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Abstract

Dislocation climb is an important high temperature process of metals plasticity, responsible for the phenomena such as creep,
swelling, or hardening. Climb is defined by the ability of dislocations to leave their original glide plane by interaction with point
defects. As such, dislocation climb is controlled by point defect diffusion/absorption/emission, which all involve thermal activa-
tion. The existing thermodynamically consistent models for climb have been formulated in a continuum framework, through the
definition of effective defect fluxes and climb propensities in response to thermodynamic driving forces. However, the point-wise
discrete nature of vacancies (and/or self-interstitials) confers a highly discrete nature to the climb dynamics, which is also strongly
affected by elastic forces. The combination of discreteness, thermal activation, and elasticity makes this process too challenging
for direct atomistic methods such as molecular dynamics. Here we develop a kinetic Monte Carlo model that captures vacancy
generation and transport kinetics acting in parallel with the evolving elastic fields provided by discrete dislocation dynamics sim-
ulations. The two models are coupled via the applied stresses and stress gradients generated by dislocation structures at vacancy
locations. Our simulations reveal two surprising results. First that climb is dominated by vacancy emission even when the back-
ground vacancy concentration is much higher than the equilibrium one. And, second, that climb velocities might be much faster
than otherwise believed when one uses the classical theories of climb. These effects are due to the locality of vacancy-dislocation
processes, which are not captured in classical treatments that assume smooth vacancy fluxes and homogeneous concentrations. We
apply the method to study elementary climb processes in crystalline iron and furnish climb mobility functions to be used in para-
metric dislocation dynamics simulations. We apply the technique to study non-conservative plastic bypass of spherical precipitates
by edge dislocations and point out the differences between our discrete approach and existing continuum formulations.

Keywords: Dislocation climb; Monte Carlo simulations; Dislocation Dynamics; Vacancy diffusion; Drift-diffusion process

1. Introduction

Non-conservative dislocation motion is responsible for important processes in plasticity such as climb, jog-
dragging, the closing of cross-kinks, and others, with significant implications for mechanical behavior such as e.g. hard-
ening, creep, or even for dynamic strain aging or swelling in irradiated materials [1–9]. Generally speaking, non-
conservative motion refers to a point defect-assisted process that allows a dislocation segment to leave its glide plane
in the direction of its normal. This normal n is uniquely defined as n ≡ s × t, where s = b/b is the slip direction (b
is the Burgers vector and b = ‖b‖) and t is the local tangent vector defining the local direction of the dislocation line.

Email address: jmarian@ucla.edu (Jaime Marian)
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The necessity of point defect intervention makes processes like climb only feasible either at high temperatures (via
vacancies, when their thermal concentration and/or emission rate is sufficiently high), or under far-from-equilibrium
conditions for example involving irradiation [5, 10–12].

For a dislocation segment to undergo climb, net defect fluxes must establish themselves, implying the presence of
local sub or supersaturation. In its most common manifestation, stress fields produce the concentration gradients that
lead to non-conservative dislocation climb. Also, dislocations are strong sinks in situations of supersaturated vacancy
concentrations [10, 13, 14], so that climb can be regarded as a process that acts to reconstitute thermal equilibrium.
Due to its non-conservative nature, dislocation climb is a process by which dislocations can produce volumetric and
dimensional changes in addition to slip.

Due to its intrinsically atomistic nature, studies of climb processes have been attempted by direct molecular dy-
namics (MD) simulations (e.g. Wang et al. [15]) and/or lattice-based kinetic Monte Carlo (kMC) [16, 17]. However,
apart from exceptionally rare situations, vacancy transport at the lattice level is far too slow to be accessible to atom-
istic simulations in a statistically meaningful manner. Instead, mean-field continuum models, based on the adiabatic
approximation, have been the preferred choice in terms of theoretical implementations of climb processes in crystal
plasticity and/or dislocation dynamics models. Within these, the more popular approach has been to superimpose a
chemical force on the standard elastic forces due to external and internal stresses [18–24]. This force is obtained by
matching the work done when a dislocation segment climbs a certain distance with the free energy required to create
the vacancies needed to climb that same distance. An alternative approach is to formulate the climb velocity directly
from the vacancy transport equations in the presence of dislocations [25–29].

Implementations of climb in discrete dislocation dynamics (DDD) simulations by way of suitable modifications
to dislocation mobilities [30, 31] have been applied successfully in many scenarios [22, 26, 27, 29, 32, 33]. How-
ever, these approaches are all formulated at the continuum level, which – while thermodynamically consistent and
numerically efficient – disregard local fluctuations in stress and defect concentrations. These fluctuations are espe-
cially important under heterogeneous conditions, when spatially-complex dislocation structures and/or defect distri-
butions (e.g. as during irradiation) exist. Since vacancies are discrete particles, they are highly sensitive to these
local variations of stress and presence of other defects. Thus, understanding how they evolve, taking into account
such fluctuations, and studying how sensitive climb processes are to spatial heterogeneities is of relevance in many
cases. The objective of this work is to superimpose a kMC module tasked with simulating vacancy diffusion onto a
microstructural simulator based on DDD, tasked with updating dislocation structure morphology and stress fields. As
such, the kinetic module and the DDD simulator are coupled together by the underlying stress fields in the simulation
volume. Vacancy transport is modeled using a drift-diffusion equation with the drift velocity depending on the spatial
stress state in the system. One of our objectives is to determine effective climb rates as a function of temperature and
vacancy concentration for isolated dislocations, as well as to study the effects on arbitrary dislocation structures of a
vacancy supersaturation.

The paper is organized as follows. First, we provide a formal theoretical framework for the kinetic transport model.
This is followed by a description of the numerical implementation and modifications to the DDD simulator. Then,
verification benchmarks are presented to check the validity of the approach at the local dislocation level, followed by
calculations of climb rates in well-controlled conditions. We also discuss the effect of varying parametric parameters
on computational cost. Next, we show results demonstrating bypass of a spherical precipitate by an edge dislocation.
We finalize the paper with a discussion of the results and the conclusions.

