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Abstract. We develop a dynamic model for the evolution of an ensemble of hundreds

of interacting irradiation-induced mobile nanoscale defects in a micrometre size sample.

The model uses a Langevin defect dynamics approach coupled to a finite element model,

treated using the superposition method. The elastic field of each defect is described

by its elastic dipole tensor, and the long-range interaction between defects is treated

using the elastic Green’s function formalism. The approach circumvents the need

to evaluate the elastic energy by means of volume integration, and provides a simple

expression for the energy of elastic image interaction between the migrating defects and

surfaces of the sample. We discuss the underlying theory, and also the parallelization

and coarse-graining numerical algorithms that help speed up simulations. The model

addresses the issue of imbalanced forces and moments arising as an artefact of the

modified boundary problem associated with the traction free boundary condition. To

illustrate applications of the method, we explore the dynamic evolution of an ensemble

of interacting dislocation loops of various size and with different Burgers vectors, which

proves the feasibility of performing large-scale simulations using the proposed model.

Submitted to: Modelling Simul. Mater. Sci. Eng.

1. Introduction

Tungsten has the highest melting point of all the pure metals, as well as high thermal

conductivity and low thermal expansion, which makes it ideal for a variety of high

heat load applications. Tungsten also has a low physical sputtering yield [1], and its

unstable isotopes exhibit relatively fast radioactive decay following neutron irradiation
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[2]. Presently, tungsten is the preferred candidate material for plasma facing and armour

components of the DEMO fusion power plant [3, 4, 5].

Deuterium-tritium fusion reactions in the plasma produce high energy neutrons that

penetrate deep into the bulk of reactor components [6, 7], where they initiate atomic

collision cascades, resulting in the formation of complex microstructures containing

dislocation loops, vacancy clusters, networks of line dislocations [8, 9, 10, 11, 12, 13, 14].

Low fluence irradiation damage in metals generates a variety of localized defects,

typically Frenkel pairs, dislocation loops, and voids, which degrade both thermal [15,

16, 17] and mechanical [18] properties of plasma facing and structural materials, leading

to embrittlement, and limiting the lifetime of reactor components. Fundamentally, the

above changes stem from the fact that mechanical and physical properties of metals

strongly depend on their microstructure [19].

Since high energy neutron irradiation facilities are not widely available, self-ion

irradiation experiments are often used for mimicking the effects of high energy neutron

irradiation. Transmission electron microscope (TEM) analysis suggests that vacancy

type 1
2
〈111〉 dislocation loops dominate the visible defect populations formed in thin

films at low dose ∼0.01 dpa [20, 21, 13, 22, 23, 24]. For doses in the interval from 0.4 to

30 dpa, the microstructure involves a dense network of line dislocations, finely dispersed

vacancies, and interstitial 1
2
〈111〉 loops [14]. 〈100〉 interstitial loops are also observed

[25]. These loops are believed to nucleate in collision cascades [8].

Molecular dynamics simulations of collision cascades in perfect crystals [8, 9, 10, 11]

suggest that the statistics of sizes and numbers of vacancy and interstitial defects

formed at low dose, below the cascade overlap dose of ∼ 0.01 dpa, follow a power-law

scaling. This means that a considerable, if not dominant, fraction of defects produced

by irradiation is not visible in a transmission electron microscope [13, 26, 27]. The

fact that the microstructure of an irradiated material contains many defects and defect

clusters that are too small to be observed by means of even high resolution experimental

methods, makes modelling and simulation a vital tool for understanding the various

aspects of microstructural evolution under irradiation that are critical to an informed

reactor design effort.

In molecular dynamics simulations of collision cascades [28, 29], we observe the

formation of vacancy loops near surfaces, suggesting that surfaces attract self-interstitial

atom (SIA) defects. Vacancy loops also form during cascade collapse when sequential

cascades overlap [30]. Following a cascade collapse, elastic interaction helps trap

dislocation loops, preventing their escape to the surface [31, 13, 11]. At the same time,

elastic interaction between defects and their elastic images result in that surfaces act as

strong sinks for defects [32].

The above evidence suggests that irradiated materials likely contain dense

populations of interacting defects. This has important implications for the selection of

simulation methodology. The presence of long-range elastic interaction suggests that

the movement of any given defect, considered in the context of dynamic evolution

of microstructure, depends on the position of a large number of other defects in
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its neighbourhood. This implies an O(N2) naive scaling of the computational cost

of execution of each time-step, potentially improvable to O(N) scaling if the data

are efficiently reused. Object kinetic Monte Carlo (okMC) simulations [33, 34, 35],

commonly applied to simulate the dynamics of irradiation-induced defects, therefore

struggle to incorporate elastic interactions efficiently. The correlated motion of defects

means that the update time increment also must scale with the number of interacting

defects as 1/N , making the okMC computational cost for elastically interacting defects

varying as O(N2) at best.

Alternatively, the dynamics of an ensemble of interacting defects at a finite

temperature can be modelled using coupled over-damped Langevin equations of motion.

