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We present a morphological analysis of atom probe data of nanoscale microstructural features,
using methods developed by the astrophysics community to describe the shape of superclusters of
galaxies. We describe second-phase regions using Minkowski functionals, representing the regions’
volume, surface area, mean curvature and Gaussian curvature. The alloy data in this work show
microstructures that can be described as sponge-like, filament-like, and sphere-like at different con-
centration levels.
To enhance the accuracy of the analysis a maximum likelihood based denoising filter was developed.
This filter performs significantly better than a simple Gaussian smoothing filter. We also interpolate
the data using natural cubic splines, to refine voxel sizes and to refine the surface. We demonstrate
that it is possible to find a mathematically well-defined, quantitative description of microstructure
from atomistic datasets, to sub-voxel resolution, without user-tuneable parameters.

I. INTRODUCTION

Atom probe tomography (APT) [1–3] is a well-
established technique for near-atomic resolution chemi-
cal characterization of metals. It offers a unrivalled win-
dow on chemical segregation in alloys, revealing nanome-
tre scale precipitates, segregation of alloying elements
or impurities to grain boundaries, and Cottrell atmo-
spheres [4] where elastic interactions balance entropic
penalties near dislocations. These features are often too
small to be accurately quantified by transmission electron
microscopy[5] or nanoSIMS[6], yet can determine the mo-
bility of impurities or dislocation line segments[7, 8], and
so are critical to understanding the kinetics of microstruc-
tural evolution, particularly systems far from equilib-
rium.

Due to its nature of identifying individual atoms, the
signal from APT is inherently noisy. Identifying the lo-
cation of a single impurity atom is of little significance,
but it may be important to know, for example, where
the carbon has segregated and its concentration is high.
This paper aims to address such questions quantitatively
using a simple mathematical description of microstruc-
tural morphology and topology, developed by the as-
trophysics community to describe the shapes of super-
clusters of galaxies[9] at MPc lengthscales ( 1022 m ).
This formalism uses the Minkowski functionals[10], and
the associated ‘shape-finder’ functions[11], which allow a
natural description of regions as sphere-like, plate-like,
or ribbon-like. The general nature of the technique is
proved by the application of Minkowski functionals to
diverse fields- for example soil porosity[12] and medical
imaging[13]- though we believe this is the first time they
have been applied to atomistic datasets.

∗ daniel.mason@ukaea.uk

After briefly reviewing the mathematical formalism
and the steps needed to find converged isosurfaces of con-
centration, we use simulated data to prove the power of
the method to distinguish and quantify microstructural
features. Then we use real atom probe data to find quan-
titative measurements of typical microstructural mor-
phologies.

II. MINKOWSKI FUNCTIONALS AS SHAPE
DESCRIPTORS

There are many ways to characterize microstructure,
depending on the information available. Transmission
electron microscopy might produce spatially varying
strain information. Molecular dynamics or atomistic ki-
netic Monte Carlo might give potential energies. An APT
experiment provides atom species and positions. In all
these cases we can define a part of the microstructure as
a spatial region which has a scalar property above some
threshold value.

Consider a region in 3d space bounded by a closed
surface. To start describing its shape we could report its
volume. Then to give a second measure we could report
its surface area. To go further in materials science is of-
ten done with ad hoc descriptors, for instance by reducing
shapes to ellipsoids. But Hadwiger’s theorem[14] tells us
that in d-dimensional space there are in fact only d+1 de-
scriptors which are invariant to translation and rotation
, and which are additive and (conditionally) continuous.
These are known as the Minkowski functionals. We can
therefore describe microstructural morphology with just
four functions.

If we have a continuous phase field f(~x), within which
we have defined an isosurface Sf where f(~x) = f , then
the four Minkowski functionals are commonly expressed
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as V0, V1, V2, and V3, where the first,

V0 =
1

3

∮
Sf

~x · n̂dS, (1)

where ~x is a position on the surface and n̂ the local sur-
face normal. This quantity is simply the volume enclosed
by the surface, as can be readily seen by applying the di-
vergence theorem. The second functional,

V1 =
1

6

∮
Sf

dS, (2)

is proportional to the surface area. The third functional
is

V2 =
1

3π

∮
Sf

1

2

(
1

R1
+

1

R2

)
dS, (3)

where R1,2 are the principal radii of curvature. V2 is
proportional to the integrated mean curvature, C ≡∮
Sf

1
2

(
1
R1

+ 1
R2

)
dS ≡

∮
Sf
HdS. The last functional is

V3 =
1

4π

∮
Sf

1

R1R2
dS ≡ 1

4π

∮
Sf

KdS, (4)

which is proportional to the integrated Gaussian curva-
ture. V3 is related to the genus, g = 1 − V3, which is a
count of the number of perforations through a solid - eg
a sphere has g = 0, a figure 8 has g = 2 etc.

