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Abstract: Modification of the external tearing index, '
extΔ , by magnetic

feedback is analytically investigated, for the purpose of controlling the

resistive plasma resistive wall mode (RP-RWM). The matching method is

pursued, by deriving expressions for the close-loop '
extΔ and by linking it

to the counterpart from the inner layer. Various feedback coil

configurations are found to generally reduce '
extΔ and stabilize the RWM,

with either proportional or derivative control. Feedback modification of

'
extΔ is found to be generally independent of the inner layer resistive

interchange index RD , confirming that feedback action primarily

modifies the solution in the outer ideal region for the RP-RWM.

Exception occurs when either the inner layer favorable curvature effect

becomes sufficiently large or the feedback action is sufficiently strong to

introduce a rotating RP-RWM in the static plasma, leading to



complex-valued close-loop '
extΔ . The perturbed magnetic energy

dissipation in the outer region, associated with the eddy current in the

resistive wall, is identified as the key physics reason for feedback induced

complex '
extΔ . Similar results are also obtained for active control of the

external kink instability, whose open-loop growth rate is significantly

reduced by inclusion of the plasma resistivity. Within single poloidal

harmonic approximation, which is most suitable for the matching

approach, external active coils combined with poloidal sensors are often

found to be more efficient for feedback stabilization of the mode at large

proportional gain values. This counter-intuitive result is explained as lack

of (non-resonant) poloidal harmonics for proper description of the

feedback coil geometry.

I. Introduction

Magneto-hydrodynamic (MHD) instabilities, such as the external kinks

(EK) and (neoclassical) tearing modes (TM), are major concerns for high

pressure advanced tokamaks (AT).1 Within certain pressure limit, the EK

can be stabilized by a perfectly conducting wall located sufficiently close

to the plasma edge.2 However, the wall has finite conductivity in reality,

which allows the leakage of the radial magnetic flux perturbation through

the wall at long time scale. The resulting residual instability is called the

resistive wall mode (RWM). The RWM often limits the operational space



of advanced tokamaks, because such a low- n ( n is the toroidal mode

number) macroscopic instability sets a beta limit3 for the AT operation. In

order to maximize the benefit of the AT scenario, such as that foreseen in

ITER,1 the RWM needs to be stabilized.

Numerical and analytical calculations,4-9 based on the ideal MHD

model, indicate that stabilization of the ideal plasma RWM (IP-RWM)

can be achieved by certain free energy dissipation mechanism(s) inside

the plasma in the presence of toroidal plasma rotation. The critical

rotation frequency for a complete stabilization of the mode was predicted

to be several percent of the Alfven frequency. However, early work10-12

employing the resistive MHD model showed that the toroidal curvature

effect, associated with the resistive layer near the rational surfaces, can

stabilize the resistive-plasma RWM (RP-RWM), though with the stability

window being narrow in toroidal geometry. More recent studies indicated

that a slow plasma rotation flow, with the flow speed several times larger

than the typical tearing mode growth rate, in combination with the

resistivity layer induced energy dissipation, can stabilize the

RP-RWM.13-15

Plasmas in future reactors are expected to rotate with low or

negligible speed. Therefore, active control of the plasma instability in the

absence of flow is of particular interest. Active control of the RWM has

been studied for both resistive and ideal plasma models,16-21 showing that



a magnetic feedback system, combined with the slow plasma flow, can

stabilize the mode. Finn22 studied direct feedback stabilization of

the resistive plasma (tearing-like) modes utilizing magnetic coils. It was

found that, in the linear phase, the growth rate of the mode can be

feedback stabilized even when the plasma pressure exceeds the ideal wall

limit.

In analytic theory, active control of the RWM is often studied relying

on the plasma response model (PRM),23-25 which is suitable for studying

feedback control of the IP-RWM. In contrast, study of the RP-RWM is

conventionally analyzed by proper matching procedures.26 The matching

approach is similar to the analysis employed for studying the TM, by

separately solving the MHD equations in the inner resistive layer and in

the outer ideal bulk region.27 The matching condition often involves a key

parameter 'Δ (the tearing index) from both the internal and external

solutions. The external tearing index, '
extΔ , is defined as the logarithmic

derivative jump of the perturbed radial magnetic field across the mode

resonant surface (or the ratio of small to large solutions in general cases).

A recent study has shown that this tearing index can be modified by a

simple magnetic feedback,28 without considering the role played by the

resistive wall. The external tearing index is matched to that from the

resistive layer solution to obtain the final dispersion relation for the

RP-RWM. It is expected that stability of the RP-RWM can be modified



by actively controlling the external tearing mode index '
extΔ - a venue

pursued in this work.

In this work, we carry out analytic study of feedback stabilization of

the RWM via the matching approach, based on a cylindrical plasma

model. We investigate feedback modification of '
extΔ , while

systematically considering two choices of controllers: the proportional (P)

and proportional-derivative (PD) controllers. Although the focus of this

work is on the RWM, the approach exploited here is also applicable for

controlling stability of the tearing mode.

In Sec. II, we present the details of our analytic model on feedback

modification of '
extΔ by the P- and PD-control. In Sec. III, we investigate

feedback stabilization of the IP-RWM via modification of '
extΔ , and

compare the results with that from the PRM approach. Based on the

matching approach, Sec. IV reports feedback study for the RP-RWM with

or without the favorable average curvature effect (i.e. the GGJ effect

discovered by Glasser, Green and Johnson29). Inspired by Finn’s work,22

we also carry out a similar study on the resistive plasma external kink

(RP-EK) mode, following the matching approach in Sec. V. Section VI

draws conclusions.

