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Abstract

Thermal diffusivity measurements of samples transmitting thermal radiation require

adjustments to the data treatment procedures in laser flash analysis. Conventionally, an

unconstrained diathermic model is used. Current results show that the alternative cou-

pled radiative-conductive models produce substantially different results – for instance,

at high temperatures in oxide ceramics. However, care must be taken to ensure accurate

implementations of each constituent computational technique. The latter are presented

in this work.

Keywords: radiative transfer, heat conduction, discrete ordinates method, thermal

diffusivity

1. Introduction

High-temperature measurements of thermal properties using different experimen-

tal techniques such as the laser flash analysis [1] and the guarded hot plate method [2]

can be challenging for many reasons – including, for instance, the stability of data

acquisition and detector performance [3]. When conducting tests on materials trans-5

mitting thermal radiation (hereinafter referred to as the semi-transparent materials),
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e.g. metal oxides [4, 5], the optical properties of the sample material can signifi-

cantly influence the measurement accuracy. Interestingly, even oxide nuclear fuel ex-

hibits a degree of transparency to thermal radiation at high temperatures, potentially

influencing the measurement procedure [6]. Other applications include thermal bar-10

rier coatings for the aerospace industry [7]. The non-vanishing interest in accurately

measuring thermal properties of semi-transparent materials has instigated the develop-

ment of mathematical methods aimed at quantifying radiative transfer and its coupling

with heat conduction. Although some authors focussed on delivering quick estimates

based on non-coupled heat conduction and radiative transfer [8, 9, 10, 11], signifi-15

cant effort has been undertaken to address the coupled problem, primarily based on

the works [12, 13, 14, 15] with a recent development reported by Braiek et al. [16].

These models concern radiative transfer in either non-scattering or weakly-scattering

media. An approximate solution to the radiative transfer equation (RTE) using the ex-

ponential kernel technique and the two-flux method has been given for the latter case.20

These two methods had been used extensively in the past as follows from the intro-

duction to [17] and could have hardly yielded realistic results for a scattering phase

function with strong anisotropy. Moreover, the heating term was deemed small com-

pared to the ambient temperature, which facilitated the solution of the initial problem.

This is typically never satisfied under experimental conditions. To treat the radiative25

part, the three-flux method has also been considered in [18] and an early attempt to

use the discrete ordinates method (DOM) – first introduced by Chandrasekhar [19] –

was reported by da Silva et al. [20]. Currently, DOM is often applied to this kind

of problems [21, 22, 23], although it is still not clear if this has indeed increased the

reliability of laser flash analysis on semi-transparent samples. Even using the DOM30

formalism, some authors still defer to non-scattering transfer blaming difficulties in the

estimation of some coefficients [24]. Zmywaczyk and Koniorczyk [25], Lacroix et al.

[26] have used the DOM in its rather conventional form with reference to Fiveland

[27, 28]. On the other hand, simplified non-coupled models are still the most popular

choice for experimental data treatment in the majority of cases [29]. It is thus incon-35

clusive if solving a coupled conductive-radiative problem is advantageous compared

to using less demanding methods, and whether anisotropic scattering has any measur-
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able effect on the thermal properties determined from a laser flash experiment. This is

partially due to numerical heat transfer still being a developing area with many caveats

still not addressed sufficiently: particularly, for the spatial and angular discretisation in40

DOM [30, 31]. This paper is aimed at delivering reliable and fast numerical algorithms

for one-dimensional coupled conductive-radiative heat transfer with application to the

laser flash analysis. The algorithm and procedures outlined in this work are part of

the PULsE (Processing Unit for Laser Flash Experiments) software, which is an open-

source, cross-platform Java code freely distributed under the Apache 2.0 license [32].45

Nomenclature

Constants

σ0 Stefan–Boltzmann constant

Heat equation50

l Sample thickness

T0 Ambient temperature

Q Energy per laser pulse

d Sample diameter

ε Hemispherical emissivity55

λ Thermal conductivity

Bi = 4σ0εT 3
0 l/λ Biot number

δTm = 4Q/(Cpρπd2l) Adiabatic heating

θ = (T −T0)/δTm Dimensionless heating

T (z, t) Local temperature60

Fo Fourier number

a Thermal diffusivity

F Heat flux

y = z/l Dimensionless coordinate

η = ε/(2− ε) Diathermic coefficient65

Radiative transfer

ψ Hemispherical absorptivity

χ Hemispherical scattering coefficient

ω0 Single-scattering albedo

n Refractive index70

g Scattering anisotropy

q = F/(n2σ0T 3
0 ) Dimensionless heat flux

τ0 = lψ Optical thickness

τ = τ0y Optical coordinate

I, i Intensity (dimensionless)75

µ , µ ′ Direction cosine of incident (scattered)

rays

Φ(µ,µ ′) Scattering phase function

J(t), j(t) Integrated spectral radiance (dimension-

less)80

NP = λ/(4σ0n2T 3
0 l) Planck number

En(t) Exponential integral of the order n

S, s Source function (dimensionless)

Discrete methods

∆t Fo increment (time step)85

Λ Second-order difference operator
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Est, est Error estimators

ωR Relaxation parameter

φ Discrete flux derivative

σ Scheme weight90

τF Time step factor

ξ j Grid point

ann′ , bn, b̂n, cn Butcher tableau coefficients

atol Absolute error tolerance

eit Relaxation error tolerance of iterative so-95

lution

f Right-hand side (RTE)

h Uniform grid step

hl Adaptive grid step

L Central-difference operator100

M Number of quadrature nodes

N Number of spatial grid points

rtol Relative error tolerance

sG Stretching factor

t Discrete optical coordinate105

w Quadrature weights

Subscripts

j Spatial index (heat equation)

l Spatial index (DOM)

m, m′ Angular indices (DOM)110

Superscripts

̂ Value at previous time step

i Time step number

k, u Iteration numbers

n, s Stage number115

2. Diathermic medium bounded by grey walls

2.1. Problem statement

Early models used in laser flash measurements of semi-transparent samples consid-

ered radiation and conduction as non-coupled phenomena since this greatly simplifies

the mathematical formulation of the problem. Tischler et al. [8] considered an expo-120

nential decay of radiation intensity in a solid partially transparent to the laser pulse.

McMasters et al. [9] applied the optically thick approximation and introduced an ad-

ditional source term in the heat equation. These models are useful to gain a crude

estimate of thermal diffusivity e.g. in porous samples and semi-conductors with an

intermediate band gap. Rather than considering laser penetration in solids – a com-125

plex problem associated with the diffusion of charge carriers, their re-combination and

thermalisation by phonon emission [33] – it is much easier to manually restrict the

laser absorption depth by applying a graphite coating. Blumm et al. [10] proposed the
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diathermic model specifically to deal with this case; an analytical solution was later

developed by Mehling et al. [11]. A variation of this model is currently being used in130

software packaged with some commercial instruments.

The diathermic model is based on the following propositions:

(a) A cylindrically shaped sample is completely transparent to thermal radiation;

(b) The front (laser-facing) and rear (detector-facing) sides of the sample are coated

by a thin grey absorber;135

(c) The coatings are in perfect thermal contact with the bulk material;

(d) The side surface is free from any coating.

Consequently, the monochromatic laser radiation is largely absorbed at the front

face of the sample (y = 0), causing immediate heating. A portion of thermal radiation

causes the rear face (y = 1) to start heating precisely at the same time (ahead of thermal140

conduction). The remainder energy dissipates in the ambient. It is thus sufficient to

consider three radiative heat fluxes. The first two correspond to heat dissipation within

the furnace chamber [3]. The third flux acts to thermalise the parallel boundaries by

radiative transfer only [34]:

F0→∞ ≈ εσ0
(
T 4(0, t)−T 4

0
)
, (1a)

F1→∞ ≈−εσ0
(
T 4(l, t)−T 4

0
)
, (1b)

F1→2 ≈
ε

2− ε
σ0
(
T 4(0, t)−T 4(l, t)

)
, (1c)

where the emissivities of both faces are assumed to be equal (ε1 = ε2 = ε).145

Let η = ε/(2− ε), so that 0 < η ≤ 1. Since nonlinear heat losses can be ne-

glected [Appendix A], the boundary problem is written as:
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∂θ

∂Fo
=

∂ 2θ

∂y2 , 0 < y < 1, Fo > 0, (2a)

∂θ

∂y

∣∣∣∣
y=0

= Bi ·θy=0 +ηBi · (θy=0−θy=1)−Φ(Fo) , (2b)

∂θ

∂ (−y)

∣∣∣∣
y=1

= Bi ·θy=1 +ηBi · (θy=1−θy=0), (2c)

θ(0,y) = 0, (2d)

where eqs. (2a) and (2d) and the corresponding notations are the same as in [3]. The

standard non-dimensional variables are used, also defined in the same reference.