The mean curvature (H) and Gaussian curvature (K)
of an implicit surface f(~x) = f are given by [15]

H =
∇f ·G∇f − |∇f |2 Tr (G)

2 |∇f |3

K =
∇f ·G?∇f
|∇f |4

, (5)

where G = ∇∇f is a matrix of second derivatives, so that

eg Gxy = ∂2f
∂x∂y , and G? a matrix of the cofactors of G, so

that eg G?
xy = Cofactor(Gxy) = GyzGzx − GyxGzz. We

can therefore compute the surface integrals, equations 1-
4, as a discrete sum by first making a polyhedral surface,
and using its faces as the area elements.

There is a second, very quick, and exact method[16]
for computing the integrated Gaussian curvature via the
Euler characteristic, χ. For any polyhedron this can
be found by counting the number of vertices, edges and
faces.

χ = 2V3 = Nvertices −Nedges +Nfaces. (6)

We can also find an approximation for the mean curva-
ture C from a triangulated surface[16]. If two triangles
with normals n̂1 and n̂2 share an edge of length x, then

C =
1

2

∑
edges

εxφ, (7)

where cosφ = n̂1 · n̂2 and ε = ±1 depending on whether
the vectors drawn through the centroids of the triangles
in the direction of the normals have their closest approach
within the surface (ε = +1) or outside (ε = −1). This
method is robust for large shapes described by many tri-
angles, but inaccurate in the limit of regions bounded by
a few triangles with a high angle between normals.

We can describe a surface using a triangulated mesh,
and hence maintain a working estimator for the errors
in the Gaussian and mean curvatures of the surface by
comparing equations 6 and 7 with equations 5, and refine
the surface mesh by adding triangles until these errors are
acceptable, using the method in section VIII B. In the
figures shown in this paper, the genus is computed using
6 and the mean curvature from 7.

III. SHAPEFINDERS

From the four Minkowski functionals we can define
‘shapefinder’ functions[11],

S1 =
V0
2V1

, S2 =
2V1
πV2

, S3 =
3V2
4
. (8)

These three functions have dimensions of length and are
normalised to return Si = R for a sphere of radius R.
For a convex surface S1 ≤ S2 ≤ S3. From these a further
two shapefinders can be defined[11]

T1 =
S2 − S1

S2 + S1
, T2 =

S3 − S2

S3 + S2
(9)

which can be used to distinguish shapes. For a spheroid,
T1 ' T2 ' 0. A filament has T1 � T2 ' 1. A ribbon has
T1 ' T2 ' 1. A pancake has T2 � T1 ' 1.

IV. COMPUTING MINKOWSKI
FUNCTIONALS FROM DISCRETE DATA

Atom probe data, or indeed molecular dynamics
data, consists of a large dataset of discrete points
{typei, xi, yi, zi}, for i = {1, 2, ..}. To use Minkowski
functionals with atomic position data, we need to first
define isosurfaces within this data, which in turn requires
a continuous function, f(~x). This is generally done as a
two-stage process. First, atoms are assigned to voxels.
The count of atoms of a given type within a voxel is
converted to a value of concentration, defined at a node
point in the centre of the voxel. The voxel size is a tune-
able parameter for the interpretation of the data, but it
must lie within narrow bounds: if voxels are too small,
there will be too few atoms counted per voxel and the
concentration at nodes will be very noisy. If the vox-
els are too large, then spatial variations will be averaged
over[17, 18].

Once the atomic position data is presented as concen-
trations on discrete node points, {f(l,m, n)}, it is nec-
essary to find a continuous interpolating function f(~x)
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within which we can define an isosurface. Our strat-
egy is based on two observations. Firstly atomistic data
is generally used to describe nano-scale systems, and so
clusters are rather small, only a few nanometres across.
But voxels need to be of order 1 nm to contain enough
atoms to produce sensible mean quantities. We therefore
need a method with sub-voxel resolution. Secondly we
note that a voxel of side length a by its nature must have
a limiting spatial scale a for variations in concentration,
and so it can only properly be used to describe a field
that is smooth at this scale.

We use the marching cubes algorithm[19] to find a tri-
angulated isosurfaces. This uses a computationally ef-
ficient trilinear interpolation between node values. But
as we need an interpolation with continuous zeroth, first
and second derivatives of f(~x) to find the curvatures in
equation 5, we employ a complementary natural tricu-
bic spline interpolation for f(~x) and its derivatives, and
push the marching cubes vertices to a from linear interpo-
lated points to the cubic-interpolated surface (see section
VIII B).

