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Advancing our understanding of divertor plasma physics is limited by an inability to directly determine the plasma
characteristics (density, temperature, etc) over the entire divertor cross-section. At best, diagnostics are able to measure
ne and Te at isolated points. More commonly however, diagnostics only measure higher-level quantities (e.g. emissivi-
ties) which are functions of ne and Te. Consequently, a single diagnostic cannot usefully constrain the fields of interest
without perturbing the plasma state. We address this problem by using a Bayesian approach to combine information
from multiple diagnostic systems to infer the 2D fields of ne and Te. We present results of the successful design, im-
plementation and testing of a simple, proof-of-principle system. The synthetic diagnostic measurements used in this
testing are derived from SOLPS-ITER fluid code predictions of the MAST-U Super-X divertor, and include appropriate
added noise. In these synthetic tests we are able to infer the plasma fields at resolutions better than 2cm over the outer
divertor leg. The mean absolute error between the inferred fields and the SOLPS-ITER test-case was Te ∼ 1.1eV and
ne ∼ 1.5×1018 m−3, where the test-case has a mean temperature of 6.4eV and mean density of 1.2×1019 m−3.

I. INTRODUCTION

A. Limitations of conventional divertor diagnostic analysis

The divertor of a magnetic confinement fusion device is a
complex system involving transport, atomic, molecular and
impurity processes in the plasma as well as at the divertor
surfaces, all giving rise to energy, momentum and particle
sources and sinks1. These processes are influenced by other
aspects of the divertor such as the divertor geometry (e.g. what
fraction of recycled neutrals escape the divertor) and magnetic
topology. All of the above make it difficult to separate out the
effects of individual processes to verify whether our physics
understanding, embodied in 2D models of the divertor such as
SOLPS-ITER2, are correct.

Despite the variety of diagnostic systems available in the
divertor, they each have limitations such that any single instru-
ment cannot usefully constrain the 2D fields of plasma elec-
tron temperature and density or the neutral density (at least
without perturbing the plasma, for example by strike-point
sweeping), which are key in improving our understanding of
divertor physics. Langmuir probes and Thomson scattering
systems can directly measure some of these fields, but do so
only at a series of isolated points. Filtered camera imaging
systems can collect information from a large fraction of the
divertor cross-section, but provide line-integrated measure-
ments of spectral line emissivities, which are a complicated
function of the plasma fields3.

Due to these limitations, studying the physics of divertor
plasmas has often relied on matching the predictions of codes
like SOLPS-ITER to diagnostic measurements, to find a set
of plasma fields which are consistent with the available data.
This matching process can be extremely time intensive, and
typically requires by-hand tuning of input parameters over
multiple iterations, and a period of weeks to months. Concep-
tually, in this approach assumptions are made about divertor

physics processes, which imply a particular plasma state, and
a corresponding set of expected diagnostic measurements.

We propose to instead take the inverse approach, where
starting from the diagnostic measurements the plasma state
is inferred, and from the inferred plasma state the underlying
physics processes can be determined. Here we demonstrate
that the first part of this approach, direct inference of the di-
vertor plasma state, is possible using an ‘integrated’ approach
to divertor analysis in which data from multiple diagnostic
systems are combined.

Such an integrated approach, if successful, would not serve
as a replacement for 2D divertor modelling codes. Rather it
is an alternative path to studying the role of various divertor
processes and how they vary during and across discharges. It
may provide an independent test of the validity of the physics
we believe is responsible for determining the divertor plasma
state, and is implemented within 2D divertor modelling codes.

For the purposes of this study we use the geometry
and planned diagnostics of the MAST-U spherical tokamak
as a test-case to investigate integrated divertor diagnostic
analysis4. The MAST-U divertor will be well diagnosed, pos-
sessing a multi-wavelength imaging (MWI) system based on
the MANTIS system at TCV5, which can simultaneously im-
age the divertor for each of up to 10 atomic lines, spectrom-
eters, bolometers, Langmuir probes and a dedicated divertor
Thomson scattering system. The coverage of diagnostics rel-
evant to our analysis is illustrated in figure 1.

B. An integrated, Bayesian approach to divertor analysis

We will make use of the Bayesian approach to data anal-
ysis, in which probability is used as a means of quantifying
the information content of experimental data with respect to
model parameters. By formalising the information content in
this way, we are able to combine data from multiple diagnos-
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tics in order to strengthen our knowledge of the plasma fields.
This is highly desirable, but comes at the cost of an increase
in the complexity and computational expense of the data anal-
ysis, as typically all data must be analysed simultaneously.
Multi-diagnostic Bayesian analysis has been successfully ap-
plied within fusion to profile diagnostic analysis6,7 and equi-
librium reconstruction8,9, but not yet to inference of the 2D
divertor plasma state.

Here we discuss the design, implementation and testing of a
Bayesian multi-diagnostic inference system for the MAST-U
Super-X divertor which aims to infer the fields of plasma elec-
tron temperature and density, and hydrogen neutral density,
throughout the divertor, including associated uncertainties. In
section II we discuss the parametrisation of the problem and
design requirements of the system. In sections III and IV
we show how information regarding the plasma fields in both
measurement data and prior knowledge may be expressed as
probability distributions. In section V the construction of syn-
thetic test-cases using SOLPS simulations is discussed. In
section VI we discuss the numerical strategies used to char-
acterise the posterior distribution for the plasma fields. The
results of analysing the synthetic data are presented in section
VII. A discussion of potential improvements and further work
is given in section VIII, followed by conclusions in section IX.

II. SYSTEM DESIGN

A. Parametric representation of plasma �elds

We wish to learn about the continuous fields of plasma
properties, such as densities and temperatures, but we can-
not infer them directly - a model must be chosen which can
adequately describe the types of fields we might reasonably
expect to exist. The parameters of this model for the fields are
the unknowns which we will seek to infer.

