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Abstract. A method to quantify the energy transfer among turbulent structures

using singular value decomposition (SVD) is presented. We apply the method

to numerical turbulence data obtained from a global plasma simulation using the

Hasegawa-Wakatani fluid model, in which the Kelvin-Helmholtz instability plays a

dominant role. Using the SVD method, the electrostatic potential is decomposed into

a background potential deformation, a zonal flow, a coherent mode and an intermittent

structure. Thus there are four key structures, as distinct from the three found in

conventional theory. The kinetic energy of each structure is evaluated, and the limit

cycle among them is obtained. In the limit cycle, an abrupt change of the background

is found to be synchronised with the period of the zonal flow. The energy transfer

function of each turbulence structure, which is defined on the basis of a vorticity

equation, is evaluated. This then provides physical understanding of how the limit

cycle is sustained by dynamical changes in the energy transfer among structures over

the its period. In addition, it is shown that the abrupt deformation of the background

is caused by the nonlinear coupling between the coherent mode and the intermittent

structure.
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1. Introduction

Magnetically confined plasmas are nonequilibrium open systems, in which nonlinear

structures are observed to arise spontaneously on the largest accessible scales. These

structures typically feed on microturbulence [1], and include zonal flows [2], bulk intrinsic

toroidal rotation [3], and transport barriers that can arise both within the plasma [4] and

at its boundary [5]. This phenomenology is of great practical importance, because the

transport of energy, momentum and particles across the plasma is conditioned by, and

self-consistent with, the excitation and continuing existence of the largescale nonlinear

structures [6]; the latter are often referred to as secondary structures, to distinguish them

from the primary microturbulence. Understanding and predicting this phenomenology,

and its consequences for the local and global behaviour of the plasma, is greatly assisted

if techniques applicable to low-dimensional dynamical systems [7] can be deployed. This

approach requires quantitative spatio-temporal characterisation of the salient nonlinear

structures and of the microturbulence, together with the couplings between them.

A pre-requisite for this approach is to have a reliable means to identify such

structures, by extracting them from experimental data and from the outputs of large-

scale numerical simulations. Indeed it can be a non-trivial task to determine how many

distinguishable nonlinear structures are present. This is important both for quantitative

characterisation of the data, and to motivate or validate the adoption of low-dimensional

analytical models in the predator-prey genre for turbulence phenomenology, see for

example Refs.[2], [8]-[12]. Notable current methods include singular value decomposition

(SVD) [13]-[17] and dynamical mode decomposition (DMD) [18, 19, 20]. These methods

have been widely applied in plasma physics, for example to the extraction of fluid

turbulent structures [21] and the visualization of phase space structures [22]. In the

DMD method, the time evolution is assumed to be exponential, hence the computational

cost is low. However, while the exponential assumption can work well to characterise

system dynamics over relatively short timescales, beginning at any instant, it is not

well adapted to system dynamics that incorporate limit cycle oscillations (LCOs) [23],

which are a focus of the present paper. In plasma physics, LCOs are often observed near

the threshold for local or global transitions that may also involve structure formation.

Examples span electric field pulsations [24], phenomenology near the threshold for L-H

transitions in global energy confinement [25, 26, 27], and edge localized modes [28].

These LCOs may significantly affect overall plasma performance, so that understanding

their underlying physics is important. While the assumption of exponential time

dependence in DMD treatments can be mitigated to some extent [18], DMD is not

well adapted to LCOs where, as in the present paper, there is a cyclic rise and fall in

the intensity of turbulence, of turbulence-driven structures, and of the coupling between

them.

On the other hand, the SVD method makes no prior assumption regarding

time evolution, so that the extraction of, for example, frequency chirping and phase

modulation becomes possible. SVD is based on functional decomposition with respect
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to orthogonal basis functions which are, by construction, uncoupled to each other. This

greatly assists the evaluation of the intrinsically nonlinear forces and fluxes, which are

expressed in relation to the decomposed structures, and which drive the fluctuations.