II. Analytic model

Our analytic model is based on a cylindrical circular plasma. In what



follows, we start by describing the open-loop model, followed by the

closed-loop model with the P-control and finished by introducing the

PD-control.

A. Open-loop model

In the cylindrical geometry, we consider the well-known Newcomb

equation with finite plasma pressure in the outer region30
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where r and θ are the radial coordinate and the poloidal angle of the

plasma cross section, respectively. zJ is the plasma equilibrium density

along the cylinder and P is the equilibrium pressure. γ is the

eigenvalue of the instability (the RWM in our case). ψ is the m -th

poloidal harmonic of the perturbed poloidal magnetic flux function,

which has an    in-imθikz-imθ expexp  variation, where 0Rnk 

with n being the toroidal mode number and 0R the equivalent major

radius. zθ kBmBF  , with zBθB zθ ˆˆ B being the equilibrium field.

Simplified equilibrium radial profiles are assumed, as shown in Fig.

1. The equilibrium current density  rJ z is a step function with

constJJ z  0 at 00 rr  and 0zJ at arr 0 . The plasma

equilibrium pressure is assumed to be constant, constPP  0 , across the

whole plasma column. The toroidal equilibrium field is also assumed to

be a constant. As a result, the radial profile of the safety factor,  rq , is a



constant 0qq  at 00 rr  and a parabolic function at arr 0 . The

parameters are chosen such that only one resonant surface is present

inside the plasma, for the 1n perturbation.

Fig. 1 The equilibrium profiles of the plasma pressure P, the axial current density Jz

and the safety factor q. One rational surface 2/  nmq ( 1n ) is located inside

the plasma.

The Laplace equation 02 ψ is satisfied everywhere inside and

outside the plasma region, except at the radial points wrarr ,,0 , where

wr denotes the resistive wall minor radius. The jump conditions for the

radial derivative of the flux function ψ can be easily obtained, by

integrating Eq. (1) across the above discrete radial points. We have
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where 2
002 zBPμβ  is the ratio of the plasma pressure to the magnetic

pressure,  200 raqqa  is the safe factor value at the plasma surface, and

wwww ηdrμτ 0 characterizes the magnetic flux diffusion time through the

resistive wall, with wd and wη denoting the wall thickness and

resistivity, respectively.

The solution of the Laplace equation satisfies the following relation

between any two discrete points 1r and 2r , provided that the solution is

smooth within the interval  21 r,r
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The above relation helps to connect different regions separated by the

jump conditions (2)-(4). With the additional conditions of mψψr
r


0

'

and mψψr
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' , one can derive the jump of the logarithmic derivative

      sss
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 , with the latter often being a negligible

inertia term for the RWM. The additional notations are defined as
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here is defined as the external tearing index within the so-called

constant- ψ approximation. Expression (6) is the value of '
extΔ in the

absence of any active control. The growth rate of the open-loop IP-RWM

can be obtained by setting 0Δext 
' .

B. Close-loop with proportional feedback

A magnetic feedback system consists of sensor coils, active coils and

control logic. We consider three types of sensors (all located at the wall

radius wr ). One is the radial sensor, with the sensor signal y defined as

the radial flux  wrψ at the wall radius. The other two, the external

poloidal sensor and the internal poloidal sensor, are defined as




wr
ry ' and




wr
ry ' , respectively. Furthermore, we consider two

types of active coils, defined by their relative radial location to the wall.

For the active coils located outside the wall, fw rr  , the field solution can

be written as  
m
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 in the vacuum region fw rrr  ,

where  wff rψψ  is the free-space field at the wall radius and produced

by the active coil current solely. For the active coils located between the

plasma surface and the wall, wf rra  , the field solution can be written

as  
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The simplest feedback logic is Kyψ f  , where PkK  is the

proportional feedback gain. For the external active coils, the above

feedback logic, together with the wall jump condition, Eq. (4), help to

relate the coefficient c to fψ for different types of sensors. For the

internal active coils, similar relations of the coefficients 1c and 2c to

fψ are obtained by employing the above feedback logic with condition

mψ'ψr
wr




and the wall jump condition (4) on the perturbed field in

the vacuum region wf rrr  . This allows us to calculate the logarithmic

derivative of the perturbed flux function just outside the plasma surface
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where Pα is a key quantity describing different configurations of the

proportional feedback system
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Connecting Eqs. (2,3,7) via relation (5) across various regions, we derive

the following expression for '
extΔ at the rational surface sr , in the



presence of proportional feedback control
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 . Comparing the close-loop expression (8) with the

open-loop expression (6), we find that feedback modifies the external

tearing index only via the PB factor. The proportional feedback gain K

enters into Eq. (8) via the Pα factor. The change of '
extΔ due

proportional feedback is
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where   βααC ss
ˆ11  . We remark that the above result assumes the

same growth rate between the open-loop and close-loop systems, which is

generally not the case. The growth rate need to be self-consistently

evaluated based on the RWM dispersion relations (with or without

feedback). This will be addressed in sections III-V.

C. Close-loop with proportional-derivative feedback

Now we consider PD feedback with the control logic of  ykskψ DPf  ,

where Dk is the derivative gain and s is the eigenvalue of the

close-loop system. Following a similar procedure to that outlined for the

P-controller, we arrive at the following expression for the external tearing

index in the presence of PD-feedback
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The change of '
ext , due to PD-control, becomes
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where the constant C is the same as that from Eq. (9).