Due to toroidal field ripple and error-field effects, the mag-
netic field across the divertor is not toroidally symmetric, and
this will also be true of the plasma fields. In fact, the lay-
out of the plasma-facing components in the MAST-U divertor
is itself not toroidally symmetric, having a periodicity which
matches the toroidal field ripple in order to more evenly dis-
tribute power across the material surfaces. To know perfectly
the plasma state in the divertor would therefore require a 3D
description of the fields. Inferring these 3D fields from the
available measurements, even if we were to make assump-
tions regarding the toroidal periodicity of the fields, would be
extremely challenging. Instead, as a starting point we will as-
sume toroidal symmetry of the plasma fields in our analysis to
make the problem more tractable.

We choose to represent each of the 2D plasma fields via
linear interpolation on a triangular mesh, shown in figure 1,
which covers the relevant areas of the divertor cross-section.
Specifically, this means that by defining the value of a field
at each vertex of the mesh, that field is defined continuously
inside each triangle of the mesh as the plane that connects the
three points which define that triangle.

Using this approach a field, for example the electron tem-
perature field Te(R,z), is defined as

Te(R,z) =
V

∑
k=1

T (k)
e φk(R,z) (1)

where T (k)
e is the electron temperature at vertex k, φk(R,z) is

the linear interpolation basis function for vertex k, and V is
the number of mesh vertices. This model for the plasma fields
has the advantage that the model parameters themselves are
the values of each field at each mesh vertex, allowing physics
constraints to be easily applied. For example, to ensure that
the electron temperature field is greater than zero everywhere,
we need only ensure that the parameters which set the temper-
ature at each vertex are greater than zero, i.e. that T (k)

e > 0∀k.
A further advantage is the flexibility offered by triangular

meshes, such as the ability to selectively partition triangles
in order to increase the density of the mesh in areas where
greater resolution is required, for example at the strike point
and around the divertor leg. The field model in (1) is also
linear, which has important implications for efficient calcu-
lation of the expected diagnostic signals for a given set of
plasma fields, and the derivatives of those signals with respect
to the model parameters. These are important considerations
for finding the set of plasma fields which are most consistent
with the diagnostic data, and are discussed further in later sec-
tions.

The mesh shown in figure 1 was used to produce all re-
sults presented in this paper. It was generated by first creating
a mesh of equilateral triangles of side length 35mm which
aligns with a toroidally-symmetric approximation of tile 5,
where the outer strike-point will typically be located. In se-
lect regions of the mesh covering the expected position of the
divertor leg and strike point, triangles were partitioned to pro-
duce a higher-resolution area with side-lengths of 17.5mm,
resulting in a total of 586 vertices.

The total number of model parameters has a strong impact
on the computational complexity of the inference problem,
and because this is proportional to the number of vertices in
the field mesh, the number of vertices should be made as small
as possible. The mesh described here was chosen to strike a
reasonable balance between spatial resolution and computa-
tional complexity.

B. Design requirements

To guide the direction of the system design a set of require-
ments were chosen. Firstly, we want to be able to choose eas-
ily which diagnostics are included in the analysis. This means
that diagnostic systems should be able to be added or removed
from the analysis without making direct alterations to the sys-
tem code. Instead, there should be a ‘higher-level’ interface
for specifying the choice of diagnostics.

A key part of the system are the diagnostic forward models.
Also sometimes referred to as ‘synthetic diagnostic’ models,
forward models simulate the experimental data we would ex-
pect to measure using a particular instrument under a given
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FIG. 1. Illustration of diagnostic coverage in the MAST-U Super-X divertor region, and the triangular mesh used to represent the plasma
fields. Only the field-of-view of camera pixels viewing the plasma tangentially is shown here, but the camera is also able to observe the strike
point on tile 5 via pixels with non-tangential views. The Thomson scattering measurement points are located in the private-flux region for this
particular equilibrium, which is used for MAST-U SOLPS simulations, but can also be located around the separatrix or in the scrape-off layer
depending on experimental set-up.

set of plasma conditions (in this case, the 2D fields of elec-
tron temperature Te, electron density ne and hydrogen neutral
density n0 defined by the mesh). There may be many possible
forward models for a given diagnostic, which vary based on
the physics assumptions they make, their level of complexity
and their computational cost. As before, we want an interface
which allows us to specify which model is used for a given
diagnostic system without making changes to the code.

Both of these requirements are similar in that they demand
a modular design, where the code responsible for each diag-
nostic system is self-contained. An object-oriented program-
ming approach is ideally suited to meeting these requirements.
For this reason, and its growing importance as a data analysis
language both in fusion and science in general, we chose to
develop the system in Python.

Finding the set of plasma fields which are most consistent
with the diagnostic data is a challenging optimisation prob-
lem in which we must maximise a function called the ‘pos-
terior log-probability’ (this function will be discussed in de-
tail later). It was our opinion that solving this optimisation
problem would require the ability to efficiently calculate the
derivative of the posterior log-probability with respect to the
model parameters (i.e. the field values at each vertex). This
was chosen as the final requirement for the system design.

C. Choice of diagnostics

To include a diagnostic system in our analysis, we must
be able to make predictions about what data we expect that
diagnostic to collect for a given set of plasma fields (which
are specified by the model parameters). In this way, it is the
choice of diagnostics which dictates what plasma fields must
be modelled. For example, the Thomson scattering (T.S.) sys-
tem will estimate the electron temperature and density, so to
include the T.S. system in the analysis we must model the
fields of Te and ne.

The number of modelled fields has a large impact on the
complexity of the problem, and as such we would like to
model a small number fields constrained by as many diag-
nostics as possible. On account of its ability to make direct
measurements of Te, ne the divertor T.S. system was chosen
as a starting point10. The Langmuir probe data (under certain
assumptions) can also be modelled using only the Te and ne
fields, so the probes can be included without the incurring the
cost of an additional field11.

