
UKAEA-CCFE-PR(19)78

T. Farley, N. R. Walkden, F. Militello, M. Sanna, J.

Young, S. S. Silburn, J. Harrison, L. Kogan, I. Lupelli,

S. S. Henderson, A. Kirk, J.W. Bradley

Filament identification in wide-angle
high speed imaging of the Mega

Amp Spherical Tokamak



Enquiries about copyright and reproduction should in the first instance be addressed to the UKAEA
Publications Officer, Culham Science Centre, Building K1/0/83 Abingdon, Oxfordshire,
OX14 3DB, UK. The United Kingdom Atomic Energy Authority is the copyright holder.

The contents of this document and all other UKAEA Preprints, Reports and Conference Papers are
available to view online free at https://scientific-publications.ukaea.uk/

https://slack-redir.net/link?url=https%3A%2F%2Fscientific-publications.ukaea.uk%2F


Filament identification in wide-
angle high speed imaging of the
Mega Amp Spherical Tokamak

T. Farley, N. R. Walkden, F. Militello, M. Sanna, J. Young, S. S.

Silburn, J. Harrison, L. Kogan, I. Lupelli, S. S. Henderson, A. Kirk,

J.W. Bradley

This is a preprint of a paper submitted for publication in
Review of Scientific Instruments





Filament identification in wide-angle high speed imaging of the Mega Amp
Spherical Tokamak

T. Farley,1, 2, a) N. R. Walkden,1 F. Militello,1 M. Sanna,3 J. Young,1 S. S. Silburn,1 J. Harrison,1 L. Kogan,1 I.
Lupelli,1 S. S. Henderson,1 A. Kirk,1 and J.W. Bradley2
1)EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, OX14 3DB,
UK
2)Department of Electrical Engineering and Electronics, The University of Liverpool, L69 3GJ,
UK
3)Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari,
Italy

(Dated: 7 May 2019)

A new tomographic inversion technique is presented for the identification of plasma filaments in wide-angle
visible camera data. Direct inversion of camera data onto a field aligned basis is a poorly conditioned problem
which is overcome by breaking the analysis into a ‘psuedo-inversion’ step followed by a ‘point spread function
correction’ step. Camera images are first prepossessed, applying background subtraction, noise reduction and
sharpening enhancements to bring out the transient filaments structures in the images. A large collections of
equilibrium magnetic field lines are traced and projected onto the camera field of view. These field line images
are combined to form a geometry matrix which is used to produce a pseudo-inversion which is obtained from a
convolution of each individual field line image with the camera image. A tractable inversion is then performed
on a point spread function matrix which is derived from the geometry matrix. The resulting 2D intensity
distribution parameterised by the field line machine coordinates at the mid-plane of the machine is a good
approximation of the direct inversion problem. Blobs of high intensity are identified using the ‘watershed’
or ‘valley-filling’ algorithm and 2D Gaussians are fitted to get the positions, widths and amplitudes of the
filaments. A synthetic diagnostic producing artificial camera data containing experimentally representative
filaments is utilised to rigorously benchmark the accuracy and reliability of the technique. 74% of synthetic
filaments above the detection amplitude threshold are successfully detected and only 1.2% of detected filaments
are found to be false positives. The accuracy with which filament properties and their probability density
functions are recovered is discussed, along with sources of error and methods to minimise them.

I. INTRODUCTION

The competition between transport processes parallel
and perpendicular to the magnetic field in the scrape-off
layer (SOL) of a tokamak determines the radial profiles of
variables such as temperature and density that impinge
on divertor and first-wall surfaces1. These profiles im-
pact many aspects of the machine operation including
damage to plasma-facing components2, fuelling3, penetra-
tion of resonant heating waves4, impurity accumulation5,
detachment onset6 and tritium retention7,8. With this
in mind, it is important that a sound understanding of
perpendicular transport in the SOL is established. In the
last decade or so it has become increasingly clear that a
large portion of the radial flux of particles and heat in
the SOL is carried intermittently by mesoscale coherent
structures known as filaments (alternatively blobs, aval-
oids, IPOs)9,10. Recent forward modelling11 on MAST
has shown that particle12 and heat-flux13 profiles at di-
vertor targets can be reconciled with a transport based
on filament motion. The presence of filaments leads to a
non-local relationship between fluxes and gradients in the
SOL14 and a fuller understanding of the physics underly-
ing filaments is required before predictions can be made
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for future devices. This requires extensive experimental
measurements of filaments for comparison with modelling
and the informing of analytic filament frameworks.

The bulk of past filament measurements have used Lang-
muir probe based techniques, analysing the characteristic
non-Gaussian statistics of ion saturation current fluctua-
tions that arise from filaments passing the probe tip, with
the strongest non-Gaussian behaviour observed in the far
SOL, where the relative amplitude of the filament fluctua-
tions is largest15. Positively skewed fluctuation statistics
are observed universally in toroidal plasma devices10, with
in depth studies on tokamaks including Alcator C-Mod16,
TCV15, MAST17 and JET18, among others19, providing
information about filament amplitudes, dimensions, ve-
locities and waiting times between filaments. With the
exception of a few multi-probe studies20, Langmuir probes,
whether fixed or reciprocating, are limited to studies of
filament population statistics and cannot provide infor-
mation about filaments throughout their lifetimes (i.e.
once they have passed the probe tip); information impor-
tant for a full understanding filament dynamics. Beam
Emission Spectroscopy (BES) diagnostics on NSTX21,22,
DIII-D9,23 and TEXTOR24, as well as Gas Puff Imaging
(GPI) diagnostics on NSTX22,25–28, Alcator C-Mod25,29,30

and ASDEX Upgrade31 provide 2D density profiles in the
plane perpendicular to the magnetic field, from which fil-
aments can be identified and their motion studied. While
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these techniques provide excellent high spatial and tem-
poral resolution measurements in the poloidal plane, they
are limited to measuring a small area of the SOL and are
unable to provide information about the parallel structure
of filaments.

In this paper we look at the application of direct wide-
angle fast visible imaging, which has the potential to
provide information about the perpendicular and parallel
structure of filaments across their full lifetimes.

Fast framing camera technology has improved drasti-
cally since the earliest visual observations of filaments in
the 1980s32,33. Modern fast framing cameras are now ca-
pable of recording the whole plasma at resolutions, frame
rates and exposure times sufficient for resolving filament
motion. Visible imaging can now provide similar resolu-
tion data for filament positions, sizes and velocities, as
other techniques, while having a number of benefits which
enable the collection of larger quantities of filament data
and simplify implementation. Firstly, visible imaging is a
passive technique and hence can operate over a wide range
of conditions, for the whole duration of a pulse, without
temporal constraints or the need for perturbative probe,
gas or neutral beam injection. This also means that the
measurement is not spatially constrained to a small region
local to a gas nozzle or beam path and can instead explore
large regions of the SOL, both around the mid-plane and
the divertor. The passive nature of the measurement
also reduces its complexity, avoiding the complications of
understanding complex non-equilibrium phenomena such
as gas plume propagation or neutral beam-plasma inter-
action, instead relying on relatively uniform and slowly
varying excitation and ionisation rates. Secondly, visible
imaging can provide information about the full parallel
structure of filaments, informing us about their 3D na-
ture to a degree that other diagnostics cannot. With
these strengths, fast visible imaging is well positioned to
significantly improve our understanding of filaments.

Past fast camera analyses of filaments have either been
performed manually, making them time consuming and
subjective, or have achieved automation of the measure-
ment of a limited subset of filament parameters. Past
simultanious measurements of both toroidal and radial
filament properties (positions, widths and velocities)34–36

have involved the manual alignment of projected field
lines with filamentary structures in camera images by eye;
a challenging exercise owing to their translucent, diffuse
nature and their interactions with one another, greatly
reducing the quantity of data that has been analysed.
Automated or semi-automated measurements of radial
(toroidal) positions, widths and velocities have previously
been made by considering the time varying intensity of
specific radial12,34,36 (toroidal34,37) arcs of image pixels to
infer the passage of filaments along the length of the arc.
These techniques rely on finding areas of an image where
the camera line of sight is such that pixel coordinates
along a line can approximately be mapped directly to ra-
dial (toroidal) coordinates and typically assume that only
one filament is passing the arc at any one time. More so-

phisticated techniques set a fixed radial position a prioiri,
typically close to or at the separatrix, and located maxima
in the average intensity of superimposed field lines as a
function of their toroidal position12,35,36,38. This incurs
uncertainties in the measured quantities (e.g. typically
error in toroidal widths35) due to the uncertainty in the
precise radial position of the filaments and fails to capture
information about the radial properties (positions, widths
and velocities) of the filaments. Furthermore, with the
exception of Ref. 12, all applications of these autonomous
or semi-autonomus techniques have focused on narrow,
windowed camera views of specific areas of the plasma
(e.g. the outboard mid-plane36,38, centre column36 or top
outside corner of the plasma34), in order to maximise
the camera’s frame rate, thus limiting the number of ob-
servable filaments and restricting the length of filaments
along which parallel structure can be explored.