2.2. A finite-difference solution150

Let the superscript i and the subscript j = 0, ...,N − 1 denote the time step and

the coordinate index respectively. The boundary conditions [eqs. (2b) and (2c)] are

expressed in finite differences as follows:

Lθ0 = Bi ·θ0 +ηBi · (θ0−θN−1)− Φ̃
i+1, (3a)

−LθN−1 = Bi ·θN−1 +ηBi · (θN−1−θ0), (3b)

The usual Taylor expansion is written down in the h-vicinity of ξ = ξ0 and ξ =

ξN−1, thus defining the virtual nodes ξ = ξ−1 and ξ = ξN needed to evaluate the155

boundary derivatives. After some elementary algebra, an O(h2 +∆t2) accurate scheme

is readily obtained:

θ
i+1
0
[
1+h2/(2∆t)+hBi(1+η)

]
−θ

i+1
1 −θ

i+1
N hηBi = h2/(2∆t)θ i

0 +hΦ
i+1, (4a)

θ
i+1
N−1

[
1+h2/(2∆t)+hBi(1+η)

]
−θ

i+1
N−2−θ

i+1
0 hηBi = h2/(2∆t)θ i

N−1, (4b)

with the heat equation also given in finite differences:

a jθ
i+1
j−1−b jθ

i+1
j + c jθ

i+1
j+1 = R j, (5)
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where a j = c j = 1. A fully implicit scheme shown previously to work well in most

cases [3] corresponds to: b j = 2+h2/∆t, R j =−h2/∆tθ i
j.160

Equations (4) and (5) are reduced to the following linear matrix equation:

Aθ
i+1 = R, (6a)

A =



z0 −1 0 0 0 · · · 0 0 zN−1

a1 −b1 c1 0 0 · · · 0 0 0

0 a2 −b2 c2 0 · · · 0 0 0
...

...
...

...
...

. . .
...

...
...

0 0 0 0 0 · · · aN−2 −bN−2 cN−2

zN−1 0 0 0 0 · · · 0 −1 z0


, (6b)

RT =
(

r0 R1 R2 · · · RN−2 rN−1

)
(6c)

where θ
T =

(
θ0 θ1 · · · θN−1

)
, z0 = 1+h2/(2∆t)+hBi(1+η), zN−1 =−hηBi,

r0 = h2/(2∆t)θ i
0 + hΦi+1 and rN−1 = h2/(2∆t)θ i

N−1. Since zN−1 6= 0, the matrix A

does not have the required tridiagonal form. This problem can be solved by applying

the bordering method [35]. Consider the following equations equivalent to Eq. (6a):165

A′θ i+1 +u′θ i+1 = R′, (7a)

v′Tθ
i+1 + z0θN−1 = rN−1, (7b)

where A′ = AN−1,N−1 is the border minor of the matrix A, the vectors θ
T =(

θ0 θ1 · · · θN−2

)
and F′ =

(
r0 0 · · · 0 RN−2

)
. The vector

u′T =
(

zN−1 0 · · · 0 cN−2

)
is formed from the last column of A. Conversely,

v′T =
(

zN−1 0 · · · 0 −1
)

is formed from the last row of A.

A solution to Eq. (7a) is sought in the form θ
i+1 = wI+θN−1wII, where wI and wII

are the solutions of the linear matrix equations A′wI = R′ and A′wII = −u′. Since A′
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is a Jacobi matrix, the two latter equations can be solved using the standard tridiagonal

matrix algorithm. The following relations hold:170

wI
i = αi+1wI

i+1 +βi+1, wII
i = αi+1wII

i+1 +κi+1. (8)

The sweep algorithm coefficients can then be easily calculated:

α1 = 1/z0, β1 = r0/z0, κ1 =−zN−1/z0 (9a)

α j+1 =
c j

b j−α ja j
, β j+1 =

R j−a jβ j

a jα j−b j
, κ j+1 =

a jκ j

b j−a jα j
, j = 1, ...,N−2

(9b)

wI
N−2 = βN−1, wII

N−2 = αN−1 +κN−1, (9c)

wI
j = α j+1wI

j+1 +β j+1, wII
j = α j+1wII

j+1 +κ j+1, j = N−3, ...,0 (9d)

θN−1 =
rN−1−v′T ·wI

z0 +v′T ·wII =
rN−1− zN−1wI

0 +wI
N−2

z0 + zN−1wII
0 −wII

N−2
, (9e)

θ j = wI
j +θN−1wII

j , j = 0, ...,N−2. (9f)

An example calculation using the diathermic model with the finite-difference scheme

described in this section is shown in fig. 1. The calculation used a default grid den-

sity N = 30 and a time step ∆t = tFh2, where tF = 0.5.

3. The general form of the coupled conductive-radiative heat transfer problem175

The following is the equation of radiative transfer in a plane-parallel geometry with

an axially symmetric radiation field for a grey participating (i.e., emitting, absorbing,

and scattering) medium compliant with the Kirchhoff’s law [36]:

dI
ds

=−(ψ +χ)I +ψJ+χ

∫
µ ′

IΦ(µ,µ ′)
dµ ′

2
, (10)

J = J(τ) =
n2σ0T 4(τ)

π
=

n2σ0T 4
0

π

(
T (τ)−T0

T0
+1
)4

, (11)

where s is the path travelled by radiation; n is the refractive index of the medium;

ψ , χ and ε are respectively the linear absorption coefficient, the scattering coefficient180
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Figure 1: An example calculation using the diathermic model (section 2.1) at different Bi and η values. The

radiative terms in eqs. (2b) and (2c) cause significant deviation from the classical behaviour.

and the emissivity – all averaged over the radiation spectrum; Φ(µ,µ ′) is the phase

function of scattering, such that
∫

Φ(µ,µ ′)dµ ′/2 = 1; µ = cosΘ is the cosine of the

angle between the light propagation direction and the outward normal to an elementary

illuminated surface.

It is convenient to express eq. (10) in terms of the optical thickness τ =
∫

ψ ds =185 ∫
ψ dy/cosΘ, which then allows separating the positive (0< µ ≤ 1) and negative (−1≤

µ < 0) streams. After introducing the albedo for single scattering ω0 = χ/(ψ +χ), the

RTE e.g. for I+ takes the form:

µ
∂ I+

∂τ
+ I+ = S(τ,µ), 0 < µ ≤ 1, (12)

where the source function is defined as S(τ,µ) = (1−ω0)J+0.5ω0
∫

µ ′ IΦ(µ,µ ′)dµ ′.

A matching equation may be written for I−, thus the RTE may bs solved sepa-190

rately for streams propagating in the positive and negative hemisphere originating at

either τ = 0 or at τ = τ0 := lψ . The complexity of the problem is determined by the

source function S(τ,µ), which in some cases, e.g. at ω0 = 0, allows an analytical

solution. Once a solution has been obtained, the net radiative heat flux F(τ) can be
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calculated using an expression for a radiative field with axial symmetry [19]:195

F(τ) = 2π

∫ 1

−1
I(µ,τ)µdµ = 2π

[∫ 1

0
I+(µ)µdµ−

∫ 1

0
I−(−µ)µdµ

]
, (13)

Conduction and radiation both contribute to the heat flow, which becomes

−λ

l
∂T
∂y

+F(τ0y)

In the isotropic case dF/dy= τ0×dF/dτ and the dimensionless heat equation may

be written as:

∂θ

∂Fo
=

∂ 2θ

∂y2 +
τ0

NP
×
(
−dq

dτ

)
, (14a)

∂θ

∂y

∣∣∣∣
y=0

= Bi ·θ −Φ(Fo)+
1

NP
q(0), (14b)

∂θ

∂y

∣∣∣∣
y=1

=−Bi ·θ +
1

NP
q(1), (14c)

θ(0,y) = 0. (14d)

where q = F/(n2σ0T 3
0 ) is the dimensionless radiative flux; in addition, the Planck

number is introduced: NP = λ/
(
4σ0n2T 3

0 l
)
. The re-normalisation of the heat flux200

simply leads to substituting the emission function J(τ) [eq. (11)] with

j(τ) =
1

4π

T0

δTm

[
1+θ (τ/τ0)

δTm

T0

]4

, (15)

which is also dimensionless.