Here we apply the SVD method to a dataset obtained from a specific global

simulation [29] of a magnetised cylindrical plasma based on the nonlinear Hasegawa-

Wakatani coupled two-fluid model [30] for density and electrostatic potential. In this

simulation, it has been found [29] that LCOs arise spontaneously, with phenomenology

dominated by the Kelvin-Helmholtz (KH) instability [31]. Using the SVD method,

the electrostatic potential is decomposed into the background flow, the zonal flow, a

coherent mode, and an intermittent structure. We find that the LCO between these

turbulent structures is synchronised with the periodicity of the zonal flow, and involves

an abrupt change in the background flow. An energy transfer function based on the

vorticity equation is introduced. This enables us to evaluate the cyclic dynamics of how

the energy transfer among the turbulent structures changes during the LCO. The rest

of the paper is organised as follows. Section 2 introduces the simulation dataset used

in this study. In section 3, we describe how SVD is used to extract the spatiotemporal

pattern of the turbulence. The dynamics of the energy transfer among the structures is

evaluated in section 4. A summary is given in section 5.

2. Abrupt change of background and turbulence

We first introduce the dataset to which the SVD method will be applied. It relates to

turbulent phenomena that arise in a global fluid simulation of a magnetised cylindrical

plasma, based on the Hasegawa-Wakatani model [32]. The magnetic field, which is

in the axial direction, is spatially uniform and constant. A radially inhomogeneous

background flow is driven by introducing a vorticity source, such that the plasma

is linearly unstable against the KH instability. The fully nonlinear evolution of the

KH instability is captured by the simulation. In cases with a weak vorticity source,

stationary nonlinear saturation is obtained. Above a certain threshold for the intensity

of the vorticity source, LCO occurs [29], and we focus on this regime in the present

study.

Figure 1(a) shows a snapshot of the fluctuating component of the electrostatic

potential. Noting that the electrostatic potential is intrinsically related to the E x B bulk

plasma flow, hereafter we use the terms potential or flow interchangeably, depending

on the context. Here the fluctuation is translationally invariant along the axis of the

cylinder; with respect to azimuthal angle, the componentm = 1 is dominant, where m is

the azimuthal mode number. This is characteristic of the nonlinear KH instability in the

scenario considered [31]. The spatial pattern is dynamically modulated under the LCO,

whose period is much longer than that of azimuthal rotation; further detail is given

in Ref. [29]. Figure. 1(b) shows radial profiles of the magnitude of the electrostatic

potential, from the axis of the cylinder to the plasma boundary. In this point, the

potential is zonally averaged, meaning that its average is taken azimuthally and axially.
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Figure 1. (a) Snapshot of three dimensional pattern of the electrostatic potential

fluctuation at t = 3000. (b) Radial profile of the electrostatic potential withm = n = 0,

where m and n are the azimuthal and axial mode numbers, respectively. The black

line is the time averaged profile, and the gray lines show the instantaneous profiles at

each time from t = 3000 to 4000.

The grey lines plot instantaneous profiles at times from t = 3000 to t = 4000, with a

time step of unity; here time is normalised by the ion gyro-frequency. The black line

delineates the corresponding time-averaged profile. It is evident that the magnitude of

the variation of the potential under the LCO is approximately 30%.

Figure 2(a) shows the time evolution of a Fourier power spectrum with respect to

azimuthal modes of the electrostatic potential. The mode spectrum for azimuthal modes

up to m = 15 shows that the LCO has a period Tperiod ∼ 150. To further illustrate the

temporal dynamics of the background potential, we construct an empirical instantaneous

growth rate from the simulations, using the definition γ(t) = ∂t lnE0,0, where E0,0 is the

kinetic energy of the background flow, calculated from the background potential. That

is, E0,0 =
∫
|∇⊥ ⟨ϕ⟩ |2d3x, where ⟨· · ·⟩ denotes the zonal average. The time evolution

of γ(t) is plotted in Fig. 2(b), showing a sequence of rapidly rising spikes which are

characteristic of this type of abrupt phenomenon [33].