These equations describe the effect of temperature on the motion of interacting defects

by means of random thermal forces [36]. By recasting the evolution of a system

of interacting defects in the Langevin dynamics framework, we can keep a constant

time increment while preserving the okMC rules for defect interactions. This gives an

improvement in the scaling of computational cost from O(N2) to O(N).

Elastic interaction between the defects can be evaluated using the elastic dipole

tensor and Green’s function formalism [37, 38, 39, 40, 41, 42, 43, 44], where the elements

of elastic dipole tensor fully define the field of elastic displacements of a localized defect

in the asymptotic far-field limit [45]. This simplifies the evaluation of elastic energy,

as performing volume integration of strain and stress fields becomes unnecessary. The

elastic contribution due to the interaction of defects with the surface of the sample can be

evaluated using a finite element model approach, involving the use of the superposition

principle by van der Giessen and Needleman [46].

In this work, we develop a model that in principle can simulate the dynamics of

an ensemble of arbitrary defects in a finite size sample, retaining the full complexity

of microstructural evolution in an irradiated sample with boundaries at a finite

temperature. Knowing the distribution of defects in space as a function of time can

help develop practical computational means for evaluating strain, swelling and stress in

irradiated reactor components [47].

Below, we summarise the fundamentals of the model and explore examples

of simulations of interacting defects in crystalline tungsten. We study loop-loop

interactions and the effect of surfaces on the spatial distribution of loops, demonstrating

the feasibility of large-scale simulations performed using the model. The approach is

not constrained to isotropic elasticity or specifically to tungsten, and can be extended

to arbitrary defects as long as the elastic field of a defect is treated in the elastic dipole

tensor approximation [45, 40]. All the formulae are given assuming general anisotropic

elasticity. Tungsten is chosen as a representative example because of its technological

relevance and the availability of experimental data.
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2. Fundamentals

2.1. Superposition method and its implementation

According to van der Giessen and Needleman [46], a mixed traction-displacement

boundary problem describing a finite elastic body can be represented by a superposition

of fields defined in an infinite body, and a modified boundary problem. For a linear

elastic body of volume V , with surface boundary S = ST ∪ SU , subject to a traction

boundary condition T on ST and a displacement boundary condition U on SU , the total

displacement u, strain ε and stress σ fields in V , and traction and displacement on S

can be written as a superposition of two fields.

u = ũ + û, (1)

ε = ε̃+ ε̂, (2)

σ = σ̃ + σ̂, (3)

T = T̃ + T̂, (4)

U = Ũ + Û, (5)

where a symbol with a tilde (◦̃) refers to a quantity in a volume of space that is a part

of a continuous infinite medium where the elastic fields can often be calculated using

analytical formulae.

This reduces the treatment to solving the so-called modified boundary problem

û = u− ũ, (6)

ε̂ = ε− ε̃, (7)

σ̂ = σ − σ̃, (8)

T̂ = T− T̃, (9)

Û = U− Ũ. (10)

The governing equations of elasticity for the modified boundary problem are the zero

body force condition of mechanical equilibrium

∇ · σ̂ = 0

σ̂ = C : ε̂

ε̂ = 1
2
(∇û + (∇û)T )

 in V, (11)

complemented with a boundary condition at surfaces

σ̂ · n = T̂ on ST , (12)

û = Û on SU . (13)

Here n is the surface normal, C = {Cijkl} is the fourth rank elastic constant tensor.

These equations can be solved numerically using a finite element method (FEM)

approach. Previous work, coupling discrete dislocation dynamics (DDD) to FEM

[48, 49, 50, 51], demonstrates the feasibility and validity of the superposition method.

There is an element of subtlety associated with the boundary part of the problem

arising in the context of the superposition method. The total applied force and its
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torque do not necessarily vanish since T̂ is in general non-zero in Eq. 12. If T = 0, the

total force and torque acting on the body described by the modified boundary problem,

and stemming from the boundary conditions, are∫
ST

T̂dS = −
∫
ST

T̃dS 6= 0, (14)∫
ST

r× T̂dS = −
∫
ST

r× T̃dS 6= 0. (15)

This is at odds with the expected stationary solution of the mechanical equilibrium

problem.

A conventional way of addressing the issue is to impose common sense constraints

on the six degrees of freedom of the system, see for example the FEM treatment given in

Ref. [47]. Out of the six degrees of freedom, three describe translations of the body as

a whole, and the other three refer to its rotation. To make sure that numerical solvers

do not produce a moving and rotating FEM solution, positions of any two points in

the body are assumed stationary. However, since the FEM problem involves applied

tractions at surfaces given by Eq. 12, local stress concentrations naturally form near

these fixed points. In the context of the problem of dynamics of defects, the presence

of any pinning points and stress concentrations is undesirable.

To treat the imbalanced force and torque in a non-singular manner, avoiding the

use of pinning points, we introduce a modification to the superposition method. We

introduce a fictitious distributed body force Ff that compensates the effect of tractions

in Eq. 12. This body force should satisfy conditions that∫
ST

T̂dS = −
∫
V
FfdV, (16)∫

ST

r× T̂dS = −
∫
V
r× FfdV. (17)

Since these conditions only involve a volume integral of the body force, there is still

freedom associated with the choice of its functional form.