When placing atoms into voxels, we may treat them as
having a finite Gaussian delocalisation width σa. If σa >
0, then each atom will in fact be placed in a local region
of voxels, with weighting given by the distance from atom
to node divided by σa. After each atom is placed in one or
more voxels, we could then apply a Gaussian smoothing
with kernel width σv to the concentration on the nodes.

Figure 1 shows the importance of denoising and mesh
refinement as a preliminary step for analysing the mor-
phology and topology of microstructure. We see that if
atoms are placed onto voxels with no delocalisation and
no smoothing of the concentration data, then a very large
number of distinct isosurfaces are found, where the noisy
signal happens to pass threshold. This noise appears as
small octahedral isosurfaces centred on the underlying
voxel lattice points. If the atoms are delocalised, or the
concentration values on the voxels are smeared with a
Gaussian filter, then the noise is reduced, but at the ex-
pense of modifiying the concentration profile.

We start our method with a small Gaussian atom de-
localisation and zero voxel smearing, σa = a/2, σv = 0.
We then use a maximum likelihood denoising filter de-
scribed in section VIII A to remove noise but preserving
atom count and not unduly distorting the concentration.
We then increase the voxel count by halving the spacing
between voxel nodes, using a tricubic interpolation of the
concentration values. This helps the Marching Cubes al-
gorithm find a topologically robust surface. Finally we
apply the denoising filter to the refined voxels.

Figure 2 shows that a broad delocalisation σa = a, or
smearing σv = a do an equally good job reproducing the
isosurface of a soft inclusion at low concentration, but
tend to smooth out the corners of the hard inclusion. A
smaller kernel width σa = a/2, or σv = a/2 do better at
higher concentrations, with atom smearing appearing to
be preferable. Our maximum likelihood denoising filter
and mesh refinement performs well in both cases.

Also on figure 2 we plot the proxigram[21] of concen-
tration vs distance, as computed using IVAS[22] with the
same atomic dataset. The proxigram uses the distance
of atoms from a single fixed isosurface ( here we chose
f = 0.4 ), so in fact reports the concentration as a depen-
dent variable with distance as the abscissa. Here we have
exchanged the axes, and also offset the position of the in-
terface to make a clearer comparison to the shapefinders
used here. The proxigram does a better job of finding
the concentration gradient at this isolevel than our de-
noising filter, especially in case of a hard interface, as it
works from the original atomic data rather than voxels.
It does, however, show considerable scatter far from its
fixed isosurface, where the inclusion is small and there
are fewer atom counts. The time taken for both methods
is similar as both scale linearly with system size.

Figure 3 shows the convergence of our method with
the resolution of the voxel grid size, a, and with the atom
count per voxel, ρ. The same soft inclusion with charac-
teristic Gaussian profile (described in section V) is used.
We conclude that particles with a diameter twice the
voxel spacing are readily resolved, and when they have
four times the voxel spacing their concentration profile is
resolved to high accuracy. We see that the inclusion is
recognised when the voxels have only 5 atoms each, and is
well resolved when voxels contain 20 atoms. We also con-
clude that our maximum likelihood denoising algorithm
is significantly better than Gaussian smoothing. In figure
3 we also compare to the established literature method
of computing Minkowski functionals using counting of
faces,edges and vertices of the voxels over threshold[23].
This method uses a fixed set of normals to describe the
surface, and so while the method converges, and the four
Minkowski functionals give a characteristic ‘fingerprint’
with which to distinguish microstructures, the area ( and
hence the shapefinders ) can not generally converge to the
correct values[24].

V. MODEL CASES

In this section we apply the formalism to construct
the shape-finder functions for simple model cases, and
demonstrate the ease with which it is possible to distin-
guish microstructural objects.

The model systems are constructed by placing atoms
randomly into a box of side L = 40 nm, at a density
20 atoms/nm3. Each atom is randomly determined to
be of type ‘A’ or ‘B’, with a probability of selecting ‘B’
equal to the local concentration, defined by an analytic
expression. The discrete data was placed into voxels of
size a = 1 nm, denoised with the MLD filter, the voxel
spacing refined to a/2 nm, then denoised a second time
as described above. Figure 4 shows isosurfaces of a model
system containing a single toroidal inclusion defined be-
low. The background level is set to 10% concentration of
type ‘B’. We see that at the 5% concentration level there
are negative spaces- holes- inside the enclosing surface,
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FIG. 1. Renderings of the same atom probe data of an inconel sample[20], rendered at a (Nb+Ti) concentration f = 10%, with
increasing levels of denoising. Left-to-right: i) Atom data as received, placed on voxels (a = 1.0 nm) with no delocalisation. ii)
Atoms delocalised by σa = a/2, then voxels smeared with σv = a/2. iii) Atoms delocalised by σa = a/2, voxel node spacing
halved, then max likelihood denoising filter applied.