3. Evaluation of energy transfer by SVD

Let us now apply the SVD method to the dataset described in the previous section, so

as to extract the dominant spatiotemporal structures and evaluate the energy transfer

among them. We shall also examine the physical origin of the abrupt increases of the

background flow noted in Fig.2, and identify the role of each structure in the LCO.

Because the KH turbulence is purely two-dimensional, we analyse the electrostatic

potential ϕ(r, θ, t); here ϕ(r, θ, t) includes both the fluctuations and the background

deformation. Using the SVD method, ϕ(r, θ, t) is decomposed as

ϕ(r, θ, t) =
∑
j

sjΨj(r, θ)hj(t), (1)

Here, in relation to the jth mode: Ψj(r, θ) describes the mode’s spatial structure;

hj(t) captures its temporal evolution; and sj is its singular value, that is, the weight
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Figure 2. Time evolution of: (a) the azimuthal mode number spectrum of the

electrostatic potential; (b) the empirical instantaneous growth rate of the kinetic energy

of the background flow, γm=0,n=0 = ∂t lnE0,0.

that defines the relative importance [13] of the mode’s contribution to ϕ(r, θ, t). We

emphasise that the functional form of each Ψj is entirely dictated a posteriori by the

simulation outputs, without any prior assumptions. Figure 3 shows the dominant

structure functions Ψj. These are the top nine modes, in descending order of their

singular values sj. We note that the two-dimensional pattern of ϕ(r, θ, t) dynamically

changes in time, as shown in Fig. 2 for Fourier space, or Fig. 1 of [18] for real space.

The nine spatial structure functions shown in the left panel of Fig.3 capture background

profile deformation (modes 1 and 4) and turbulent structures and fluctuations (the

remaining modes). Here the mode ID numbers 1, 2, · · · 9 are in descending order of the

singular values sj. These are the dominant modes in this SVD, as can be seen from the

right panel of Fig. 3, where values of sj are plotted on a logarithmic scale for modes

up to the twentieth. In the present study, we truncate the SVD modes at the ninth,

for which the singular value s9 is around 10% of the maximum value s1. This keeps the

demand on computational resources manageable.

One can see from Fig. 3 that there are several paired modes whose spatial structures

are similar and whose singular values are nearly the same, which differ only in their

phase. Examples of paired modes are: ID=2, 3, ID=5, 6, and ID=7, 8. These are

complex conjugate pairs, which in combination represent the azimuthal propagation,

akin to the combination of sine and cosine components in Fourier mode decomposition.

Thus, the summation of the pair should be treated as a single structure. There are

also unpaired modes, for example modes ID=1 and ID=4, which are almost azimuthally

homogeneous and do not propagate in the azimuthal direction. We wish to capture
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Figure 3. (Left panel) The spatial character of the nine SVD modes that have the

largest singular values. (Right panel) Singular values of the first twenty SVD modes,

plotted on a logarithmic scale.

Figure 4. Dominant turbulent structures extracted by summation and truncation of

the modes in Fig. 3. Mode A is invariant against azimuthal rotation, and the dominant

component of Mode B is an azimuthally symmetric zonal pattern. Modes C and D are

the turbulent structures.

low-dimensional phenomenology wherever possible, and therefore choose to reduce the

number of degrees of freedom by taking a summation from mode ID=5 to ID=8, whose

singular values are similar; we then treat the resulting summed entity as a single

structure.

The spatiotemporal behaviour of the electrostatic potential is thus decomposed into

four structures, ϕA, ϕB, ϕC , ϕD, which are defined as follows:

ϕ(r, θ, t) ≈
∑

ζ=A∼D

ϕζ(r, θ, t), (2a)

ϕA(r, θ, t) = φ1(r, θ, t), (2b)
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ϕB(r, θ, t) = φ4(r, θ, t) (2c)

ϕC(r, θ, t) = φ2(r, θ, t) + φ3(r, θ, t), (2d)

ϕD(r, θ, t) =
8∑

j=5

φj(r, θ, t), (2e)

where φj(r, θ, t) = sjΨj(r, θ)hj(t). Snapshots of each of these four structures at t = 3200

are shown in Fig. 4. Mode A corresponds to the background potential deformation;

mode B to the zonal flow; mode C to the coherent KH mode; and mode D to the

intermittent structure. We refer to these as extracted structures of the electrostatic

potential. The kinetic energy of each structure, Eζ an be evaluated from the definition

Eζ =
1

2

∫
|∇⊥ϕζ |2d3x, (ζ = A ∼ D). (3)

The time evolution of the kinetic energy of each structure is illustrated in Fig. 5(a).

