into the thermal diffusivity at the pedestal top,  𝜒𝑎.  

For the gyro-Bohm model one would expect 

         𝜒𝑎~
𝑇𝑎

3/2

𝐵2𝑎
(

𝑛𝑎

𝑇𝑎
2)

𝑝

𝑓 (
𝑎

𝑅
, 𝑞 … ) ,            (96) 

where 𝑛𝑎/𝑇𝑎
2 represents a possible collisionality dependence, 𝑝 is some power 

and 𝑓 is a function of geometry, such as inverse aspect ratio,  𝑎/𝑅, and the safety 

factor, 𝑞 [Connor, 1988]. Thus, for given values of 𝑊𝑃𝑒𝑑 and 𝑇𝑎, geometry and 𝑞,  

                                                    𝜆 ∝
𝐵2𝑎3−𝑝

𝑛1+𝑝
  ,                                                       (97) 

which can be introduced into eqn. (95), leading to an additional fitting 

parameter, 𝑝 , but covering a range of  𝐵, 𝑎 and 𝑛 . The results of such extensions 

could then be compared with global confinement databases [Doyle et al., 2007], 

optimising the choice of the parameters a and b, or relating them to the 

experimental values of the heating profiles and critical gradients. However, the 

issue of the pedestal energy remains to be resolved. 

To briefly summarise, our principal findings are: 

(i) The radial regions that first experience the onset of stiff transport are 

dependent on the heating profile and transport model and STs are 

more resilient to this onset occurring. 

(ii) The heating power dependence of the plasma energy content that 

takes account of the gradual onset of stiff transport (from which one 

can readily deduce the energy confinement) has been calculated. 

(iii) An algebraic expression for this power dependence has been 

developed and it reflects the nature of the heating profile. 

(iv) The extent to which impurity radiation losses impact on the energy 

confinement and modify the scaling law in the presence of stiff 

transport has been quantified.  

This modelling could  be improved while still retaining a similar calculation, 

though at the cost of more algebraic complexity, by (i) allowing an additional 

radial dependence in the thermal diffusivity, as in the example in  the Appendix, 

and (ii) allowing the impurity radiative loss to occur in a region of different width 

to that of the heating power, though still assuming both are box-like. Indeed, in 

the transport code simulations of Fable et al., 2019, it was found that the effect of 

impurity radiation on confinement was most reduced if the heating, due in that 

case to fusion reactions peaked on axis, was separated from an outer radiating 

zone.  Realistic radial profiles for these quantities could be addressed using the 

type of modelling presented here, using numerical solutions provided by a 
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transport code. However, the present calculation indicates, by allowing us to 

study in detail the properties of the analytic solutions, the care needed to monitor 

where the onset of critical gradients, arises, which we have seen can occur in 

distinct radial regions of the plasma as the heating profile changes. 

One of us, J W C, acknowledges valuable and stimulating discussions with Drs P 

Buxton, A Costley and S McNamara of Tokamak Energy, who brought this 

problem to my attention. 
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Appendix.  Improved gyro-Bohm Transport Model 

It is more realistic to supplement the simple gyro-Bohm scaling  𝜒~𝜏3/2 with an 

additional, radially increasing factor. We take  

https://arxiv.org/abs/1907.10121
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                       𝜒 =
(1+𝛼𝜚2)

(1+𝛼)
𝜒𝑎(1 + 𝛼𝜚2)𝜏3/2,                                                   (A.1) 

with 𝛼 an 0(1) constant.  This change implies that, for most reasonable 

parameters the onset of stiffness starts from the plasma edge and migrates steadily 

inwards, as in case (i) studied previously. Thus, this is the situation for 𝛼 = 2 and  

𝜌0 > 1/4 for example. 

The analysis proceeds as before, with the transport equation becoming  

    
1

𝜌

d

d𝜌
(𝜌(1 + 𝛼𝜚2)𝜏3/2 d𝜏

d𝜌
) = −

�̅�(1+𝛼)

𝜌0
2 ,           (A.2)                    

so that we can again solve for 𝑢 = 𝜏5/2/(1 + 𝛼). 

Before stiffness sets in, the solution is 

    𝑢 = 𝑢0 −
�̅�

4𝛼𝜌0
2ln(1 + 𝛼𝜚2),       𝜌 < 𝜌0                   (A.3) 

and 

                 𝑢 = 1 −
�̅�

4
ln (

𝜚2(1+𝛼)

(1+𝛼𝜚2)
) ,    𝜌 > 𝜌0   .                            (A.4) 

Matching eqns. (A.1) and (A.2) at 𝜌0 yields 

          𝑢 = 1 −
�̅�

4
(ln (

𝜌0
2(1+𝛼)

(1+𝛼𝜌0
2)

) +
1

𝛼𝜌0
2 ln (

(1+𝛼𝜚2)

(1+𝛼𝜌0
2)

)) ,     𝜌 < 𝜌0                            (A.5) 

As �̅� increases, stiffness sets in at 𝜌 = 1, when   

�̅� = �̅�c
(1)

= 2𝑐̅(1 + 𝛼) ,                     (A.6) 

when 𝑢 is given by  

𝑢 = e𝑐(̅1−𝜌)  ;   1 > 𝜌 > 𝜌1 ,                   (A.7) 

 with 𝜌1determined by 

�̅� = 2𝑐̅𝜌1(1 + 𝛼𝜌1
2)e𝑐(̅1−𝜌1) .                    (A.8) 