The boundary radiative fluxes q(0) and q(1) are inferred from the boundary in-

tensities I+(0) and I−(τ0) determined through the conditions of diffuse emission and

reflection [e.g. [37]]:205

I+(0) = εJ(0)+(1− ε)G0/π, (16a)

I−(τ0) = εJ(τ0)+(1− ε)Gτ0/π, (16b)

where G0 and Gτ0 is the incident irradiation reaching the respective boundary.
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4. A closer look at the radiation problem

4.1. Useful special cases

4.1.1. Exact solution at ω0 = 0

In the absence of scattering, the source function s(τ,µ) is simply equal to the210

emission function j(τ). This then simplifies the equation, which is solved in terms

of the exponential integrals En(t) [see e.g. [36]]. The latter are defined as En(t) =∫ 1
0 e−t/µ µn−2dµ , n> 0. This leads to the following expression for the radiative flux [38]:

q(τ)/2 = πi+(0)E3(τ)−πi−(τ0)E3(τ0− τ)+∫
τ

0
π j(t)E2(τ− t)dt−

∫
τ0

τ

π j(t)E2(t− τ)dt, (17a)

where i+(0) and i−(0) are the boundary intensities.

Consequently, the radiation fluxes at the boundaries are:215

q(0) =πi+(0)−2πi−(τ0)E3(τ0)−2
∫

τ0

0
π j(t)E2(t)dt, (18a)

q(τ0) =−πi−(τ0)+2πi+(0)E3(τ0)+2
∫

τ0

0
π j(t)E2(τ0− t)dt. (18b)

Combining eqs. (16) and (18) allows to evaluate i+(0) and i−(τ0) from a set of two

linear equations (see e.g. [12]):

i+(0) =
C1 +DC2

1−D2 , i−(τ0) =
C2 +DC1

1−D2 , (19a)

C1 = ε j(0)+2(1− ε)
∫

τ0

0
j(t)E2(t)dt, (19b)

C2 = ε j(τ0)+2(1− ε)
∫

τ0

0
j(t)E2 (τ0− t)dt, (19c)

D = 2(1− ε)E3(τ0). (19d)

The heat source term in eq. (14a) can either be calculated using a discrete approx-

imation or exactly using the analytic expression below derived using the properties of
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the exponential integral (the reader is referred to [36]):(
−dq

dτ

)
= 2i+(0)E2(τ)+2i−(τ0)E2 (τ0− τ)

−4 j(τ)+2
∫

τ0

0
j(t)E1(|τ− t|)dt (20)

A quadrature scheme needs to be used in order to calculate the integrals in eqs. (17)

and (20) – this is given in Appendix B.

4.1.2. The two-flux approximation

For a weakly-anisotropic phase function Φ(µ,µ ′), when τ0 is not very large, the

two-flux approximation originally introduced by Schuster [39], Schwartzschild and220

Gesell [40] has been shown to yield sufficiently accurate results [41]. In current nota-

tions, this approximation considers I+ and I− averaged over the positive and negative

hemispheres correspondingly. The governing equations are then [42]:

dI+

dτ
=−2I+[1− (1−u)ω0]+2ω0uI−+2(1−ω0)πJ(τ), (21a)

dI−

dτ
=−2I−[1− (1−u)ω0]+2ω0uI++2(1−ω0)πJ(τ), (21b)

where u is an integral scattering parameter of the model.

The phase function can be expanded in a series of Legendre polynomials [19].225

In the linear-anisotropic approximation the series is truncated after the second term,

which in a axially-symmetric radiation field gives rise to Φ(µ,µ ′) = 1+ gµµ ′. This

corresponds to u = 0.5−0.25g.

4.2. The general case of strong anisotropic scattering in a nonlinear grey participating

medium230

The true multi-modal [43] form of the scattering function Φ(µ,µ ′) can be de-

rived from the Lorenz-Mie theory (see e.g. [44]). In most practical applications, it is

more convenient to use an approximation, which still captures the strongly anisotropic

scattering behaviour. This is commonly done using the single-parameter Henyey-

Greenstein phase function [45]. Other specialised functions have been discussed in [46,235

47, 48, 49].
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The phase function of interest is thus:

Φ(µ,µ ′) = (1−g2)(1+g2−2gµµ
′)−3/2. (22)

If the integral over Φ(µ,µ ′) in eq. (10) cannot be simplified, as in case of Φ(µ,µ ′)

given by eq. (22), the solution to the RTE becomes quite involved. Some effort in

solving the RTE and, indeed, the coupled problem has been undertaken by many au-240

thors [26, 50, 25]. Generally, the discrete ordinates method (DOM) is used for this

purpose. Henceforth, the paper is focussed on the numerical implementation of DOM.

Recall the general form of the source function:

s(τ,µ) =(1−ω0) j(τ)+
ω0

2

∫ 1

−1
i(τ,µ)Φ(µ,µ ′)dµ (23)

The idea behind DOM is to evaluate the integral on the right-hand side using a

quadrature rule. A discrete set of nodes is introduced: µm, m = 0, ...,M− 1, with an

equal number of negative and positive nodes; each node is assigned a certain weight wm.

The discrete form of eq. (23) is:

sm = (1−ω0) j(τ)+
ω0

2

M−1

∑
m′=0

im′Φ(µm,µm′)wm′µm′ . (24)

The discrete RTE [eq. (12)] is given by:

µm
∂ im
∂τ

+ im = sm (25)

with the boundary conditions of diffuse emission and reflection [eq. (16)]:

im(0,µm > 0) =ε j(0)−2(1− ε) ∑
µm′<0

im′µm′wm′ (26a)

im(τ0,µm < 0) =ε j(τ0)+2(1− ε) ∑
µm′>0

im′µm′wm′ (26b)

The net radiative flux [eq. (17)]:

q(τ) = 2π

M−1

∑
m=0

imµmwm. (27)
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5. The solution to the heat problem

It is convenient to first select an appropriate numerical scheme for solving the heat245

problem outlined in section 3 before launching a full-scale analysis of the radiative

transfer problem (section 4.2). For this reason, the analytical solution obtained in sec-

tion 4.1.1 is used to calculate the heat fluxes q and their derivatives dq/dτ (for details

of the calculation method the reader is referred to Appendix B). The current section in-

cludes a comparison of various finite-difference scheme for solving the heat problem.250

5.1. Explicit scheme

The problem can be solved using an explicit finite difference scheme with an em-

bedded fixed-point iteration algorithm. The finite differences are written on a rect-

angular grid ξ j = j/(N− 1), j = 0, ...,N− 1 with a time step ∆t = tF h2, where 0 <

tF ≤ 1. The discretised heat equation serves to calculate the reduced temperature θ j255

at j = N−2,N−3, ...,0. Let θ̂ j be the temperature value at the previous timestep. The

explicit scheme for the heat equation is then:

θ j = θ̂ j +∆tΛθ̂ j +
∆tτ0

NP

(
−

dq̂ j

dτ

)
, (28)

where the second-order differential operator is defined as Λθ j =
(
θ j+1−2θ j +θ j−1

)
/h2.

The equations arising from the boundary conditions are solved iteratively:

k+1
θ0 =

θ̂1 +hΞ−h
k

q0 /NP

1+Bi ·h
, (29a)

k+1
θN−1=

θ̂N−2 +h
k

qN−1 /NP

1+Bi ·h
, (29b)

where Ξ is the pulse function, k is the iteration number.260

5.2. Implicit schemes

Both the fully-implicit and semi-implicit scheme follow the same solution logic [3].

The discrete heat equation is written as follows [51]:

k+1
θ j −θ̂ j

∆t
=

(
σΛ

k+1
θ j +(1−σ)Λθ̂ j

)
+

τ0

NP

k
φ i, (30)
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where 0 < σ ≤ 1 is the weight of the scheme (σ = 1.0 for the fully-implicit scheme);

φ j is some finite-difference representation of the term −dq/dt.