Information about the relative phase of the time-evolving kinetic energy in pairs of

modes can also be inferred from the phase plots in the right panel of Fig.5. The process

for constructing these plots is identical to that for Lissajous figures. While, strictly, the

latter term applies to superimposed simple harmonic motions, we use it more colloquially

here and in Figs. 8 and 9. Lissajous figures (in this sense) are widely used to characterise

strongly nonlinear structures in plasmas, see for example the treatment of heat pulse

propagation in the LHD heliotron-stellarator in Figs.1,3,5,6 and 7 of Ref.[34] and Fig.7

of Ref.[35].

The behaviour of the energy that is evident in Fig. 5 is similar to that extracted by

using the DMD method, see in particular Figs. 4 of Ref.[18]. The background potential

(mode A) and the coherent KH mode C compete with each other. When the magnitude

of mode C increases to a certain threshold, the zonal flow mode B is excited together

with the intermittent structure mode D. After the appearance of modes B and D, mode

C decreases and mode A increases. This cycle then repeats - it is an LCO. The period

of the LCO is synchronised with the zonal flow oscillation. The time evolution of the

local value of the zonal potential (mode B) at different radial locations is plotted in

Fig. 5(b). The phase of mode B at r/a = 0.16 is the reverse of the phase at r/a = 0.8.

The plot of the time-evolution of the potential at these two radial locations exhibits

standing-wave-like structure. Successive zero-crossings - that is, phase reversal events -

are synchronous with successive cycles of the LCO, where the frequencies of the LCO

and the zonal flow are similar and the phase relation between the zonal flow and the

LCO does not vary over time. The zonal flow mode B always peaks sharply just before

each abrupt increase of the background flow mode A, and the phase of mode B reverses

after the burst of mode A.

4. Energy transfer dynamics among SVD modes

The energy transfer among the structures extracted in the preceding section can be

characterised in terms of an energy transfer function that is based on the vorticity



Evaluation of energy transfer by SVD 8

Figure 5. Characterising limit cycle oscillations. Left panel. Time evolution of: (a)

the kinetic energy of each of the four structures A to D identified in Fig. 4; (b) the

local values of the zonal flow potential (Mode B) at widely separated radial locations

r/a = 0.16 and 0.8, at angular position θ = 0. Right panel. Three Lissajous figures

plotting the time evolution of the kinetic energy of the three Modes A, B and D

against that of Mode C, during the time interval 3080 < t < 3250. The arrows show

the direction of time evolution.

equation, as follows. The vorticity equation is

∂t∇2
⊥ϕ = −

[
ϕ,∇2

⊥ϕ
]
− ν∇2

⊥ϕ+ S, (4)

Here the first term on the RHS is the convective derivative, defined as [ϕ,∇2
⊥ϕ] =

r−1 (∂rϕ∂θ∇2
⊥ϕ− ∂r∇2

⊥ϕ∂θϕ), and ν and S are the ion-neutral collision frequency and

the vorticity source, respectively. The kinetic energy evolution equation can be derived

by multiplying both sides of Eq. (4) by ϕ and performing a spatial integration. Here,

ϕ is decomposed into the SVD structures from mode A to mode D as in Eq. (2a). The

kinetic energy of Mode ζ can be written as (ζ = A ∼ D)

∂tEζ =
∑

α,β=A∼D

J(ζ|α, β)− 2νEζ −
∫

ϕζSd
3x, (5a)