To eliminate translations, we use a uniform body force field. The corresponding

expression for the spatially homogeneous body force compensating translations is

Ft = − 1

V

∮
ST

T̂ dS. (18)

To eliminate rotations, we assume that the torque associated with tractions attempts

to turn the system around a certain axis. In cylindrical coordinates, we find

F r
z = 0, (19)

F r
r = 0, (20)

F r
θ = ρκr, (21)

where κ is a constant derived from the condition∮
V
r× FrdV = −

∮
S
r× T̂ dS. (22)
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The total density of fictitious body force and its torque are now

Ff = Ft + Fr, (23)

τ f = r× (Ft + Fr). (24)

The force and torque imbalance associated with surface tractions is therefore fully solved.

The governing equations for the modified boundary problem have the form

∇ · σ̂ + F̂ = 0

σ̂ = C : ε̂

ε̂ = 1
2
(∇û + (∇û)T )

 in V, (25)

where

σ̂ · n = T̂ on ST . (26)

2.2. Finite element method

We used CAST3M [52] to solve the modified boundary problem numerically using

FEM. A mesh was created corresponding to the sample geometry. Cubic elements

with quadratic shape functions and seven integration points were used. Quadratic

shape functions are necessary since we need to compute the gradient of strain, which

is proportional to the gradient of the shape function. In linear elasticity, the stiffness

matrix can be computed using an established FEM procedure [53]:

Kij = a(φi, φj), (27)

where {φi}i≤n is the set of shape functions associated with the n degrees of freedom and

a is the bilinear, symmetric and continuous form associated with the elasticity problem.

Using the tractions defined for the modified boundary condition, together with

forces due to the corrections for rotation and translation motions, one can formally

write

Kû = Fl + Ff (28)

where K is the stiffness matrix, û is the displacement field, and Fl is the external loading

due to traction T̂. By solving the above equation one can find the displacement field

û. Strain field ε̂, stress field σ̂, and the derivative of strain field can then be computed

from the field of displacements. We should note that Eq. 28 only works for a stationary

system that exhibits no translational and rotational motion.

In practice, we still have to fix six degrees of freedom in the FEM calculations to

guarantee numerical stability. We set the displacements of the centre of mass to zero,

and the y and z direction displacements of a very nearby point in its x direction to zero,

and the z direction displacement of another very nearby point in its y direction to zero.

It is because if the net force and torque of the whole system are zeros, the net force

and torque at the centre of mass are zeros. We have verified this implementation and

found that our force-balancing solution in section 2.1 meant that no stress concentration

formed near those points.
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In fact, if we are only interested in the strain and stress field, and if a FEM solver

can handle the dynamic equation

M¨̂u + Kû = Fl, (29)

the introduction of the fictitious body Ff is unnecessary. It is because the strain and

stress field are invariant with respect to the rigid body motion. Our treatment in section

2.1 is practically equivalent to putting Ff = −M¨̂u. Similarly, if one can solve the strain

field ε̂ and stress field σ̂ directly from traction T̂, without going through the calculation

of displacement field û, the introduction of Ff is unnecessary, either.

2.3. Langevin dynamics of defects

Langevin dynamics treatment of defects, including elastic interaction between them,

was proposed by Dudarev et al. [36]. They showed that simulations treating nanoscale

radiation defects as elastically interacting objects, with appropriately chosen mobility

parameters, can match the real-time dynamics of defects observed in in-situ transmission

electron microscope (TEM) experiments. The Langevin equation of motion for a

dislocation loop in the overdamped limit can be written as [36]:

dwn
dt

= − Dn

kBT

∂Eel
∂wn

+
√

2Dnξn(t), (30)

where wn is the position of loop n along the direction of its Burgers vector b, Dn is its

diffusion constant, and ξn is a randomly fluctuating field satisfying conditions 〈ξn(t)〉 = 0

and 〈ξn(t)ξn(t′)〉 = δ(t−t′). In this work we assume that a glissile loop only moves along

the direction defined by its Burgers vector. We do not consider climb or self-climb [54].

Calculating the elastic energy of the system by means of a volume integral

Eel =
1

2

∫
σij(r)εij(r)d

3r (31)

is time consuming and inefficient. Analytical expressions have been derived for the

pairwise elastic interaction between dislocation loops [36, 55], or loops and voids [56]

in isotropic elasticity, and these have been used in previous dynamic simulations where

loop Burgers vectors were assumed to remain normal to the loop habit planes [36, 31].

This approximation, according to Li et al. [57], has a relatively limited range of validity,

as it neglects the elastic torque acting on a loop, which alters the orientation of its habit

plane.