The emissivity of atomic line radiation has a dependence on
both Te and ne, so any filtered camera data will carry informa-
tion about the Te, ne fields. However, the emissivity of a given
line also depends on the density field of the corresponding
emitting species, which is charge-state and metastable-state
resolved. Including multiple filtered cameras in the system
while keeping the number of modelled fields to a minimum
therefore requires that we choose carefully which lines are be-
ing measured.
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This could be achieved by viewing a group of lines from
the same emitting species and charge-state, but this limits the
possible choices of lines. Another option would be to choose
lines from a single species but different charge states, and
then specify a physics model for the metastable and transport-
resolved ionisation balance of that species12,13. Rather than
modelling a density field for each charge-state, we could
model the concentration and transport residence time of the
species, and then derive the density of each charge-state from
the ionisation balance model.

However, specifying a model for the ionisation balance is
a strong physics assumption. If the real ionisation balance
present in the divertor plasma cannot be adequately repro-
duced by the chosen model, the inferred plasma fields may be
erroneous. For this reason, we will initially attempt to infer
the fields without making assumptions regarding the ionisa-
tion balance.

Divertor bolometry will also be available in MAST-U, how-
ever we expect that the total radiated power measured by the
bolometers would contain non-negligible contributions from
impurities (e.g. Carbon). Accurate modelling of the bolome-
ter signals may therefore require the addition of multiple im-
purity charge-state density fields. As such we chose not to
include bolometry in the system at this stage.

The initial version of the system we present here represents
a first step toward integrating as many divertor diagnostics as
possible in order to better infer the divertor plasma state. This
initial development includes 4 filtered cameras which view the
Hydrogen Balmer α , β , γ and δ lines, which correspond to
the n = 3,4,5,6 to n = 2 transitions respectively. Under cer-
tain assumptions discussed in the following section, data for
all system diagnostics may be modelled from three fields; the
electron temperature, electron density and hydrogen neutral
density.

III. BAYESIAN MULTI-DIAGNOSTIC ANALYSIS

When using experimental data to estimate some parameters
of interest, rather than conceiving of the parameters having
some fixed ‘true’ value that could give rise to a variety of pos-
sible experimental measurements, the Bayesian view concep-
tualises the model parameters as fundamentally uncertain by
expressing them as a probability distribution, which we can
think of as the distribution of possible causes that could have
given rise to the measured data.

The Bayesian approach to data analysis therefore uses prob-
ability as a means of formally quantifying the information that
a given piece of experimental data provides with respect to
the model parameters. This allows information from different
sources, for example completely separate diagnostic systems,
to be combined together to strengthen our knowledge regard-
ing the physical quantities in which we are interested.

In this case the set of model parameters, which we will call
θ , are the values of Te, ne and n0 at each vertex of the mesh
such that

θ = {T (1)
e , . . . ,T (V )

e ,n(1)e , . . . ,n(V )
e ,n(1)0 , . . . ,n(V )

0 }. (2)

Our goal is to learn about the distribution of θ constrained by
the set of diagnostic data, which is commonly referred to as
D . This distribution is expressed mathematically as the prob-
ability of θ given D , i.e. P(θ |D). This is called the ‘posterior
distribution’, and is given by Bayes’ theorem as

P(θ |D) =
P(D |θ)P(θ)

P(D)
. (3)

Constructing the posterior distribution and learning about its
properties is absolutely central to Bayesian analysis, so it is
worthwhile to discuss the terms on the right-hand side of (3)
individually.

P(θ) is the prior distribution, and represents any informa-
tion we have regarding the model parameters before we in-
clude information from the diagnostic data. For example,
this information may be a physics constraint such as non-
negativity of the plasma fields. This information could be
encoded into the prior distribution by having the prior prob-
ability fall to zero if any field values are negative. Typically
the prior distribution must be chosen rather than derived - this
choice will be discussed in section IV.

P(D) is usually referred to as the model evidence, and is
important in model selection problems, however we may ig-
nore it in this analysis as the posterior need only be determined
up to a constant of proportionality in order for it to be charac-
terised.

P(D |θ) is the likelihood, and is the probability that we
would observe a dataset D assuming the plasma were in a
state described by a given θ . The use of D serves as a use-
ful shorthand to represent distributions over many individual
data values. For example, suppose that d(i) represents a sin-
gle data value from our full dataset - the likelihood is actually
the joint distribution over every individual data value given
the model parameters, i.e. P(d(1),d(2), . . . ,d(n)|θ). By letting
D = {d(1),d(2), . . . ,d(n)} we may write the likelihood more
concisely as P(D |θ).

If some set of random variables, in this case D , are mutually
conditionally independent (i.e. the uncertainties of all data
values are independent) then the joint distribution of all the
variables can be written as the product over the distributions
for each variable such that

P(d(1),d(2), . . . ,d(n)|θ) =
n

∏
i=1

P(d(i)|θ). (4)

This assumption of independence may not always be valid and
depends on the instruments in question, but it is strongly sim-
plifying so should be made where possible.

A. Individual diagnostic likelihoods

When analysing data from a single diagnostic, constructing
the likelihood for the whole data set as a single product of the
likelihoods for all individual data values makes sense, as the
P(d(i)|θ) will be similar in structure as they all relate to the
same instrument. For example, we could treat each pixel of
a filtered camera system as an individual diagnostic with its
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own measurement, but the camera has hundreds of thousands
of pixels, and the likelihood will have the same form for each.
It therefore makes more sense to treat the entire camera as
one instrument and express its likelihood as the product of the
likelihoods of each individual pixel.