This paper describes a new technique that has been
developed to automate the identification and analysis of
filaments in fast camera data, with the goal of retrieving
as much individual filament data as possible. The tech-
nique is designed to simultaneously measure the positions,
widths, amplitudes and velocities of individual filaments,
across a large extent of the plasma. Further quantities
can be derived from these measurements such as the quasi-
toroidal mode number and the distributions of filament
separations and waiting times. As all quantities can be
measured for individual filaments, inter-relationships be-
tween different filament properties can be investigated. In
this way a large database of filament properties can be gen-
erated, enabling big data approaches to the understanding
of the statistical properties of filament parameters and
their dependence on engineering and physics parameters.
A good understanding of these statistics will enable the
validation of analytic frameworks such as that developed
by Militello and Omotani11 and provide the inputs for
these frameworks, greatly improving our understanding
of the filamentary generation of SOL density profiles.

Section II discusses the specification and set-up of the
camera system for which the technique has been devel-
oped, before Section III details the technique itself. Sec-
tion IV describes the synthetic camera diagnostic which
has been developed to test the technique, while Section
V discusses its implementation in benchmarking the tech-
nique and quantifying the technique’s systematic and
random errors. Section VI demonstrates the application
of the technique to experimental data and interprets the
results applying insight from the benchmarking analysis.
Section VII concludes the paper by summarising the key
findings and giving the outlook for future refinement and
applications of the technique.

II. DIAGNOSTIC SPECIFICATION

The open design of the MAST vessel facilitates deep-
field, wide angle views of the MAST plasma. Two tan-
gential viewing geometries are available corresponding
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(a) (b)

FIG. 1: a) Schematic of the field of view of the Photron
SA-1 fast camera when installed at the mid-plane or
divertor. b) False color image of a MAST plasma, as

viewed by the SA1 camera, with a CAD rendering of the
MAST vessel components overlaid.

to the ‘main chamber’ and ‘divertor’ views as shown in
Fig. 1a. This paper concerns the ‘main chamber’ viewing
geometry. Also shown in Fig. 1b is a false color image
of a MAST plasma with a CAD rendering of the MAST
vessel components overlaid. The center-column and P4
poloidal magnetic field coil are highlighted to guide the
eye.
The camera used was a Photron SA1.1 fast framing cam-
era1. The frame rate of the camera was 100 kHz with an
integration time of 3 µs and a pixel resolution of 256×160,
corresponding to a spatial resolution at the tangency plane
of 5 mm. The camera was unfiltered such that the light
emission recorded was dominated by Dα emission. The
poloidal plane perpendicular to the camera line of sight
falls at the toroidal angle φ = 215◦, where the toroidal
machine coordinate φ is 0◦ at the start of the first octant
and continues round clockwise.

The camera position in real space is calibrated using
the Calcam39code which maps points selected in a 3D
rendering of the MAST vacuum vessel onto 2D pixel
coordinates of the camera image. This camera registration
then allows for paths in real space to be cast onto the
image plane of the camera. In this way, 3D magnetic
information can be mapped onto the camera field of view.

1 Photron SA1 specification: https://photron.com/fastcam-sa1-1

III. FILAMENT IDENTIFICATION TECHNIQUE

A. Overview and Assumptions

The goal of the technique we have developed is to take
as inputs 1) camera images, 2) a camera calibration and
3) a magnetic equilibrium description and return the
positions, widths and orientations of filaments within the
frames.

Due to the fact that filaments are 3D objects with no
exploitable toroidal or poloidal symmetry, conventional
tomographic inversion techniques, such as an Abel in-
version, cannot be used to study them. The technique
presented here operates by using information about the
magnetic geometry to restructure the 2D intensity infor-
mation present in the camera images onto the horizontal
R-Rφ plane at the mid-plane (Z = 0), where R is major
radius, φ is the angular toroidal position and Z is the
vertical machine coordinate. Rφ is the toroidal arc length
at the outer midplane and is used in place of φ as the
toroidal coordinate, so that both dimensions have units
of length, from which meaningful filament dimensions can
be found.

Two central assumptions about the nature of filaments
are made in order to progress. A) Filaments are assumed
to be aligned well to the background magnetic field which
can be calculated via magnetic reconstruction. This is
to be expected given the magnitude of parallel transport
relative to perpendicular transport, which quickly spreads
blobs of plasma along field lines. Secondly, B) the light
emission from a filament is treated as being constant in
the direction parallel to the magnetic field.

The first of these assumptions is justified by a large
base of experimental data from MAST36 alongside other
tokamaks19,40. The second assumption contains two fac-
tors. First, filaments are assumed to be homogeneous
along magnetic field lines in the camera field of view. This
is justified a posteriori by observation of the fact that
filaments are always observed to span the entire length of
field lines within the camera’s view. While some appar-
ent parallel variation in light emission is observed, it is
many times weaker than the cross-field variation. This is
expected as parallel transport is very efficient on the rele-
vant time scales and so will tend to smooth out differences
along field lines. In the absence of a precise description
of the parallel variation of the filaments, treating them as
homogeneous is sufficient for us to proceed. The second
factor is the assumption that the neutral density in MAST
remains homogeneous along the length of the filament.
This is motivated by the open vessel design of MAST
which leads to homogenous neutral disributions away
from the divertor41. While this assumption breaks down
close to the divertor surface, we are concerned with the
main chamber where this is not an issue. In principle both
of these assumptions could be relaxed through suitable
modifications to the technique. However the complexity
this introduces was not deemed to be worthwhile at this
stage. The technique also benefits from strong magnetic
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a) b)

FIG. 2: a) Field line image composing a single column in
the geometry matrix Gij . b) Emission from a bundle of

field lines with amplitudes given by a 2D Gaussian.

shear in the SOL, as strong variation in the magnetic
pitch angle helps to constrain the radial position of the
filaments. Therefore, MAST with its tight aspect ratio
and thus higher level of shear close to the separatrix than
in most tokamaks, is well suited to this analysis.

Combining assumptions A and B, the filament struc-
tures observed in fast camera images can be formed by
a linear superposition of images of uniformly emitting
field-lines from the equilibrium magnetic field, cast onto
the camera field of view. This can be expressed as a
linear operation as follows using the Einstein summation
convention:

Ii = εjGij (1)

Here the vector I is the ‘image vector’ which is a con-
tiguous vector containing each pixel in the camera image
such that Ii is the ith pixel value in the camera image.
This is a measured quantity. G is the ‘field-line geometry
matrix’ and is constructed from the individual ‘field-line
images’ from the chosen basis of equilibrium field lines
such that Gij is the ith pixel value of the image vector
of the jth magnetic field line. An example of a field line
image that forms a column of G is shown in Fig. 2a). G
can be constructed given a description of the magnetic
equilibrium and a calibration of the camera field of view.
ε is the ‘emissivity vector’ and gives the contribution of
each field line in the field line geometry matrix to the
camera image, such that εj is the emissvity of the jth

magnetic field line. This is the quantity we seek.
Fig. 2b) is an example of a reshaped image vector I

resulting when Eq. (1) is applied to an emissivity vector
ε representing a Gaussian bundle of field line emitters.

Eq. (1) represents casting the information in the camera
images from a pixel basis set onto a field line basis set,

(a)

(b)

FIG. 3: a) An experimental camera frame from MAST
shot 29852, with the pre-processing described in Section
III B applied. b) Pseudo-inversion calculated using the

frame in a). The Inversion in b) is also superimposed on
the frame in a) to illustrate the (R,φ) mid-plane

coordinate system.

which facilitates the identification of field aligned plasma
structures. Thus, filaments appear as blob like regions of
high intensity field lines in εj , from which the filaments’
sizes and locations can be deduced in a similar way as for
poloidal intensity distributions produced by GPI or BES
diagnostics.

Eq. (1) is an inversion problem where the goal is to
find εj by inverting the matrix Gij . This is usually solved
as a linear least squares problem. Unfortunately, given
the camera resolution, viewing geometry and density of
filaments in the field of view, the problem is strongly
under resolved, so that Gij is so close to being singular,
making the procedure intractable.

This problem is overcome by calculating a pseudo-
inversion, ξ, that benefits from being robust to noise
and being applicable to a subset of the toroidal and radial
SOL domain. We then recover ε though the inversion of
a point spread function (PSF) matrix which removes dis-
tortions inherent to ξ. Though this technique, inversion
of the camera images becomes a tractable problem, with
reliable results. Fig. 3 illustrates the toroidal emission
plane onto which the camera data is inverted.

The rest of this section describes the implementation of
the technique, from pre-processing of the camera images,
the psuedo-inversion and PSF correction steps, to the
identification of filaments within the inverted data.
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FIG. 4: a) Raw image from MAST shot 29841 at 0.22424s. b) Background subtracted image using 10 frames prior to
the desired frame to construct a background. c) Application of the bi-lateral median filter. d) Application of a

Gaussian de-blurr.