FIG. 2. A comparison of methods for smoothing the voxel field. Atoms placed in voxels side a = 1nm, with (left) a Gaussian
profile inclusion f(r) = f0 + f1 exp(− |r|2 /2σ2), and (right) a top hat inclusion f(r) = f0 + f1H(σ− r), with f0, f1 = 0.1, 0.65,
and σ = 4nm. Average 20 atoms per voxel. Open triangles: atoms smeared using a Gaussian kernel of σa = a/2 (small red)
or σa = a (large blue) , so each atom is added to multiple voxels. open circles: atoms placed in nearest voxel only, then
concentration field smeared with a Gaussian kernel with σv = a/2 (small red) or σv = a (large blue) afterwards. Filled squares:
atoms smeared using a Gaussian kernel of σg = a/2, then the maximum likelihood filter described here applied. Plusses:
computation using IVAS[22] with the proxigram method[21] centred on an isosurface at f = 0.4. Note that this method uses
the original atom positions, so has a more accurate description of the concentration gradient near f = 0.4.

and at 15% concentration level there are convex shapes
- these are complementary topologies. At a 75% con-
centration level the torus appears rather thin, as voxels
which just graze the toroidal surface are unlikely to con-
tain a high concentration. At the highest level the torus
appears to break up- few voxels have 80% concentration
or above and they are not contiguous.

The defect shapes we consider are:

1. “Random solid solution” - the analytic concentra-
tion is fixed at f(x) = 50%, and we look for the
effect of the random sampling of atoms only. In
figure 5 we see that the genus spikes at the back-
ground concentration, as voxels are equally likely
to be above or below threshold. The topology is
that of a sponge. In out example cases below, the
background level is at f = 10%, and the same genus
spike can be seen in each.
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FIG. 3. A demonstration of the convergence of the method described here to the analytical solution. Left: convergence with
increasing voxel resolution. The analytical voxelised concentration field for a Gaussian inclusion is used as input, with the voxel
side length varying from the Gaussian standard deviation σ/16 to σ. Solid lines: the method described here using Marching
Cubes to triangulate the surface and the maximum likelihood denoising algorithm in appendix VIII A. Dashed lines: the vertex-
counting method described in ref[23]. Right: convergence with atom density, ρ, placing atoms in voxels size a = σ/4. The
concentration field for a Gaussian inclusion is used as input, but starting with randomly positioned atoms instead of an analytic
function. The expected number of atoms per voxel is increased from 5 to 80. the method described here using Marching Cubes
to triangulate the surface and the MLD algorithm. Open circles are the result using Marching Cubes to triangulate the surface
but with an atomic delocalisation using σa = a/2.

FIG. 4. Renderings of the toroidal isosurfaces constructed from randomly generated noisy voxels, illustrating features common
to concentration isosurfaces. The top-left surface is drawn with some transparency. The background concentration is 10%,
within the torus it is 75%. Left-to-right and top-to-bottom, the concentration levels are 5%,10%,13%,15%, 25%,50%,75%,80%.
At around the background level, there is a complex sponge-like topology, with some regions above and some below the average
concentration. The 50% concentration isosurface shows a perfect torus, but it is important to note that a full description of
the microstructure should be of all eight images, not just this ‘good-looking’ one.
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FIG. 5. A demonstration using a random solid solution at concentration level f = 50%. Left: the 50% concentration isosurface
rendered with some transparency shows a characteristic sponge-like topology ( cf the toroidal inclusion figure 4 at f=10% ).

2. “Hard interface inclusion” - has a top hat concen-
tration profile

f(r) = f0 + f1Θ(σ − |r|), (10)

where Θ(x) is the Heaviside function. r is the
vector separation from the centre of the box, and
σ = 4nm. The background concentration takes
value f0 = 10%, and the centre of the inclusion
f0 + f1 = 75%. In figure 6, we see that the genus
is zero, indicating a solid object with no piercings.
The shapefinders s1, s2, s3 are equal over the con-
centration range, indicating a spherical object, but
they vary by about 1 nm over the range owing to
the finite resolution of the voxelised representation
of the concentrations. This is the limiting accuracy
of using voxels do describe a hard interface. In this
figure, and the remaining models in this section, we
render the isosurface at f = 35% using Ovito [25]1

3. “Soft interface inclusion” - has a Gaussian concen-
tration profile

f(r) = f0 + f1 exp(− |r|
2

2σ2
), (11)

The constants take the same values as the hard in-
terface inclusion. See figure 7. Again we see a genus
zero spherical object, but here there is a large vari-
ation in the characteristic lengths s1, s2, s3, match-
ing the radius r of the inclusion at concentration
f(r).