J(ζ|α, β) =
∫

ϕζ

[
ϕα,∇2

⊥ϕβ

]
d3x, (5b)

where the square brackets in Eq. (5b) denote the convective derivative as defined

following Eq. (4). The energy transfer function, J(ζ|α, β), quantifies the energy flow

to the mode labelled ζ that arises from nonlinear coupling between the modes labelled

α and β. Positive (or negative) J(ζ|α, β) contributes to driving (or damping). The

terms in the RHS of Eq. (5a) are linear, except for the energy transfer term. In

the present SVD context, Eq. (5a) can be viewed as a natural extension of the energy

transfer equation in Fourier space [36, 37]. It is well adapted to understanding the energy

interaction among the turbulent structures identified using SVD, which contain multiple
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Fourier components. In the absence of such structures, a Fourier-based approach to

energy transfer would suffice for zonal flows, which can be described by a single Fourier

component. It follows that the evidently nonlinear features of the system dynamics, for

example those shown in Fig. 5, must stem from the energy transfer among the turbulent

structures. In order to understand the underlying physics of the system, it is therefore

necessary to examine the behaviour of the energy transfer function in greater detail.

As a preliminary, we note that J(ζ|α, β) is not symmetric with respect to α and β.

Given the four structures A to D, there are thus sixteen relevant mode pairings. Table 1

specifies how we label (”Coupling ID”) these pairings using the first sixteen integers. We

note that the SVD method does not involve well-defined matching criteria with respect

to frequency or wavenumber because, in general, SVD modes contain multiple Fourier

modes. In the present paper, mode D is a good example of this.

Figure 6 seeks to capture the temporal variation of J(ζ|α, β) for each structure

A to D, resulting from each of the sixteen coupling combinations, from two different

perspectives. The four left panels, Fig. 6 (a)-(d), plot the instantaneous values that

are taken by each J(ζ|α, β) at each unit time-step during the interval 3000 < t < 4000

which was also considered in Figs. 2, and 5. For example, Fig. 6(c) shows that for

mode C, the four sources/sinks of nonlinear drive that contribute most strongly to

energy transfer (both positive and negative) are the mode pairings with coupling ID

= 4, 8, 13 and 14. From Table 1, in (α, β) terms, these pairings are (A,D), (B,D),

(D,A) and (D,B). Conversely, from Fig. 6(b) it is evident that energy transfer to and

from mode B is dominated by the mode pairing with coupling ID = 12, 15, 16 that

are (α, β) = (C,D), (D,C), (D,D). From Fig. 6(a), one can see that the background

flow, mode A, is affected primarily by the self-couplings (C,C) and (D,D) and by the

pair couplings (C,D) and (D,C). We note from Fig. 4 that the azimuthally symmetric

background flow is contained in mode A and partly in mode B. This flow is driven by the

vorticity source. It follows that net negative nonlinear energy transfer to mode A acts

to relax the background flow. In contrast, for mode C and mode D, nonlinear damping

due to self-coupling is found to be weak, in that the contributions from the coupling

ID=11 for mode C and 16 for mode D are small. The four right panels, Fig. 6(e)-

(h), plot the explicit time evolution of J(ζ|α, β) on a colour scale, for the four modes

(one panel per mode) in relation to the sixteen mode pairings. The energy transfers

among the structures are strongly non-time-stationary: the discrete bursts of activity

correlate necessarily with those in Fig. 5, which align with the LCO period, as discussed

previously.

The energy transfer functions for each structure during a single LCO period,

3120 < t < 3220, are illustrated in Fig. 7, where only the most important couplings are

shown. There are three phases, because the energy flow pattern changes significantly

between the first half (3120 < t < 3180), the middle regime (t ∼ 3190), and the

second half (3200 < t < 3220). This pattern corresponds to the growth, saturation and

damping of the zonal flow, mode B. The energy transfer to the zonal flow changes its

sign at t ∼ 3190, at which time the zonal flow peaks in energy. Simultaneously, there
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is an abrupt onset to the nonlinear drive of the background flow (mode A), due to the

coupling with mode C and mode D, see Fig. 7(c); the energy of mode A, previously

decaying, starts to increase.