B. Pre-processing

A series of pre-processing steps are applied to the cam-
era images before the extraction of filamentary structures
is performed. The technique is motivated by the fact that
filaments in the SOL represent positive perturbations on
top of a background, therefore perturbations in the light
emission are also positive, making the background the
minimum in the signal over time. Thus a background
subtraction technique is applied to the movie to remove
the low-frequency background component of the light
emission and extract just the fluctuating part containing
the filaments. This step is necessary to avoid the fila-
ments being washed out by background light emission in
the SOL and prevent first wall structures confounding
the analysis. The background calculation, which follows
in a similar manner to that described by Dudson35, is
achieved by taking the pixel-wise minimum in the light
intensity over a set of 10 frames (0.1 ms) that preceded
the frame of interest in time. This technique has pre-
viously been applied in Refs. 12, 35, 36, and 38 and
discussion of the validity of the technique can be found
therein. Other background calculations were considered
by instead taking the background as represented by either
the mean, median or the low frequency (extracted from a
pixel-wise FFT) component of the total emission. In the
first two cases this led to non-physical negative pertur-
bations in the SOL which could not be reconciled with
Langmuir probe measurements17. The latter performed
similarly to the minimum technique, however the calcu-
lation was considerably slower, so the minimum based
background subtraction was adopted. Following back-
ground subtraction a bi-lateral median filter42 is applied
which is a gradient preserving noise removal method. The
reduced dynamic range of the background subtracted im-

ages reduces the signal to noise ratio due to shot noise
making noise removal particularly useful. Noise removal
is followed by a Gaussian de-blur (weighted subtraction
of the image convolved with a Gaussian kernel) which
helps to re-sharpen the image after the smoothing of the
noise removal. These two filters, while not vital elements
of the technique like the background subtraction, have
been found to effectively reduce the propagation of noise
through the analysis. Fig. 4 shows an example of an im-
age with each of the techniques described in this section
applied in turn.

C. Inversion

The next stage of analysis is an inversion of the signal
(as results from the previous three stages of pre-processing)
onto real space coordinates, εR-Rφ.

With the previously stated assumptions in place the
analysis proceeds by projecting magnetic field line tra-
jectories onto the camera image. Magnetic field lines are
traced using a 4th order Runge-Kutta integrator with
the magnetic field structure provided by an EFIT++43,44

equilibrium reconstruction. The magnetic field lines are
parametrised by their launch positions at the mid-plane
(R,Rφ), about a central toroidal angle φ0. A grid of field
lines is traced describing a volume SOL in the camera
field of view. The calcam code is used to project the
field lines onto the camera field of view and images are
produced accounting for volumetric integration effects
[Fig. 2a)]. Each image is then flattened into a contiguous
vector and used to form a column of G. G need only be
recomputed when the magnetic equilibrium or camera cal-
ibration changes and thus once calculated can be utilised
to invert a large collection of frames.

Multiplying both sides of Eq. (1) by G yields the
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‘pseudo-inversion emissivity vector’,

ξj = GijIi = GijεkGik (2)

such that ξj is the pseudo-inversion intensity of the jth

magnetic field line for the image vector I.
Figs. 5a) and 5b) show an experimental camera frame

and its corresponding pseudo-inversion respectively. The
pseudo-inversion, which is the convolution of each indi-
vidual field line image with the camera image, has some
favourable properties. As it can be calculated using a
simple matrix product, it is computationally far lighter
than solving Eq. (1) directly. It negates the need for
a full coverage of the toroidal cross-section because the
dominant contribution to the pseudo-inversion is from
magnetic field lines with trajectories close to the selected
one, with other field lines far from the selected one having
minimal impact. This allows the use of much smaller,
lower resolution matrices than before. Additionally, it
has a very suppressive effect on noise in the camera im-
age because of the inherent averaging along field lines.
However, it is affected by a set of distortions that make
it differ from the desired emissivity vector, ε, resulting
from a direct inversion. These distortions occur due to
line of sight effects which cause different field lines to
overlap along portions of their length in the camera field
of view. Overlapping of neighbouring field lines leads
to smearing, while overlapping of more separated field
lines can produce spurious areas of high intensity.Finally,
overlapping of background filament structures outside of
the inversion domain contributes low level noise in the
pseudo-inversions. The frequency and extent of overlap-
ping field lines varies throughout the camera field of view
in a complex manner. Fortunately, information about the
overlapping of field lines and the resulting distortions is
contained in G. Taking the dot product of G with the
transpose of itself gives the ‘point spread function’ (PSF)
matrix,

Pjk = GijG
T
ik (3)

where Pjk gives the relative contribution of the kth field
line to the observed emission along the jth field line. Given
a 3D field line is represented by a point on the horizon-
tal (R, φR) mid-plane, the PSF represents the resulting
spread in ξ, synonymous with the conventional case of
a PSF relating the response of a camera to a δ-function
source of light. Mathematically the PSF is the convolution
of one field line with all others, expressing how inverted
emission spreads onto overlapping field lines. With this
quantity defined, Eq. (2) can be rearranged to give

ξj = εkGijG
T
ik = εkPik , (4)

where we exploit the fact that we can change the order
of multiplication by taking the matrix transpose of the
field line geometry matrix. Eq. (4) is again a standard
linear inversion problem where ξj is a measurable, the
matrix Pik is pre-computable and known, and we want
the unknown emission vector, εk, which is exactly the

same problem as the one in Eq. (1). The advantage now
is that the matrix to invert is square and much smaller
and so is much more amenable to inversion and less com-
putationally demanding. Eq. (4) is solved using the
non-negative constrained SART (Simultaneous Algebraic
Reconstruction Technique) inversion algorithm described
in Ref. 45 with Laplacian regularisation. This produces
good results after several hundred iterations which cor-
responds to around a couple of minutes of computation
time for typically sized inversion domains. The use of
Laplacian regularisation, which has the effect of smooth-
ing the inverted emissivity, follows from the fact that in
reality the basis of field-lines we choose to compose G
will never exactly describe all the fine structure observed
in the camera images. The effect of the PSF correction
step is to reduce blurring and banding that arises from
geometric line of sight effects that affect the convolution
and thus it better constrains filament widths and reduces
spurious regions of emission, although some artefacts do
remain. The effect of the PSF correction is illustrated
in Fig. 5c). Applying Eq. (1) to the emission vector
represented in Fig. 5c) we can re-project the emission
back into the camera plane [discussed further in Section
IV] as shown in Fig. 5d) . Many of the most prominent
filamentary structures in 5a) are reproduced. Due to the
reduced domain of the inversion the re-projection only
describes emission in that volume containing field lines
that cut through the horizontal plane indicated in red,
analogous to a flux-tube often used in simulations. For
this reason, the re-projection does not contain structures
at the upper or lower divertor regions or on the far side
of the plasma. An artefact is often observed where excess
emission is placed at the borders of the inversion domain,
particularly visible in the far SOL. This arises due to
the SART algorithm struggling to distribute emission
correctly at the boundaries of the inversion domain. For
this reason, filament detections are limited to the region
within the dotted white border box in Fig. 5.

D. Filament Identification

To extract filament properties from the inverted emis-
sivity vector a blob detection algorithm based on the
watershed algorithm is used. 2D Gaussians are fitted to
the identified blobs in order to extract the position (R,
φR), widths (δR, δφR), amplitudes (A) and orientation
(θ) of the filaments.

The watershed algorithm requires the identification of
marker points which are inside definite filament regions
(foreground) and inside regions that are definitely not
filaments (background). To produce the markers, an
empirical field line emissivity amplitude threshold is set,
εthresh, below which a significant proportion of local peaks
in field line emissivity are found to originate from noise
or remnant pseudo-inversion distortion effects [see white
contour in Fig. 6a)]. Alternatively, the threshold can be
set to a number of standard deviations above the average
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FIG. 5: a) Pre-processed camera frame with superimposed filament centre field lines. b) Emissivity data resulting
from the pseudo-inversion. The range of toroidal angles covered by the inversion domain are indicated. c) Emissivity

data after the PSF correction. Coloured ellipses indicate the filaments projected on the frame images. The white
dashed rectangle indicates the analysis region which avoids boundary effects and the white vertical dashed line shows
the location of the separatrix. d) Reprojection of the emissivity data in c). The red line indicates the inversion plane

from which the emission is projected along field lines.

pseudo inversion intensity across all the frames, akin to
many past measurements in the literature9,46. However,
the first method has the benefit that all filaments above
the noise floor of the technique can potentially be anal-
ysed, as opposed to imposing a somewhat arbitrary e.g.
2.5σI cut-off in the amplitude of the coherent filamentary
structures that are analysed. Further details of the selec-
tion of this parameter are given in Section V D. Clusters
of high intensity field lines with a peak amplitude above
this intensity threshold, are considered to be filament can-
didates. Dilated regions around all 2D local minima and
local maxima with intensities below εthresh are labelled as
background (not filaments). Dilated regions around 2D
local maxima with intensities above εthresh are labelled
as foreground (potential filament centres). With these
regions as inputs [Fig. 6b)], the watershed algorithm
sorts the remaining unassigned regions into background
[purple regions in Fig. 6c)] or distinct foreground regions
[coloured regions in Fig. 6c)]. The watershed algorithm
can be pictured in terms of different coloured pools of
water originating at the distinct foreground markers. The
water in each pool is allowed to rise and spread according
the terrain of the data until it comes into contact with
a background marker or water of a different colour. On
contact with another region, the area assigned to that
colour (filament) is frozen.