A general way of treating long-range elastic interaction between arbitrary defects,

including dislocation loops, is the elastic dipole tensor and Green’s function formalism

[37, 38, 39, 40, 41, 44]. For a given configuration of a defect, its elastic dipole tensor Pij
fully defines its long-range elastic field, as discussed below. It also fully defines strain

and stress, and hence can be used for finding the elastic energy contribution due to the

strains induced by surfaces or applied external stresses. The dipole tensor formalism has

been used earlier to bias the movement of defects in kinetic Monte Carlo simulations in

an infinite medium [58, 59], but to our knowledge has not been applied to the treatment

of surface-induced strains explored below.
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The energy of elastic interaction between defects in a finite size sample can be

written as a sum of two contributions,

Eel = Epair + EB. (32)

The pairwise part is the energy of elastic interaction between all the defects n and m is

[40],

Epair =
1

2

∑
n,m

P n
ijP

m
klGik,jl(R

nm), (33)

where Gik,jl(R) = ∂
∂xj

∂
∂xl
Gik(R) is the second derivative of elastic Green’s function,

Rmn = Rn −Rm is the directional vector from defect m to n, and the P n
ij is the elastic

dipole tensor of defect n. At this level of approximation, elements of elastic dipole tensors

are treated as constant parameters characterising the defects, and internal degrees of

freedom of defects, treated as point objects, are assumed to be independent of the action

of external elastic field.

The second term is due to the modified boundary conditions. The elastic interaction

energy between a defect and strain field ε̂ij arising from the modified boundary condition,

including the constraining distributed body force, is

EB = −
∑
n

P n
ij ε̂ij(R

n). (34)

This can be calculated using FEM for the modified traction condition on ST and taking

into account the fictitious body force, such that:

T̂ = − T̃, (35)

F̂ = Ff , (36)

T̃ = σ̃ · n, (37)

σ̃ = C : ε̃, (38)

where:

ε̃ij = −
∑
n

P n
klGik,jl(R−Rn). (39)

This completes the calculation of elastic energy Eel for an ensemble of defects in a finite

size sample, including effects of elastic interaction with the surface of the sample.

The remaining part of the analysis involves calculating the derivatives of Eel. For

any mobile defect n, we need to find

∂Eel
∂wn

= P n
ij

(∑
m

Pm
kl

∂Gik,jl(R
nm)

∂wn
− ∂ε̂ij(R

n)

∂wn

)
. (40)

The two derivatives with respect to wn can be evaluated numerically using finite

differences.

For an arbitrary material, the evaluation of anisotropic elastic Green’s function and

its first and second derivative can be performed numerically according to the formula

derived by Barnett [60], provided that the elastic constant tensor Cijkl is known. For

an arbitrary defect, one can compute Pij from ab initio or molecular static calculations
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[37, 38, 39, 40, 41, 42, 43, 44]. Therefore, the formulae in this and the previous section

can be applied to any material or defects with no modification.

For a dislocation loop, there is an analytical expression for Pij valid in the linear

elasticity limit [40, 61, 62, 63], namely

Pij = CijklbkAl, (41)

where bk and Al are the Cartesian components of the Burgers vector b and the loop

vector area A. The latter can be expressed as a contour integral over the perimeter of

the loop [64]:

A =
1

2

∮
(r× dl). (42)

Note that b and A need not to be parallel.

From the elements of elastic dipole tensor, one can also compute the relaxation

volume tensor of a defect Ωij, which is a quantity describing swelling of reactor

components under irradiation [47]. The relaxation volume tensor [63, 40, 41] is related

to the dipole tensor through the elastic compliance tensor S = C−1, such that

Ωij = SijklPkl. (43)

The relaxation volume of a defect equals the trace of the relaxation volume tensor

Ωrel = Ω11 + Ω22 + Ω33. (44)

We note that the relaxation volume of a dislocation loop, according to Eq. (41) is simply

Ωrel = b ·A irrespective of the elastic properties of a material, and that this equals ±1

times the total volume of atoms forming the loop (the choice of the sign is positive or

negative for an interstitial or vacancy loop, respectively).

In the isotropic elasticity case, the elastic constant tensor can be written as [40],

Cijkl = µ
2ν

1− 2ν
δijδkl + µ (δikδjl + δilδjk) , (45)

where ν is the Poisson ratio and µ is the shear modulus. The elastic Green’s function

in the isotropic limit is

Gik(r) =
1

16πµ(1− ν)r

[
(3− 4ν)δik +

xixk
r2

]
, (46)

and the second derivative of the elastic Green’s function is

Gik,jl(r) =
1

16πµ(1− ν)r3

× [(3− 4ν)δik (3ηlηj − δlj) + 15ηiηjηkηl

− 3(δijηkηl + δilηjηk + δjlηiηk + δkjηiηl + δklηiηj)

+ (δilδkj + δijδkl)], (47)

where ηi is a component of the radial unit vector η = r/r.
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Figure 1. The sample is divided into many regions and the treatment of evolution

is implemented using a linked-cell structure. For loops within the same cell and in

its neighbouring cells, we compute the exact pairwise interaction between defects.

For other interactions, we adopted a coarse-grain method, replacing individual defects

within a cell with a single virtual defect according to Eq. 48 and 49.