The x-axis of all three panels of Fig. 8 is J(C|A,C). This is chosen because,

in general, J(ζ|A, ζ) represents the generalised linear drive of the mode labelled ζ by

the KH instability, which arises from deformation of the background potential mode

A. This drive would be linear, notwithstanding its apparently nonlinear mathematical

character, in an ordering scheme where mode A is zeroth order while the other modes

are order-epsilon. In Fig. 8 the focus is thus on the different nonlinear drives of the

coherent KH mode C, in relation to the linear drive. The linear drive for the coherent

KH mode C, which corresponds to J(C|A,C), changes its role in accordance with the

phase of the LCO. It is apparent from Fig. 7(a) that, during the first half of the LCO,

mode C obtains energy from its coupling with the background potential deformation

mode A; that is, mode C is linearly destabilized by the flow inhomogeneity. This phase

of the LCO ends at t ∼ 3185 in Fig. 7, and this determines the parameter t2 which is

used throughout Figs. 8 and 9 to denote the end of the first half (blue trace) of the

LCO cycle. Thereafter, Fig. 8(a) shows that coupling J(C|B,C) of the KH mode C

with the zonal flow mode B acts to suppress mode C; this is a back reaction which

drives the zonal flow. In the Lissajous figures (Figs. 8 and 9 ), the system trajectory

during the three time intervals 3080 < t < 3185, 3185 < t < 3195 and 3195 < t < 3250

is plotted using blue, red and black lines, respectively. The nonlinear drive of mode C

by its coupling with the intermittent structure mode D, characterised by J(C|C,D) in

Fig. 8(b), rises abruptly when the linear drive becomes large, that is J(C|A,C) ∼ 0.2

in the blue phase. The steady decline of J(C|A,C) thereafter, through zero and down

to −0.2, results in a second surge in the value of J(C|C,D) during the middle phase of

the LCO (red trace), and an equally abrupt decline during the second half (black trace).

The plot of J(C|D,D) in Fig. 8(c) shows that the nonlinear self-interaction of mode

D does not contribute significantly to the drive of mode C during the first half of the

LCO (blue trace). Thereafter its abrupt rise and fall takes place in parallel with that of

J(C|C,D), with similar magnitude.

The linear drive for the intermittent structure mode D corresponds to J(D|A,D).

The Lissajous figures for J(D|α, β) during the LCO are shown in Fig. 9, and

demonstrate that J(D|A,D) changes its role in accordance with the phase of the LCO,

like J(C|A,C) in Fig. 8 [18]. Figure 9(a) shows that for mode D, unlike for mode C,

the deformation of the KH mode C due to its nonlinear coupling with the background

flow mode A contributes to the drive. Deformation of mode C by the zonal flow B also

affects the energy transfer to Mode D, as can be inferred from Fig. 9(b). This shows

a rather abrupt reversal between the first half (blue trace) and second half (red, then

black, traces) of the LCO, giving rise to a well-defined figure-8. The nonlinear coupling

of Mode D with the zonal flow mode B is shown in Fig. 9(c). The sign of J(D|B,D) is

always negative, implying that it contributes to the suppression of mode D throughout

the LCO. As seen in the Lissajous figure for J(D|C,D) in Fig. 9(d), nonlinear coupling
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with mode C drives mode D during the first half (blue trace) of the LCO; damps it

during the middle phase (red trace) and much of the final phase (black trace); while

contributing a small drive near the end of the LCO.

The energy flow patterns inferred from Figs. 8 and 9 during a single LCO period

are summarized in Fig. 10. We have found that important roles in the sustainment of

the LCO are played by the secondary structures, namely the zonal flow mode B and the

intermittent structure mode D, notably through their nonlinear coupling with the KH

mode C.