In the case of multi-diagnostic inference, it is more practi-
cal to separate out overall likelihood for all data into a product
of the likelihoods for each diagnostic system. Let the dataset
for the Thomson scattering system and Langmuir probes be
labelled Dts and Dlp respectively. We will separate out the
data for each filtered camera, such that data for the i’th cam-
era is represented by Dfc,i. Again making the assumption of
mutual independence between the datasets, the likelihood for
all data can be now written as

P(D |θ) = P(Dts|θ)P(Dlp|θ)∏
i

P(Dfc,i|θ). (5)

It is common practice to work in log-probabilities, not only
for the conceptual simplification that large products of prob-
abilities become sums of log-probabilities, but also for im-
proved numerical stability. Here we use L to indicate a log-
probability density function, such that L (A|B) = lnP(A|B).
Now combining (3) and (5) we can express the log-posterior
distribution L (θ |D) as

L (θ |D) = L (Dts|θ)+L (Dlp|θ)+

(
∑

i
L (Dfc,i|θ)

)
+L (θ)−L (D). (6)

At this point it is useful to consider how the structure of
the log-posterior supports the object-oriented design approach
discussed in section II B. All terms in (6) (except L (D),
which is in practice discarded) can be evaluated independently
- this allows each term to be represented as a single object,
which contains all experimental data and forward models re-
quired to evaluate that term. The resulting structure of the
system is illustrated in figure 2. This approach means that
any of the terms can be easily included or excluded from the
log-posterior, fulfilling one of the design requirements.

Rather than passing the full set of parameters to each di-
agnostic, we introduce a ‘plasma state’ object which acts a
mediator between the values in θ and the diagnostic objects.
Each diagnostic object has access to the plasma state object,
and can request from it the value of a given field at a given
point in space to allow the forward model to be evaluated,
which predicts the expected experimental measurements. In
this way, the field parametrisation can be changed (for exam-
ple by switching to a different mesh) without making any al-
teration to the likelihood or prior objects.

B. Thomson scattering and Langmuir probe likelihoods

A single Langmuir probe or spatial channel of the divertor
Thomson scattering system accumulate their signal over a vol-
ume which can be thought of as a spatial instrument function.
However, if the extent of this instrument function is small
compared to the scale lengths over which the relevant plasma

fields vary, we may approximate them to be point measure-
ments. Making this approximation de-couples the analysis of
the raw Thomson and Langmuir data from the problem of in-
ferring the fields. For example, the posterior distribution for
electron temperature and density for a single Thomson chan-
nel can be computed in advance and stored, and then referred
to when assessing the likelihood of that spatial channel with
respect to a set of proposed fields.

This approximation while convenient is not strictly neces-
sary, and in future when the system is applied to real experi-
mental data we may forgo this assumption and forward-model
from the proposed fields directly to the raw Thomson scatter-
ing and Langmuir probe data. Presently however, we seek
only to demonstrate that the multi-diagnostic inference ap-
proach has value, so we are free to prescribe a sensible likeli-
hood for the data of a point measurement given Te and ne. For
this purpose, we use a uncorrelated bivariate normal distribu-
tion such that

L (Dts|θ) =−
1
2 ∑

i

(∑ j Wi jT
( j)

e −µ
(i)
Te

σ
(i)
Te

)2

(7)

+

(
∑ j Wi jn

( j)
e −µ

(i)
ne

σ
(i)
ne

)2
 .

As in (1), T ( j)
e , n( j)

e refer to the model parameters which
specify the temperature and density at the j’th vertex of the
mesh. For the electron temperature and density respectively,
µ
(i)
Te
,µ

(i)
ne are the measured values and σ

(i)
Te
,σ

(i)
ne are the uncer-

tainties for the i’th spatial measurement point. Wi j is a matrix
of pre-calculated linear interpolation weights which give the
prediction of the fields at the spatial measurement points. As
the Langmuir probes are also treated as being point measure-
ments of Te and ne, the total log-likelihood for the Langmuir
probes L (Dlp|θ) is also of the form given in (7).

C. �ltered camera system likelihood

The emissivity at the j’th mesh vertex for a given hydrogen
spectral line E j is approximated as a sum of excitation and
recombination emission such that

E j = n( j)
e n( j)

0 PECex(T
( j)

e ,n( j)
e )+(n( j)

e )2PECrec(T
( j)

e ,n( j)
e )

(8)
where PECex, PECrec are the photon emissivity coefficients
for excitation and recombination respectively, whose values
are taken from the ADAS database3. This model assumes
that only atomic emission channels contribute meaningfully
to the hydrogenic spectral emission and that Zeff = 1. The
experimental data are camera images, each of which are anal-
ysed as vector of pixel-brightness values b. The brightness at
the i’th pixel bi is modelled as the integral along that pixel’s
line-of-sight through the emissivity field defined by the val-
ues in the emissivity vector E . As the fields are defined
through Barycentric interpolation, which is linear, this line-
integral can be represented exactly by a weighted sum of the
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1FIG. 2. Flow chart illustrating the code structure of the system. The posterior distribution is encapsulated as a single object which takes model
parameters (which define the plasma fields) as inputs and returns the posterior log-probability. The prior distribution and the likelihood for
each diagnostic system are separated into self-contained objects, which can independently request the specific information they require about
the plasma fields from the plasma state object. The diagnostic and prior objects each return a log-probability value, which are summed to
produce the posterior log-probability.

emissivities at each mesh vertex. Given a particular mesh,
and a set of lines-of-sight for the pixels, these weights can
be pre-calculated and stored as a ‘geometry matrix’ G such
that the product of this matrix with the emissivities GE yields
a prediction of the pixel brightness values. Although the
pixel brightnesses are strictly non-negative, for simplicity we
presently represent the filtered camera likelihood as multivari-
ate normal such that

L (Dfc|θ) =−
1
2
(GE −b)>Σ

−1 (GE −b) (9)

Experimental calibration of filtered cameras systems typically
find the variance of the pixel brightnesses (assuming the pixel
is not near saturation) to be linear such that