After some elementary algebra, the following expressions are derived, completing

the difference scheme:

α1 =
2∆tσ

h2 +2∆tσ(1+hBi)
, (31a)

β 1 =
2∆th(σΞ+(1−σ)Ξ̂−σq0/NP− (1−σ)q̂0/NP)

h2 +2∆tσ(1+hBi)
+

h2(θ̂0 +φ0∆t)+2∆t(1−σ)
[
θ̂1− θ̂0(1+Bi ·h)

]
h2 +2∆tσ(1+hBi)

, (31b)

θN−1 =

{
σβ N−1 +

h2

2∆t
θ̂N−1 +0.5h2

φN−1+

(1−σ)

[
θ̂N−2− θ̂N−1(1+hBi)+

h
NP

(σqN−1 +(1−σ)q̂N−1)

]}
/

{
h2

2∆t
+σ(1+hBi−αN−1)

}
. (31c)

The scheme is solved iteratively until converged values of
k+1
θ0 and

k+1
θN−1 are ob-

tained (usually a few iterations are required). It is at least O(h4 +∆t2) accurate if [51]:265

φ
i
j =

5
6

q̇i+1/2
j +

1
12

(
q̇i+1/2

j−1 + q̇i+1/2
j+1

)
, (32a)

σ =
1
2
− h2

12∆t
, (32b)

where the superscript indicates averaging over two consequent time steps and q̇ =

dq/dτ .

5.3. Verification and benchmarking

The general method (section 3) and the finite-difference schemes are verified against

the reference solutions reported in [13] for τ0 = 0.1 and τ0 = 100 at NP = 0.8612. The270

calculated time-temperature profiles are shown in Figure 2 where a good agreement

between the linearised analytical case and the exact numerical solution is observed

at δTm = 0.4. Implicit schemes produce more accurate results compared to the ex-

plicit scheme; particularly, the fourth-order accurate semi-implicit scheme described
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in section 5.2 performs well even for coarse grids with N = 10. This is especially275

important in the light of a high demand on computational resources expected when

solving the inverse coupled radiative-conductive problem. It is also evident that only a

numerical scheme is applicable to solving the heat problem eq. (14) at anywhere near

realistic δTm/T0 values [note the difference between fig. 2 (a) and (c)].
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(a) τ = 0.1, δTm = 0.4
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Figure 2: Comparison of calculation results using a fully-explicit (FE), fully-implicit (FI) and semi-implicit

fourth-order (SI) difference schemes with the reference analytical solutions obtained for a linearised heat

equation (digitised graphs from [13]). The analytical solution is exact at δTm/T0 = 0.4/800 but becomes

invalid at higher δTm typical under experimental conditions.

6. Spatial discretisation and integration280

Commonly, the RTE [eq. (25)] is integrated using a diamond-differencing scheme (see

e.g. [52]), also known as the central-difference scheme, which for a one-dimensional
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problem is exactly the same as the implicit trapezoidal rule – a second-order accurate

and A-stable method. All alternative conventional methods are based on the finite-

volume methodology [37, 53] and include: the first-order step scheme, the second-285

order exponential, hybrid and CLAM schemes. Advances in spatial discretisation

schemes for RTE, mainly based on NVD and TVD for multi-dimensional radiative

transfer, have been reviewed in [31] – however, with no significant progress reported for

high-order spatial differencing schemes. More recently, Maginot et al. [54] have used a

stiffly-accurate single diagonally implicit Runge-Kutta (SDIRK) method reported orig-290

inally by Alexander [55]. Notable implementations of SDIRK are included in [56, 57].

Despite their advantages, SDIRK methods only allow a stage-order of one [58]. Higher

stage-order is useful since this strongly improves accuracy when applied to stiff prob-

lems and increases the error-estimate quality [59]. Stage-order two may be achieved

with the first-stage explicit SDIRK (ESDIRK). Alternative to ESDIRK is the Rosen-295

brock method [58], which might be more efficient for some problems [60].

6.1. Explicit Runge-Kutta with an adaptive uniform grid

A given ODE can have varying stiffness depending on the parameter values. For

the RTE, stiffness is mainly determined by τ0. At τ0 < 1 the problem can be effectively

treated as non-stiff. When stiffness is not an issue, explicit embedded Runge-Kutta300

schemes can be used. If high accuracy is desired, a good fourth-order scheme such

as the Dormand-Prince (DP54) [61] scheme with a fifth-order error control and an

extended region of absolute stability can be used. Practice shows that for the current

use of the RTE, error tolerance can be high, thus a lower order embedded method

might be sufficient. In this case, a third-order Bogacki-Shampine (BS32) [62] scheme305

with second-order error control and good stability can be used. Both schemes are

FSAL (first same as last), which saves computational time, and their implementation

follows the same pattern described below.

Firstly, let hl denote the signed grid step, which is positive when approaching the

right boundary and negative otherwise. The following notations are used: the intensi-310

ties at each stage n= 1, ...,s are denoted as i(n) with the corresponding coordinate t(n)l =

tl + hlcn, where m and l stand for the angular and spatial indices respectively. Matrix
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elements of the Butcher tableau are denoted as ann′ , and bn are the coefficients at the

final stage s corresponding to t(s)l = tl +hl , such that iml+1 := i(s)m = iml +hl ∑
s
n=1 f (n)m bn.

Additionally, b̂n are the components of the error estimator. First stage is either copied315

from the last stage of the previous step (if available) or calculated using the deriva-

tive fml := f (0)m at τ = tl .

The derivative at any stage n = 1, ...,s is expressed e.g. for the left-to-right sweep:

f (n)m =
1

µm

(
−i(n−1)

m

[
1− ω0

2
wmΦmm

]
+(1−ω0) j

(
t(n)l

)

+
ω0

2

µm′>0

∑
m′ 6=m

i(n−1)
m′ Φmm′wm′︸ ︷︷ ︸

outward

+
ω0

2

µm′<0

∑
m′ 6=m

im′l+cnΦmm′wm′︸ ︷︷ ︸
inward

 . (33)

where i(n)m = iml +hl ∑
n−1
n′=1 ann′ f

(n′)
m are the outward intensities at the node m and stage n.

Depending on whether the RTE is solved left-to-right or right-to-left, the angular in-320

dex m for the outward intensities will run through the indices of either positive or neg-

ative nodes (cosines). For the sum over outward intensities, the latter are expressed in

the same way using the solution i(n−1)
m′ at the stage n−1. Inward intensities im′l+cn are

not known a priori, which is why the RTE is solved iteratively; this will be described

in more detail later in the text. For now these intensities are assumed to be known.325

Once the derivative f (n)m becomes known, it is then used to calculate the next stage

approximation i(n)m , and so on. This process repeats for all n = 1, ...,s. As soon as

all derivatives have been calculated, the intensities iml+1 may be evaluated using the

respective expression. Error control is achieved by evaluating the vector est. the com-

ponents of which are given by:330

estm = h
s

∑
n=1

(bn− b̂n) f (n)m , (34)

where m runs through the indices of outward intensities.

Absolute and relative tolerances are introduced according to Hairer et al. [63] so

that the error threshold is defined via:
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el±1 = atol +max
m

(|iml |, |iml±1|)× rtol. (35)

Thus, maxm (estm) is compared at each subsequent integration step l±1 against el±1

– if the former is greater than the latter, integration stops immediately, triggering a grid335

re-construction with a different segmentation: N[u+1] = sGN[u] (typically sG = 1.5),

where [u] indicates the value at current iteration.

As mentioned above, to solve the RTE, one must calculate the intensities corre-

sponding to both the negative and positive µm. However, when using the method above

to solve either of the Cauchy problems, only half of the intensities is readily calculated340

while the other half is assumed to be known. To solve the RTE for all µm, an iterative

solution is required. Here two techniques are considered [64]: the fixed-point iterations

and the successive over-relaxation. In both cases, the intensities at iteration [u+1] are

expressed as:

i[u+1]
ml = (1−ωR)i

[u]
ml +ωRiml , (36)

where the relaxation parameter ωR = 1 for fixed-point iterations and 1 < ωR < 2 in the345

successive over-relaxation technique. The second term on the right-hand side is the

solution of the ODEs times the relaxation parameter. For instance, at ωR = 1.7 and for

pure isotropic scattering at ω0 = 1, convergence is reached two times faster than for

fixed-point iterations.

The stopping criterion for the iterative procedure regards the relative change to the350

boundary fluxes q0 and qN at the left and right boundaries correspondingly:

∣∣∣q[u+1]
0 −q[u]0

∣∣∣+ ∣∣∣q[u+1]
N −q[u]N

∣∣∣∣∣∣q[u]0 +q[u]N

∣∣∣ < eit, (37)

where eit is a relative error tolerance (typically, eit ' 10−4).