We now perform a quantitative check on our inference that the abrupt energy input

to the background flow mode A at 3185 < t < 3195 causes the abrupt increase in the

background flow that is shown in Fig. 2. Dividing both sides of Eq. (5a) by Eζ , an

equation for the time constant of mode A, γA, can be formally derived as

γA = E−1
A

∑
α,β

J(A|α, β)− ν. (6)

From Fig. 2, the time constant at the abrupt increase can be estimated as γA ∼
2×10−2 ≫ ν = 5×10−3. This value can be explained as E−1

A

∑
α,β J(A|α, β) ∼ 2.5×10−2,

where we use EA = 2 × 10−3 and
∑

α,β J(A|α, β) ≈ J(A|C,D) ∼ 5 × 10−5. This

tends to confirm that the abrupt increase of the background flow mode A is realised

by the nonlinear coupling between the coherent KH mode C and the nonlinearly driven

intermittent structure D. We note that a strong role for the zonal flow mode B in the

abrupt change of the background flow is also implicit. This is because, as we have already

shown, deformation of modes C and D by mode B abruptly alters the characteristics of

nonlinear energy transfer involving modes C and D.

5. Discussion and Conclusions

Using the SVDmethod, the global phenomenology of the simulated turbulent plasma has

been converted into a low-dimensional dynamical system. The electrostatic potential is

decomposed into four elements, which are apparently the minimal set: the deformation

of the background; the zonal flow; the coherent KHmode; and the intermittent structure.

The kinetic energy content of these four modes is found to exhibit an LCO, in which an

abrupt change of the background potential is synchronized with the zonal flow period.

The SVD approach has enabled us to quantify the mutiple nonlinear energy flows

that underly this LCO. We first construct and evaluate the energy transfer function for

each turbulence structure, based on a vorticity equation. This then provides physical

understanding of how the LCO is sustained by dynamical changes in the energy transfer

among structures over the LCO period. In summary, coupling between the coherent

mode and the intermittent structure drives the zonal flow, which provides resilience for

the background potential, which causes the abrupt deformation of the background.

In some previous theoretical approaches, the LCO considered here is often described

in terms of a predator-prey model [9] that involves only three elements, namely the

background, the zonal flow and microturbulence. Thus, the results in the present paper
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Figure 6. (a)-(d): Time variation of the energy transfer functions for each structure.

(e)-(h): Temporal evolution of the energy transfer functions for each structure, where

(e) J(A|α, β), (h) J(B|α, β), (g) J(C|α, β), and (h) J(D|α, β), where α + β denotes

the coupling between mode α and mode β, in the order corresponding to Eq.(5b).

imply that this conventional model is incomplete. Furthermore, we have found that

the hitherto neglected intermittent structure plays crucial roles in the dynamics of

the system. The important role of the intermittent structure in the abrupt change

in transport has also been identified experimentally [38].

In addition, we have found that the zonal flow oscillation is synchronised with the

LCO. The physical mechanism that determines the frequency of the zonal flow remains

an unresolved theoretical issue. In the context of the present work, we note that in

basic experiments, the excitation of an intermittent structure, referred to as ”splash”,

has been observed to be synchronized with the zonal flow oscillation [39, 40]. This

tendency is similar to the behaviour of the intermittent mode D in the present study.

This motivates our conjecture that the generation and annihilation of the intermittent

structure, together with the deformation of the background flow, may determine the

frequency of the zonal flow.

In conclusion, the SVD approach has provided significant new physical insights into

the phenomenology of this classical nonlinear KH plasma system.
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Figure 7. Time evolution of (a) kinetic energy and (b)-(e) energy transfer function for

each structure. Only the energy transfer functions for the most important nonlinear

couplings are shown.

Figure 8. Lissajous figures for the three dominant energy transfer functions for the

KH mode C, J(C|α, β), where the arrows show the direction of the time-evolution.

Here, t1 = 3080, t2 = 3185, t3 = 3195 and t4 = 3250.
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Figure 9. Lissajous figures for the four dominant energy transfer function for the

intermittent mode D, J(D|α, β), where the arrows show the direction of the evolution.

Here, t1 = 3080, t2 = 3185, t3 = 3195 and t4 = 3250.
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Figure 10. Schematic view of the energy flow among turbulent structures during the

limit cycle oscillation, where A-D in the circles denote the Mode A-D, respectively,

and the arrows show the directions of the energy flow. The patten of the energy flow

changes during one period of the LCO.
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