4. “Segregation to dislocation line” - has a concentra-
tion profile centred on a wavy line

f(r) = f0 + f1Θ(σ − x), (12)

1 Note that Ovito uses Gouraud shading[26] to make the surface
appear smoother.

where x is the minimum distance to a sinusoidal
line defined by r(λ) = L/2λẑ + σ sin(2πλ)x̂, with
−1 ≤ λ ≤ 1. See figure 8. This object is seen to
be genus zero again, but non-spherical- here s3 >>
s1 ' s2 and so we recognise a filament-like object.

5. “Dislocation loop” - has a toroidal concentration
profile

f(r) = f0 + f1Θ(σ/2− x), (13)

where x is the minimum distance to a ring with
radius 8nm. See figure 9. The shapefinders si look
very similar to the previous case, but this time the
genus is one, indicating an object pierced with one
hole.

We see that we can distinguish these model cases at a
glance, and the morphological and topological data pre-
sented in figures 5 to 9 have a quantitative and intuitive
meaning.

VI. 3D ATOM PROBE DATA

A. Atom Probe Analyses

Atom probe tomography was performed on four ma-
terials: an age-hardened CuCrZr alloy [27], and Inconel
[20], ion-irradiated EUROFER97 steel [28], and a NbTi
superconducting alloy [29], A LEAP 3000X HR (Imago,
USA) was used with following parameters to maintain
field evaporation: 532 nm laser with 0.5 nJ pulse energy,
200 kHz repetition rate, a 0.2% evaporation rate and 50
K specimen temperature.

In real atom probe data there may be multiple closed
isosurfaces at a concentration level f . These isosurfaces
naturally divide the system into regions, without any re-
quirement to find clusters in the data[30]. The method
described here will report each isosurface ( and therefore
each distinct microstructural feature ) individually, but
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FIG. 6. A demonstration using a hard interface inclusion, defined with a top hat profile. Left: a rendering of the isosurface at
f = 35%[25]. Right: The computed genus and shapefinders for the isosurface containing the largest volume computed from the
noisy voxels. Solid lines indicate the analytical values at infinite atom count and infinitessimal voxel size. Note that the genus is
zero over nearly all the concentration range, indicating a solid object without piercings. However at the limiting concentration
the shapefinders have scatter. This is characteristic behaviour of the concentration isosurface breaking up. The shapefinders
vary by about 1 nm over the concentration range. This is a limitation of placing atoms into voxels of side 1 nm.

FIG. 7. A demonstration using a soft interface inclusion, defined with a Gaussian profile. As for figure 6, the genus is low,
indicating a solid object without piercings. The shapefinders vary considerably over the concentration range, matching the
radius of the object, and clearly dissimilar to the hard-sphere object in figure 6. Note that the shapefinders are measures of
characteristic distance - at a concentration just over background when largest isosurface starts to percolate through the system,
and the smallest and largest characteristic dimensions diverge.

for conciseness of the exposition, we present data aver-
aged over individual isosurfaces.

For a number of distinct isosurfaces, niso, we can iden-
tify two populations. Some will have the concentration
gradient, ∇f , pointing into the surface. These can be de-
scribed as having a positive volume. The number density
of these is a measure of the number density of inclusions
with at least this concentration. Other isosurfaces will
have the concentration gradient pointing out of the sur-
face. These are empty spaces in the microstructure, and
can be said to have negative volume. In figures 10 to
13 we report the number density of positive and neg-
ative volume isosurfaces. We also use the normalised
shapefinder S3 = 3V2/(4niso, which is directly compara-
ble to S1 and S2.

For our atom probe examples, isosurfaces containing a

(absolute) volume less than (πa3/2) were excluded from
the summations, as a feature must cover more than one
voxel to provide reliable shape information.