6.2. TR-BDF2 with an adaptive stretching grid

For moderately- and highly-stiff problems, e.g. at τ0 > 10, the use of a uniform grid

requires a very small step size hl to make the scheme stable, thus greatly increasing the355
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computational cost of an explicit method. Hence, an adaptive step-size control should

be used instead, which achieves true flexibility in the A/L-stable, stiffly-accurate meth-

ods, for instance, the TR-BDF2 scheme [65]. The latter can be regarded as a major im-

provement over the original diamond-differencing scheme for plane-parallel radiative

transfer problems, since it includes the same trapezoidal rule (diamond-differencing) at360

the second stage and uses second-order backward-differencing at the third stage, result-

ing in stiff accuracy. Furthermore, it provides an asymptotically correct error estimate

and allows dense output. TR-BDF2 can be regarded as an ESDIRK scheme [59].

The explicit first stage is calculated in the same way as in section 6.1, noting that

TR-BDF2 is also FSAL. The second and third stages are implicit by definition. How-365

ever, because the ODEs in the DOM are linear, the corresponding intensities can easily

be found explicitly from the solution of the following linear set. For instance, the

left-to-right sweep at the second stage:

i(2)m

[
1+

hld
µm

(
1− ω0

2
wmΦmm

)]
− hld

µm

ω0

2

µm′>0

∑
m′ 6=m

i(2)m′ Φm′mwm′︸ ︷︷ ︸
outward

=

iml +hld f (1)m +
hld
µm

(1−ω0) j(tl + γhl)+
ω0

2

µm′<0

∑
m′ 6=m

im′l+γ Φm′mwm′︸ ︷︷ ︸
inward

 , (38)

where γ = 2−
√

2 and d = γ/2 [65].

Clearly, this reduces to a linear matrix equation Ai(2)ml+γ
=B(2)

ml+γ
, which is solved by370

matrix inversion. Due to the A matrix usually being low-dimensional (the dimension is

equal to a half of the total number of quadrature points), a fast matrix inversion routine

has been implemented for the typical quadrature sets. For higher-order quadratures, a

matrix inversion tool based on either QR, LU or Cholesky decomposition of the Apache

Commons Mathematics Library is used. Since the method is ESDIRK, the final third375

stage uses the same matrix inverse A−1. The linear set for the third (and final) stage

is (left-to-right sweep):
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Ai(3)ml+1 = iml

(
1− w

d

)
+

w
d

i(2)m +

hld
µm

(1−ω0) j(tl +hl)+
ω0

2

µm′<0

∑
m′ 6=m

im′l+1Φmm′wm′︸ ︷︷ ︸
inward

 , (39)

where w =
√

2/4 [65] (this should not be confused with the quadrature weights wm).

The correct error estimate [65] valid for both stiff and non-stiff problems is then

simply: Est = A−1est, where est is given by eq. (34) and [65]:380

b̂T = ( (1−w)/3, (3w+1), d/3 ) . (40)

The same general scheme for error control [eq. (35)] is used.

To take advantage of the stability properties of TR-BDF2, an adaptive grid is con-

structed using stretching functions [66, 67]. Since rapid variation of intensities is

mainly expected when approaching the boundaries, it is sufficient to maintain a small

step in their vicinity. The stiff solver can then use an arbitrary large step in the re-385

mainder domain. For this purpose, the grid step hl is defined via a hyperbolic tangent

function:

hl =
τ0

2

[
1.0−

tanh
{

Sg(1−2ξl)
}

tanh(Sg)

]
, ξl = 1.0/N[u]

g , (41)

where N[u]
g is the number of segments in a uniform grid and Sg is the stretching factor.

Figure 3 shows an example grid generated using the above algorithm.

When the error becomes higher than the threshold given by eq. (35), the grid is re-390

constructed by increasing the number of grid points in the same manner as described

in section 6.1. The first iteration always starts from a uniform grid with a default

of N[u]
g = 8 segments. The parameter Sg normally does not change during the re-

construction. Finally, the same iterative procedure described in section 6.1 is adopted

to obtain convergence.395
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0 20 40 60 80 100

Figure 3: A symmetric stretched grid generated using eq. (41) at N[u]
g = 64, Sg = 3.0 and τ0 = 100.0

6.3. Interpolation

In each case, knowledge of the dimensionless temperature θ is required at inter-

mediate integration steps t(n) used then to calculate the reduced radiance j(t(n)). Since

the temperature is defined discretely on a different external grid of the heat equation,

an interpolation procedure is required to calculate the temperature θl at the integrator400

nodes. In this case, the dimensionless temperature is interpolated using natural cubic

splines implemented in the Apache Commons Mathematics Library.

Both the explicit [eq. (33)] and implicit [eq. (38)] methods contain summation over

the unknown inward intensities iml+cn . Since all intensities are calculated at the inter-

nal grid points l and because l + cn is not a grid point, an interpolation procedure is405

required here as well to calculate i[u]ml+cn
using the i[u−1]

ml values obtained at the previous

iteration. Additionally for the implicit method, the outward intensities at the intermedi-

ate points tl +γhl are not known either, and hence the same procedure needs to be used

for their calculation. Because in Runge-Kutta methods both the intensities and their

derivatives are calculated, a cheap and convenient method for this interpolation is the410

globally C1 Hermite interpolation described in detail in [68]. The Hermite interpolant

satisfying the function and derivative values at end points of the segment t ∈ [a,b] is:

h(t) = T 2(3−2T )y1 +(T −1)2(1+2T )y0 +{T 2(1−T )d1 +(T −1)2T d0}h, (42)

where T = (t−a)/hl , a = tl , b = tl±1, y0 = iml , y1 = iml±1, d0 = fml , d1 = fml±1.

This allows effective interpolation of both inward and outward intensities at any

intermediate point 0 < t < τ0.415
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6.4. Angular discretisation

The quadrature choice is central to the DOM as it defines both the overall accu-

racy of the method and the stability requirements for the spatial integration technique.

Chandrasekhar [19] originally considered the Gauss-Legendre and Lobatto (Radau)

quadratures for angular discretisation. In modern calculations, the level-symmetric420

quadratures by Lathrop and Carlson [69] are often used [37]. These and other simi-

lar quadratures have been reviewed in [70, 71, 72, 73]. More recently, an extensive

review [74] of different quadratures has shown that for problems generating a contin-

uous intensity field, the Gauss-Chebyshev quadrature LC11 derived by Lebedev [75]

offers the highest precision. Since in many cases, particularly for the one-dimensional425

radiative transfer with diffuse emission and reflection conditions, the intensities are dis-

continuous at µ = 0 (see e.g. [76]), standard quadratures which do not specifically treat

the discontinuity would give inaccurate results. The level-symmetric quadratures were

designed to cover both the non-continuous and discontinuous case and are applicable

to a wide range of problems. However, high-order quadratures (such as S10, S12 etc.)430

yield negative weights. Although quadratures such as S8 give sufficiently accurate re-

sults in many cases, an alternative should be considered for higher-order calculations.

A composite Gaussian quadrature has been considered for Fresnel boundary conditions

in [77] where the angular interval was divided in three segments. A similar procedure

can be performed for the diffuse emission and reflection boundaries.435

Consider the M cosine nodes and weights of a Gauss-Legendre quadrature on [0,1]:

µ̃m and w̃m. The goal is to construct a composite quadrature that will work despite

the intensities being discontinuous at µ = 0. The 2M cosine nodes of this composite

quadrature are then:

µm =
µ̃m +1

2
, µm+n/2 =−

µ̃m +1
2

. (43)

with the same weights wm = w̃m.440

By construction, the composite Gaussian quadrature given by eq. (43) is applicable

to discontinuous functions at µ = 0. An example G16
M ordinate set proposed in this

work is given in table 1 (note this quadrature is symmetric).
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Table 1: Nodes (positive half) and weights of a G16
M composite Gauss-Legendre quadrature for a function

discontinuous at µ = 0

Cosine nodes,

µm

Quadrature weights,

wm

0.980144928248767 0.050614268145189

0.898333238706814 0.111190517226691

0.762766204958165 0.156853322938942

0.591717321247824 0.181341891689181

0.408282678752176 0.181341891689181

0.237233795041834 0.156853322938941

0.101666761293186 0.111190517226693

0.019855071751233 0.050614268145190

6.5. Verification and benchmarking

To verify the solvers and the discrete ordinate sets, two model cases were consid-445

ered: (a) a non-scattering grey medium with diffusely emitting and reflecting walls (ε = 0.85,

ω0 = 0.0); (b) an isotropic perfectly scattering medium with black walls (ε = 1.0,

ω0 = 1.0). In the first case (fig. 5), the DOM solution was compared against an

exact analytical solution, whereas the second comparison (fig. 6) was made in ref-

erence to the two-flux model section 4.1.2. The equations were solved using the450

GNU Octave/Matlab bvp5c solver. Two temperature profiles were used – both are

shown in fig. 4. The parameter τ0 was allowed to vary from τ0 = 0.1 (non-stiff)

to τ0 = 100.0 (very stiff).