Σii = αbi +β (10)

where α,β are constants determined as part of the calibra-
tion. For our synthetic camera model, we re-parametrise (10)
so that the coefficients are more easily interpreted. First sup-
pose that the error at zero brightness can be expressed as some
fraction f0 of the maximum brightness bmax. Second, we fix
the fractional error at the maximum brightness to be a constant
fmax. Under these assumptions the variance may be expressed
as

Σii = bi
(

f 2
max− f 2

0
)

bmax + f 2
0 b2

max (11)

IV. PRIOR CONSTRAINTS

We are always forced to choose a prior distribution - even
omitting the prior is equivalent to using a uniform prior (i.e.
one which deems all possible sets of θ to be equally likely),
which is itself a choice. As we don’t have prior information
from another source of experimental data, our goal should
be to choose a prior which excludes unrealistic plasma con-
ditions. In order to do this, we require information about
the space of realistic plasma conditions that exist within the
divertor. To gain insight into this, we examined a collec-
tion of 25 MAST-U SOLPS simulations which were carried
out in support of a study on enhancements to the plasma ex-
haust operational space of MAST-U14. These simulations
cover a range of plasma densities at the core grid boundary
(3.6×1018→ 1.5×1020 m−3), and heating powers (1.7→ 2.5
MW). In each case, the fields of Te, ne and n0 in the lower di-
vertor were extracted, and the values of each field across all
simulations were concatenated. By plotting the gathered field
values against one another we are able to derive simple but
useful constraints on plasma conditions which dictate whether
a given triple of (Te,ne,n0) is considered realistic - these re-
sults are summarised in figure 3.
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FIG. 3. The space of realistic plasma conditions in the MAST-U
divertor as predicted by a group of SOLPS simulation results span-
ning various experimental configurations. (a) The space of realistic
(Te,ne) can be well approximated by placing upper limits on Te, ne
and Pe. (b) The space of realistic n0/(ne + n0) can be bounded by
placing an upper limit on n0/(ne +n0) as a function of Te.

TABLE I. Upper and lower bounds placed on the values of the plasma
fields at all mesh vertices.

Te ne n0

lower bound 0.2 eV 1×1016 m−3 1×1015 m−3

upper bound 60 eV 2.5×1020 m−3 2×1020 m−3

A. Bounds on �eld values

Upper and lower bounds are placed on the electron tem-
perature, density and neutral density at every vertex. These
bounds, chosen based on the SOLPS data, are given in ta-
ble I. Imposing these bounds explicitly by using a uniform
prior introduces discontinuities to the posterior which can
cause problems for gradient-based sampling and optimisation
algorithms. Instead, the bounds are imposed by the sam-
pling/optimisation algorithms themselves.

B. Static electron pressure prior

The prior on the static electron pressure for each vertex is
uniform if the pressure is less than the chosen limit Pmax

e , and
Gaussian for values above the limit. The resulting static elec-
tron pressure log-prior is

L (θ)pressure =−
1

2σ2
prs

∑
i

max

(
n(i)e T (i)

e

Pmax
e

−1, 0

)2

. (12)

The value of σprs can be thought of as a ‘fractional tolerance’
of the limit Pmax

e , i.e. by what fraction the limit may be vio-
lated before the prior probability drops significantly. Based on
the SOLPS data we set Pmax

e = 2×1020 eVm−3 and σprs = 0.1.

C. Neutral fraction prior

The upper limit on the neutral fraction at each vertex f max
i

is set as a function of the temperature at each vertex such that

f max
i = (1− c)exp

(
−T (i)

e /l
)
+ c, (13)

where c = 0.04 and l = 5eV. In figure 3 this limit is shown
to be greater than 99.5% of neutral fractions in the SOLPS
dataset. The neutral fraction prior has the same form as that
used for the static electron pressure in (12) such that

L (θ)fraction =−
1

2σ2
frc

∑
i

max

(
1

f max
i

n(i)0

n(i)e +n(i)0

−1, 0

)2

,

(14)
where σfrc = 0.1.

D. Spatial smoothness prior

Suppose v is a vector of field values at each mesh vertex,
and define the ‘umbrella’ matrix operator U such that

Ui j =


−1 if i = j
1/n if vertex j is one of n vertices connected to i
0 if vertex j is not connected to i

(15)
The product Uv is then a vector of differences between the
field value at each vertex and the average field value of all ver-
tices to which it is connected. For a purely equilateral mesh, if
the value of a vertex and all its neighbours lie in a plane, then
this difference will be exactly zero. In this sense the umbrella
operator measures how much the field deviates from a plane
in the local region of each vertex. Consequently, the sum of
the squares of the umbrella differences, |Uv|2, is a useful start-
ing point from which to construct a prior that favours spatial
smoothness.

It is helpful to consider whether the fields can be trans-
formed such that the expected solutions for the transformed
fields better satisfy the assumption of smoothness. Enforcing
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smoothness on these transformed fields means that real fea-
tures of the fields, which we want to preserve, are less likely
to be penalised by the smoothing prior.

For this reason we enforce spatial smoothness on the natu-
ral log of the plasma fields, rather than the fields themselves.
Let T̃e, ñe, ñ0 represent the vectors of log-temperature, log-
density and log-neutral density at each vertex of the mesh,
and S = U>U. The un-smoothness (quantified by the sum
of the squares of the umbrella differences) of one of the log-
fields, for example the log-temperature, can now be written as
|UT̃e|2 = T̃>e ST̃e. By introducing a constant σsmth, which de-
termines how strongly un-smooth fields are penalised, we can
define the smoothing log-prior as

L (θ)smoothness =−
1

2σ2
smth

(
T̃>e ST̃e + ñ>e Sñe + ñ>0 Sñ0

)
.

(16)
Unlike the priors on the static electron pressure and neutral
fraction, which effectively set upper limits on those quantities,
the smoothness prior has a strong impact on the entire poste-
rior distribution. Consequently, additional work is required to
select an appropriate value for σsmth - this is discussed further
in section VII.