The CuCrZr alloy example is shown in figure 10.
Atoms were placed in voxels of size a = 1nm, before
denoising and refinement. We report the morphology of
the Cr isosurfaces. We see that the genus is almost zero-
none of the Cr inclusions are pierced, though there are
a couple of excursions where the isosurfaces touch. The
number density steadily falls with concentration, showing
the inclusions have different peak concentrations. The
shapefinders prove the inclusions are small, with a diam-
eter of a few nanometres, and of fairly regular spherical
shape as T1 ' T2 ' 0. Cr-rich regions with at least 25%
Cr have an average radius 〈S1〉 = 1.7 ± 0.1 nm, and the
population has a standard deviation 0.6 nm.
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FIG. 8. A demonstration using segregation to a dislocation line, defined with a sinusoidal profile. Left: a rendering of the
isosurface at f = 35%[25]. Right: The computed genus and shapefinders for the isosurface containing the largest volume
computed from the noisy voxels. Note that the shapefinders, indicative of the dimensions of the object, are dissimilar to the
inclusions in figures 6 and 7 - one dimension is much greater than the other two.

FIG. 9. A demonstration using segregation to a dislocation loop inclusion, defined with a toroidal profile. Left: a rendering
of the isosurface at f = 35%[25]. Right: The computed genus and shapefinders for the isosurface containing the largest
volume computed from the noisy voxels. Solid lines indicate the analytical values. Note that the shapefinders, indicative of the
dimensions of the object, look similar to the dislocation line in figure 8, but the genus is one, indicating a shape with a single
hole through it.

The inconel example is shown in figure 11. Atoms
were placed in voxels initially of size a = 1.5nm, and
we report isosurfaces of the combined concentration of
Nb and Ti. We see that the genus peaks at a concen-
tration of 7%- this somewhat unexpected result is due
to a tube containing very low concentration- probably a
zone line- running the length of the needle and cutting
though several precipitates. This zone line is indicated
by the arrows in figure 11. Though not easily seen in iso-
surface renderings, it is directly apparent in the genus,
and shows that further analysis of this sample should ac-
count for this region. The number density shows that
there is a characteristic concentration, around 10%, but
that at 5% concentration the isosurfaces start to connect
together. The shapefinders prove the inclusions are not
spherical, T1 ' T2 6= 0, and considerably larger than
those in the Cu-Cr example. Regions with a combined
Nb+Ti concentration over 6% have a minor(major) size

〈S1〉 = 4.3± 0.3 nm, (〈S3〉 = 9.2± 1.0 nm), with a pop-
ulation standard deviations 2.5 nm (7.1 nm).

We show Mn segregation in irradiated Eurofer steel in
figure 12. Atoms were placed in voxels initially of size
a = 1.5 nm. The average Mn concentration is 0.45%. At
this level we see a peak in genus and a drop in the num-
ber density. At around just above 0.45% concentration
we conclude that the Mn is distributed as a filamentary
web- long thin strings of Mn which are likely following
dislocation lines. At higher concentration, 1% Mn, it is
considerably easier to recognise these lines in a render-
ing of the isosurfaces, and their filamentary character is
confirmed by the shapefinders (T1 > T2), but the isosur-
faces are starting to break up, indicating that the Mn
is not evenly distributed at this concentration. The av-
erage values are strongly affected by the presence of a
large number of small, spherical regions where Mn has
segregated, possibly to small irradiation-induced defects.
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Figure 13 shows an analysis of Ti concentration iso-
surfaces in a NbTi superconducting alloy. Atoms were
placed in voxels initially of size a = 1.5nm. The render-
ing shows two distinct regions, of high Ti,low Nb, and of
higher Nb, lower Ti. The average Ti concentration in the
needle as a whole is 65%, but we see the peak in genus
at a somewhat lower level, closer to 55%, which is the
concentration in the high Nb region. The shapefinders
show that the high 80% Ti regions are large and plate-
like (T2 > T1).

VII. CONCLUSION

In this paper we have described the use of shapefinder
functions to describe the morphology of atom probe sam-
ples. In section IV, we found that our use of a tricubic
interpolation for mesh refinement and a maximum like-
lihood denoising filter enabled highly accurate sub-voxel
resolution for the sizes of inclusions. In particular we
found that a good estimate for the concentration profile
was possible even where the voxel size to the inclusion
size, and that only ten to twenty atoms per voxel are re-
quired. This is a significant improvement on the standard
use of Gaussian smoothing kernels.

Regions of interest are naturally separated into dis-
crete isosurfaces, with no need to find clusters in the

data, but at a lower concentration isolevel where the tails
of the distributions of clusters overlap we see the merg-
ing of isosurfaces and the development of a sponge-like
topology. We have shown that distinguishing typical mi-
crostructural features can be done at a glance from the
shapefinders and genus, and that intuitive measures for
their size and shape are computed quantitatively.

This paper has focussed on concentration data in atom
probe needles, but the same techniques apply without
modification to any atomistic dataset and any scalar
field.
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est superclusters - i. morphology. A&A, 476(2):697–711,

2007.
[10] J. Schmalzing, M. Kerscher, and T. Buchert. Minkowski

functionals in cosmology. Proc. Int. Sch. Phys. Fermi,
132:281–291, 1996.