Results for the three quadratures considered (G8
M , S8, G16

M ) show good overall agree-

ment, with the G8
M and G16

M quadrature producing significantly less deviation from the455

reference analytic solution (fig. 5) at the boundaries (non-stiff case) and at intermediate

points (stiff case). The deviation is decreased even more when a low error tolerance

is selected (rtol = 10−4, atol = 10−5, eit = 10−6). For comparison with the two-flux

model, an artificial quadrature containing two equal-weight symmetric points is ex-

amined. An exact match between the approximate analytical model and the discrete460
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ordinates method is shown in fig. 6, thus confirming the reliability of the numeric pro-

cedure.
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Figure 4: Sample discrete dimensionless temperature profiles for verification and benchmarking purposes.

The profiles are discretised differently to test the interpolation capability.
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Figure 5: Comparison of the discrete ordinates solution using a TR-BDF2 adaptive solver and different

ordinate sets (G8
M , G16

M , S8) and error tolerance levels with the exact analytical solution for a grey non-

scattering medium (ω0 = 0.0, ε = 0.85). Parameters: δTm = 10.0, T0 = 800 K.

Additionally, the performance of different schemes and quadratures was tested for

a grey medium with a strong anisotropic scattering (ε = 0.85, ω0 = 0.4, g = 0.8). The

results of different computational methods for the net fluxes shown in fig. 7 show good465

mutual agreement both in the stiff and non-stiff cases.

25



0 0.05 0.1
1

2

3

4

In
te

ns
iti

es
(a

.u
.)

(a) τ0 = 0.1

0 0.5 1
Optical coordinate, τ

(b) τ0 = 1.0

I+ (DOM)
I+ (Two-Flux)
I− (DOM)
I− (Two-Flux)

0 5 10

(c) τ0 = 10.0

Figure 6: Comparison of the discrete ordinates solution at low error tolerance using the TR-BDF2 solver and

the G8
M ordinate set with the two-flux method for pure isotropic scattering in case of black walls (ω0 = 1.0,

ε = 1.0) for a test temperature profile (2). Parameters: δTm = 36.7, T0 = 800 K. The intensities have been

calculated with a re-normalised radiance jr = (1+θδTm/T0)
4.
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Figure 7: Comparison between the discrete ordinates solutions using different ordinate sets (G8
M , G16

M ,

S8) and solvers (BS32, DP5, TR-BDF2) at different error tolerance levels for a grey medium with a strong

anisotropic scattering (ε = 0.85, ω0 = 0.4, g = 0.8). Parameters: δTm = 10.0, T0 = 800 K.

Finally, the relative performance of different schemes was assessed in table 2. Here

the TR-BDF2 scheme in the high-tolerance mode using the G8
M quadrature was used

as reference, corresponding to the respective 1.00 table entry. Increasing problem stiff-
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ness in the high-tolerance mode only marginally increases the computational cost for470

TR-BDF2. Other schemes do not perform so well in terms of performance, particularly

the DP5 at τ0 = 100 is 50 times slower than the reference. BS23 performs better but still

fails to deliver a reasonable computation time for stiff problems. For the G16
M quadrature

there was no fast matrix inversion implemented and hence the TR-BDF2 algorithm re-

lied on a generic decomposition algorithm for the latter. This justifies the considerably475

more expensive calculations. Problems requiring only a small ordinates set (e.g. S4)

show a ≈ 1.5 increase in performance compared to the reference. Same performance

for TR-BDF2 and DP5 is achieved at low error tolerance levels for a non-stiff (τ0 = 0.1)

problem, whereas BS23 requires a finer step size, which almost triples the overall cost.

The numbers change dramatically even for moderately-stiff problems (τ0 = 10.0), with480

the DP5 outperforming the BS23 scheme – as expected, since DP5 is a fourth-order

method. On the other hand, both require more resources to achieve the same error tol-

erance compared to the TR-BDF2 due to the adaptive grid employed for the latter. For

the G16
M quadrature there is an expected drop in performance – and vice versa for the S4

ordinate set.485

With these results in mind, the default settings for calculation are chosen as TR-

BDF2 and a G8
M ordinate set in the high-tolerance mode.

7. Cross-verification

The goal is to verify the complete solution to the conductive-radiative problem de-

scribed in sections 5 and 6. Synthetic model parameters used in the tests are listed490

in table 3. These correspond to a case of non-scattering grey medium; the latter is

especially helpful since it allows an exact solution to the RTE (section 4.1.1), exam-

ples of which have previously been shown in fig. 2. The resulting time-temperature

profiles generated by solving the boundary problem [eq. (14)] with the radiative fluxes

calculated using the discrete ordinates method were compared to the same profiles495

calculated using the analytical solution to the RTE. No deviation between the two cal-

culation methods is observed (Figure 8), thus indicating a correct implementation of

all solvers.
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Table 2: Benchmark results of the DOM for high (rtol = 10−4, atol = 10−5, eit = 10−6) and low (rtol =

10−2, atol = 10−3, eit = 10−4) error tolerance levels using a test temperature profile at T0 = 800 K and δTm =

10.0 for strong anisotropic scattering in a grey medium (ω0 = 0.4, g = 0.8, ε = 0.85)

Error tolerance Quadrature Solver
Computational cost (rel.)

τ0 = 0.1 τ0 = 10.0 τ0 = 100.0

High

G8
M TR-BDF2 1.00 1.00 1.90

DP5 1.55 6.80 50.0

BS23 1.04 4.90 28.1

G16
M TR-BDF2 3.76 4.95 20.0

S4 0.67 0.64 0.83

Low

G8
M TR-BDF2 1.00 4.1 9.86

DP5 1.54 19.0 193.4

BS23 2.84 110.5 -

G16
M TR-BDF2 13.64 23.14 146.62

S4 0.85 2.30 2.475
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Figure 8: Finite-difference (4th order SI scheme, N = 16) solutions to the heat problem with a non-scattering

radiative transfer calculated using either DOM (G8
M , TR-BDF2) or the analytical formula where a four-point

Chandrasekhar’s quadrature is used.
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Table 3: Test calculation parameters

Parameter Notation Value Units

Planck number NP 0.8612

Scattering albedo ω0 0.0

Biot number Bi 0.1

Test temperature T0 1486 K

Laser energy Qlas 5 J

Specific heat Cp 1296 J kg−1 K−1

Density ρ 3735 kg m−3

Thermal diffusivity a 1.254 mm2s−1

Pulse width tlas 1.5 ms

Thickness l 1 mm

Diameter d 10 mm

8. Experimental validation

Experiments conducted with the use of a laser flash analyser (LFA) produce raw500

data in the form of time-temperature profiles with varying level of noise [3]. Exper-

imental validation requires solving the inverse problem of heat transfer, which boils

down to finding a set of parameters (e.g. table 3) corresponding to an optimal solu-

tion of the heat problem. A solution is deemed optimal if the objective function (such

as the sum of squared residuals) reaches a global minimum in the parameter space.505

Fortunately, the corresponding optimisation procedure has already been previously im-

plemented and extensively tested in [3]. Nevertheless, some modifications to the proce-

dure are required both for the diathermic model (section 2) and the coupled conductive-

radiative problem (section 3). Firstly, the original linear-interpolation procedure has

been replaced by spline interpolation. Secondly, the basic procedure in [3] involved510

only unconstrained optimisation. In case of an ill-posed problem or a tendency of the

computational method to fail outside a certain region in the parameter space, the un-

constrained optimisation procedure will not behave well. Figure 9 shows two almost
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Table 4: Parameter bounds and their one-to-one monotonic mapping

Parameter, Yi Bounds Mapping

Bi 0≤ Bi≤ (4σ0T 3l)/λ

Yi = 0.5Y max
i (1+ tanh(Xi))NP 0 < NP ≤ λ (4σ0T 3l)−1

ω0 0≤ ω ≤ 1

g −1≤ g≤ 1 Yi = tanh(Xi)

τ0 τ0 > 0 Yi = eXi

identical time-temperature profiles obtained with two very different parameter sets.