2.4. Coarse-grained method and its optimization

In this section we describe an efficient numerical implementation of defect dynamics

based on the equations introduced in the previous sections. Firstly, we divided the

simulation box into many small regions and adopted a linked-cell structure similar to

that used in molecular dynamics codes [65]. A defect is put in a linked list corresponding

to the cell containing a defect. The linked lists are updated every time step. The

total elastic energy and the integration of equations of motion for mobile defects was

performed in parallel using a domain decomposition of the cells. Calculation of strain

due to the boundary is also calculated in parallel using the MPI implementation in

CAST3M.

Through the linked-cell structure, we can adopt a coarse-grained method to evaluate

elastic long-range interaction between defects. For a group of defects at large distances,

one can approximate it as a single defect represented by a single dipole tensor, as

illustrated in Fig. 1. According to Ref. [47], one can approximate the combined far-

field effects of the dipole tensor of all defects in a linked cell α using a single virtual

defect with dipole tensor

Pα
ij =

∑
m∈α

Pm
ij (48)

situated at

Rα =

∑
m∈α ||Pm||Rm∑
m∈α ||Pm||

, (49)

where ||P|| =
√
Tr(P2) is the Frobenius norm.

We verify this approximation using a simulation cell of 1µm×1µm×1µm, where the

dimension of each linked cell is 0.1µm×0.1µm×0.1µm. We created 40 to 200 loops with
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Figure 2. Illustration of a test of the coarse-grained method. We put 40 to 200 loops

randomly in a sample of 1µm × 1µm × 1µm, where the dimension of each linked cell

was 0.1µm× 0.1µm× 0.1µm. The cutoff range is the layer of neighbour cells where we

still consider full interaction between defects without approximation. (a) The relative

energy difference and (b) The relative computation time using different cutoff range.

random sizes and Burgers vectors inside the sample. Then, we calculate the difference

between the total elastic energy of the system with and without this approximation

using different cutoff ranges. The cutoff range is the layer of neighbour cells where

we still consider full interaction between defects without approximation. For example,

if we set the cutoff range at Rcut = 1, then all elastic interactions between defects

within the same linked cell and its nearest neighbouring cells are considered without

approximation, where all the defects starting from the second layer of neighbour cells

are approximated using Eq. 48 and 49. Fig. 2 shows the difference of elastic energy.

Even if we consider the cutoff at the first neighbouring cells, the difference is only 3% in

a simulation involving 200 loops, yet we achieve double the speed of computation. The

validity of such an approximation is related to the size of the linked cell, the number of

defects in a cell, and the cutoff range. A similar benchmarking test should be performed

in any future simulation.

Another interesting observation about the computing time is that, in the limit where

the system contains > 100 loops, for the calculation of defect-defect interaction, about

99% of our computation time is spent on the calculation of elastic interactions within

the cutoff range, even when Rcut = 1. This indicates that no further coarse-graining is

required.

To further speed up simulations, we implemented a simple adaptive time step

method. The idea is to have a fast time lapse when nothing interesting happens. For

example, if the defects do not move rapidly, we increase the time step ∆t. On the other

hand, if a lot of defects are interacting and reacting, we use a smaller ∆t. We calculate

the displacement of each defect for every 20 time step. If the maximum displacement
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is larger or smaller than a certain given value, we reduce or increase the time step,

respectively.

2.5. Parameters and rules for tungsten

The theoretical treatment that we have been discussing so far applies to any material

within the linear elasticity approximation, for both isotropic and anisotropic cases. To

complete our model, extra rules governing defect interactions that are material and

experimental conditions dependent are required. We base our rules on those typically

used in object kinetic Monte Carlo simulations [33, 34, 35]. The exact parameterisation

for tungsten in the conditions of interest is the subject of ongoing research, but our

purpose of this work is to demonstrate the feasibility of our model. Adjustment may be

imposed to suit particular material and experimental conditions. We summarize these

rules and their rationale below.

We consider tungsten as being elastically isotropic. All the simulations are

performed at room temperature (300K).

Mason et al. [31], Yi et al. [22] and Yi et al. [23] investigated in-situ transmission

electron microscopy (TEM) experiments on ultra high purity tungsten foil after self-

ion irradiation showing that only dislocation loops with Burgers vector of 1
2
〈111〉 and

〈100〉 were observed. At low dose, vacancy 1
2
〈111〉 are dominant. When irradiation

temperature and dose increase, the fraction of interstitial 1
2
〈111〉 loops increases.

Therefore, we only consider interstitial and vacancy loops with Burgers vector of 1
2
〈111〉

and 〈100〉. We assume that the Burgers vector and the habit plane normal vector of a

loop are collinear and do not change during the simulation.

To determine collisions between defects, we use the simplest model, namely that

each defect is assumed to be spherical with radius r. The size of a defect equals the

absolute value of the number of extra or missing atoms N that constitute the defect,

in the unit of atomic volume Ω0 = a3/2. The volume of a loop is V = ±NΩ0 = b ·A,

where b is the Burgers vector, A is the area vector, and N is the equivalent point defect

count in the defect. When the sign is positive (negative), the defect is of interstitial

(vacancy) type. The radius of a prismatic loop is defined according to |A| = πr2.