[11] Varun Sahni, B. S. Sathyaprakash, and Sergei F. Shan-
darin. Shapefinders: A new shape diagnostic for large-
scale structure. The Astrophysical Journal, 495(1):L5–
L8, mar 1998.
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VIII. APPENDIX

A. A Maximum Likelihood Denoising (MLD) filter
for voxelising atom probe data

Assume that we have some noisy voxelised 3d atom
probe data, with the measured concentration on voxel i
written as the sum of the expected value plus an error
term f̃i = fi + δfi. The goal of a filtering algorithm is to
find a good approximation for the unknown fi.

Part of the error δfi will come from the reconstruction
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FIG. 12. An analysis of the Mn concentration isosurfaces in an irradiated Eurofer needle. The isosurface is rendered at 1.2%
Mn. At 1% concentration, the Mn is segregated to dislocation lines and small spherical regions.

of the position and nature of atoms. Minimising these
errors is an active area of ongoing research, but beyond
the scope of this paper. A second part of the error will
come from sampling errors which we can address here-
we have some knowledge of the nature of the statistical
distribution of the errors and the physical nature of the
concentration field. We will assume that the total num-
ber of counts on the detector ni are available, as are the
number of counts of the target atom type ki, so that we
measure f̃i = ki/ni. The total number of counts ni is
likely to be well-approximated by a Poisson process, but
as the mean value is dependent on the proximity of sur-
faces and lensing effects, we can not use this knowledge
to much advantage. The recorded count ki will be well-
approximated by a binomial process, B, with a mean
〈ki〉 = nifi being the count ni multiplied by the concen-
tration fi. We can therefore write down the log-likelihood

of having measured f̃i as

Λ =
∑
i

log
[
p
(
f̃i|B(ni, fi)

)]
(14)

We will make the ansatz that the concentration field fi
is smoothly varying. This is not always going to be true
in the case of a sharp interface between phases, but it is
also an implicit assumption made by using the March-
ing Cubes algorithm to construct isosurfaces. Our goal
therefore is to find a smooth concentration field fi which
maximises equation 14.

Given input data f̃i we can construct smoothed data
using a local kernel filter.

q̃i =
∑
j∈Ni

κij f̃j ,=
∑
j∈Ni

κijfj +
∑
j∈Ni

κijδfj . (15)

We can identify the second term as the error in the
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FIG. 13. An analysis of the Ti concentration isosurfaces in an Ni-Ti superalloy. The isosurface is rendered at 75% Ti. Two
Ti-phases are present, with 55% and 85% Ti. The high concentration phase shows plate-like structure.

smoothed data estimate, and seek to minimise this er-
ror.

δqi ≡
∑
j∈Ni

κijδfj , (16)

so 〈δq2i 〉 =
∑
j∈Ni

κ2ij〈δf2j 〉,

=
∑
j∈Ni

κ2ij
fj(1− fj)

nj
.

=
∑
j∈Ni

κ2ij
f̃j(1− f̃j)
nj + 1

. (17)

where to find the last line we have used the variance of the
binomial distribution. Since we also require

∑
j∈Ni

κij =
1, equation 17 gives a criterion to optimise the kernel.

We choose a local quadratic kernel, which preserves
the second derivative of the concentration function. First

Taylor expand a general function about a point to second
order

q (~x) ' q0 + q′0 · ~x+1/2~x · q”0~x, (18)

which we can fit to the the 26 nearest neighbours on a
regular cubic lattice by minimising the function S

S =
∑
j

w (|~xj |)
(
q (~xj)− f̃ (~xj)

)2
, (19)

where w(x) is a weighting function to be determined.

Writing the neighbours on the six faces as weighted by
wf , the twelve edges as we, and the eight corners as wc,
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we find S is minimised when

q0 =
(4wewf + 8wcwf )

4 (3wewf + 8wfwc + 4wcwe)

∑
face,i

f̃j

+
(−wewf + 4wcwe)

4 (3wewf + 8wfwc + 4wcwe)

∑
edge,i

f̃j

+
(−2wcwf − 4wcwe)

4 (3wewf + 8wfwc + 4wcwe)

∑
corner,i

f̃j , (20)

where the notation
∑

face,i
f̃j denotes a sum over the six

voxels on the faces of voxel i. If we then say that the
weighting function be a Gaussian, w(x) = exp(−x2/2σ2),
then wf = exp(−1/2σ2), we = exp(−2/2σ2) = w2

f , wc =

exp(−3/2σ2) = w3
f . Note that we require wf ≤ 1. Our

general 26-neighbour kernel then reduces to

κf =
1

3 + 2wf

κe =
2wf − 1

4(3 + 2wf )

κc =
−wf

2(3 + 2wf )
. (21)

Note that 6κf + 12κe + 8κc = 1. We can therefore min-
imise equation 17, by minimising 〈δq2i 〉 with respect to
wf .