Then, for 𝜌0 < 𝜌 < 𝜌1 , 

𝑢 = e𝑐(̅1−𝜌1) −
�̅�

4
ln (

𝜚2(1+𝛼𝜌1
2)

𝜌1
2(1+𝛼𝜚2)

)                    (A.9) 

and, for  𝜌 < 𝜌0, 

               𝑢 = e𝑐(̅1−𝜌1) −
�̅�

4
(ln (

𝜌0
2(1+𝛼𝜌1

2)

𝜌1
2(1+𝛼𝜌0

2)
) +

1

𝛼𝜌0
2 ln (

(1+𝛼𝜚2)

(1+𝛼𝜌0
2)

)) .                     (A.10) 
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When 𝜌1 < 𝜌0 , which occurs when 

�̅� =  �̅�c
(2)

= 2𝑐̅𝜌0(1 + 𝛼𝜌0
2)e𝑐(̅1−𝜌0),                                  (A.11) 

we have  

𝑢 = e𝑐(̅1−𝜌);         𝜌1 < 𝜌 < 1                                               (A.12) 

and  

                   𝑢 = e𝑐(̅1−𝜌1) −
�̅�

4𝛼𝜌0
2 ln (

(1+𝛼𝜚2)

(1+𝛼𝜌1
2)

) ;  𝜌 < 𝜌1,                                    (A.13) 

where 𝜌1 is now determined by 

�̅�
𝜌1

𝜌0
= 2𝑐̅𝜌0(1 + 𝛼𝜌1

2)e𝑐(̅1−𝜌1)    .                                        (A.14) 

These expressions can be used to construct  

                            𝐹 = 2(1 + 𝛼)2/5
∫ 𝜌𝑢2/5(𝜌)d𝜌

1

0
 ,                          (A.15) 

which involves integrals of the type 

�̂�1 (𝜌𝑗 , 𝑢0 , 𝛼,
�̅�

4𝛼𝜌0
2) =

(1+𝛼)2/5𝑢0
2/5

𝛼 ∫ (1 −
1+𝛼𝜌𝑗

2

1

            
�̅�

4𝛼𝜌0
2𝑢0

ln𝑦)
2/5

d𝑦  
1

𝛼
(

(1+𝛼)�̅�

4𝛼𝜌0
2 )

2/5

exp (
4𝛼𝜌0

2𝑢0

�̅�
) [Γ (

7

5
,

4𝛼𝜌0
2𝑢0

�̅�
−

                           ln(1 + 𝛼𝜌𝑗
2

)) −  Γ (
7

5
,

4𝛼𝜌0
2𝑢0

�̅�
)]’ 

                                                                                                           (A. 16) 

            �̂�2 (𝜌𝑗 , 𝜌𝑘 , 𝑢1, 𝛼 ,
�̅�

4
) = 

(1 + 𝛼)7/5𝑢1

2

5
∫

d𝑦

(1+𝛼−𝛼𝑦)2

𝜌𝑘
2(1+𝛼)

(1+𝛼𝜌𝑘
2)

𝜌𝑗
2(1+𝛼)

(1+𝛼𝜌𝑗
2)

(1 −
�̅�

4𝑢1
 ln𝑦)

2

5
     ,                    (A.17) 

which needs numerical integration and, as before, 

             𝐹3(𝜌𝑗 , 𝜌𝑘) =
2

𝑐̂2
[(1 + �̂�𝜌𝑗)e𝑐̂ (1−𝜌𝑗) − (1 + �̂�𝜌𝑘)e𝑐̂ (1−𝜌𝑘)] ,            (A.18)        

where we emphasize �̂�, rather than 𝑐̅, re-appears.  Thus, we obtain for �̅� <  �̅�c
(1)
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𝐹 = �̂�1 (𝜌0, 1 −
�̅�

4
[ln (

𝜌0
2(1+𝛼)

(1+𝛼𝜌0
2)

) −
1

𝛼𝜌0
2 ln(1 + 𝛼𝜌0

2)] , 𝛼,
�̅�

4𝛼𝜌0
2) +

                             �̂�2 (𝜌0, 1,1 −
�̅�

4
ln(1 + 𝛼) , 𝛼,

�̅�

4
 ).                                 (A.19)

  

For   �̅�c
(1) < �̅� < �̅�c

(2)  

    𝐹 = �̂�1 (𝜌0, 𝑒𝑐(̅1−𝜌1) −
�̅�

4
(ln (

𝜌0
2(1+𝛼𝜌1

2)

𝜌1
2(1+𝛼𝜌0

2)
) −

1

𝛼𝜌0
2 ln((1 +  𝛼𝜌0

2))) , 𝛼,
�̅�

4𝛼𝜌0
2 ) +

              �̂�2 (𝜌0, 𝜌1, e𝑐(̅1−𝜌1) −
�̅�

4
ln (

(1+𝛼𝜌1
2)

𝜌1
2 ) , 𝛼,

�̅�

4
 ) +  𝐹3(𝜌1, 1).                     (A.20) 

                                                       

Finally, for �̅� > �̅�c
(2)

, 

         𝐹 = �̂�1 (𝜌1, e𝑐(̅1−𝜌1) +
�̅�

4𝛼𝜌0
2 ln((1 + 𝛼𝜌1

2)), 𝛼,
�̅�

4𝛼𝜌0
2 ) + 𝐹3(𝜌1, 1).    (A. 21)

                            

However, given that �̂�2 needs to be evaluated numerically, it is more 

straightforward to evaluate 𝐹 directly from eqn. (A.15) using the appropriate 

expressions for 𝑢(𝜌). 
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