2. Underlying theory

2.1. Kinetic model for point defect diffusion

According to the transition state theory [34, 35], the diffusion coefficient for vacancies hopping in an isotropic
medium follows an Arrhenius expression of the following type:

D(T ) = z f b2ν(T ) (1)

where z is the coordination number of the lattice in question (z = 8 for bcc crystals), f is a correlation factor, b is the
crystallographic jump distance (b = a0

√
3/2 for bcc crystals, a0 is the lattice parameter) and ν(T ) is the temperature
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dependent jump frequency of the form

ν(T ) = ν0 exp
(
−

∆Hm

kT

)
(2)

where ν0 is an attempt frequency, k is Boltzmann’s constant, and ∆Hm is the vacancy migration enthalpy. In the limit
where stress is moderate, ∆Hm depends on stress σ via a mechanical work coupling:

∆Hm(σ) = ∆E0
m − σ : Ωact

where ∆E0
m is the migration energy of a vacancy in a solid subjected to no stress, and Ωact is the activation volume

tensor defined as the difference between the relaxation volume tensors at the saddle point and at an equilibrium
position, see ref. [36]. Parameters ν0, ∆E0

m, and Ωact are routinely computed using first principles methods [36].
Another, and often more significant, effect of stress on the diffusion of defects results from the fact that the enthalpy

of formation of a defect at an equilibrium position in the lattice depends on the local stress through:

H f (σ) = E0
f − σ : Ω f (3)

where E0
f is the defect formation energy and Ω f is the formation volume tensor [36, 37]. It must be noted, however,

that in most cases it is the relaxation, and not the formation, volume of a defect that enters the equations of elasticity,
since it is the relaxation of the lattice around a defect that determines its elastic interaction with other defects and
dislocations. As such, the relaxation volume tensor provides a tensorial measure of global deformation of the material
due to the presence of a defect in it [38].

The relaxation and formation volume tensors, Ω and Ω f , are related to one another via Ω f = ± 1
3 ΩaI +Ω, where

Ωa is the atomic volume, and the sign of Ωa depends on the nature of the defect, vacancy (+) or self-interstitial (−)
[39]. For vacancies, the first term in the above relation is positive, since in order to form an individual vacancy in the
bulk of the crystal, it is necessary to deposit an atom onto its surface, hence increasing the total volume of the material
by one atomic volume Ωa. Conversely, the formation of a self-interstitial atom involves punching a surface atom into
the bulk of the material, hence reducing the apparent total volume by Ωa

1. The second term, Ω, entering the formula
for Ω f , is the relaxation volume tensor [36, 37], describing the lattice relaxation effects. Elements of the relaxation
volume tensor of a point defect can be readily evaluated using first-principles calculations [36, 37].

Note that in the context of studies of radiation damage, the formation volumes of defects rarely enter the equations
for the experimentally observed quantities. That is because, under irradiation, vacancies and self-interstitial defects
are formed in pairs, and this results in the cancellation of terms ± 1

3 ΩaI in the definition [36] of the formation volume
tensor Ω f above. Also, one should recognize the difference between the volumetric swelling of a material, which
is a quantity given by the sum of formation volumes of all the defects, and lattice strain, measured for example by
X-ray diffraction. Lattice strain is a measure of relaxation of the lattice, and it therefore depends on the relaxation
volumes of defects, as illustrated for example by the observed negative lattice strain resulting from the accumulation
of vacancies [41].

The trace of the relaxation volume tensor Tr (Ω) = Ωkk = Ω11 + Ω22 + Ω33 gives the total relaxation volume of
a defect Ωrel that, depending on its sign (negative or positive), provides a measure of the total elastic contraction or
expansion of the lattice due to the presence of the defect in the material [42]. For a vacancy, the relaxation volume
tensor is isotropic [42], namely Ωi j = 1

3δi jΩrel, where δi j is the Kronecker delta-symbol. Since the trace of the
Kronecker tensor Tr(I) = δkk = δ11 + δ22 + δ33 = 3, we find Tr(Ω) = 1

3 ΩrelTr(I) = Ωrel. In terms of atomic volume,
we can express the relaxation volume tensor as [36, 37]:

Ω = Ωaεv (4)

where εv is a diagonal strain tensor with identical components εv = (εv)11 = (εv)22 = (εv)33 equal to:

εv =
Ωrel

3Ωa
=
θv

3

1See for example Figure 14.10 from the book by Hirth and Lothe [40]
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with θv being the relative local lattice contraction around a vacancy (typically around −20% [36, 37]). With this,
assuming that the relaxation volume of a defect is isotropic, eq. (3) becomes:

H f = E0
f −

1
3
σi jδi j (Ωrel ±Ωa) = E0

f −
1
3
σ j j (Ωrel ±Ωa) = E0

f + p (Ωrel ±Ωa) (5)

where, as above, ‘+’ refers to vacancies and ‘−’ to self-interstitials, and p = − 1
3 Tr (σ) = − 1

3σkk = − 1
3 (σ11 +σ22 +σ33)

is the hydrostatic pressure [43]. Note that in the above equations we use the Einstein convention where repeated
indeces imply summation. The energy of a defect at an equilibrium position in the lattice depends on the stress as
follows [44, 45]:

E = E0 −
1
3
σi jδi jΩrel = E0 −

1
3
σkkΩrel = E0 + pΩrel. (6)

In the approximation where both the relaxation and activation volume tensors of a defect are assumed to be isotropic,
the diffusion tensor is also isotropic [45, 46]. This justifies the drift-diffusion equation approach developed below.