After some manipulations, this gives the closed form
end result

wf = min

1,
2
∑

edge,i

f̃j(1−f̃j)
nj

+ 8
∑

face,i

f̃j(1−f̃j)
nj

3
∑

corner,i

f̃j(1−f̃j)
nj

+ 4
∑

edge,i

f̃j(1−f̃j)
nj


(22)

which we can substitute into equation 21 to find a kernel
for each voxel. This gives an expected value q̃i on each
voxel, given the local variation,

q̃i =
∑
face,i

κf f̃j +
∑
edge,i

κef̃j +
∑

corner,i

κcf̃j . (23)

Note that there is no guarantee that atom count is con-
served,2 as

∑
i q̃ini 6=

∑
i f̃ini. Instead we can try

fi ' f̃i + αi(q̃i − f̃i) + βi, (24)

where αi = 1/(ni + 1) is an empirical weighting to allow
voxels with a high number count to resist alteration. βi
is selected such that

∑
i fini =

∑
i f̃ini, subject to the

condition 0 ≤ fi ≤ 1. We can then compute the log-
likelihood of the measurement (equation 14). If the log-
likelihood is increasing, we can iterate, using fi in place
of f̃i to compute the kernel ( equations 22,21 ), then using
equations 23,24 to update fi again, until the maximum

log-likelihood is found. By this iterative scheme we find a
smoothed concentration field fi which preserves the atom
count and maximises the likelihood of having measured
f̃i.

B. Surface refinement

There is an extensive literature on generating ’good’
surfaces using refinements of the MC algorithm, and it is
beyond the scope of this paper to review them. In this
work we use an inexpensive refinement to the triangu-
lated surface to improve the meshing. After the initial
triangle set is produced with a tri-linear interpolation,
we exploit the fact that we also maintain the phase field
in a tri-cubic approximation to refine the mesh. If the
field locally is described by

f(~x) = f0 +∇f · ~x+
1

2
~x ·G~x+ ..., (25)

where G = ∇∇f is a matrix of second derivatives, then
the point f(~x+λ∇f) is a better estimate for the location
of the isosurface f = f0, where

λ = − ∇f · ∇f
∇f ·G∇f

± 1

∇f ·G∇f

√
(∇f · ∇f)

2 − 2∇f ·G∇f (f(~x)− f0)

(26)

The sign is chosen to minimise the magnitude of λ. We
refine the surface by introducing new vertices at the mid-
point of each triangle edge, and using equation 26 to
take vertex to the isosurface. This quadruples the num-
ber of triangles, improving the surface integrals, and is
very quick as the position and connectivity of the new
vertices can be deduced from the old vertices. As an
example consider an octahedral isosurface which is the
smallest MC meshing for a sphere radius R << a (see
figure 14), and is a worst-case scenario for the accurate
representation of the true surface. The volume and sur-
face area of an octahedron are V = 4R3/3 = 1.333R3

and S = 4
√

3R2 = 6.928R2, compared to the true val-
ues for the sphere V = (4π/3)R3/3 = 4.189R3 and
S = 4πR2 = 12.566R2. Note that the octahedral es-
timates are very low. With our correction, inflating
the midpoints from [R/2, R/2, 0] positions to the isosur-

face at [R/
√

2, R/
√

2, 0] positions, the volume and sur-

face area increase to V = (2 + 2
√

2/3)R3 = 2.943R3,

S = 12
√

7/4−
√

2R2 + 2
√

3 = 10.418R2. The volume

and surface area errors have halved, from -68% to -30%,
and -45% to -17% respectively. Note that this systematic
underestimate of volume and surface area are character-
istic of convex triangulated surfaces.
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FIG. 14. Simple mesh refinement by inflating the midpoint of each original triangle to the isosurface. Left: The torus
concentration field defined in section V, at a concentration isolevel of f = 0.5. Right: a simple mesh refinement takes the
midpoints of each triangle edge and pushes them to the isosurface.

2 Note that if a simple Gaussian smoothing kernel were used to
find a smoothed concentration field as q̃i =

∑
j κGauss,j f̃j , we

would expect to preserve the summed concentration
∑

i q̃i, but
not necessarily atom count

∑
i q̃ini.