These regions are filtered according to a number of con-
ditions. First, the contours are assessed on their solidity
(area of the contour/area of its convex hull), which is
a measure of how uniformly convex the contour is and
thus how elliptical it is in shape. Contours with a low

solidity (typically < 60%), are rejected as their irregular
shape indicates they cannot be described well by a fitted
2D Gaussian and they may be the results of interacting
filaments which the watershed algorithm was unable to
separate. Next contours are rejected if they extend to the
edge of the analysis grid and have significant intensities
there (typically > 50% of the peak contour amplitude)
as these contours extend outside of the analysis grid and
thus are missing information required for an accurate
Gaussian fit. Finally, any excessively large regions that
are too large to be a filament (δR > 15 cm, δRφ > 20 cm)
are rejected.

The remaining contours are fitted with tilted 2D Gaus-
sians with a background level set to the average intensity
of the local minima in the inversion. The Gaussian fits
yield the filaments central positions, 1σ major and minor
axes widths, amplitudes and inclinations [see contours
in Fig. 6d)]. A Gaussian description of the filaments
is chosen because it is the simplest fitting function that
produces a representative width and amplitude for the
observed blob-like data. The combination of line of sight
integration effects and limited spatial resolution mean
it is not possible to reliably discern any more complex
internal filament structure.

The watershed algorithm has a number of important
advantages over previously tested algorithms that relied
upon contours generated from thresholding the intensity
data at a suitable level identified for each peak. Firstly,
it handles interacting filaments very effectively, prevent-
ing them from being merged into a single larger blob
and avoiding problems from multi-modal emissivity struc-
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R

R
a) b) c) d)

FIG. 6: a) Emissivity data, with the minimum peak blob
intensity threshold indicated as a white contour. Local
maxima above and below the threshold are indicated as
blue dots and red dots respectively, while local minima
are indicated in green. b) Markers given as input to the
watershed algorithm. Light blue is definite background
(not a blob), dark blue areas are yet to be classified by
the watershed algorithm and all other colours indicate

foreground regions (sources for potential blobs). c)
Coloured regions show contours returned by the

watershed algorithm. Coloured points are as in a). d)
Contours of 2D Gaussians fitted to the data in the

coloured regions shown in c). Some regions have been
filtered out using a range on criteria and thus do not

have fits.

tures producing multiple contours for a given filament.
Secondly, it efficiently maximises the amount of relevant
intensity data assigned to each filament, with each fila-
ment assigned to the largest possible surrounding region
out to the closest local minima in intensity or the clos-
est neighbouring filament (whichever is closest). When
combined with the fitting of 2D Gaussians to the con-
tours, this means that large secluded filaments can utilise
intensity information spanning the whole structure lead-
ing to particularity high accuracy fits. In the case of
small, interacting filaments this makes the detection of
the filaments possible by relying on the upper sections of
the amplitude distributions, which would not have been
correctly identifiable by the previously tested algorithms,
due to the absence of the required contour level (e.g. 50%)
within the filament’s enclosing contour.

In Fig. 5c) the detected filaments are indicated by
coloured ellipses showing the 1σ contours of the fitted
Gaussians. The central field lines for each fitted filament
are indicated by coloured lines of the same colour in Fig.
5a) and 5d).

Geometric line of sight effects from wide angle imaging

FIG. 7: Illustration of the watershed algorithm, with
different coloured water sources rising until they touch and

define a bounding contour.

lead to some complications correctly identifying filaments
and extracting their properties from the inverted emission
data. Being a spherical tokamak, the high level of mag-
netic shear in MAST produces stronger variation in field
line pitch angle with R than in most machines, aiding
constraint of the filaments’ radial positions. However, the
pitch angle variation is still sufficiently small across the
SOL, that constraining the radial width of filaments is
particularly challenging. When considering the camera
images, this translates to variation in the radial position
of a field line from the centre of a filament, still resulting
in much of the field line overlaying high intensity regions
of the filament in the camera field of view. This means
that field lines positioned radially either side of a filament
have raised intensities despite being outside the filament’s
flux tube, resulting in radial stripes of high intensity in the
inversion. Examples of these can be seen as near horizon-
tal bands in Fig. 5 b) and c). We term these radial bands
the ‘shadows’ of the filaments. These shadows give the fil-
aments enlarged footprints, particularly exaggerating the
radial widths of the filaments. The PSF correction step
significantly reduces the shadows, but does not eliminate
them. In addition to increasing the widths of the detected
filaments, in some cases, the shadows of multiple filaments
can interact to form new local maxima in intensity which
are labelled as filaments by the technique. We term these
spurious detections ‘shadow filaments’. Shadow filaments
arise from the overlapping of filaments in the camera’s
field of view, such that a third unrelated magnetic flux
tube aligns well with a portion of the resulting structure,
producing high average emission along those field lines
despite there being little genuine localised emission along
those field lines. Therefore, shadow filaments typically
occur at lower or higher major radii than either of the
true filaments from the shadows of which they form.

Bright spots in the camera images, typically occurring
above the mid-plane where sections of field lines are nearly
tangential to the camera field of view, can lead to further
enlarging of a filament’s shadow in both the radial and
toroidal directions by raising the average intensities of
all field lines that pass through the bright spot. Such
filaments are particularly susceptible to producing shadow
filaments.

The green filament in Fig. 5 is an example of a shadow
filament arising from the overlapping of sections of the
red and blue filaments in the camera line of sight. In
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(a) (b)

FIG. 8: a) Experimental camera frame from MAST shot
29852, with the preprocessing described in Section III B
applied. b) Frame from the reference synthetic data set
produced using the synthetic diagnostic, containing 40

synthetic filaments, with positive definite Gaussian noise
applied.

this example the position of the violet filament has also
been slightly perturbed by strong emission where several
filaments overlap.

Given these complicating factors, it is important to
benchmark the technique thoroughly and assess its accu-
racy, limitations and errors. The remainder of the paper
discusses the methodology and results of how this has
been achieved.

IV. SYNTHETIC DIAGNOSTIC

A synthetic camera diagnostic has been created to aid
in the development and benchmarking of the identification
technique, as well as facilitating the forward modelling
of simulation outputs for comparison with experimental
measurements (as applied in 47). The principle is the
converse of the inversion, instead calculating I from Eq.
(1) for a predefined ε and G.

The geometry matrix is calculated with a higher reso-
lution than for the inversion procedure in order to avoid
aliasing effects in the resulting images. The product of G
with ε, produces a synthetic image, as viewed by the cam-
era, of the local field aligned emission at the mid plane,
as described by the emission vector. This emission is
equivalent to that in background subtracted experimental
camera data. In principle the emission vector can be any
flattened 2D pattern parameterised by the major radius,
R, and the toroidal position, Rφ, at the mid plane. If an
experimentally derived emission vector is used as input
we produce a synthetic re-projection of the inversion data,

demonstrating the visual form of the structures that are
captured in the emission vector as shown in Fig. 5d).
When it is used to forward model simulation results47,
the ADAS atomic physics library48 is used to calculate
the light emission for the output distributions of tempera-
ture and density, producing the required vector. In cases
where entirely artificial filament images are produced for
the purposes of benchmarking and technique optimisation,
each filament’s emission profile at the mid-plane is set
to a 2D Gaussian. Images of synthetic filaments can be
combined additively to produce full synthetic frames. In
order to closely match experimental data, positive definite
Gaussian noise can be added to the frames to simulate
noise from the camera sensor. As for the inversion pro-
cess, the synthetic diagnostic only produces images of
field-aligned structures and cannot produce variations in
emission along field lines in its current form. Output from
the synthetic diagnostic is compared to experimental data
in Fig. 8, showing a strong qualitative and quantitative
resemblance. The upper and lower divertor regions where
some differences are seen are outside of the analysis region
that is inverted.

V. BENCHMARKING

As discussed in Section III C, geometrical distortions
that occur in the inversion process can lead to errors and
false detection of shadow filaments, complicating the inter-
pretation of the outputs of the technique. Benchmarking
is required to quantify and understand these effects in
order to draw strong conclusions from future applications
of the technique. By analysing large quantities of syn-
thetic data and matching detected filaments returned
from the technique to input synthetic filaments and com-
paring their properties, the accuracy and reliability of the
technique can be assessed.