In-situ TEM experiments by Arakawa et al. [66] showed that when two nanoscale

loops in bcc iron collide, a junction is formed between the two loops. Then, the junction

would move towards the far end of the smaller loop. Finally, the larger loop absorbs the

smaller loop. Our rule for loop coalescence is that when the distance between the two

defects is smaller than the sum of their radius, i.e. d < r1 + r2, the larger defect absorbs

the smaller one. When a defect is absorbed by another defect, all the characters of the

new defect follow the larger defect. When two defects of the same size combine, the

characters of the new defect follow one of the original defects by random.

Yi et al. [23] observed that 1
2
〈111〉 loops perform one dimensional diffusion in

tungsten, where 〈100〉 loops are sessile. Arakawa et al. [67] observed that a nanoscale

interstitial 1
2
〈111〉 loop in bcc iron undergoes one dimensional Brownian type diffusion,
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Figure 3. Dynamic evoluton of positions of two loops in iron and tungsten. One loop

has the diameter of d = 15nm and the other has diameter d = 16nm. Their horizontal

separation is 37nm. Loop move in the direction of their Burgers vectors.

which is not driven by external stress. MD simulations show that 1
2
〈111〉 loops in bcc

metals are extremely mobile along their glide cylinders [68, 69]. In our model therefore

a 1
2
〈111〉 loop is glissile in one dimension, and performs Brownian motion biased by

elastic interactions, and does not rotate, whereas a 〈100〉 loop is sessile. When a defect

moves away from the simulation box, it is discarded.

The diffusion constant Dn for dislocation loops is assumed to be inversely

proportional to the loop area. We take the numerical value for tungsten from Swinburne

et al. [69]:

Dn(T,N) =
176
√

852 + T 2

√
N

µm2s−1, (50)

where T is the absolute temperature expressed in Kelvin units, and N is the number of

atoms in a 1
2
〈111〉 loop.

3. Examples

3.1. Two loops with parallel Burgers vectors

In the first example we verify the validity of the dipole tensor and Green’s function

formalism, and compare it with the analytical expression from the linear elasticity theory

[70, 36]. We put two loops with parallel Burgers vectors in an infinite medium. They are

elastically interacting and undergo Brownian motion. We observe their displacements

and compare our results with the work by Dudarev et al. [36]. It allows us to check the

correctness of our formula and algorithms. For clarity of exposition, we do not consider

surface effects here. The elastic contribution due to surfaces will be examined below.

Parameters for iron and tungsten in the isotropic elasticity approximation are

chosen for demonstration. The Poisson ration ν = 0.291 and shear modulus µ = 86

GPa for iron, and ν = 0.278 µ = 160 GPa for tungsten [70]. Two interstitial 1
2
〈111〉
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dislocation loops are put side by side with a horizontal separation of 37 nm. One loop

has a diameter d = 16nm and the other has a diameter d = 15nm. The diffusion

constants for the loops in the case of iron are taken as D1 = 296 nm2 s−1 and D2 = 315

nm2 s−1, respectively. We take the same parameters and configurations for iron as in

Ref. [36] for direct comparison. In the tungsten case, the diffusivity of loops is taken

according to Eq. 50, where D1 = 929 µm2 s−1 and D2 = 991 µm2 s−1.

Dynamic simulations are performed according Eq. 30. Fig. 3 shows the

displacements of the two loops as functions of time for iron and tungsten. In both

cases, the two loops perform correlated motion. This can be understood by inspecting

the elastic interaction energy between two loops.

The energy of two interacting circular loops with parallel Burgers vector b1 and b2

in the isotropic limit, according to Hirth and Lothe, can be written as [70, 36]:

UHL =
µb1b2

4π(1− ν)

∫ 2π

0
dφ1

∫ 2π

0
dφ2

{
ρ1(φ1) · ρ2(φ2)

r12

−(r12 · ρ1(φ1))(r12 · ρ2(φ2))

r312

}
, (51)

where r12 = l12 + ρ1 − ρ2 is a vector from a point on the perimeter of a loop to a point

on the perimeter of the other loop, l12 is the vector from the centre of one loop to the

centre of the other, and ρ1 and ρ2 are the radial vectors in the habit plane of the loops.

Alternatively, in terms of the dipole tensor and elastic Green’s function, the elastic

energy between the two loops can be written as (see Eq. 33):

UGreen = P 1
ijGik,jl(l12)P

2
kl. (52)

where P 1
ij and P 2

kl are dipole tensors of loops 1 and 2. It is expected that Eq. 52 gives

the same value as Eq. 51 when the two loops are separated by a distance several times

their radius, consistent with the far field approximation. However, Eq. 52 is a more

general formula using which one can treat any interacting defects provided that their

dipole tensors are known.

Fig. 4 shows UHL and UGreen for two circular interstitial loops with Burgers vectors

pointing in the same 1
2
〈111〉 direction. Each loop contains 55 extra atoms. The

horizontal distance between the centre of the two glide cylinders is 41Å. The elastic

energy of loops is plotted against the difference between positions of the loops in the

direction of their collinear Burgers vectors.