This is a classical example of an ill-posed problem [78]. To eliminate non-physical so-515

lutions, the parameter space should be bounded. The corresponding linear constraints

are listed in table 4. The complete solution of the optimisation problem with linear

constraints based on the active-set method has been discussed in [79] and the general

method of solving ill-posed problems is known as the Tikhonov regularisation. A very

simple alternative is considered in this work mainly for demonstration purposes. A520

one-to-one mapping Yi ∈ R→ Xi ∈ [a,b] is introduced for each parameter yi in table 4

using hyperbolic functions. This ensures that at each time the parameter xi only takes

‘reasonable’ values. The optimisation procedure is then effectively the same, except

that the search vector is formed of Xi rather than Yi. It should also be noted that impos-

ing these constrains is only possible if the thermal properties of the sample (specific525

heat and density) are known in each experiment – otherwise there is no way of telling

whether the parameter value is sensible or not. As a direct consequence, this means

that even the diathermic model, which does not require neither the specific heat nor the

density values for calculation, will not guarantee physically reasonable results if the

thermal properties are unknown and an unconstrained optimisation is used instead.530

Finally, a set of experimental data acquired for a synthetic alumina sample (l =

1.181 mm) measured in a laser flash apparatus at high temperatures has been provided

for validating the computational procedure. Measurements were conducted using the

Kvant instrument at the Moscow Engineering Physics Institute, previously briefly de-

scribed in [3]. Specific heat and thermal expansion data have been taken from [80, 81].535
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Bi 0.1153 0.11071

a (mm2s−1) 1.5314 1.48182

ω0 0.81557 0.76694

g 0.93998 0.22385

NP 25.48625 6.48487

τ0 0.29264 1.55839

Figure 9: Two seemingly equal solutions based on completely different parameter sets. The NP parameter

value in Set (1) leads to a physically impossible refractive index n = 0.75, whereas Set (2) yields n = 1.48.
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Density at room temperature was measured using the hydrostatic method. Example

time-temperature profiles are shown in fig. 10 along with the solutions to the inverse

problem using three different models. A sharp temperature peak at the start of experi-

ment is especially pronounced at the highest ambient temperatures. Only the complete

calculation with the Henyey-Greenstein phase function is capable of reproducing this540

behaviour, although the model deviates from the experiment slightly at the start. Pos-

sibly this is due to some residual coating on the side surface of the sample which may

have created an easy path for thermal diffusion. Another point to be aware of is the

fact that the sample holder used in these experiments covered a significant area of the

sample. The holder effectively consisted of two washers pressed against both sides545

of the sample while typically a three-point contact scheme is used in modern instru-

ments. Thus, laser radiation was non-uniformly absorbed at the front surface, covering

approximately 75 %.

At each test temperature, thermal diffusivity (fig. 11) was averaged over three mea-

surements. Results show that a complete calculation produces systematically different550

values compared to the diathermic model with a maximum deviation of over 10%.

The high error margins are due to the optimisation procedure finding different min-

ima depending on the starting conditions. The tendency of the optimiser to slip into

a local minimum is due to the objective function being acute and multi-modal, which

commonly occurs in multi-variate optimisation; moreover, even though the set of pa-555

rameters can be sufficiently different, the minima are not. This highlights the necessity

of introducing additional constraints – relying on e.g. the optical properties.

9. Conclusions

The numerical method described in this paper combines: (a) a stiffness-aware

solver, its error control scheme and an adaptive stretching grid – specifically tailored to560

solving the initial value problems arising from the discretised radiative transfer equa-

tion; (b) a composite Gaussian quadrature designed to treat discontinuous intensities

typical to the one-dimensional radiative transfer and (c) a fourth-order semi-implicit

finite-difference scheme for numerically solving the heat problem. This combination
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Figure 10: Experimental rear-surface time-temperature profiles of an Al2O3 sample initially thermalised at

three different temperatures. Shown are the optimal solutions of the simplified diathermic model and of the

fully-coupled radiative-conductive model.
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Figure 11: Thermal diffusivity of synthetic alumina determined from a single set of experimental data using

three different models. Note the uncertainties associated with the different starting parameters for the full

model.

is applied to enhance the data analysis in laser flash experiments where the material565

under study scatters thermal radiation anisotropically, such as when conducting mea-

surements on transparent alumina at high temperatures. The calculation procedure

reproduces the initial rapid variation of temperature typical to the strongly-scattering

medium while still observing physically-reasonable values of secondary model param-

eters (i.e., of the optical thickness, Planck number, emissivity, scattering albedo and of570

the anisotropic factor). The estimate quality is benchmarked against a standard diather-

mic model, where the maximum deviation is observed at high temperatures and pro-

nounced scattering anisotropy. The optimisation procedure has been modified to im-

plement constrained search using a one-to-one mapping of the search variables. This

allowed imposing realistic parameter constraints. A further refinement of the search575

procedure is recommended to correctly address the ill-posed problems often occurring

in multi-variate optimisation. The algorithms have been successfully implemented in

the PULsE software, with the latest version being immediately available for use.
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Appendix A. Justification of using linearised boundary conditions

For the sake of simplicity, the analysis is based on the same heat conduction prob-

lem as previously described in [3]. An example distribution of the time-temperature585

profiles across the spatial domain is shown in fig. A.12. Clearly, the dimensionless

temperature θ can reach quite high values close to the front boundary (y = 0), thus

indicating a possible source of error in the conventional analysis, which assumes small

heating (T −T0� T0). The goal is to quantify that error.

Omitting the heat equation and the initial condition, which are exactly the same as
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in section 2, the problem at hand is reduced to the following set of equations:

∂T
∂ z

∣∣∣∣
z=0

=− 4Q
πλd2 P(t)+

ε(T0)σ0T 4
0

λ

{[
Tz=0−T0

T0
+1
]4

−1

}
, (A.1a)

∂T
∂ z

∣∣∣∣
z=l

=−
ε(T0)σ0T 4

0
λ

{[
Tz=l−T0

T0
+1
]4

−1

}
, (A.1b)

where Q is the heat absorbed by the thin surface layer and ε is the sample’s flat surface590

emissivity. These equations are then transformed to the dimensionless form:

∂θ

∂y

∣∣∣∣
y=0

=−Φ(Fo)+Bi ·T0

[
(θy=0δTm/T0 +1)4−1

]
/(4δTm), (A.2a)

∂θ

∂y

∣∣∣∣
y=1

=−Bi ·T0

[
(θy=1δTm/T0 +1)4−1

]
/(4δTm), (A.2b)

where δTm = 4Q(πd2Cpρl)−1 is the maximum heating of the rear surface in the ab-

sence of heat sinks and Bi := 4σ0εT 3
0 l/λ is the Biot number, and θ = (T −T0)/δTm.

It can be easily seen that if θδTm/T0 is small, the heat loss term becomes simply Bi ·

θy, which corresponds to the classical case. When δTm/T0' 1, using only the first term595

of the Taylor expansion might not be appropriate; especially at the front surface (y = 0,

see Fig. A.12), since θy=0 � θy=1 at Fo = 0− 0.15. However, the overall magnitude

of the heat sink term is proportional to T0/4δTm. Hence, the significance of this term

may be low when the expression in the brackets may be nonlinear.

The finite-difference calculations proceed as follows. The domain is divided into

a uniform grid by introducing the coordinate step size h = 1/(N− 1), where N is the

number of individual coordinate points on the grid, and the discrete time step τ = τFh2,

τF ∈ R. The grid is used to discretise θ(y,Fo), which becomes θ(ξ j, F̂om) = θ m
j , j =

0, ...,N− 1, m = 0, ...,m0, called the grid function. Let Lφ(ξα) = (φα+1−φα−1)/2h.