A. Synthetic Data Set

A reference synthetic data set, Aexp,40, of 5000 syn-
thetic fast camera frames was generated for this study
with 40 synthetic filaments per frame, corresponding to
a total of 200,000 filaments with random positions and
characteristics. A range of numbers of filaments per frame
were explored and 40 filaments per frame was chosen as it
corresponds to a commonly observed toroidal quasi-mode
number (average instantaneous number of filaments in
the SOL) seen in MAST12 and produced synthetic frames
which visually resembled experimental camera data. The
value chosen lies at the upper end of literature values
for quasi-toroidal mode number12,35. This is appropriate
given that literature values are likely to have missed the
very faintest filaments which are challenging to measure,
but which are important to include in the synthetic data.
Furthermore, the potential overlap of filaments means
the apparent quasi-mode number is likely to appear lower
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than the input mode number.

The synthetic filaments have Gaussian cross-sections
with their properties (positions, widths and amplitudes)
drawn from realistic distributions based on experimental
findings. The details of the chosen distributions are sum-
marised in Appendix B. The radial distribution of the
filaments follows a log-normal distribution27,28 starting
at the separatrix (R = 1.36 m) and peaking 3 cm into
the SOL. Analysis of experimental camera data with the
inversion technique has shown an exponential distribution
of toroidal filament separations, indicating that filaments
are randomly distributed toroidally around the machine
with no mode number (hence the use of the term quasi-
mode number to refer to the average number of filaments).
Therefore, we have adopted a uniform distribution for
the toroidal locations. The radial and toroidal widths
are drawn from log-normal distributions informed by the
width distributions observed in Refs. 12 and 36. Filament
amplitudes are distributed exponentially as observed in
Refs. 18, 30, and 49.

The radial extent of the analysis region was
R = 1.290-1.474 m, spanning the outer mid-plane SOL
and including several centimetres inside the separatrix,
given the MAST mid-plane separatrix was located at
R ≈ 1.36 m for this discharge. The analysis region ex-
tended toroidally from φR = −0.8 m to φR = +0.8 m,
loosely corresponding to an angular range in machine co-
ordinates of φ = 153◦-215◦ centred about φ0 = 177◦ (c.f.
camera tangency plane at φ = 215◦). Thus the analysis
region focuses on foreground filaments (i.e. those that
intersect the mid-plane in the foreground). Foreground
filaments are chosen due to their proximity to the camera
increasing their size in the camera field of view and thus
maximising the accuracy of their width measurements. Of
the 200,000 filaments in the data set, 20,243 (10.1%) fall
within the analysis domain, corresponding to an average
of 4.05 visible filaments per frame.

Toroidal positions and widths are generated as angles
(φ and δφ) and converted to lengths (Rφ and δRφ). The
analysis grid had a resolution of 4 mm in R and 9 mm in
Rφ, corresponding to 47 radial points and 123 toroidal
points, giving a total of 5,781 distinct field lines. This
resolution was chosen so as to best constrain the radial
and toroidal widths of the filaments, while keeping the
computational burden manageable.

Given the decaying exponential amplitude distribution
peaks at zero, many of the synthetic filaments will be very
faint, as may also be true in the experimental case, and
therefore cannot reasonably be expected to be detected
against background noise. However, inclusion of these very
faint background filaments, while not currently a focus
of measurement, is important for reproducing the full
complexity of the likely distributions of the experimental
data.

In order for the amplitudes of the synthetic filaments
to be consistent with those in experimental data, the syn-
thetic images are scaled so that histograms of the pixel
intensities in the synthetic images are consistent with

those from experimental frames. This calibration is im-
portant for results from synthetic data at a given filament
amplitude threshold to translate well to experimental
measurements.

B. Matching synthetic and detected filaments

The goal is to classify the detected filaments from the
technique as either ‘true positives’ that can be assigned
to a true input synthetic filament or ‘false positives’ that
cannot be matched to a true filament.

The method by which the set of detected detected
filaments, Dall and the set of synthetic synthetic filaments
Sall are compared and matched is as follows.

1. The synthetic filaments are vetted into a subset
Sdomain of filaments inside the analysis region [white
dashed box in Fig. 5c)] and a smaller set of fila-
ments, Sanalyse, that both 1) lie within the analysis
domain and 2) have amplitudes above the detection
threshold, εthresh.

2. The detected filaments are examined in order of
decreasing amplitude. Each detected filament is
compared to each unmatched synthetic filament.

(a) If a synthetic filament centre lies within 1σ of
the Gaussian fitted to the detected filament,
the input and detected filaments are added
to the sets of matched filaments Smatched and
Dmatched respectively.

(b) If multiple synthetic filaments are within 1σ,
the highest amplitude is taken as the ‘match’
and the rest are considered to ‘overlap’ with
the ‘matched’ filament as they are too close to
it to be distinguished.

3. Synthetic analysis filaments that are neither
matched nor overlapping are labelled as ‘missed’
and added to Smissed. Detected filaments that are
inside the analysis region and are not matched are
labelled as ‘false’ detections and added to set Dfalse.

During this matching procedure a number of edge cases
are also handled which influence the figures of merit which
are discussed shortly. If a detected filament within the
analysis region is matched to a synthetic filament out-
side the analysis set (i.e. a synthetic filament with an
amplitude slightly below εthresh, or located just outside
the edge of the analysis region), then the synthetic fila-
ment is added to Sanalyse and the filaments are considered
matched as above.

If a synthetic filament in Sanalyse is matched to a de-
tected filament outside the analysis region the synthetic
filament is removed from Sanalyse as it does not manifest
in the analysis domain and thus would not be observed
experimentally.

Finally, with all filaments assessed for matches, we
define the set Sisolated = Sanalyse − Soverlap, which is the
set of filaments that 1) are in the analysis domain, 2)
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have amplitudes above εthresh and 3) can be resolved
individually. This is the set of filaments we wish the
technique to identify as accurately and reliably as possible.

Fig. 9 shows a frame illustrating each of the categories
of synthetic and detected filament (typical frames do not
display this complexity). Synthetic filaments are indicated
by dashed ellipses and detected filaments by solid ellipses.
Matched filaments are shown in green (Smatched/Dmatched)
and false (Dfalse) or missed (Smissed) detections are shown
in red. Overlapping synthetic filaments (Soverlap) are
shown in blue, while synthetic filaments with low ampli-
tudes or that are outside the analysis domain (i.e. fila-
ments not in Sanalysis) are shown in light pink.

C. Benchmarking Figures of Merit

In order to quantify the performance of the technique,
a number of numerical figures of merit (FoM) have been
developed. These can be used to objectively assess the
effects of changes to the technique, informing further
development of the technique as well as giving metrics
for benchmarking overall success. Each type of FoM is
described below.

a. Sensitivity We define the sensitivity FoMs (also
known as recall) as

fsens,domain/isolated =
|Smatched|

|Sdomain/isolated|
× 100%. (5)

fsens,domain gives the proportion of all true filaments in
the analysis domain that are detected, while fsens,isolated
gives the proportion of isolated analysis filaments that
are detected.

b. Precision We define the precision FoM as

fprec =
|Dmatched|

|Dmatched|+ |Dfalse|
× 100%. (6)

This is the proportion of all detections that are true
positives.

The above FoMs are termed identification FoMs as they
describe how effectively filaments are identified with the
technique.

c. Parameter fractional errors By calculating the
average absolute fractional differences between the mea-
sured and synthetic filament parameters the technique can
be tuned to minimise errors individually in the position,
width and amplitude of the filaments. The percentage
error in a generic parameter p can be expressed as

fp =

〈
|pmeasured − pinput|

pinput

〉
matched

× 100%. (7)

Parameter fractional errors are calculated for filament
position, widths and amplitudes.

The FoMs calculated using Eq. (7) are termed mea-
surement FoMs as they concern the accuracy with which
each parameter is measured.

Frame: 549
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FIG. 9: a) Synthetic camera frame and b) corresponding
inversions with detected (synthetic) filaments

represented by ellipses with solid (dashed) lines.
Matched filaments are shown in green, false (missed)
filaments in red, overlapping filaments in blue and
filaments outside the analysis region (white dashed
rectangle) or with low amplitudes in pale pink. The

white contour and colour bar indicate εthresh.
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D. Filament amplitude detection threshold

The parameter εthresh, determining the minimum inten-
sity of filaments detected using the technique is chosen
so as to maximise the precision and sensitivity figures of
merit, while sampling a sufficiently large portion of the
total filament population. The first function of εthresh
is to ensure the exclusion of small local maxima in the
inversion below the noise floor in the technique. How-
ever, further increases in εthresh yield improvements in the
FoMs due to the exclusion of spurious shadow intensity
structures in the inversion, arising from the interactions
of successively larger synthetic filaments. At large εthresh
only the largest filaments in the population remain in
the analysis set, leading to increased sensitivity since the
detectable objects are brighter and hence more distinct.
The precision also increases since only spurious structures
from interactions between the very strongest filaments
remain, leading to fewer false positives. Fig. 10 shows
how much of the total filament population (fsens,domain) is
excluded for successive gains in precision (fprec) and sensi-
tivity to the targeted filament population ((fsens,isolated))
as εthresh is increased.