We can see there is a clear energy well in both iron and tungsten. This is why two

dislocation loops diffuse in correlated motion as observed experimentally and explained

theoretically [36]. The numerical values of UGreen is almost the same as UHL when the

two loops are far apart. When they come closer, the numerical value of UHL and UGreen

are not identical, but the shape of the well remains the same. This means that the

direction of forces remains the same, even if their magnitudes are slightly different.

When the vertical distance between two loops is within the energy well, the two loops

are trapped by each other and perform correlated diffusion [36].
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Figure 4. The elastic energy of interaction between two loops in iron and tungsten

with parallel Burgers vectors plotted against their vertical separation. Each loop

contains 55 atoms. The horizontal distance between the centre of the two glide cylinders

is 41Å.

The energy well is deeper in the tungsten case than in the iron case, which means

the elastic forces in tungsten case are stronger when two loops are close. Since both the

force on and diffusivity of loops in tungsten case are much larger, a smaller time-step

is required to calculate the displacement of loops in tungsten case with good numerical

stability. This is the origin of the smaller time scale in the case of tungsten in figure 3.

We can calculate the observed diffusivity of each loop and also the diffusivity of the

centre of mass of the two loops. The observed diffusivity is calculated according to

Dobs =
N∑
t=0

|wi(t+ 1)− wi(t)|2

2N∆t
, (53)

where wi(t) is the position of loop i at time t. The diffusivity of the set of two loops

can be calculated using the same formula, but replacing the wi(t) by W (t), which is the

position of the centre of mass.

According to Ref. [36], the diffusion-weighted centre of position of loops is

W (t) = (D1w2(t) +D2w1(t))/(D2 +D1), (54)
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Figure 5. The initial configuration of a sample containing 300 dislocation loops at

300 Kelvin. Sessile SIA loops are shown in blue. Glissile SIA loops are shown in red.

Sessile vacancy loops are shown in green. Glissile vacancy loops are shown in yellow.

and the diffusion coefficient of the system of two loops is

D̄ =
D1D2

D1 +D2

, (55)

where Di is the diffusion coefficient of loop i in an infinite medium with no interaction

with other defects.

We calculated the expected diffusion coefficient D̄ using the values of D1 and D2

given above, and the observed diffusion coefficient Dobs of the centre of position of the

two loops using Eq. 53. We found that in iron, D̄ = 152.6 nm2 s−1 and Dobs = 143

nm2 s−1, whereas in tungsten, D̄ = 479.5 µm2 s−1 and Dobs = 477 µm2 s−1. They

compare with each other very well. The displacement and timescale in the iron case

are compatible with the data by Dudarev et al. [36]. This confirms the validity of

our algorithm and the feasibility of using the elastic dipole tensor and Green’s function

formalism in practical simulations.

3.2. Dislocation loops in a sample of finite size

In another example, we put a number of loops in a finite size sample. They evolve

dynamically, subject to elastic interactions with other loops and also with surfaces. The

example involves using coupled Langevin defect dynamics complemented with the FEM

scheme. It enables studying the effect of surfaces on the dynamics of defects.

Initially, 300 dislocation loops were positioned randomly inside a box with

dimensions of 1µm×1µm×1µm. Loop diameters were chosen uniformly in the range

of sizes from 4nm to 11nm. There are 75% interstitial loops and 25% vacancy loops,

where 75% are 1
2
〈111〉 and 25% are 〈100〉 loops. Burgers vector of a loop is assigned

randomly to all the crystallographically equivalent directions. These parameters are
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taken roughly similar to loops nature and number density observed in self-ion irradiated

TEM experiments [21, 13, 22, 23]. They are generated and put randomly in the sample

in a uniform distribution, as illustrated in Fig. 5.

We performed simulations with and without coupling to FEM, that is with and

without elastic coupling to surfaces. We created 50 different initial configurations as

starting points for both studies. All the results are presented as average values, with

the error bars giving the sample standard deviation. In both cases, we expect that the

density of loops vanishes at the surface after a long period of time, as surfaces acts as

sinks for defects.

Fig 6 shows the time evolution of the density of loops with respect to the original

number of loops against distance to the surface. The sample is divided into cubic shells

contained within each other. Each data point is calculated within the region of an

onion-like shell. The distance of a defect from the surface is calculated according to its

minimum distance to the surface. In order to keep the volume in each onion-like shell

the same, its thickness increases when it is far away from the surface and approaching

the centre of the sample.

Initially the density of loops is almost flat at 300 µm−3, which is compatible with

the initial condition that 300 loops were put in a 1µm3 box. As time progresses, the

evolution of the system proceeds differently depending on the boundary conditions.

When there is elastic coupling to surfaces, that is in simulations done using FEM, the

loop density near the surfaces decreases faster, compared to simulations neglecting the

surface effects. In both cases, the loop density stays flat in the bulk-like region. The

elastic interaction between the surfaces and the loops drives loops towards the surface,

from where they can leave the box. It appears that elastic contribution from the surface

enhances the mobility of loops near it, and this effect is felt over tens of nanometres.