D. Inner layer solutions

Expressions (6,8,10) depend on the mode eigenvalue  , which is a-priori

unknown. The only case, where the value of '
extΔ can be explicitly

calculated, is when the wall time vanishes (i.e. in the absence of the

resistive wall). This was the case considered in Ref. [28]. In more general



cases, we need to solve the dispersion relation for the RWM, by setting

the external tearing index to zero (for the IP-RWM) or by matching the

external and internal solutions (for the RP-RWM), in order to find the

mode eigenvalue  .

For a pressureless plasma (i.e. 0β ) without the GGJ effect, the

inner tearing index at the resonant surface is conveniently written as31

      454321
int 122Δ A
' γτSns.  , (12)

where s is the magnetic shear (at the mode rational surface) and S the

Lundquist number. For a plasma with finite equilibrium pressure (and

pressure gradient) at the rational surface, it is helpful to consider the GGJ

effect. The inner tearing index in this case takes the form32-33

      



   2345

int 4
1122Δ AsRAs

' γτBDγτA.
 , (13)

where     4341221 21 SqnsA
srs   and    2121221 

 SqnsB
srs . RD is the

resistive interchange index, which is roughly proportional to the plasma

pressure at the rational surface. Note that RD is typically a small

negative number for tokamak plasmas, which we shall treat as a free

parameter in our analytic model. We emphasize that, for a given plasma

equilibrium, the RD value is fixed. Therefore, treating RD as a free

parameter introduces in-consistency in the model, which on the other

hand has minor consequences on our main conclusions reported later on.

Treating RD as a free parameter allows us to examine the effect of the

strength of the GGJ effect on the RP-RWM.



Knowing the analytic forms for both the inner and outer tearing

indices, the matching condition

  )γ(γ,K ''
intext ΔΔ  (14)

then leads to the dispersion relation for the RP-RWM, in the presence of

magnetic feedback.

Since the above dispersion relation involves the eigenvalue  in a

non-liner manner, we shall provide numerical solutions in the following

sections III-V. We then insert the calculated  value into the external

tearing index, in order to find out how the magnetic feedback modifies

the tearing index. We perform the study for the IP-RWM (Sec. III),

RP-RWM (Sec. IV) and RP-EK (Sec. V), respectively. For each type of

instability, we shall consider P- and PD-control schemes, utilizing Eqs. (8)

and (10), respectively. In this study, we neglect the integral control action

which mainly shapes the control performance (e.g. reduces the settling

time). We leave tearing index modification by more advanced controllers

to future studies.

III. Feedback control of IP-RWM

Analytic theory of active control of the IP-RWM has been well developed

during past years. The previous study, however, largely relied on directly

solving the coupled MHD-feedback equations,34-35 or on the PRM.23-25 We

follow a different approach here, namely by requiring vanishing tearing



index at the resonant surface for the IP-RWM. We shall show that both

the PRM approach and the matching approach yield the same feedback

results.

We consider two plasma equilibria, one with vanishing plasma

pressure ( 0 ) and one with a finite equilibrium pressure ( 030. ).

Chosen are the following basic parameters: 1a , 2m , 1n , ar 63.00  ,

ars 9.0 and arw 2.1 . Furthermore, we assume arf 3.1 for the

external active coil and arf 1.1 for the internal active coil. The other

parameters are also fixed: the Lundquist number 7105S (for the case

of resistive plasma), and the wall time Awτ 410 . These basic parameters

are chosen to ensure a typical RWM regime.

The open-loop stability can be tuned by varying the on-axis safety

factor 0q . One example with 0 is shown in Fig. 2. The growth rate

here is obtained by solving the dispersion relation 0Δext 
' for the ideal

plasma and Eq. (14) for the resistive plasma, but at feedback gain 0K .

Note that the inertial term, associated with the 1A factor (cf. expression

(6)), has been retained in solving the aforementioned dispersion relations.

It is important to include this inertial factor in order to recover the

ideal-plasma external kink (IP-EK) and the RP-EK regimes shown in Fig.

2. With our parameter setting, transition from the RWM regime to the EK

regime occurs at 07610 .q  (vertical dashed line in Fig. 2). This threshold

0q value is determined by     01 2
00  m

wrrnqm (Appendix A). The



EK regime corresponds to     01 2
00  m

wrrnqm at 07610 .q  , and the

RWM regime corresponds to     01 2
00  m

wrrnqm at 07610 .q  . The

aforementioned inertial term is negligible for the RWM regime.

Note that Fig. 2 also compares the mode stability between ideal and

resistive plasma assumptions. Inclusion of the plasma resistivity is found

to substantially reduce the growth rate of the RWM (as well as that of the

EK to large extent). This agrees with our previous finding,13-14 although

the latter was obtained via a completely different approach (i.e. the

extended energy principle approach for the open-loop RWM). The

relatively small growth rate for the three instabilities, i.e. the IP-RWM,

RP-RWM and RP-EK, implies that active magnetic control (with

practically reasonable control response time) can be applied to stabilize

these modes. This is precisely the subject of the following studies.

Fig. 2 The open-loop growth rate of the n=1 instability in different regimes while

scanning the on-axis safety factor 0q : the ideal plasma resistive wall mode (IP-RWM),

the ideal plasma external kink (IP-EK), the resistive plasma resistive wall mode



(RP-RWM), and the resistive plasma external kink (RP-EK). The vertical dashed line

indicates the transition value ( 076.10 q ) from the RWM regime to the EK

regime. The other equilibrium parameter is 0 .