2.2. The drift-diffusion equation
Vacancy transport is governed by the so-called the drift-diffusion (or advection-diffusion) equation:

∂C
∂t

= D∇2C − u · ∇C (7)

where C is the defect concentration, u is the average drift velocity (a three-dimensional vector), ∇ is the gradient
operator, D is the diffusion coefficient, and ∇2 is the Laplacian. The first term on the right-hand side of eq. (7)
represents drift due to the bias in the probability of moving in a preferred direction and the second term describes
ordinary isotropic three-dimensional diffusion. For walkers centered at the origin, the above equation has the following
solution in one dimension [47, 48]

C(x, t) =
1

(4πDt)1/2 exp
{
−

(x − ut)2

4Dt

}
(8)

where t is the time. Useful time-dependent statistics of this process are the mean location m(Xt) (first moment of the
C(x, t) distribution) and the mean squared displacement (MSD) m(R2

t ) (second moment, with Rt = |Xt |), defined as:

m(Xt) =

∫
xp(x, t)dx (9)

m(R2
t ) =

∫
|x|2 p(x, t)dx (10)

The mean location is m(Xt) = ut, while the MSD is given by:

m(R2
t ) = u2t2 + 6Dt

That is, the effect of the drift compared to a simple random walk process is to shift the center of the Gaussian
distribution from x = 0 to x = ut and to make the MSD depend quadratically on time (for long times) instead of
linearly.

The drift term can be obtained by mapping eq. (7) to the general form of the diffusion equation for isotropic cubic
crystals [46]:

∂C(x, t)
∂t

= ∇ ·

[
D

(
∇C(x, t) +

C(x, t)
kT

∇E(x)
)]

(11)

where the energy gradient term reflects the variation of the energy of defects at equilibrium lattice sites. Equation (11)
is encountered in the treatment of diffusion of particles in a potential energy field E(x), where the right-hand side of
the equation equals the divergence of the defect flux. Comparing the second terms in the r.h.s. of eqs. (7) and (11)
gives the expression for the drift velocity u is:

u = −
D
kT
∇E(x) (12)

4
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Inserting eq. (6) into the above expression results in the drift velocity being proportional to the gradient of the pressure:

u =
DΩrel

3kT
∇Tr (σ(x)) = −

DΩrel

kT
∇p(x) (13)

In the above expression, we have neglected the variation of the diffusion coefficient with spatial coordinates. This
variation is associated with the change of shape of the strain field of a vacancy during its transition across a saddle
point [36], and it adds an extra term, quadratic in stress, to the right-hand side of eq. (13). We have also neglected the
dependence of the relaxation volume on stress, and retained only the term linear in elastic field, see [49]. With this,
equation (13) can be expressed in explicit Cartesian form as:

ui =
DΩrel

3kT
∂σkk

∂xi
, (14)

where σkk ≡ Tr (σ).

2.3. Vacancy production/elimination mechanisms

2.3.1. Vacancy absorption
Once a vacancy or a number of vacancies Ni reaches a given dislocation segment i of length `i, the following

volume balance can be written:
NiΩa = `ihi (ti × bi) · ni

where hi is the climb distance along the normal direction ni, bi and bi = |b| are the Burgers vector and its modulus,
and ti is the segment direction. This results in a climb jump of magnitude:

hi =
NiΩabi

`i |ti × bi|
2 (15)

where we have used that n = (t × b) /b. Note that hi is undefined for screw dislocations, as is commonly the case in
this type of models [19, 22].

2.3.2. Thermal vacancy emission
After Friedel [50], the rate of emission of vacancies from dislocations can be written as:

Ċ = qν(T )
(
1 −

C
C0

)
(16)

where q is a geometric factor, ν(T ) is the vacancy jump rate (refer to eq (2)), and C0 = exp
(
−

H f

kT

)
is the equilibrium

vacancy concentration (H f is the vacancy formation enthalpy, eq. (5)).
Expression (16) is nonlocal, i.e. it is enforced in a global sense (as defined by C0). However, vacancy emission

from a dislocation segment is highly local in the sense that it is highly influenced by the local stress and vacancy
concentration. Consequently, the above equation can be adapted to give the local emission from a given dislocation
segment of length ` surrounded by a number of vacancies N in a volume surrounding the segment. Further, here we
take the approach that the emission rate is zero for purely screw segments and maximum for pure edge segments.
With this, we can write:

Ṅi =

(
2π`i

bi

(
1 −

ti · bi

bi

))
ν(T )

1 − Ni

ρaVi exp
(
−

H f

kT

)  (17)

where Ni is the number of vacancies contained in a volume Vi = πR2`i around dislocation segment i. The stress
σ in this volume is taken to be the local stress (from sources other than the self-stress) at the dislocation segment’s
location, ri. In principle, R is arbitrary but it should be sufficiently small for this approximation to be valid. Note that
in most cases, this will result in zero vacancies in this volume, meaning that the rate of insertion will generally be

5
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positive2. To avoid repeated emission/reabsorption cycles, we place the emitted vacancies at a random location within
the simulation box while displacing the dislocation segment along the negative sense of ni by an amount consistent
with the emitted volume of vacancies (eq. (15)).

Instead of eq. (16), a more consistent expression of the vacancy emission rate needed to maintain a global vacancy
concentration is obtained by integrating eq. (17) over the entire simulation volume V3:

Ċv =
2πVρd

b
ν(T )

1 − Cv

exp
(
−

H f (σext)
kT

)  (18)

where ρd is the total dislocation density and Cv is the global vacancy concentration. Once a vacancy is emitted using
this expression a random segment is selected and displaced by one climb distance h. Emission-dominated conditions
lead to ‘downward’ climb, i.e. along the direction of the tensile region of the stress field of an edge dislocation, while
absorption dominated climb takes place ‘upwards’, or towards the compressive semi-plane.