Fig. 7 shows the total number of constituent point defects in dislocation loops

as a function of time. Vacancy loops correspond to negative values. For both SIA

and vacancy sessile loops, their values are generally decreasing, through coalescence

and recombination with glissile loops. However, their changes are small compared to

glissile loops, and hardly discernible in figure 7. This result is a consequence of the

initial homogeneous distribution of defects. If we instead use highly correlated initial

positions, for example using the spatially varying density of defects observed in MD

and experiment [71], we see a very rapid initial period of defect recombination strongly

dependent on the specific rules used to generate the defect distribution and to determine

defect collisions. Correctly constructing a set of quasi-independent defects from cascade

collapse is an ongoing area of research [59]. As this paper is concerned with proving an

efficient computational scheme for the evolution of quasi-independent defects, explicit

cascade relaxation simulations are outside our present scope.

Comparing the cases with and without surface traction effects, through with or

without coupling to FEM, the decrease on the total number of constituent atoms of

SIA glissile loops and increase in vacancy glissile loops is more significant in the case

with FEM. This is consistent with Fig. 6. A glissile loop away from the centre of the
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Figure 6. Density of loops with respect to the original number of loops against the

depth from the surface. The initial configuration is in blue. The one with surface

effects is in green. The one without is in red. All data are calculated as an average of

50 simulations, where the error bars are their standard deviation. From left to right,

top to bottom: (a) t = 0 s, (b) t = 1.0×10−8 s, (c) t = 5.0×10−8 s, (d) t = 1.0×10−7

s, (e) t = 5.0× 10−7 s, and (f) t = 3.0× 10−6 s.

simulation cell is attracted elastically by its image forces, and this causes glissile loops

to escape more easily from the box. We can see a surface depletion layer when compared

to Fig 5. Fig. 8 illustrates a configuration simulated with FEM at time t = 3.0× 10−6

s.

Fig. 9 shows the change of the average relaxation volume with and without surface

tractions. We initially put more interstitial loops in the box, so the initial relaxation

volume is positive. The relaxation volume drops in both cases because glissile loops

escape from the simulation cell. We can also see those simulated with surface tractions

have a lower relaxation volume at finite times, again due to the enhanced glissile loop
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Figure 7. The total number of constituent atoms being involved in different kinds of

loops with and without elastic interaction with surfaces through FEM.

Figure 8. Configuration of a sample at time t = 3.0× 10−6s. Sessile interstitial loops

are in blue. Glissile interstitial loops are in red. Sessile vacancy loops are in green.

Glissile vacancy loops are in yellow.

loss.

4. Outlook

A full simulation on an in-situ ion or neutron irradiation TEM experiments is very

involved. One needs to consider many other aspects beyond the scope of this work.

Nevertheless, we may discuss some of them as part of possible extension of current

model.

The most significant rule we have not incorporated is the pinning of loops by carbon

impurities. It has been known to be a very significant factor in determining the effective

diffusion constant of mobile interstitial defects [72, 73, 74]. Carbon will slow, or even
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Figure 9. Average relaxation volume in samples containing initially 300 dislocations

loops versus time.

stop dislocation loops depending on the binding energy, which may be as high as 2 eV

[75]. In neglecting the retarding effect of carbon, we are looking at the most challenging

case from a computational perspective, with all defects having maximum mobility.

The efficiency of code implementation needs to be improved. Currently, the code for

defect-defect interactions is written in Python. A substantial improvement is expected

if it is written in C++ or Fortran. The FEM simulation is performed using CAST3M.

In this study, its MPI implementation was limited to only 32 CPU cores in a single

computer node. Each time step takes about 3 minutes, where 80% of computer time is

spent on the FEM solver.

5. Conclusion

We have developed a Langevin dynamics model coupled to a finite element method that

simulates the dynamics of localized defects in a finite size elastic medium, where the

interaction between defects is described by the dipole tensor and elastic Green’s function

formalism. This is appropriate for simulating ion and neutron irradiation experiments

where localized defects are generated by collision cascades. We have solved the problem

of artificial imbalanced forces and moments that appears in traction free boundary

conditions when the superposition method is used. We have demonstrated the validity

and feasibility of our model through examples. We performed a dynamic simulation of

two interacting loops, that is well compatible with a previous work that used an analytic

solution and parallel loops. We have also simulated the dynamics of an ensemble of loops

in a finite size box, and observed the elastic contribution due to surfaces. We can see

that surfaces enhance the mobility of loops and so act as a strong sink. The density

of loops near surface is lower if elastic interaction with surface is considered. We have

demonstrated that our model is capable of simulating time and length scales approaching
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experimental scales. This model allows us to simulate the evolution of defects that may

explain observations from transmission electron microscopy.
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K, Nguyen-Manh D, Opschoor J, Ordás N, Palacios T, Pintsuk G, Pippan R, Reiser J, Riesch
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