A. Control of IP-RWM with P-feedback

Now we numerically solve the close-loop dispersion relation

  0Δext γ,K'
P , (i.e. expression (8) 0 ) in the presence of a P-controller.

The results are plotted in Fig. 3 while scanning the proportional feedback

gain K= Pk . Compared are the growth rates of the IP-RWM in a plasma

with vanishing equilibrium pressure 0β (Fig. 3(a)) and with finite

equilibrium pressure 030.β  (Fig. 3(b)). Six combinations of the active

and sensor coil types are considered as indicated in the figure.

Proportional feedback can stabilize the IP-RWM, either with or

without pressure, when the proportional gain achieves certain critical

value. This holds for all six feedback coil configurations. The stabilizing

effect with internal active coils is stronger than that with external active

coils at small feedback gain, independent of the choice of the sensor type

(but assuming the same sensor type). At large gain values and with (either

internal or external) poloidal sensors, however, feedback with external

active coils outperforms that with internal active coils. In fact, we find

similar results also for RP-RWM and RP-EK as will be reported later on.

The above finding appears to be counter-intuitive. The expectation is

that, with the same type of sensor coils, placing the active coils inside the



resistive wall should always be better than placing them outside the wall,

by two reasons. First, the control field is stronger since the internal active

coil is closer to the plasma. Secondly, with the internal active coils, the

control field does not need to penetrate through the resistive wall in order

to reach the plasma. We remark that the second argument does not apply

to the case of marginal stability (assuming that the marginal stability is

reached at vanishing mode frequency), since the wall eddy current

vanishes in this case. But the first argument always applies.

It turns out that this counter-intuitive behavior is the result of the

single harmonic approximation that we adopt in this study. The single

harmonic approximation is a natural choice for the matching approach (as

well as for the cylindrical plasma). Note that the equilibrium that we

choose has only a single resonant harmonic 12nm . The

multi-harmonic coupling effect thus can only come from the non-resonant

harmonics and is a feedback coil geometry effect.

To illustrate this, we return to the PRM approach (Appendix B). The

latter allows us to include all the poloidal Fourier harmonics into the

plasma response transfer function, despite the fact that the 12 mode is

the only unstable mode in the spectrum. Inclusion of all poloidal

harmonics is needed primarily to properly describe the feedback coil

geometry,23 which is where our intuition develops from. In other words,

window-pane active coils and point-wise poloidal sensor signals require



many poloidal harmonics to resolve. As soon as we add all the other

(non-resonant) harmonics (associated with stable RWM) into the PRM,

we find that the internal active coils always outperform the external

counterpart (Fig. B(c), Appendix B).

Even more interestingly, it turns out that the major role in resolving

the puzzle is played by the m=-2 harmonic. By only including the 2m

contributions into the PRM, the aforementioned counter-intuitive

phenomenon also disappears (Fig. B(b), Appendix B). The fundamental

reason here is a cancellation effect between the +m and -m harmonics as

discovered in Ref. [25].

As mentioned before, it is unfortunately not straightforward to include

multiple harmonics (in particular that of the non-resonant sideband) into

the matching approach. [The PRM approach as developed in Refs. [24-26]

is suitable for including multiple harmonics but is not suitable for

including the resistive layer physics.] Therefore, caution need to be taken

when discussing the feedback results (in particular that with the external

active coils and poloidal sensors) predicted by the matching approach

with single harmonic approximation, which does not properly describe

the realistic feedback coil geometry as adopted in experiments.

As a final remark to the results shown in Fig. 3, we notice that the

open-loop growth rate is about twice larger for the plasma with finite

equilibrium pressure ( 030.β  , Fig. 3(b)). The critical gain required for full



stabilization of the IP-RWM is also larger.

Fig. 3 The growth rate of the n=1 IP-RWM versus the proportional feedback gain

value Pk , assuming various combinations of the active and sensor coil types and (a)

vanishing equilibrium pressure 0β , (b) finite equilibrium pressure 03.0β . The

on-axis safety factor is fixed at 0510 .q  .

B. Control of IP-RWM with PD-feedback

Now we consider a PD-controller. We shall vary the derivative gain Dk

at fixed proportional gain of 10.kP  . We again numerically solve the

IP-RWM dispersion relation   0Δext γ,K'
PD , (i.e. expression (10) 0 ) but

with PD-feedback. The results are reported in Fig. 4, again assuming

various combinations of the active and sensor coil types. For both

plasmas (with vanishing or finite equilibrium pressure), the derivative

action reduces the mode growth rate, except the case of internal active

coil combined with the radial sensor. The latter, somewhat surprising,



result can be analytically understood. For this specific case, the growth

rate of the close-loop system becomes    1413  DPw kCCkC with

vanishing equilibrium pressure 0β (Eq. (A.3), Appendix A). At fixed

proportional gain of 10.kP  , the numerator 013  CkC P . Since 04 C ,

increasing derivative gain (up to certain limit) also increases the mode

growth rate.

We note that the IP-RWM cannot be fully stabilized by the derivative

action. At fixed proportional gain, the mode growth rate approaches a

positive constant at infinity derivative gain. This is understandable, since

the stabilizing effect of the derivative action diminishes as the mode

approaches the marginal stability point (at vanishing mode frequency).