The log-prior distribution can be defined as the sum of the
various components described in this section such that

L (θ) = L (θ)pressure +L (θ)fraction +L (θ)smoothness. (17)

V. PRODUCTION OF SYNTHETIC TEST-CASE DATA

A. SOLPS test-cases

In order to test the system we require synthetic data for each
instrument, and that this data is as representative as possible
of the real experimental data which will be measured dur-
ing MAST-U operation. For this purpose we use results from
SOLPS simulations of the MAST-U edge and divertor to pre-
scribe the fields of electron temperature, density and neutral
density from which the synthetic data will be derived.

Here we consider two SOLPS cases taken from a scan of
the nitrogen seeding rate to detachment. Both cases have the
same magnetic equilibrium, 2.5 MW of heating power and a
Deuterium fuelling rate of 2×1021 s−1. The two cases, which
we will from now refer to as the low- and high-seeding cases,
have nitrogen seeding rates into the divertor of 2× 1020 s−1

and 5× 1020 s−1 respectively. Both cases are accessible via
the MDSplus database15, stored as runs number 121844 for
the low-seeding case and 121847 for the high-seeding case.
These two cases are not part of the set used to inform the prior
constraints discussed in section IV, and their field values lie
well inside the limits set by the chosen prior. Note that al-
though in the SOLPS data itself the electron density and hy-
drogen ion density fields maybe be different due to the pres-
ence of the seeded Nitrogren, we set them to be equal when
producing synthetic data, as this equality is assumed in the
emission model in (8).

The field values on the SOLPS grid are interpolated on to
the triangular mesh prior to producing the synthetic data, such

that the resulting mesh representation of the fields becomes
a test-case which we will attempt to reconstruct. The mesh-
representations of the plasma fields for each of the two test-
cases are shown in figure 4.

B. Addition of simulated noise to synthetic data

After synthetic measurements for each instrument are gen-
erated using their respective forward-models, simulated noise
is added to the data. For the filtered camera images, the vari-
ance of the noise added to each pixel is set according to (11),
where fmax = 0.025 and f0 = 1/256. The Deuterium-α emis-
sivity field derived from the low-seeding case, and the corre-
sponding synthetic data image are shown in figure 5.

The point measurements of electron temperature taken by
the Thomson scattering and Langmuir probes systems have
an assigned uncertainty of σTe = Te/10+0.1eV, and the cor-
responding electron density measurements have an assigned
uncertainty of σne = ne/10+1018 m−3.

VI. CHARACTERISING THE POSTERIOR
DISTRIBUTION

Now that all terms in (6) which have a dependence on θ

have been defined, the posterior log-probability can be evalu-
ated for any chosen set of plasma fields. The posterior must
now be characterised in a way that allows us to extract useful
information about the plasma fields.

A. Gradient-based approach

The filtered camera data, which constitutes the majority
of the information in the problem, introduces strong corre-
lations between the model parameters due to both the line-
integrated nature of the measurement and the dependence of
the emissivities on the plasma fields. This results in a high-
dimensional, highly-correlated posterior distribution, which
strongly favours the use of gradient-based optimisation and
sampling techniques.

Such techniques require the derivative of the log-posterior
with respect to the model parameters. However approximat-
ing this derivative via finite-difference is prohibitively expen-
sive as the number of model parameters is large. It was de-
cided therefore that efficient calculation of the log-posterior
derivative should be a core part of the system design, and this
was added to the list of design requirements discussed in sec-
tion II B. As a result, evaluating the derivative of the log-
posterior takes approximately a factor of 3 longer than evalu-
ating the log-posterior itself - this is approximately 600 times
faster than evaluating the derivative using finite-difference for
the current number of model parameters.
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FIG. 4. Plots showing the mesh-representations of the electron temperature, electron density and neutral density taken from the Nitrogen-
seeded SOLPS predictions. Plots (a,b,c) and (d,e,f) show the low- and high-seeding cases respectively

B. Maximum a posteriori estimation

The first stage of characterising the posterior is to find the
set of model parameters which maximises its value, referred
to as ‘maximum a posteriori’ (MAP) estimation16. To locate
this maximum, we employ a ‘hybrid’ approach which com-
bines a genetic algorithm with the L-BFGS algorithm17. In
this approach a set of candidate solutions is created (initially
by random sampling), and then each candidate is used as a
starting-guess for the L-BFGS algorithm, which convergences
to a (typically local) maximum in the posterior log-probability
density. Based on the resulting set of local maxima, a new
set of candidate solutions is generated using the genetic algo-
rithm, and this process is repeated until the highest observed
log-probability converges.

Evaluating the L-BFGS algorithm for each candidate so-
lution is an independent computation, and these evaluations
constitute the vast majority of the computational cost of the
approach. These computations can be efficiently distributed
across multiple CPUs, up to a limit where each candidate so-
lution is assigned to a separate CPU, thus reducing the total
computation time significantly.

The convergence of the solution log-probability using this
approach is shown in figure 6. In this case a population of 20
candidate solutions was distributed over 20 threads of a Intel
Xeon E5-2695 v3. The maximum log-probability had con-
verged sufficiently after 80 generations, which in total took
approximately 80 minutes to evaluate. In the first few genera-
tions, we see that many of the L-BFGS runs converge to local
maxima with probability densities significantly below that of
the global maximum. This highlights the necessity of employ-
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FIG. 5. (a) The Deuterium-α emissivity field as predicted by (8)
for the low-seeding case shown in figure 4. (b) The corresponding
synthetic Hydrogen-α filtered-camera image with added simulated
noise.

ing a ‘global’ optimisation strategy such as that described here
when determining the MAP estimate.

C. Hamiltonian Monte-Carlo sampling

Although MAP estimation yields a useful single-value es-
timate of the model parameters, it does not provide any infor-
mation regarding the uncertainties associated with that esti-
mate. To characterise these uncertainties we employ ‘Hamil-
tonian Monte-Carlo’ (HMC), a gradient-based sampling algo-
rithm which is particularly effective (in comparison to other
approaches) in cases where the number of model parameters
is large, and strong correlations are present18.