The optimal value, εthresh = 1.5 × 10−2, is chosen,
as above this value there are relatively modest gains in
precision and target group sensitivity. At this level, 36%
of the total filament population lies above the amplitude
threshold, of which 72% are successfully detected, while
only 1.2% of detections are false positives. These FoM
values are summarised in Table III.

The dependence of fsens, domain on εthresh is broadly
exponential, rolling over slightly at low amplitudes as
the noise floor of the technique is approached. The dis-
tribution peaks at 58%, indicating that, for a decaying
exponential amplitude distribution, over half of the total
filament population is potentially detectable (i.e. above
the noise floor of this technique), with the drawback that
at this amplitude threshold there are almost equally as
many false positives (fprec ≈ 55%). The precision sat-
urates around εthresh = 2.0 × 10−2, above which which
nearly all detections are true positives.

E. Breakdown of filament detections

Table I gives a breakdown of the number of filaments
that are assigned to each category by the matching algo-
rithm for the reference synthetic data set, analysed with
εthresh = 1.5 × 10−2. Around 10% of all the synthetic
filaments spawned around the full toroidal extent of the
machine fall within 46◦ under analysis and within the
borders of analysis domain. 50% of those filaments have
amplitudes above εthresh, while 49% both have amplitudes
above εthresh and do not overlap with higher amplitude
filaments. Around 1% of filaments within the analysis do-
main are obscured by higher amplitude filaments, which
present themselves together as a single local maxima in
intensity. While these underlying filaments, obscured by
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FIG. 10: Dependence of the precision (blue), analysis
sensitivity (orange), and total sensitivity (green) FoMs

on filament amplitude detection threshold, εthresh.
Dashed lines show the FoM values achieved at the value

of εthresh = 1.5× 10−2 used in the analysis.

TABLE I: Breakdown of the numbers of synthetic
filaments in each analysis category for the reference

synthetic data set, analysed with εthresh = 1.5× 10−2.

Set Sx |Sx| |Sx|
|Sdomain|

|Sx|
|Sanalysis|

|Sx|
|Sisolated|

Sdomain 20243 100% - -

Sanalysis 10134 50% 100% -

Sisolated 9978 49% 98% 100%

Smatched 7341 36% 72% 74%

Smissed 2637 13% 26% 26%

Soverlap 156 0.8% 1.5% -

larger filaments cannot be detected, they raise the ampli-
tude of the larger detected filaments. However, we do not
expect these filament interactions to occur experimentally.

Table II gives a breakdown of the detected filaments.
Of the 7441 detections only 91 were false positives that
did not match to a synthetic filament.

TABLE II: Breakdown of the numbers of detected
filaments in each analysis category for the reference

synthetic data set, analysed with εthresh = 1.5× 10−2.

Set Dx |Dx| |Dx|
|Ddomain|

Ddomain 7432 100.0%

Dmatched 7341 98.8%

Dfalse 91 1.2%
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TABLE III: Summary of the figures of merrit from
analysing the reference synthetic data set with

εthresh = 1.5× 10−2. The first three FoMs should be
maximised and the remainder minimised. Values prior to

the systematic offset correction are given in brackets.
fR−Rsep

has been normalised relative to the 5 cm SOL
width between the LCFS and the first limiting structure.

Quantity, p
Error FoM

µp σp fp

fprec - - 98.8%

fsens,isolated - - 74%

fsens,domain - - 36%

R−Rsep [cm] 0.32 0.14 4% (7%)

Rφ [cm] -0.25 0.18 15% (22%)

δR [cm] 0.56 0.27 33% (70%)

δRφ [cm] 1.1 0.73 26% (67%)

F. Error Distributions and Corrections

For each detected filament, it is possible to calcu-
late the absolute error on a parameter p, as defined by
ξp = pdetected − psynthetic. Since different filaments can
have different errors, the latter are statistically distributed.
Assessing the average errors, µξp identifies systematic er-
rors arising from distortions in the inversion which can
be corrected for through offsets in future measurements.
Assessing the standard deviation in the errors, σξp, quan-
tifies the random errors that remain after the systematic
errors are corrected for.

Fig. 11 shows the resultant distributions of absolute
errors, ξp, on the position and width measurements for all
matched output (Smatched) filaments from the reference
synthetic data set. Each parameter shows a broadly
Gaussian distribution of errors over at least an order
of magnitude in frequency, although long low frequency
tails are present. The mean and standard deviation of the
fitted Gaussians are listed in Table III. The table also gives
the fp values given by Eq. (7) for each parameter (note
fR−Rsep

has been normalised relative to the 5 cm SOL
width between the LCFS and the first limiting structure).

The average errors in the R and φR positions are small,
at 0.3 cm and -0.2 cm respectively. The widths of the
Gaussian fitted to the positional error distributions are
also small, each around 0.2 cm, although the raised wings
and long, largely symmetric tails with Fisher kurtosis
values of 8.9 and 12.3 respectively, indicate that rare
large errors of greater than 1 cm can occur with greater
frequency than suggested by the Gaussian widths (ex-
cess kurtosis is the fourth standardised moment which
describes tail extremity and is equal to zero for a Gaussian
distribution). Almost 3% of R positions having errors
greater than 1 cm (5σ) and around 13% of φR positions
having errors greater than 1 cm (5σ). The high accuracy
of the position measurements is important for accurate
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FIG. 11: Distribution of errors in detected filament
parameters for radial position, toroidal position, radial
width and toroidal width (left to right, top to bottom

respectively). The solid blue lines shows the
distributions of errors, while the dashed orange lines

shows Gaussian fits to the distributions.

filament velocity measurements, corresponding to velocity
errors of the order 0.3 km/s in both radial and toroidal
directions. For a typical filament travelling radially at
0.7 km/s and toroidally at 4 km/s, this corresponds to
percentage errors of 40% and 7% respectively. The system-
atic errors in the width δR and δφR are more significant at
0.6 cm and 1.8 cm respectively. These over estimations of
widths arise from a number of factors, most importantly,
the finite analysis grid resolution, overlap of filaments and
distortions during the inversion process. The error distri-
butions are described well by the fitted Gaussian, with
widths of 0.3 cm and 0.7 cm respectively, although again
the tails of the distributions are slightly more pronounced,
with kurtosis values of 7.9 and 1.1 respectively.

With the systematic errors in these parameters, µξp,
identified, they are applied as systematic error offset cor-
rections in the analysis that follow, so that measurements
should only be subject to random measurement errors.

G. Position and Width Distribution Measurements

The ability to accurately measure the statistical proper-
ties of filaments is essential to build reliable first principle
models and to assess their intermittent loads the plasma
facing components. We now wish to understand how well
our technique is able to reproduce the distributions of the
synthetic filaments.

Fig. 12 compares the frequency density distribution
functions of filament positions and widths for the orig-
inal synthetic filaments (Sdomain, orange dashed lines)
and the detected output filaments (Ddomain, black solid
lines). The detected values have been corrected by the
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lines indicate sets of synthetic filaments, while solid lines

indicate sets of detected filaments recovered from the
analysis procedure. The frequencies for the full set of

synthetic filaments (dotted grey line) have been divided
by 9 to fit on the same axes.

systematic offsets identified in the previous section. The
distributions functions of radial and toroidal positions
are very well recovered, closely following the synthetic
distributions. The measured width distributions preserve
the overall shape of the original distributions, although
the distribution of δR is more peaked than the original
distribution and the output distribution of δφR has its
peak shifted to the larger widths by around 0.6 cm. Thus

we can have confidence that measured distributions of
filament positions and widths accurately reflect the forms
of the true underlying physical distributions.

The distributions of matched (Smatched) and missed
(Smissed) filaments collapse onto the overall distribution of
synthetic filaments (i.e. differ only in amplitude and thus
can be scaled to match one another), showing that fila-
ments are not selectively detected and thus the full extent
of the distributions are evenly sampled in the detections.
This is strong evidence that filaments have the observed
properties and are not for instance all a single size. Sim-
ilarly the distribution of matched detections (Dmatched)
collapses onto the overall distributions of detections. The
distributions of false positive detections (Dfalse) show sep-
arate structure. False detections are over twice as likely
to occur at low R values, which is anticipated since line
of sight effects mean shadow filaments typically occur at
lower R values than the two true filaments which over-
lap to produce them. The distribution of false positive
detections has two peaks in φR located around φR =
-20 cm and +30 cm, indicating locations where line of
sight effects are particularly prone to producing shadow
filaments. Both width distributions have higher relative
false positive rates for larger width filaments, especially in
the case of σφR. Fig. 13 shows the normalised frequency
distributions of the original and measured filaments for
each of the matching categories. Dashed and dotted lines
show the original distributions, while solid lines show the
measured distributions. The dotted grey lines show the
distributions for all 200,000 synthetic filaments in the
data set distributed around the full toroidal extent of the
machine (divided by 9 to fit on the same axes), while all
other lines refer to sets of filaments within the analysis
domain. Here the proportion of filaments in each match-
ing category is clear, demonstrating how few filaments
are missed or false detections.