2.4. Connection to elasticity and climb mobilities
The climb velocity of a given segment vc

i points along the direction of ni and is connected to the climb forces as:

vc
i = vi

c ni

vi
c = Mc

(
f el
i + f os

i

)
(19)

where Mc ≡ Mc(T , p, Cv) is a scalar-valued function representing the climb mobility, f el
i = [(σi · bi) × ti] ni is the

climb contribution of the Peach-Koehler force, while f os
i is the chemical force, often referred to as ‘osmotic’ force,

which in linearized form can be expressed as [21, 22]:

f os =
bkT
Ωa

(
1 −

C0

Cv

)
(20)

We will use these expressions to reconcile the results obtained in Section 3.3 with the elastic formulation of DDD.

2.5. Material parameters
We use bcc Fe as our model system in this work. Point defects in iron have been extensively studied experimentally

and computationally over the past several decades and a very accurate numerical database exists from which to get
the parameters used here [36, 37, 51–59]. They are given in Table 1.

3. Results

Next we apply the method described in the previous section to the calculation of climb velocities for edge disloca-
tions in Fe. The solution procedure and the numerical details of the simulations are discussed in depth in Appendix A.
First we carry out a self-consistency verification check to ensure the correctness of the model, followed by production
runs to calculate climb velocities as a function of temperature, pressure, and overall vacancy concentration.

3.1. Self-consistency checks
We begin by testing the evolution of the mean square displacement, 〈r2〉, of vacancies diffusing in an isotropic

medium versus vacancies moving in the stress field near the core of an edge dislocation. The results for 200 inde-
pendent tests (one single vacancy placed at random in a 2D square box) are shown in Figure 1 with error bars. The
evolution of 〈r2〉 in each case displays the expected dependence with time described in Sec. 2.2. The diffusivity used
was 1.0 × 10−9 m2·s−1 (∼300 K in Fe), which correlates well with the values of 8.6 × 10−10 and 1.3 × 10−9 m2·s−1

displayed in Fig. 1 for biased and unbiased diffusion, respectively.

2To introduce a stochastic variability in the insertion rate (accepting cases where the vacancy concentration might be higher than the equilibrium
concentration, or rejecting cases where the vacancy concentration might be lower than the equilibrium concentration), the second ‘1’ in eq. (17) is
replaced with a Gaussian defined by N(1, kT/E0

f ).
3Summation of all segments over V yields:

∑
i `i = ρdV

6
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Table 1: Material parameters for bcc Fe employed in this work.

Parameter Symbol Value Units
Boltzmann’s constant k 8.615 × 10−5 eV·K−1

Correlation factor f 0.78 -
Burgers vector’s modulus b 0.25 nm
Attempt frequency ν0 1012 Hz
Vacancy migration energy ∆E0

m 0.60 eV
Atomic volume Ωa 0.77 b3

Vacancy relaxation volume Ωrel θv Ωa

Vacancy formation volume Ω f 1 + θv Ωa

Vacancy volumetric strain θv −0.2 -
Vacancy formation energy E0

f 1.7 eV
Capture radius R 2.0 b

0.0

0.5

1.0

1.5

2.0

2.5

3.0

〈r
2
〉[
n
m

2
]

0.0 0.1 0.2 0.3 0.4

t [ns]

unbiased
dislocation-biased

〈r2〉(t)=1.34×10−9t

〈r2〉(t)=16.50t2+8.60×10−10t

Figure 1: Time evolution of the mean square displacement, 〈r2〉, of vacancies diffusing in an isotropic medium undergoing an unbiased random
walk (blue circles) and for vacancies moving in the stress field of an edge dislocation (biased random walk, red diamonds). Linear and quadratic
least-squares fits are shown for each case. The vacancy diffusivity employed corresponds to a temperature of 300 K. The error bars originate from
five independent stochastic runs.

While tracking the evolution of 〈r2〉 is useful to verify the solution of eq. (7), the mean square displacement is
an integrated measure that does not give information about the trajectories of migrating vacancies. To check whether
vacancy trajectories are consistent with the drift velocity derived in Sec. 2.2, we plot in Figure 2 the generic trajectories
of vacancies against the backdrop of the (isotropic elastic) stress field of an edge dislocation (shown as a color contour
plot) and vector (14). The figure contains results for the σxx and σyy components of the stress, as well as for the ∂σkk

∂x

and ∂σkk
∂y components of (14) (Figs. 2a and 2b). The vacancy trajectories are clearly seen to follow a biased walk as

dictated by the existing stress gradients. The tests performed in Figs. 1 and 2 verify the model of Secs. 2.1 and 2.2 at
the local level and gives us confidence to apply it for calculations of dislocation climb in realistic line geometries.

7
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(a) (b)

Figure 2: Stress and stress-gradient maps for an edge dislocation showing: (a) a contour plot of σxx (red: tensile, blue: compressive, arbitrary units)
and the directional field of the ∂σkk

∂x component of vector (14) (shown with arrows); (b) Corresponding plot for σyy (red: tensile, blue: compressive,
arbitrary units) and ∂σkk

∂y . The trajectories of vacancies initially located at the point marked by the white arrow are highlighted using circles. The
vacancy paths are seen to follow the direction of the stress gradient.

3.2. Dislocation climb calculations

3.2.1. Single dislocation behavior
Next, we systematically study dislocation climb in the ternary parametric space of pressure p, temperature T , and

vacancy concentration Cv. To obtain climb velocities, we track the dislocation position normal to the glide plane as a
function of time until steady state is reached and a linear relation is established between the two. We then calculate
the climb velocity, vc, as the slope of this linear relationship, as shown in the example in Figure 3. The graph shows
the position of a 100-nm edge dislocation segment obtained from two independent measurements: (i) one according
to eq. (15) (labeled ‘vacancies absorbed’) and (ii) another from the overall dislocation position (‘center of mass’). As
the figure shows, both approaches are equivalent and result in a climb velocity of 4.62 × 10−4 m·s−1. This value of
vc corresponds to a temperature of T =1000 K, a pressure of p = −100 MPa (tensile), with an equilibrium vacancy
concentration Cv ≡ C0(p, T ). A direct feature of our model is that h evolves with t in a discrete manner, with clear
jumps (e.g. at 15, 26, 35, and 52 ns) correlating with vacancy absorption/emission events. This has a manifestation in
the dislocation line morphology. Figure 4 shows the dislocation structure at the end of the simulation shown in Fig. 3.
Vacancies are shown as small cyan spheres. The dislocation line displays a number of jogs consistent with the steps
seen in Fig. 3. The shaded horizontal plane marks the original glide plane, while the shaded region normal to the glide
plane marks the slipped climb area.