Fig. 4 The growth rate of the n=1 IP-RWM versus the derivative gain, assuming
various combinations of the active and sensor coil types. The proportional feedback

gain is fixed at 1.0Pk . Considered are two equilibria with either (a) vanishing

pressure 0β or (b) finite pressure 03.0β . The on-axis safety factor is fixed at

0510 .q  .



IV. Feedback control of RP-RWM via modification of '
ext

If the IP-RWM feedback study presented in Sec. III can be carried out

with either the PRM or matching approach, the latter is much more

suitable for studying feedback control of the RP-RWM. Even more

interestingly, the matching approach allows us to quantify the effect of

magnetic feedback on the tearing index '
extΔ . In what follows, we

demonstrate that feedback indeed modifies '
extΔ . Moreover, we show that

feedback modification of the external tearing index does not depend on

the inner layer physics, i.e. on variation of the RD value. The basic

plasma parameters (except those in the resistive layer) are assumed the

same as that from Sec. III.

A. Feedback with proportional gain

With proportional control, stability of the close-loop for the RP-RWM is

determined by solving the dispersion relation (14) which links Eq. (8)

with Eq. (12) or (13), depending on whether the GGJ effect is included

into the layer model. As mentioned before, we include the GGJ physics

(Eq. (13)) into the inner layer for the equilibrium with finite pressure.

The feedback results for both equilibria (with vanishing or finite pressure)

are summarized in Fig. 5. Similar to results reported in Sec. III for the

IP-RWM, proportional feedback reduces the growth rate of the RP-RWM,

with all six feedback coil configurations considered in this work. The



combination of internal active coils with internal poloidal sensor

performs the best at low feedback gain. At higher feedback gain, we again

obtain the counter-intuitive result of the superior performance by the

external active coils. Since the behavior is qualitatively similar to that of

the IP-RWM, we expect that the same reasoning (i.e. the single harmonic

approximation versus the requirement of multiple poloidal harmonics to

correctly describe the feedback coil geometry) also applies here to

explain this counter-intuitive behavior.

We now analyze some details of the results presented in Fig. 5, first

focusing on the vanishing equilibrium pressure case without the GGJ

effect. Figure 5(a) shows that the critical gain values for Pk ,

corresponding to marginal stability of the RP-RWM with the external

active coils and the internal or external poloidal sensors, coincide. This is

because the wall eddy current disappears at the marginal instability.

Therefore, the wall is effectively in absence under this peculiar

circumstance. In other words, the (normally qualitative) difference

between the internal and external poloidal sensors disappears at the

marginal instability point (and with vanishing mode frequency which is

the case here).

Inserting the mode growth rate shown in Fig. 5(a) back into

expression (8), we obtain feedback modification of the external tearing

index as reported in Fig. 5(b). The overall behavior, among various



combinations of the feedback coils, resemble that of the stability plot

shown in Fig. 5(a). This is understandable, since the inner tearing index

in this case scales with the mode growth rate in a simple proportionality

manner (Eq. (12)). Nevertheless, Fig. 5(b) convincingly demonstrates that

feedback reduces the external tearing index, and by doing so, stabilizes

the RP-RWM.

Next, we discuss Fig. 5(c-d) for the finite pressure equilibrium case,

where the GGJ effect is included into the inner layer tearing index (Eq.

(13)). The feedback results are generally similar to that without the

GGJ-effect (Fig. 5(a-b)). One qualitative difference though is the

appearance of complex eigenvalues (i.e. finite mode frequencies) at large

proportional gains as shown in Fig. 5(c). This occurs for the close-loop

with either internal or external poloidal sensors. It is known that, in the

absence of feedback, the GGJ effect can introduce complex frequency to

the RP-RWM even for a static equilibrium, if the RD value is

sufficiently negative.14 In our case, however, the RD value is chosen

such that the open-loop eigenvalue is real. The finite mode frequency is

thus introduced by the feedback action (but in the presence of the GGJ

effect).

Figure 5(d) shows the corresponding '
extΔ for the case with GGJ

effect. The general trend of the proportional feedback is again to reduce

'
extΔ . The most interesting observation here, however, is that the



corresponding external tearing index becomes complex-valued at

sufficiently large feedback gain. The imaginary part of '
extΔ is small (by

about three orders of magnitude in this case) compared to that of the real

part, but much larger imaginary part is also obtained as will be shown in

later examples. Note that complex '
extΔ occurs whenever the close-loop

eigenvalue becomes complex. This feature of complex '
extΔ is

qualitatively different from the open-loop TM theory, where sufficiently

large GGJ effect introduces finite mode frequency but the tearing index

remains real-valued.

Close examination of the close-loop external tearing index reveals

two possible perturbed energy sources from the outer region, that can

introduce complex '
extΔ in the presence of a rotating close-loop

RP-RWM (in the static plasma). One is the plasma inertia, while the other

is the presence of a resistive wall. For the RWM, the plasma inertia (from

the outer region) is known to play a minor role on the mode dynamics. In

fact, in our example, the inertia term (associated with the 1A factor, see

Eq. (6)) is about   82 10Aw  times smaller than that due to the resistive

wall, with the latter providing an order unity contribution to '
extΔ . The

major role in inducing complex-valued external tearing index is thus

played by the resistive wall, which provides perturbed energy dissipation

due to the wall eddy current. To further verify this conclusion, we

performed feedback calculations similar to that presented in Fig. 5(c-d),



but this time assuming 0w in Eq. (8). The close-loop '
extΔ indeed

becomes real-valued in this case, even in the presence of large feedback

gain and complex RP-RWM eigenvalues.