D. Marginal expectation

An alternative to the MAP estimate is the marginal expecta-
tion (MEX), where the value of each parameter is taken to be
the mean of its corresponding marginal distribution. Where
as the MAP is the single most probable solution, the marginal
expectation can be thought of as the ‘average’ of the possible
solutions. The marginal expectation estimate can be calcu-
lated easily by taking the mean of the sample generated using
Hamiltonian Monte-Carlo.

0 10 20 30 40 50 60 70 80
generation #

140

120

100

80

60

40

20

0

(
|

)
(

M
AP

|
)

(a)

0 10 20 30 40 50 60 70 80
generation #

10

8

6

4

2

0

(
|

)
(

M
AP

|
)

(b)

population members
highest log-probability

FIG. 6. Plots of the posterior log-probability L (θ |D) of each
member of the population of candidate solutions at each genera-
tion of the optimisation, minus the highest observed log-probability
L (θMAP|D). (a) all solutions; (b) only solutions with probabili-
ties near the maximum, where the red line shows the highest log-
probability observed so far at each generation.

VII. RESULTS OF SYNTHETIC TESTING

A. Selecting the smoothing prior uncertainty

The value of the smoothing prior uncertainty σsmth, which
appears in (16), can have a strong impact on the posterior dis-
tribution and therefore the MAP estimate. To assess this im-
pact we evaluated the mean absolute difference between the
MAP estimate and the low-seeding case at all vertices for a
range of values of σsmth - the results of this scan are shown
in figure 7. The minima in the error for each field are fairly
broad, but do not all occur at the same value of σsmth. The
results presented here used a value of σsmth = 0.2 which pro-
vides a good balance between low error in electron tempera-
ture and electron density.

In an applied case using experimental data we cannot select
the smoothing uncertainty in this fashion as the true values of
the fields are unknown. As such, testing selection criteria for
the smoothing uncertainty which are applicable to experimen-
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FIG. 7. Mean absolute difference between the field values of the low-
seeding case and those of the corresponding MAP estimate for each
of the plasma fields as a function of the smoothing prior uncertainty
σsmth.

tal data will be the subject of further work.

B. Comparison of inferred �elds and test-cases

The maximum a postiori (MAP) and marginal expectation
(MEX) estimates were evaluated as described in section VI
for both test-cases. The inferred field values from the MEX
estimate are compared with those from the corresponding test
case in figure 8, and the mean absolute differences for each
field are given in table II for both the MAP and MEX. The
marginal expectation appears to outperform the MAP estimate
for these cases, but with the exception of the high-seeding
neutral density estimation, the differences in the mean abso-
lute error values are less than 10%.

We note that the estimate of the electron temperature be-
comes less reliable above ∼10 eV - this may occur because
at these higher temperatures the emission is almost purely due
to excitation, which is very insensitive to electron temperature
above 10 eV for the Balmer series.

Conversely, in regions where the temperature is very low,
the emission becomes dominated by recombination, which
has no dependence on the neutral density. We suspect this
is the cause of the large errors in the neutral density estima-
tion for the high-seeding test-case, which is more strongly de-
tached than the low-seeding case, and therefore has a large
region of recombination-dominated emission.

The inferred fields for the low-seeding case, along with the
differences between the inferred fields and the test-case are
shown in figure 9. These difference plots highlight spatial
structure in the estimation errors, such as the under-estimation
of the temperature along the separatrix. The peak in the elec-
tron temperature at the separatrix is a very sharp feature which
will be penalised by the spatial smoothing prior. This, com-
bined with the relatively weak temperature dependence of the
emission in that region, is likely the reason for the under-

estimate of the separatrix temperature. This highlights a com-
mon difficulty of regularising solutions which possess a wide
range of spatial scale-lengths - any level of smoothing which
suppresses non-physical fluctuations in regions with a long
scale-length will also over-smooth in regions with short-scale
lengths.

Tests were also carried out wherein only measurements
from a single filtered camera were used to constrain the
plasma fields, in order to verify the effects of a multi-
diagnostic approach. In all such tests with a single diagnostic,
it was not possible to make any sensible estimates of the 2D
plasma fields.

C. Uncertainty estimation

Uncertainties in the inferred fields for both test-cases were
estimated by sampling from the posterior distribution using
Hamiltonian Monte-Carlo. Twenty separate Markov-chains
were initiated in parallel from different positions close to the
MAP estimate, and were allowed to evolve for 24 hours. Any
samples in each chain prior to the point where the simulation
step-size had converged were discarded as burn-in, and the
remaining samples from all chains were then aggregated.

Figure 10 compares the test-cases and inferred fields along
a flux surface which lies in the centre of the scrape-off layer,
and shows the 95% highest-density interval derived from the
sample. We see that the differences between the test-case val-
ues and the inferred fields are well explained by the estimated
uncertainties almost everywhere. One notable exception is
that the uncertainty in the electron temperature and density
appears to be under-estimated close to the target.

For an inverse problem of this type the posterior is typically
highly multi-modal. It is possible that the Markov-chains used
to generate the sample were trapped near the maxima corre-
sponding to the MAP estimate, and were unable to explore
other maxima which may feature more varied configurations
of the fields near the target. To investigate this we plan to
test extensions to standard Markov-chain Monte-Carlo which
are designed specifically to allow exploration of multi-modal
distributions such as Parallel tempering19.

VIII. DISCUSSION

A. Potential improvements to instrument modelling

All synthetic diagnostic models are ‘idealised’ to some ex-
tent, as they cannot reasonably capture every subtlety of the
experimental set-up perfectly. Our goal however should be to
make these models more realistic where possible, and this will
be the focus of further work on the system before it is applied
to real experimental data.