3.2.2. Dislocation climb as a function of temperature, pressure, and vacancy concentration
We repeat the procedure described in the previous to obtain the fundamental climb velocity dependencies as a

function of T , p, and Cv. The results are given in Figure 5, where a sequence of plots is shown with the net climb
velocities of edge dislocation segments with lengths ranging between 50 to 500 nm under different combinations
of temperature, pressure, and vacancy concentration. The temperature and the pressure set the equilibrium vacancy
concentration C0 according to eq. (16), which at, e.g., −100 MPa and 1000 K (conditions in Fig. 3) is 2.45 × 10−9. A
multiplication factor is then applied to C0 as to artificially increase the vacancy concentration to nonequilibrium levels
to study its effect on vc. Dislocation climb velocities are calculated as in Fig. 3, with each data point representing the
average of five statistically independent simulations. The error bars displayed correspond to the standard deviations
for each condition. Each row of figures shows the climb velocity as a function of a primary variable and two secondary

8
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vc = 4.62× 10−4 [m · s−1]

p = −100 MPa

T = 1000 K

Cv = C0(p, T )

0.00

0.01

0.02

0.03

0.04

0.05
h
[n
m
]

0 10 20 30 40 50 60 70

t [ns]

From vacancies absorbed

From center-of-mass position

Figure 3: Dislocation position along the glide plane normal direction h as a function of time t at a temperature of 1000 K and a pressure of −100
MPa (tensile) and equilibrium vacancy concentrations. The graph shows the position obtained from two independent measurements: according to
eq. (15) (labeled ‘vacancies absorbed’) and from the overall dislocation position (‘center of mass’). The resulting climb velocity is extracted from
a linear fit to the data points in steady state.

variables. In the top row, the primary dependency is on temperature, while secondary dependencies are on pressure
(colors) and global vacancy concentration (left to right). In the middle row the primary dependency is on pressure,
with secondary dependencies on global vacancy concentration (colors) and temperature (left to right). Finally, the
bottom one contains the relationship of the climb velocity with the global vacancy concentration, along with secondary
dependencies on temperature (colors) and pressure (left to right). In all curves, dashed lines correspond to climb
velocities using eq. (18) for vacancy emission, i.e. when the vacancy concentration is enforced in a ‘global’ way
irrespective of the stress state at each of the dislocation segments. Conversely, continuous lines indicate that the
velocities have been calculated under local conditions (with vacancy emission defined by eq. (17)).

Inspection of the results reveals the following general trends:

(i) As indicated earlier, velocities obtained enforcing global vacancy emission tend to be positive (shaded gray
region in Fig. 5’s plots), while local climb velocities are strongly negative. This points to regimes governed by
vacancy absorption and emission, respectively.

(ii) The results are practically insensitive to pressures in the −100-to-100-MPa range.
(iii) The climb velocities have a clear exponential dependence on temperature.
(iv) The total vacancy concentration has an incremental effect on climb velocities, with higher vacancy concentra-

tions resulting in higher values, both positive and negative. In the case of global vacancy emission, a larger
Cv results in a higher rate of vacancy absorption and therefore faster positive climb velocities4. Enforcing the
global vacancy concentration, however, also results in an enhanced emission rate as the differential vacancy
concentration around dislocation segments (global minus local) remains positive, keeping eq. (18) active for a
longer time, leading to faster negative climb.

4Maintaining a constant vacancy supersaturation in globally acts as an inexhaustible vacancy source, with vacancies constantly being replenished
as they disappear due to their interactions with dislocations.
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Figure 4: Dislocation structure after one microsecond at 1000 K and a pressure of −100 MPa with Cv = C0(T , p). Vacancies are shown as small
spheres. The dislocation line displays a number of jogs originating from local vacancy emission (and/or absorption) events. The height of the jogs
is commensurate with the ∆h jumps displayed in Fig. 3, which are approximately 0.1 Å(single vacancy absorption/emission event). The shaded
horizontal plane marks the original glide plane. The shaded region normal to the glide plane marks the slipped climb area.A scale marker for all
three Cartesian directions is shown for reference.
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Figure 5: Sequence of plots showing the net climb velocities of edge dislocation segments with lengths ranging between 50 to 500 nm under different combinations of temperature, pressure, and
vacancy concentration. The temperature and the pressure set the equilibrium vacancy concentration C0 according to eq. (16). Then a multiplication factor is applied to C0 so as to artificially
increase the vacancy concentration to nonequilibrium levels. The average position of the entire dislocation line is then tracked with time and a climb velocity is extracted. Each row of figures
shows the climb velocity as a function of a primary variable and two secondary variables. Top row: the primary dependency is on temperature; secondary dependencies are on pressure (colors)
and global vacancy concentration (left to right). Middle row: primary dependency on pressure; secondary dependencies on global vacancy concentration (colors) and temperature (left to right).
Bottom row: primary dependency on global vacancy concentration; secondary dependencies on temperature (colors) and pressure (left to right).
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To further understand the processes that control the kinetic evolution in the simulations, it is useful to analyze
the time step distribution of events. A representative set results is shown in Figure 6, where we have separated the
histogram into a δt-spectrum associated with vacancy diffusion/absorption events (shown in red), and another one
corresponding to vacancy emission events (in blue). It can be seen that diffusion/absorption is governed by much
faster time scales than vacancy emission. The average of the blue histogram is approximately 3.0 ps, while that of the
orange histogram is almost three orders of magnitude higher, ≈ 0.72 ns. These averages are both consistent with eqs.
(1)-(2) and (17) at the conditions of the simulation. The large spread in the vacancy emission distribution gives an

C
ou
nt
s
[a
.u
.]