Another interesting observation is that the real part of the external

tearing index is nearly independent of the assumed RD value when we

scan the feedback gain, despite the fact that the close-loop eigenvalue

substantially varies with RD . This is illustrated in Fig. 6, where we

assume a control scheme with external active coils and the internal

poloidal sensor. For a given RD value, the close-loop eigenvalue

becomes complex at certain feedback gain, but the mode is still unstable

(Fig. 6(a)). Further increasing feedback gain results in full stabilization of

the RP-RWM, with the critical gain value (for marginal stability)

increasing with increasing the amplitude of RD . A small imaginary part

(insert in Fig. 6(b)) of '
extΔ again appears when the close-loop eigenvalue

becomes complex. But the real part of '
extΔ is almost independent of the

choice for the RD value. In other words, the results show that the

magnetic feedback system modifies the external tearing index almost

independent of the inner layer physics.
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Fig. 5 Close-loop results for the n=1 RP-RWM, assuming equilibria with (a-b)

vanishing pressure 0β , and (c-d) finite pressure 03.0β with the GGJ included

into the inner layer tearing index ( 00030.DR  ). Compared are results with various

feedback coil configurations assuming proportional control. Plotted are (a,c) the mode
growth rate, and (b,d) the external tearing index. The on-axis safety factor is fixed at
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Fig. 6 Close-loop results for the n=1 RP-RWM for (a) the mode eigenvalues, and (b)
the external tearing index, while scanning the proportional feedback gain and varying
the value of the resistive interchange index. Considered is a plasma with finite

equilibrium pressure ( 03.0β ). Assumed is a control scheme with the external active

coil and the internal poloidal sensor. The on-axis safety factor is fixed at 0510 .q  .
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B. Feedback with PD-gain

We now solve Eq. (14) but with the external tearing index defined by

expression (10). We fix the proportional gain at 10.kP  and scan the

derivative gain Dk . The results are presented in Fig. 7, without (a-b) or

with (c-d) the GGJ effect. Note that the general trend remains similar

between the two cases (with or without the GGJ effect). For the case with

the GGJ effect (c-d), the proportional gain is chosen such that the

close-loop eigenvalue is real at vanishing derivative gain. The latter,

when introduced, does not yield finite mode frequency.

The feedback results with either external or internal poloidal sensors

remain similar while scanning the derivative gain. This is largely because

the mode growth is already weak at 10.kP  and Dk =0. A weakly

growing instability does not introduce large eddy current in the resistive

wall. We also note that the derivative gain is stabilizing with all types of

feedback coil configurations, including the combination of internal active

coils and the radial sensor (albeit with very weak effect).

Similar to the case for the IP-RWM, the derivative action does not

fully stabilize the RP-RWM. Both the mode growth rate and the external

tearing index tend to saturate at large Dk values.
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Fig. 7 Close-loop results for the n=1 RP-RWM, assuming equilibria with (a-b)

vanishing pressure 0β , and (c-d) finite pressure 03.0β with the GGJ included

into the inner layer tearing index ( 00030.DR  ). Compared are results with various

feedback coil configurations while scanning the derivative gain. The proportional gain

is fixed at 1.0Pk . Plotted are (a,c) the mode growth rate, and (b,d) the external

tearing index. The on-axis safety factor is fixed at 0510 .q  .



V. Feedback control of RP-EK via modification of '
ext

As the final step of investigation, we consider feedback stabilization of

the RP-EK. Active control of the EK is normally not practically feasible

due to the fast open-loop growth (in Alfvenic time scale). This is however

not the case for the RP-EK, due to substantial reduction of the mode

growth rate by the plasma resistivity, as shown in Fig. 2. We shall again

consider P- and PD-control, with or without the GGJ physics in the inner

layer. The basic plasma parameters remain the same as that in Sec. III,

except for the on-axis safety factor 210 .q  and the equilibrium pressure

050. . The other obvious difference is that the plasma inertia is now

always retained in evaluating the external tearing index.

A. P-feedback

Figure 8 shows that feedback stabilization of the RP-EK is generally

weak, due to weak modification of the external tearing index. The

exception is the coil combination with external active coils and the

internal or external poloidal sensor. However, as pointed out in Sec. III,

the strong stabilization with external active coils should be viewed with

caution, due to the artifact associated with the single harmonic

approximation. Another observation is the large difference in the

feedback results, between the internal and external poloidal sensors. This

is due to much stronger instability (the open-loop growth rate of the



RP-EK is about one order of magnitude higher than that of the RP-RWM)

which induces larger eddy currents in the resistive wall.

With external active coils, the two stability curves with internal and

external poloidal sensors intersect at the feedback gain value of 25.0Pk .

This is not a co-incidence. Detailed analysis of the expression (8) for the

external tearing index reveals that, at this gain value, or more generally at

mkP 21 , the parameter 1Pα holds independent of the wall time,

resulting in the same stabilization effect. For the special case of vanishing

wall ( 0wτ ), the difference in the definition between the internal and the

external poloidal sensors naturally disappears.

Similar to the RP-RWM, inclusion of the GGJ effect results in a

rotating RP-EK at large proportional gain ( 30.kP  ) and with external

active coils (Fig. 8(c)). The corresponding external tearing index also

becomes complex-valued, with large magnitude of  '
extΔIm in this case.