For example, uncertainty in the absolute brightness calibra-
tion of filtered cameras is a potentially important effect for
which we do not currently account. This can be achieved by
including the calibrations as so-called ‘nuisance parameters’.
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TABLE II. The mean absolute difference between the field values at each vertex for each test case and its corresponding inferred value, for
both the MAP and MEX estimates.

mean |∆Te| (eV) mean |∆ne| (m−3) mean |∆n0| (m−3)

low-seeding MAP 1.12 1.57×1018 3.50×1017

low-seeding MEX 1.09 1.46×1018 3.38×1017

high-seeding MAP 0.81 1.60×1018 7.37×1017

high-seeding MEX 0.74 1.65×1018 4.05×1017
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FIG. 8. Scatter plots of the field values of the test-cases versus those of the MEX estimate at each vertex of the mesh. Plots (a,b,c) and (d,e,f)
show results from the low- and high-seeding cases respectively.

This process involves allowing the calibration values them-
selves to be free parameters in the system, with a prior dis-
tribution determined by the measurement of those calibration
values. By allowing the calibration values to vary in this way,
effects of the uncertainty in their value are reflected in the in-
ferred plasma fields.

Some of the light collected by the MWI system will have
reached the camera after being reflected by a material surface
in the divertor. The algorithm used here to calculate the Ge-
ometry matrix G, which appears in (9), only accounts for light
which has travelled directly from the plasma to the camera. It
is however possible to account for reflections from material
surfaces by using a more sophisticated approach to calculat-
ing the geometry matrix20, with an associated increase in the
computational cost of the filtered camera forward-model.

It may be the case that in practice, the Langmuir probes
are unable to measure the electron temperature with an un-
certainty comparable to that which we assume when generat-
ing synthetic data when the temperature drops below 5 eV. In

such cases, the probes may only provide an ‘upper limit’ mea-
surement on the temperature. Accounting for this will require
forward-modelling to produce synthetic probe data, which can
be analysed to calculate joint-distributions of Te, ne to be used
in place of the assumed Gaussian errors.

B. Inclusion of additional diagnostic systems

The MAST-U divertor spectroscopy system could be a use-
ful additional source of information for inferring the plasma
fields. The system will observe a large number of spectral
lines, including many from various impurities, so modelling
all data produced by the spectrometers is not feasible. How-
ever, if we restrict the analysis to spectral lines which are al-
ready being viewed by the MWI system, then this data can
be modelled without greatly increasing the number of model
parameters. The brightness of these lines as measured by
the spectrometers would provide a cross-check on the bright-
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FIG. 9. The marginal expectation estimate of the electron temperature, electron density and neutral density fields for the low-seeding case are
shown in (a), (b) and (c) respectively. The corresponding differences between the marginal expectation estimate of a field and the test-case
values are shown in (d), (e) and (f).

nesses measured by the MWI system, and it may also be pos-
sible to constrain the electron density along the spectrometer
line-of-sight using information encoded in the spectral line-
shape due to Stark-broadening21.

A coherence imaging system is planned for MAST-U, and
will share the same view as the MWI system. Forward-
modelling to the raw coherence imaging data would be chal-
lenging, as this requires information regarding plasma flows.
However, it would be possible to model quantities derived
from post-processing of the coherence imaging data, such
as the emission-weighted contrast. Inclusion of this data in
the analysis may provide powerful additional information,
due to the difference in electron density dependence between
the emission-weighted contrast and other line-brightness mea-
surements.

C. Choice of imaged spectral lines

The emissivity model in (8) does not include molecu-
lar emission, which may be a non-negligible component of
low-n Balmer series emissivities, particularly for Deuterium
Balmer-α , in strongly detached conditions. Deuterium-α
through δ were chosen as a sensible starting point from which
to develop and test the system, but there are many possible
choices of atomic lines, including higher-n Balmer lines and
impurity emission lines.

Determining the optimal group of lines for inferring the
plasma fields is complex - one needs to consider not only the
information content of the lines with respect to the plasma
fields, but also how well those lines can be measured (con-
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FIG. 10. Comparison of profiles from the centre of the scrape-off layer derived from the inference results and the test-cases. Plots (a,b,c) and
(d,e,f) show results from the low- and high-seeding cases respectively. The coloured areas indicate the 95% highest-density intervals derived
from the sampling results.

sidering their brightness, wavelength and contamination from
neighbouring spectral lines), how accurately their emissivity
can be modelled, and the total number of plasma fields re-
quired in order to model them. Testing alternative groups of
atomic lines which best meet these criteria will be an impor-
tant part of the ongoing development of the system.

IX. SUMMARY AND CONCLUSIONS

We have presented details of the first design, implementa-
tion and testing of a Bayesian multi-diagnostic inference sys-
tem for the MAST-U divertor. The system has been designed
to be modular and flexible, so that the diagnostics modelled
by the system can be changed easily.

In order to test the system, synthetic experimental mea-
surements for filtered cameras viewing the first four Balmer
lines, the divertor Thomson scattering system and the Lang-
muir probes were derived from SOLPS simulations, and in-
cluded appropriate added noise. These tests have demon-
strated that for the given synthetic data, the 2D plasma fields
can be inferred with enough accuracy to give powerful insight
into the physics of plasma behaviour in the divertor. It was
also demonstrated that uncertainties in the inferred plasma
fields can be reliably estimated using Hamiltonian Monte-
Carlo sampling, which would allow conclusions to be drawn
from the results with greater confidence.

This first effort at Integrated data analysis for the divertor
has thus been successful in demonstrating that the use of a
Bayesian, multi-diagnostic approach to infer the plasma ‘so-
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lution’ merits further investigation.
Ongoing developement of the system will focus on the

inclusion of uncertainties resulting from instrument calibra-
tions, determining the optimal set of spectral lines to image in
order to best constrain the plasma fields, and consideration of
other diagnostic systems for inclusion in the system, such as
chordal spectroscopy.
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