0.00 0.05 0.10 0.15 0.20

δt [ns]

diffusion/absorption

emission

Figure 6: Histogram of time steps in a general climb simulation at 1000 K. The red histogram (shorter timescales) represents the spectrum of δt
associated with vacancy diffusion/absorption, while the blue one (longer time steps) represents vacancy emission events. The large spread in the
distributions gives an idea of the range of stress spatial variations found in the computational domain.

idea of the wide range of stress spatial variations found in the computational domain. In contrast, vacancy diffusion
is defined by a much narrower spectrum. The clear separation of scales between both time distributions results in a
numerically-stiff system, which makes it amenable to certain speedup procedures that can increase the computational
efficiency [60–63]. In fact, the histogram displayed in the figure points to the causes behind the relatively high
computational cost in some of the studied cases. The actual CPU cost of the simulations in Fig. 5 is discussed in
Appendix A.3 and shown in Figure A.11.

3.3. Climb mobility functions
We can now use the results from Section 3.2 to parameterize climb mobility functions to be used in parametric

dislocation dynamics simulations. The climb contribution to the mobility of a dislocation segment i in DDD is given
by eqs. (19) in Section 2.4. In those equations f el and f os represent two distinct driving forces for dislocation climb:

(i) The existence of non-glide elastic forces, represented by f el, breaks the local vacancy equilibrium at the nodal
or segment level, resulting in an imbalance that is resolved by stimulating vacancy diffusion into or out of

12



McElfresh et al. / International Journal of Plasticity 00 (2020) 1–24 13

the dislocation core. As such, these forces can produce climb even in the absence of a global vacancy su-
persaturation. A well-known example of this interaction is climb-induced bypass of precipitates or inclusions
blocking dislocations in hardened alloys at high temperatures. While global thermodynamic equilibrium may
exist, hydrostatic elastic forces created by the precipitates on dislocations distort local equilibrium facilitating
vacancy-assisted climb.

(ii) Complementarily, dislocations can climb in the absence of elastic forces when the global vacancy concentration
is far-from-equilibrium e.g. as in quenched metals or irradiation conditions, both of which can produce high
vacancy supersaturations. This driving force is represented by f os. Note that, as shown in Appendix B, stress
gradients confer a mechanical bias to the osmotic force that is not captured in standard theories of dislocation
climb.

The model presented here naturally captures both driving forces. Indeed, the so-called ‘global’ emission model
numerically represents f os, while the ‘local’ model represents f el. Fortunately, emission-dominated conditions lead
to ‘downward’ climb, i.e. along the direction of the tensile region of the stress field of an edge dislocation, while
absorption dominated climb takes place ‘upwards’, or towards the compressive semi-plane. As such, osmotic and
stress-induced climb work in opposite directions, which allows us to separate their contribution.

Next, we apply the data in Fig. 5 (dashed lines) to eq. (20). The ratio of vc and f os gives the climb mobility, which
we show in Figure 7a as a function of inverse temperature and Cv

5. The results show that even after accounting for
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Figure 7: Inverse temperature dependence of Mc for several nonequilibrium vacancy concentrations (given as a multiplier of the vacancy concen-
tration C0(T , p)). The lower and upper insets in both graphs show the activation energies and pre-factors for each curve, respectively, assuming an
Arrhenius expression.

the linear temperature dependence of f os (eq. (20)) Mc consistently displays an Arrhenius form of the type:

Mc(T , Cv) = A
(
Cv

C0

)
exp

(
−

∆Q
kT

)
(21)

where A is a pre-factor that depends on the Cv/C0 ratio and ∆Q is an activation energy. The dependence of ∆Q on Cv

is shown in the lower inset to Fig. 7a, where a weak decline from 1.7 to 1.2 eV can be appreciated. This correlates
well with vacancy nucleation –characterized by an activation energy of 1.7 eV– playing a decreasingly important role
as the global vacancy concentration increases. The dependence on the ratio y = Cv/C0 is less clear (upper inset) but

5Note that no driving force exists when Cv = C0 and so the climb velocity is nominally zero.
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can be approximated reasonably well by a linear relation (shown as a dotted line on the upper figure inset):

A(y) = 1.9 × 105 − 1.5 × 103y [Pa−1 s−1] (22)

The above mobilities pertain to simulations under the action of chemical forces alone. When elastic forces act in
conjunction with these chemical forces, we get the (negative) climb velocities given in Fig. 5. From these, as in eq.
(21), a mobility can be extracted:

Mc =
vc

f el + f os

The only stress component conducive to climb is the diagonal component along the glide direction (i.e. n× t, usually
taken as σxx). However, while this component can be prescribed via the applied stress, local stresses due to jogs in the
dislocation line can also contribute to the elastic climb force (recall Fig. 4). These are difficult to quantify, however,
due to their highly local and fluctuative nature, which means that it is difficult to specify f el with precision. If we
go strictly by the applied force, the results of the analysis using the same tools as for eq. (20) are shown in Figure
7b. As in Fig. 7a, the mobilities follow an Arrhenius evolution with temperature, characterized by the corresponding
activation energies and pre-factors. The lower inset in Fig. 7b shows that the activation energies are not unlike those
for the case with no elastic forces, ranging between 1.5 and 1.3 eV. The pre-factors (upper inset in Fig. 7b), however,
are approximately one order of magnitude higher than their ‘chemical’ counterparts. We attribute this difference to
those localized and fluctuating elastic climb forces that develop owing to the discrete nature of our model. These
pre-factors do not exhibit a clear trend with Cv, showing almost a concentration-independent behavior:

A(y) = 1.9 × 106 − 5.7 × 103y [Pa−1 s−1] (23)

Note that in the temperature range studied here, climb mobilities range from approximately three to four orders
of magnitude smaller than glide mobilities at low temperatures, to comparable values at 1500 K (e.g., for Fe, refs.
[64, 65]).