H. Amplitude Distribution Measurements

In order to compare the synthetic and detected filament
amplitude distributions the synthetic amplitudes must
be mapped to corresponding amplitudes in the inversion
data. Fig. 14 shows the inversion amplitude measured
at the true centre of each synthetic filament in the refer-
ence synthetic data set as a function of the uncalibrated
synthetic input amplitude. While there is some scatter
resulting from the overlap of filaments and distortions in
the inversion, there is a strong linear dependence with
a Pearson correlation coefficient of 0.79. Excluding high
amplitude outliers, the gradient of a linear fit to the data
yields the calibration factor required to compare input
amplitudes and inversion amplitudes directly.

Fig. 15 compares the distributions of detected filament
amplitudes and calibrated synthetic amplitudes, using line
styles consistent with Fig. 13. The vertical grey line indi-
cates the amplitude threshold εthresh = 1.5× 10−2, below
which detections are not attempted. The output distribu-
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tion successfully captures the exponential nature of the
input distribution, but for a roll over at low amplitudes,
arising from from the increased proportion of missed fila-
ments at low amplitude. The majority of false positive
detections also occur at low amplitudes. The matched
synthetic filaments curve continues below εthresh due to
the subset of synthetic filaments with amplitudes below
εthresh that manifest in the inversion with amplitudes
above εthresh and are detected.

In order to assess the fidelity of the amplitude measure-
ments and ensure that measured exponential amplitude
distributions are not an artefact of the measurement tech-
nique, other data sets with different amplitude distribu-
tions have been analysed, each containing 5000 frames.

Data set Aexp,1 shares the same experimentally rep-
resentative parameter distributions as the reference syn-
thetic data set, Aexp,40, but contains only one filament
per frame. This data set is used to assess the effect of
filament overlap on results from the reference dataset.

Data set Aδ,1 contains a single randomly positioned fil-
ament per frame, each with the same fixed amplitude and
filament size. This heavily simplified data set collapses
the input amplitude and width distributions onto delta
functions, so that the width of the recovered amplitude
distribution is solely due to the intrinsic inaccuracies in
the analysis technique. The output amplitude distribu-
tion them provides an estimate of the minimum intrinsic
random error on an amplitude measurement.

Data set Aδ,40 contains the same distributions Aδ,1, but
with 40 filaments per frame, so that the effects of filament
overlap can be readily identified. Further details of the
filament parameter distributions used in these data sets
are given in Appendix B.

Fig. 16 shows the calibrated synthetic amplitude dis-

tributions for each of these data sets (dashed lines) and
the inversion amplitudes measured at the true centre of
each filament in the analysis domain (solid lines). In the
case of the simple Aδ,1 data set, the input delta function
in amplitude is broadened, resulting in a Gaussian width
of around 15% of the mean.

When multiple filaments are introduced, as in the
Aδ,40 data set, interactions between filaments further
broaden the measured distribution, giving a Gaussian
width around 25% of the mean. There is also a slight
shift to higher amplitudes and an enlargement of the high
amplitude tail. Filament overlap effects can be divided
into two categories. Firstly, filaments with large physi-
cal separations can overlap in the camera’s line of sight.
This will occur experimentally. Secondly, the synthetic
datasets do not preclude the physical overlap of filaments.
This is not anticipated experimentally. Therefore, a com-
ponent of the high amplitude tail and broadening will be
exaggerated in these results.

In the case of the single filament, physically representa-
tive data set, Aexp,1, the shape of the measured amplitude
distribution closely follows the input distribution. This in-
dicates that in the absence of filament overlap, amplitude
distributions are recovered reliably. The introduction of
filament overlap in Aexp,40 introduces a constant positive
amplitude offset and a roll over at low amplitudes. The
constant offset occurs due to overlap with foreground
and background filaments, raising the average intensity
of each projected field line. As the filaments are uni-
formly distributed around the machine, on average they
constitute a largely uniform background of emission in
the images. However, variation in field line intersection
in different parts of the image due to line of sight effects
will lead to some dispersion in the background offset. It
is this dispersion that produces the roll over in measured
amplitudes. Given the roll over occurs around the blob de-
tection amplitude threshold and the constant offset does
not affect the distribution shape, these effects should have
little impact on experimental conclusions about measured
amplitude distributions.

VI. EXPERIMENTAL PARAMETER DISTRIBUTIONS

To give an example of the potential of our new tech-
nique, we now apply it to a real discharge carried out
on MAST. The analysis was performed on 4000 frames
from discharge 29852, over the time window 0.205-0.245 s,
with εthresh = 0.015 and the systematic offset corrections
applied as determined by the synthetic filament study.
This was a double null discharge, with a plasma current
of Ip = 700 kA and an injected neutral beam power of
PNBI = 2 MW.

Fig. 17 shows the measured distributions of filament
positions and widths for the experimental data set in
black. Orange dashed lines have been added to sketch,
without any pretence of rigour, possible distributions for
each parameter that can be inferred given the findings
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FIG. 17: Distributions of filament parameters for
experimental data from MAST shot 29852,

t=[0.205,0.245] s, with εthresh = 1.5× 10−2. Solid black
lines show the measured distributions with the

systematic error offset correction applied. Dashed orange
lines are sketches of the inferred most probable true

distributions shapes given the insight gained from the
synthetic analysis.

from the synthetic data analysis. A bi-modal distribution
is recovered for the R positions, with the peak at low
major radius likely due to shadow filaments which have
their highest relative frequently at low R. The primary
peak is described well by a log-normal distribution as
observed previously and assumed for the synthetic data
sets. The peak in detections occurs at the separatrix
where both the density of filaments and neutral particals
is high. Inside the separatrix the detection rate falls of
sharply due to the rapid fall off in neutral density (neutral
ionisation mean free path at the separatrix is ∼ 1 cm). A
reduced detection rate is observed at large φR which is
significantly stronger than is seen in the synthetic data
set, but is still believed to be a diagnostic artefact from
line of sight effects. The region of increased detection
density at low φR does not coincide with the highest
region of false detections in the synthetic data, so it is
likely the increased detections at low φR are a result of
greater sensitivity rather than increased false positives.
Both radial and toroidal width distributions have similar
shapes to the those measured from the reference synthetic
data set, indicating the widths are well described by
log-normal distributions. Fig. 18 shows the measured
distributions of filament amplitudes for the experimental
data set in black, again with orange dashed lines added to
sketch out possible distribution that can be inferred from
the synthetic data analysis. An exponential amplitude
distribution is observed with a roll over around εthresh,
supporting previous findings.



17

2 × 10 2 4 × 10 26 × 10 2 10 1

Ainversion [arb]
0

500

1000

1500

2000
Fr

eq
ue

nc
y 

de
ns

ity
Measured
Infered

FIG. 18: Distributions of filament amplitudes for
experimental data from MAST shot 29852,

t=[0.205,0.245] s, with εthresh = 1.5× 10−2. The solid
black line shows the measured distribution. The dashed
orange line is a sketch of the inferred most probable true
distributions shapes given the insight gained from the
synthetic analysis. The vertical dashed line indicates

εthresh.

VII. DISCUSSION

The fast camera data processing technique discussed
here has been thoroughly investigated to understand its
accuracy and reliability. A number of further factors
should be considered that affect the precision and relia-
bility of the technique.

The grid resolution of field lines used in the geometry
matrix plays a critical role in the precision of technique’s
output. This must be sufficiently high so as to resolve the
smallest filaments of interest, which are of the order of
several millimetres across and in general a few ion Larmor
radii. However, the nature of the PSF is such that it
enlarges structures in R-Rφ space, such that, provided
these effects are accounted for as in the systematic error
correction, the grid resolution can be slightly courser than
the structures being measured. The resolution that can
practically be used is limited by the computational time
per analysis filament and the extent of the analysis region.
It is desirable that the analysis region be large, so as to
both make best use of the available data by analysing as
many filaments as possible so as to minimise statistical
error from small sample sizes and maximising the propor-
tion of data that is not affected by boundary effects (which
scales as the product of the grid dimensions). The grid
resolution used in Section V was chosen so as to achieve
an equitable balance, such that the necessary features
could be resolved, without increasing the computation
cost to an extent that it would prohibitively limit the
amount of data that could be analysed.

The camera spatial resolution, limited by its pixel reso-

lution and viewing perspective, also limits the accuracy
of the inversion. Filament widths in the camera field of
view are often only of the order of a few pixels across over
much of their length, leading to pronounced discretisation
of the intensity distribution across their width. This leads
to sharp discontinuities in pixel intensity along field lines,
particularly in areas where the field lines pass at 45◦ to the
image axes. This can result in artificial inhomogeneities
along field lines and striations in inversion intensity, which
complicate identification. While the camera sensor has a
12 bit bit-depth (0-4095), the OpenCV image processing
library used in the prepossessing stages of the analysis
require the images be converted to 8 bit bit-depth (0-255).
This reduction in dynamic range propagates through to
the inversion and reduces the fidelity of filament contour
selection. If the dynamic range reduction can be avoided
in future, this should lead to a slight increase the accuracy
of width measurements, particularly for small filaments.