Then, the finite-difference analog of Eqs. A.2 is:

Lθ0 =−Ξ+ζ (θ0), (A.3a)

LθN−1 =−ζ (θN−1), (A.3b)

ζ (θ j) = Bi ·T0/(4δTm) ·
[
(θ j ·δTm/T0 +1)4−1

]
, (A.3c)

where the time index is implicit.600
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Consider using a Taylor expansion on the grid at j = 0 and j = N− 1 and intro-

ducing virtual nodes j =−1 and j = N, thus transforming eq. (A.3) using contraction

mapping: φ = ζ (φ). For a fully-implicit scheme the first coefficients α1 and β1 from

the tridiagonal matrix equation θ j = α j+1 + θ j+1β j+1 and the solution at the j = N

boundary are calculated at each iteration k+ 1 until the scheme converges to a given

precision (usually within a few iterations):
k+1
[α1]=

2τ

2τ +h2 , (A.4a)

k+1
[β1]=

h2

2τ +h2 θ̂0 +
2τh

2τ +h2

[
Ξ−ζ (

k
θ0)

]
, (A.4b)

k+1
[θN−1]=

2τ

k
[βN−1] +h2θ̂N−1−2τhζ (

k
θN−1)

2τ +h2−2τ

k
[αN−1]

, (A.4c)

The solution is shown in fig. A.13 where the heating curves have been normalized.

Curves are plotted at different values of ι := δTmax/T0, all else being equal. With in-

creasing the r factor, the normalized maximum shifts towards shorter times while the

temperature decreases due to heat losses (in this case, Bi = 1.0) becomes more pro-

nounced. For δTmax/T0 < 5×10−2 (in most practical cases), this effect is so small that605

the nonlinear behaviour of the heat losses in eq. (A.2) may be completely neglected.

Therefore, some care must be taken only when conducting measurements at cryogenic

temperatures and at a high laser power applied to poor thermal conductors. Otherwise,

keeping nonlinear terms in the boundary conditions is redundant and a simpler (lin-

earised) model of the heat problem may be used instead.610

Appendix B. Numerical evaluation of some integrals

The integrand function E1(t) is discontinuous at t = 0, which complicates the eval-

uation of radiative flux derivatives dq/dτ using the standard Newton-Cotes formulae.

The latter require significant computational resources, which is inappropriate when the

flux derivatives need to be calculated frequently.615

The general problem consists in evaluating integrals of the form:

In =
∫ b

a
g(t)En(α +β t)dt. (B.1)
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Figure A.13: The effect of nonlinear heat losses (Eqs. (A.2)) on the shape of the rear-surface heating

curve evaluated by solving the boundary problem at different values of ι = δTm/T0 using a fully-implicit

finite-difference scheme and a fixed-point iteration algorithm (Bi = 1.0, Folas ≈ 5× 10−3, fixed-point error

tolerance ∆1 = 10−8 K).
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The exponential integrals En(t) are pre-calculated using the midpoint rule with a

very large number of integration points by filling a look-up table of typically Ntab =

10,000−20,000 entries, depending on the cutoff value (texp
c = 9.2−21.0), which en-

sures a precision of at least 10−5. This table is filled only once at the program start and620

used later in future calls to the solver. An acceptable accuracy when using a Newton-

Cotes formula (e.g. the Simpson’s rule) can be achieved at nq = 256 [see table B.5]

for integrals of order n≥ 2 when the integrand is well-defined at zero. Since the expo-

nential integrals rapidly decrease with τ and the emission function j(t) is bounded, the

integrand becomes very small where the exponential integrals are near-zero. The inte-625

gration bounds are calculated as [max{a,(tc−α)/β},b] at β < 0 and [a,min{b,(tc−

α)/β}] at β > 0. This ensures that for large τ0, the integration excludes terms smaller

in amplitude than a certain threshold defined by the cutoff tc. Additionally, since f (t) is

discretised differently to what is used in the quadrature scheme, a natural cubic spline

interpolation implemented in the The Apache Commons Mathematics Library is intro-630

duced to calculate the function values.

A more effective quadrature has been introduced by Chandrasekhar [19]. It is first

noticed that eq. (B.1) may be written as:

∫
α+βb

α+βa
g(β (x−α))En(x)dx =

m

∑
j=1

a jg(x j). (B.2)

.

The moments Ml are defined as:635

Ml =
∫

α+βb

α+βa
xlEn(x)dx. (B.3)

These can be integrated by parts if the recurrent expression for En(x) is utilised [19].

After the moments have been calculated, the next step is to calculate the x j ( j = 1, ..,m)

roots of the monic polynomial xm +∑
m−1
l=0 clxl where the coefficients cl form the solu-

tion of a linear set:

Mi+m +
m−1

∑
l=0

clMi+l = 0, i = 0,1, ...,m−1. (B.4)

40



Table B.5: Comparison between quadrature formulae for calculating I2 =
∫ τ0

0 j[θ(t)]E2(α +β t)dt at τ0 =

2.0, β =−1, α = τ0 using a test temperature profile.

Simpson’s rule Chandrasekhar’s quadrature

n I2 ∆ m I2 ∆

32 940.70148 - 2 940.10042 -

256 940.10960 −0.59190 4 940.09943 −0.00112

4096 940.10074 −0.00886 8 940.09948 +0.00005

Table B.6: Comparison of end precision ∆ and computational effort T10,000 (measured for 10,000 consecu-

tive calls to the respective integration method) for different quadrature formulae for calculating the integral

I1 =
∫

τ0
τ

j[θ(t)]E1(α +β t)dt at τ0 = 3.0, β = 1, τ = −α = 0.5 using the same test temperature profile as

in Table B.5.

Simpson’s rule Chandrasekhar’s quadrature

n I1 ∆
T10,000

(ms)
m I1 ∆ T10,000 (ms)

32 2190.51 - 20 2 1961.618 - 82

256 1976.71 −213.8 121 3 1961.617 −0.001 163

4096 1962.31 −14.4 1254 8 1961.617 0 620

In fact, the latter is effectively a matrix equation, which may simply be solved640

using matrix inversion. The roots x j are then found with the help of a Laguerre solver

implemented in the Apache Commons Mathematics Library. The weights a j of the

quadrature eq. (B.2) should satisfy the m equations:

Ml =
m

∑
j=1

a jxl
j, l = 0, ...,m−1. (B.5)

This is solved in a similar fashion. Tables B.5 and B.6 show test results of using the

Chandrasekhar’s quadrature versus the Newton-Cotes formulae. These test have been645

carried out for a test temperature profile shown in fig. 4.
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analytical solution to normal emittance of semi-transparent layer of an absorbing,

scattering, and refracting medium, Journal of Quantitative Spectroscopy and Ra-

diative Transfer 112 (2011) 1987 – 1994. doi:https://doi.org/10.1016/j.890

jqsrt.2011.04.008.

50

http://dx.doi.org/10.1115/1.3248182
http://dx.doi.org/10.1115/1.2910395
http://dx.doi.org/10.1115/1.2824279
http://dx.doi.org/https://doi.org/10.1016/S0017-9310(02)00035-2
http://dx.doi.org/https://doi.org/10.1016/S0017-9310(02)00035-2
http://dx.doi.org/https://doi.org/10.1016/S0017-9310(02)00035-2
http://dx.doi.org/https://doi.org/10.1016/S0022-4073(03)00260-7
http://dx.doi.org/https://doi.org/10.1016/0041-5553(76)90100-2
http://dx.doi.org/https://doi.org/10.1016/0041-5553(76)90100-2
http://dx.doi.org/https://doi.org/10.1016/0041-5553(76)90100-2
http://dx.doi.org/https://doi.org/10.1016/S0020-7225(98)00052-4
http://dx.doi.org/https://doi.org/10.1016/S0020-7225(98)00052-4
http://dx.doi.org/https://doi.org/10.1016/S0020-7225(98)00052-4
http://dx.doi.org/https://doi.org/10.1016/j.jqsrt.2011.04.008
http://dx.doi.org/https://doi.org/10.1016/j.jqsrt.2011.04.008
http://dx.doi.org/https://doi.org/10.1016/j.jqsrt.2011.04.008


[78] A. N. Tikhonov, On the solution of ill-posed problems and the method of regular-

ization, in: Doklady Akademii Nauk, volume 151, Russian Academy of Sciences,

1963, pp. 501–504.

[79] P. E. Gill, W. Murray, M. H. Wright, Practical optimization, SIAM, 2019.895

[80] D. Ditmars, S. Ishihara, S. Chang, G. Bernstein, E. West, Enthalpy and heat-

capacity standard reference material: synthetic sapphire (α-Al2O3) from 10 to

2250 k, Journal of Research of the National Bureau of Standards 87 (1982) 159–

63.

[81] C. J. Engberg, E. H. Zaehms, Thermal expansion of Al2O3, BeO, MgO, B4C,900

SiC, and TiC above 1000°c., Journal of the American Ceramic Society 42 (1959)

300–305. doi:10.1111/j.1151-2916.1959.tb12958.x.

51

http://dx.doi.org/10.1111/j.1151-2916.1959.tb12958.x