3.4. Application: dislocation climb over a spherical precipitate

We finish the Results section with a more practical application of the method. It is known that one of the mech-
anisms of dislocation-based creep is climb over precipitates that exert a force on dislocations greater than the glide
force. Here, we simulate such a process by considering a spherical precipitate 4 nm in radius with an associated
volumetric field characterized by stresses σrr ∝ 1/r3 [66]. The dislocation is then driven towards the precipitate by
glide with a force insufficient to cut or loop around it. Aided by the volumetric force and by temperature, the dislo-
cation can then climb by vacancy emission and circumvent the precipitate, continuing its glide. The simulations are
conducted with a modified version of the DDLab code that includes spherical inclusions [66] and to which we add the
kMC module developed here. A sequence of snapshots showing this process, together with the number and position
of the emitted vacancies is shown in Figure 8. Note the relative large local concentration of vacancies along the climb
path.

Figure 8: Sequence of snapshots of an edge dislocation undergoing climb over a spherical precipitate in equilibrium conditions. The applied stress
produces a force only along the glide direction that is insufficient to curve the dislocation around the precipitate on the glide plane. The images
show the vacancies emitted while the dislocation climbs.
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Additional analysis is given in Figure 9 where the dislocation configuration at the point of maximum climb is
provided. The color background in the figure represents the intensity of the radial stress caused by the precipitate
in the matrix (in arbitrary units). The black dashed line represents the original glide plane (the equatorial plane of
the precipitate), while the superimposed curve gives the number of vacancies emitted as a function of distance to the
precipitate’s outer radius. The combined action of the line tension, the glide force, and the precipitate stress field
shape the dislocation line into an arced configuration as shown in the figure. Note that the timescale is arbitrary but
the glide mobilities are about four orders of magnitude larger than climb mobilities.

Figure 9: Dislocation configuration at the point of maximum climb during simulations of temperature-enabled precipitate bypassing by an edge
dislocation. The precipitate has spherical shape with a radius of 4 nm. The color background represents the intensity of the radial stress caused by
the precipitate in the matrix (in arbitrary units). The black dashed line represents the original glide plane (the equatorial plane of the precipitate),
while the superimposed curve gives the number of vacancies emitted as a function of distance to the precipitate’s outer radius.

These can be regarded as direct simulations of elementary creep mechanisms on time scales much longer than
those associated with glide.

4. Discussion

4.1. The need for discreticity and stochasticity

First we justify the need for works such as the present one. Vacancy emission and diffusion are both thermally-
activated processes, while dislocation network evolution is driven by elastic forces. However, while dislocation climb

15



McElfresh et al. / International Journal of Plasticity 00 (2020) 1–24 16

involves the conjunction of both phenomena, they typically act on very different length and time scales. Moreover,
point defect processes are intrinsically stochastic in that they are driven by thermal fluctuations. As such, kMC is
the pertinent method to study them, whereas DDD is the preferred tool to simulate dislocation dynamics. This work
combines both techniques in a self-consistent way, i.e. (i) DDD resolves the elastic fields created by the dislocation
structure, (ii) the kMC module evolves the vacancy subpopulation embedded in these fields, and (iii) dislocation-
defect processes alter the dislocation substructures, giving rise to updated elastic fields. To our knowledge, the only
prior work where kMC was linked to DDD was that by Ghoniem et al. [67] to study defect decoration of dislocation
loops. Our approach considers a drift on vacancy diffusion created by stress fields, which leads to an expression
governed by stress gradients. This problem has been considered by several authors in the past [45, 68], albeit using a
different approach to the one presented here.

Another thing worth emphasizing of this work is its discrete nature. Studies where the point nature of defects is
directly accounted for are rare in the plasticity and DDD community. Direct atomistic calculations can only cover
limited length and time scales [16, 69], often too small or too short for steady state defect fluxes to occur. Mesoscopic
models are better equipped to deal with the combination of small length scales and long time scales, but they can
suffer from numerical stiffness. A recent model of dislocation climb based on elementary jog kinetics has been
recently proposed [70]. These are examples that discreticity and elasticity can be merged with relative high efficacy.
Our method is a demonstration that defect generation, absorption, and diffusion can be treated in a point-like manner
in conjunction with discrete dislocation dynamics.

It is important to note, however, that some relevant vacancy-related mechanisms are not captured by the present
model. We do not consider pipe diffusion (diffusion along the dislocation line), which is known to be of importance
in certain cases [71–74]. As well, vacancy clustering is not a feature of our approach, although atomistic studies
have revealed conclusively that small vacancy clusters are unstable and have a short lifetime in bcc metals at the high
temperatures explored here [75–77]. Finally, our results pertain to bulk material grains, without considering the effects
of grain boundaries, which are known to be very effective vacancy sources/sinks and could alter the local and global
vacancy supersaturation limits compared to those in ideal conditions.

4.2. Climb dynamics

Climb takes place under the action of two distinct forces, see eq. (19). The osmotic force is characterized by
vacancy absorption due to the existence of a vacancy supersaturation and, as such, results in ‘upwards’ climb (along
the direction of the compressive half-plane). Elastic climb, on the other hand, activates itself via vacancy emission
and thus leads to climb in the direction of the tensile half-plane of the edge component of a dislocation. This elastic
force clearly represents a mechanical bias conveyed by the stress at each point. The osmotic force, while in principle
not a bias in the thermodynamic sense, is influenced by the stress gradient via the drift term in eq. (14), which can
also be regarded a mechanical bias (although a second order one, see Appendix B). In this sense, our approach differs
from the classical one in that locality is a feature of both f el and f os, not just of f el [18–22, 78].