The imaginary part of the outer tearing index is again primarily

introduced by the wall eddy current induced perturbed energy dissipation,

as discussed before. The transition from the real to complex eigenvalue

depends on the value of Pk and RD , as shown in Fig. 9. When the

absolute value of RD is sufficiently small (e.g. 0010.DR  ), the

eigenvalue of the RP-EK and the value of the corresponding '
ext are all

real. In addition, for the range of Pk between 0 and 0.25, '
extΔ remains

real independent of the choice for the RD value.
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Fig. 8 Close-loop results for the n=1 RP-EK, assuming equilibria with (a-b) vanishing

pressure 0β , and (c-d) finite pressure 050.β  with the GGJ included into the

inner layer tearing index ( 010.DR  ). Compared are results with various feedback coil

configurations assuming proportional control. Plotted are (a,c) the mode growth rate,

and (b,d) the external tearing index. The on-axis safety factor is fixed at 210 .q  .
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Fig. 9 Close-loop results for the n=1 RP-EK for (a) the mode eigenvalues and (b) the
complex external tearing index, while scanning the proportional feedback gain and

varying the value of the resistive interchange index 01400010 .~.DR  . Considered is

a plasma with finite equilibrium pressure ( 050.β  ). Assumed is a control scheme

with the external active coil and the external poloidal sensor. The on-axis safety factor

is fixed at 210 .q  .



B. PD-feedback

Figure 10 reports feedback results by numerically solving Eq. (14), which

links expression (10) with (12) or (13), while scanning the derivative gain

Dk at fixed proportional gain of 250.kP  . Among various combinations

of the active and sensor coils, the external active coil, combined with

poloidal sensors, stands out as the most effective one in reducing the

mode growth rate by the derivative action. An interesting new

observation here is that, for the RP-EK, the derivative action at large gain

value can also introduce complex close-loop eigenvalue (Fig. 10(c)) and

complex '
extΔ (Fig. 10(d)). Moreover, the real part of '

ext increases with

increasing the derivative (at large gain values). This is in contrast to the

monotonic decrease of the mode growth rate with increasing Dk .
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Fig. 10 Close-loop results for the n=1 RP-EK, assuming equilibria with (a-b)

vanishing pressure 0β , and (c-d) finite pressure 050.β  with the GGJ included

into the inner layer tearing index ( 010.DR  ). Compared are results with various

feedback coil configurations while scanning the derivative gain. The proportional gain

is fixed at 250.kP  . Plotted are (a,c) the mode eigenvalue, and (b,d) the complex

external tearing index. The on-axis safety factor is fixed at 210 .q  .

In the presence of the GGJ effect, the derivative gain induced

complex mode eigenvalue (and '
extΔ ) appears to be qualitatively different

from that induced by the proportional action. This is demonstrated in Fig.

11, where we compare the P- and PD-control of the RP-EK, while

scanning the RD value. The feedback scheme combines the external

active coil and the external poloidal sensor. Apparently, with increasing

RD (towards the negative value), the growth rate of the RP-EK decreases



(Fig. 11(a)). The close-loop eigenvalue becomes complex at certain value

of RD . This transition occurs for both the open-loop and close-loop with

either P- or PD-feedback, though at different RD values.

The real part of the corresponding external tearing index '
extΔ is

independent of the resistive interchange index in the open-loop or

close-loop with P-feedback. This implies that the RP-EK is controlled by

the proportional feedback via modification of '
ext , not via changing the

inner layer physics. On the other hand, the same derivative action does

result in different '
ext while varying the RD value. Fig. 11(b) shows

that, under the same derivative action, the external tearing index increases

with increasing RD (towards negative value), despite the fact that the

growth rate of the RP-EK decreases. The effect of the derivative feedback

action is thus non-trivial in terms on modifying the external tearing index.

On the other hand, the P-feedback, with either 250.kP  or 30.kP  ,

produces constant '
ext values independent of RD .
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Fig. 11 Open-loop and close-loop results for the n=1 RP-EK, for (a) the mode
eigenvalue, (b) the complex external tearing index, while scanning the resistive
interchange index. Compared also are the results with proportional feedback and with

PD-feedback. Considered is a plasma with finite equilibrium pressure 050.β  .

Assumed is the feedback configuration with the external active coil and the external

poloidal sensor. The on-axis safety factor is fixed at 210 .q  .



VI. Conclusion

Based on an analytic model, we have carried out systematic investigation

on feedback control of the RP-RWM and RP-EK via the matching

method (Eq. (14)). The same method is also applied to study the IP-RWM

as a special case, i.e. with vanishing inner layer tearing index at the mode

rational surface. A key merit of the matching approach is that feedback

modification of the external tearing index can be quantified, by inserting

the self-consistently calculated eigenvalue from the close-loop Eq. (14)

back into expression (8) or (10). For the RP-RWM and RP-EK, the

instability is controlled mainly via feedback modification of the external

tearing index, as demonstrated in this work.

Assuming six feedback coil configurations combining different types

of active and sensor coils, we calculate modification of '
extΔ by the P-

and PD-control systems, and map out the results in parameter spaces

involving the proportional gain Pk , the derivative gain Dk , and the

resistive interchange index RD . We find that increasing either the

proportional or derivative gain generally reduces '
extΔ and stabilizes the

RP-RWM or RP-EK, with all six feedback configurations.