At 100 kHz the camera’s integration time is 3.3 µs,
during which exceptionally fast filaments9 with total ve-
locities of ∼ 4 km/s can be expected to move up to 1.3
cm. Kirk et al.12 has previously investigated the effects
of exposure time on filament measurements under similar
conditions and has found it not to be significant.

A limitation of the synthetic error analysis is that
the images are analysed with the same magnetic equilib-
rium and camera calibration descriptions, which ensures
a strong mapping between the inversions and synthetic
images. The magnetic equilibrium and camera calibra-
tions will, by contrast, not be exact mappings in the
case of experimental data. Thus the synthetic analysis
indicates how well the technique can perform with opti-
mal equilibria and camera calibrations. Any inaccuracies
in these inputs will lead to further inaccuracies in the
inversions and inferred filament properties. The effects
of these sources of error will be assessed in a follow up
publication.

The technique has thus far been developed looking at
L-mode filaments as a first case. This is because they are
brighter and more frequent than inter-ELM filaments36,
yet avoid the higher energies and currents involved in
ELMs, in which significant ballooning is expected to oc-
cur, distorting the filament’s local magnetic field from
that of the magnetic equilibrium and weakening the asser-
tion that filaments are well aligned to the known magnetic
equilibrium (in the absence of reliable non-equilibrium
magnetics data). However, this should not prohibit appli-
cations to inter-ELM and ELM filaments and these will
be explored in future work.

The technique will first be applied across the large
archive of existing fast camera footage from MAST, be-
fore being applied to MAST-U, which will be equipped
with two Photron SA-X2 cameras. MAST-U studies will
provide an excellent opportunity to understand the influ-
ence of alternative divertor configurations on filamentary
transport. The technique should also be imported to other
machines, provided that good equilibrium reconstruction
and sufficiently bright filaments are present.
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VIII. CONCLUSIONS AND OUTLOOK

A novel technique has been detailed for the processing
of visual imaging data and the identification of plasma
filaments moving in the region of the edge and scrape-
off layer above the X-point (i.e. upstream), under the
assumptions that filaments are strongly aligned to the
equilibrium magnetic field and are relatively homogeneous
along their length. The technique has been benchmarked
using synthetic camera data, containing filaments with
known properties. This has enabled the precision, reli-
ability and limitations of the technique to be assessed,
in order to properly inform experimental applications
and further development of the technique. Of those fil-
aments in the analysis region of interest with sufficient
amplitudes, the technique has been shown to successfully
identify 74%, with only 1.2% of detections being false pos-
itives. Standard errors on filament’s radial and toroidal
positions are around ±2 mm, while standard errors on
radial and toroidal widths are around ±3 mm and ±7
mm respectively.

Given a sufficiently large sample, the measured filament
data has been shown to qualitatively reproduce features
of the input distributions. An active area of interest for
future development of the technique is in the use of con-
volution neural networks for identification of filaments in
inverted camera data, which has the potential to overcome
geometric line of sight effects and significantly improve
detection accuracy50. Application of the technique to
stereoscopic fast camera data shall also be performed to
assess the effects of viewing angle and explore inversion
techniques independent of the assumption that filaments
are strongly field aligned.

The next step will be to apply the technique to large
quantities of past camera data, in order to compose a large
database of filaments and their properties. The technique
can be readily extended to include tracking of filaments
in order to provide information about filament radial and
toroidal velocities. This should provide the breadth and
quantity of data necessary to perform detailed statistical
analyses of filament properties to understand their roles in
shaping SOL profiles and their dependence on engineering
and physics quantities. While the identification technique
assumes filaments are homogeneous along field lines, once
the filaments have been found their parallel structure in
the images can also be investigated, opening up many
new possibilities.
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Appendix A: Alternative Intensity Metrics

Section III C describes the standard inversion technique
used in this paper. However, if in Eq. (4), instead of
taking the dot product of G with both sides of Eq. (1),
we take the Hadamard (element-wise) product we instead
produce a ‘weighted field line matrix’,

Fij = Gij ◦ Ii = Gij ◦ εkGik, (A1)

such that Fij is the intensity of the ith pixel in the camera
image multiplied by the corresponding intensity of the
ith pixel in the field line image of the jth field line. The
result is a convolution of the field line image with the
camera image and effectively picks out the intensity in
the camera image that lies only along the jth field line.

The familiar pseudo-inversion vector used above can
be recovered by taking the sum over each column of Fij ,

ξj =
∑
i

Fij . (A2)

The primary advantage of taking the sum of the pixel in-
tensities along each field line is that, as a linear operation,
it preserves the ability to perform the subsequent PSF
inversion correction step to reduce the distortion of the
pseudo-inversion. The use of a linear field line intensity
metric also has the benefit of preserving relative filament
amplitudes.

However, representative quantities other than the sum
can be used to provide useful information for correctly
identifying and measuring field aligned plasma structures.
Many quantitative measures of field line intensity can
be conceived of and have been tested in order to most
reliably identify filaments. Each have different strengths
for constraining different filament properties, but are often
accompanied with a range of weaknesses and limitations.

The geometric mean (G.M.), (
∏n
i=1 Fij)

1
n , which pe-

nalizes small values in the data series more effectively
than the arithmetic mean (A.M.), 1

n

∑n
i=1 Fij , is effec-

tive at differentiating field lines that consistently lie on
top of filaments from those that do not. While it can-
not benefit from a subsequent PSF correction due to the
non-linearity of the operation, the G.M. produces good
identification results with far less computational expen-
diture, at the expense of applying non-linear scalings to
measured amplitudes and widths. Of all the functional
forms investigated, the geometric mean squared (G.M.2)
of the intensity along the field lines has been found to
have the best all round properties for constraining the
identification of filaments. However, metrics such as per-
centiles in the distribution of intensities along a field line
have potential for identifying shadow filaments. This is
due to their greater sensitivity to drops in intensity at
the cross over of a shadow field line between different fila-
ments overlapping in the cameras line of sight, which have
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TABLE IV: Distribution information for filament
parameters in synthetic data sets Aexp,40 and Aexp,1.

Property Distribution Parameters Refs.

Position
R λL+ ν

µ = 0, σ = 0.5

λ = 0.04, ν = 1.36
[27, 28]

φ λU + ν λ = 355, ν = 2 N/A

Width
δR λL µ = 0, σ = 0.4

λ = 0.01
[12, 36]

δφR λL µ = 0, σ = 0.4

λ = 0.8
[12, 36]

Amplitude A E µ = 0, σ = 0 [18, 30, 49]

TABLE V: Distribution information for filament
parameters in synthetic data sets Aδ,1 and Aδ,40.

Property Distribution Parameters

Position
R λL+ ν

µ = 0, σ = 0.5

λ = 0.04, ν = 1.36

φ λU + ν λ = 355, ν = 2

Width
δR δ µ = 1.5

δφR δ µ = 1.5

Amplitude A δ µ = 0.02

little impact on the average intensity along the shadow
field line. Therefore, it may be beneficial to combine
information from multiple field line metrics, with some
utilised to identify filaments and reject false positives as
reliably as possible (e.g. non-linear metrics), while others
are utilised to measure the parameters of the identified
filaments (e.g. linear metrics).

These metrics are of particular interest as multiple
channel inputs for convolutional neural network filament
identification algorithms. These algorithms’ performance
can improve dramatically with a broader range of input
information, so these applications will be explored further
and will be the subject of a future publication.

Appendix B: Synthetic camera datasets

Four sysnthetic datasets each consisting of 5000 frames
were used in this work. In the Tables IV and V,
U represents the uniform distribution, L(x;σ, µ) =

1
σx
√
2π

exp
(
− (ln(x)−µ)2

2σ2

)
the log-normal distribution,

E(x; 1
β ) = 1

β exp
(
− x
β

)
the decaying exponential distribu-

tion and δ(x;µ) = δ(x − µ) represents the Dirac delta
distribution. λ and ν are used as scaling and offset pa-
rameters respectively.

a. Reference Synthetic Data Set The reference syn-
thetic data set is the primary synthetic dataset used in
this paper. The distributions for each filament parameter

are chosen so as to be best representative of experimental
data [see Table IV]. Each frame contained 40 filament,
giving good resembance to experimental data.

b. Single filament physical data set The Aexp,1 data
set was produced with the same filament parameter distri-
butions as the reference synthetic data set, but with only
one filament in each frame, each of which were ensured
to be within the inversion domain. Having only a single
filament in each inversion removes the effect of filament
overlap and interation.

c. 40 filament simplified data set The Aδ,40 data
set was produced with the same spacial distribution of
filaments as in the reference synthetic data set, but the
amplitude and width distributions were replaced by delta
functions [see Table V].

d. Single filament simplified data set The Aδ,1 data
set was produced with the same filament parameter distri-
butions as the Aδ,40 data set, but with only one filament
in each frame.
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