Feedback generally affects the external tearing index '
extΔ

independent of the inner layer physics, implying that feedback stabilizes

the RP-RWM or RP-EK primarily via modification of the solution in the

outer ideal region. One exception is the case where either sufficiently



large GGJ effect or strong control action produces a rotating instability in

the static plasma. The close-loop external tearing index then becomes

complex-valued, due to the perturbed magnetic energy dissipation in the

outer region, associated with the eddy current flowing in the resistive wall.

The plasma inertia (again from the outer region) in principle plays a

similar role as the wall eddy current, but the effect on '
extΔ is several

orders of magnitude weaker during feedback stabilization of the

RP-RWM and RP-EK. For the latter, the inertia effect is already

significantly reduced by plasma resistive damping in the open-loop.

With single harmonic approximation, which is the constraint for the

matching method, we find that the combination of external active coils

and poloidal sensors often outperforms the other feedback configurations

at large feedback gain. This counter-intuitive result is explained as lack of

(non-resonant) poloidal harmonics for proper description of the feedback

coil geometry. This is confirmed by including multiple poloidal

harmonics in the alternative control model based on the plasma response

transfer function (the PRM model), which has previously been developed

to study feedback control of the IP-RWM.
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Appendix A

This Appendix lists simplified versions for the open-loop and close-loop

growth rates of the IP-RWM in special cases. The open-loop growth rate

of the IP-RWM is derived from Eq. (6)
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For the plasma with vanishing equilibrium pressure ( 0β ), the close-loop

growth rate with the P-controller can be straightforwardly obtained for

the IP-RWM, assuming various combinations of the active and sensor

coil types
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Assuming the combination of internal active coils and the radial

sensor, the close-loop growth rate with a PD-control is calculated as
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Appendix B

This Appendix exploits the PRM approach for feedback control of the

IP-RWM, in order to compare with the matching approach adopted in the

main part of this work, and to explain certain counter-intuitive results

obtained with the matching approach. Specifically, Sec. III finds that the

combination of the external active coil and the poloidal sensor provides

more efficient control at large proportional gain, than the internal active

coil.

Below we repeat the key steps in deriving the PRM model.23-25 For

each poloidal harmonic m, the corresponding transfer function  sM m ,

from the control current to the sensor signal, is obtained for the same

equilibrium (with vanishing pressure) as specified in Sec. II.

(i) The perturbed radial field component rb satisfies the ideal MHD

force balance condition at the plasma boundary surface  ar
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(B.1)

where C is a constant independent of feedback.

(ii) The wall equation (thin wall is assumed)
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where ws  is the growth rate of the RWM with feedback.

(iii) The total field in various vacuum regions outside the plasma can

be written as the sum of contributions from the plasma, the wall

and the active coil currents
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The above three conditions yield a relation
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where  
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 is the growth rate of the ideal

external kink mode, with m and  stands for  msgn .

Define the open-loop transfer function for the radial and poloidal

sensors as
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respectively, where s
rb is the total radial field at the sensor position,



which is assumed to be the wall radial position. Considering various

combinations of the active and sensor coil types, the transfer functions for

the radial and poloidal sensors are obtained by expressing p
rb , w

rb and

s
rb via f

rb , yielding
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where
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The open-loop total transfer functions24 for different poloidal harmonics

are coupled via a window-pane representation of the active coils and the

point-wise sensor signal (for either the radial or poloidal sensors),

resulting in a total transfer function of

       scm
m

m
jmexpjmexpfsMsP 

where c ( s ) is the poloidal angle of the center of the active (sensor)



coil locations, and mf is the geometrical coupling factor
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where f being the half-width of the poloidal coverage by the active

coils.

With a proportional controller and feedback gain G, the close-loop

eigenvalue is determined by the solution of the characteristic equation

  01  sGP (B.9)

Taking the single-m poloidal harmonic approximation, the close-loop

eigenvalue is readily calculated
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where GfH m for the single row of active coils and sensor coils located

at the outboard mid-plane ( 0c and 0s ). It is evident that the PRM

approach yields the same feedback result, (B.10), as that from the

matching approach from the IP-RWM (setting expression (8) 0 ), i.e.

(A.2) from Appendix A. The difference in the coefficients comes from

different definition of the control signals.

The above expression (B.10) (or equivalently expression (A.2))



shows that a P-control with the internal active coil and the internal

poloidal sensor provides more stabilization than that of the external active

coil (



Hm

Hm

m

Hm wnfwnf
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), if the feedback gain is sufficiently

small


 11



 wnfH0 . However, at large feedback gain


 11




 wnfH , the external active coil becomes more effective

(



Hm

Hm

m

Hm wnfwnf

2





). These results are also plotted in Fig. B(a).

On the other hand, we can also numerically solve Eq. (B.9), by

including two harmonics ( 2m ) or even multiple harmonics

( 1010 ~m  ) in the transfer function  sP . The calculated close-loop

growth rates for the IP-RWM are plotted in Fig. B(b) and (c), respectively.

In both cases, we find that the internal active coil provides stronger

stabilization to the mode than the external active coil, independent of the

proportional feedback gain value.
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Fig. B The growth rates of the 1n IP-RWM versus the feedback gain, assuming
various combinations of the active and sensor coil types. The poloidal coverage by the

active coil is fixed 9 f . (a) single-m poloidal harmonic ( 2m ), (b) two

poloidal harmonics ( 2m ) and (c) multiple poloidal harmonics ( 1010 ~m  ) are

considered in the transfer function  sP , respectively.
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