Indeed, the classical treatment of dislocation climb suggests that the osmotic force scales with the vacancy su-
persaturation level. However, as our approach reveals, at the local level (near each dislocation segment), the local
concentration is often zero, so that the driving force for vacancy emission is almost independent of the global vacancy
concentration. As well, stress induced climb is seen to clearly dominate over chemical climb because the mechanical
bias that controls vacancy emission (local stresses) is dominant over drift effects brought about by stress gradients that
control vacancy absorption.

4.3. Mobility functions

Mobility functions relate forces (stresses) and dislocation velocities and thus are an essential constitutive input to
DDD simulations. For climb, it is generally impractical to simulate vacancy-dislocation coevolution in the manner
done here, or as in molecular dynamics simulations. Hence, the present simulations should be seen as an interme-
diate step linking vacancy kinetics with dislocation dynamics, providing a general-purpose mobility functions with
dependencies on the relevant state variables of the problem. Several authors have derived climb mobilities of the type
[21, 22, 78, 79]:

Mc =
2πDvΩaC0

kTb2 sin2 θ ln(r∞/r0)
(24)
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obtained by linearizing the exponential term containing the mechanical work done by the elastic force (Dv is the
vacancy diffusivity, and r∞ and r0 are the standard elastic integration limits around a dislocation). θ represents the
dislocation character, with sin θ = 1 for edge dislocations. The application of this expression in DDD simulations
has been tested in depth [80] showing that it can work qualitatively for situations such as prismatic loop expansion
and ‘raft’ microstructure formation. Our expression, by contrast, emanates from elementary vacancy processes such
as lattice diffusion, emission, and absorption, and includes spatial and time fluctuations intrinsically. A comparison
of both mobilities in the 800 < T < 1500 K interval is provided in Figure 10. An obvious difference is that, in our
treatment, the mobility function itself depends on the vacancy supersaturation Cv/C0, whereas eq. (24) does not. The
most important difference to note, however, is how much faster the present mobilities are compared to the classical
ones represented by eq. (24) (between two to three orders of magnitude, respectively, at high and low temperatures).
We again rationalize this in terms of the local nature of vacancy absorption/emission, which is not captured by classical
models based on homogeneous vacancy concentrations and smooth defect fluxes into or out of dislocation segments.
Further studies are recommended to establish the correct time scale of climb in bcc metals.

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

M
c
[P
a·s

]−
1

8 10 12 14

(kT )−1 [eV]−1

eq. (24)

eq. (21)

Figure 10: Comparison between eqs. (21) (present climb mobility expression, dashed blue) and (24) (expression by Bako et al. [22], red continuous).

The final expression for the climb velocity for general use in DDD simulations is:

vc = A(y) exp
(
−

∆Q(y)
kT

) [
kT
Ωa

(
y − 1

y

)
− σxx

]
b sin θ (25)

where y =
C0
Cv

, ∆Q(y) ≈ 1.3 eV and A(y) given by eqs. (22) and (23), σxx is the corresponding component of the local

stress tensor at segment i, σ(ri), and θ = cos−1
(

b·t
b

)
.

5. Conclusions

We separate our conclusions into those relevant for the theory of plasticity and those that are technical in nature.
Our main physical conclusions are:

• Stress gradients control vacancy diffusion in the presence of dislocation elastic fields. This results in a drift on
vacancy transport that steers defects towards dislocation cores, conferring a mechanical bias to an otherwise
‘chemical’ process.

• Climb is dominated by vacancy emission even when the background vacancy concentration is much higher than
the equilibrium one. This is because local vacancy conditions control the overall kinetics, as captured in our ap-
proach, whereas classical treatments assume smooth vacancy fluxes from homogeneous defect concentrations.
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• Climb velocities might be much faster than otherwise believed when one uses the classical theory of climb.
Again, a consequence of local vacancy-dislocation interactions.

Our main technical conclusions are:

• We have developed a discrete stochastic model of vacancy evolution in the presence of arbitrary elastic fields
furnished by DDD methods. Vacancy kinetics include emission, diffusion, and absorption, rigorously coupled
to underlying dislocation fields, while absorption/emission events change the dislocation microstructure which
is updated in time and, with it, the elastic fields.

• The method enables the calculation of dislocation climb mobility functions as a function of temperature, pres-
sure, and vacancy concentration, to be directly used in parametric DDD simulations. The calculated climb
mobilities are over 100× larger than those from previous derivations.

• Preliminary calculations of dislocation bypassing of spherical precipitates demonstrate that the method is capa-
ble of simulating physical processes conducive to high-temperature creep.
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Appendix A. Numerical solution procedure

The challenge in solving eq. (14) using expression (8) is that δxi and ui have an implicit relationship. That is, to
compute ui one needs to know δxi, which itself is sampled from the solution to the drift-diffusion equation (8) which
requires ui as an input. Solving this requires running a self-consistent iterative procedure until the values of δxi and ui
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self-consistently converge.

Appendix A.1. The Box-Müller sampling

To sample from eq. (8) we use the Box-Müller approach [81], by which two random samplings z1 and z2 are
generated using:

z1 =
√
−2 ln ξ1 cos(2πξ2)

z2 =
√
−2 ln ξ1 sin(2πξ2)

where ξ1 and ξ2 are two uniformly distributed random numbers in the (0, 1] interval. From this, the jump steps
obtained are:

(δxi)1,2 = uiδt + z1,2
√

2Dδt (A.1)

Note that δt is an input to the sampling procedure, but it is a priori unknown. This means that it also should be
determined self-consistently (iteratively).

Appendix A.2. Numerical algorithm

Next, we present the recursive algorithm used to integrate the transport equations.
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Algorithm 1 Numerical procedure to solve the vacancy elasto-diffusion model.

1: Initialize: TOL, maxiter, tTOT.
2: for n = 1, maxiter do
3: Initialize: δt = δtn−1, δt′ = 0.
4: Initialize/update: RTOT
5: Initialize/update: N, M → DDD lib.
6: while |δt − δt′| > TOL do
7: for ivac = 1, N do
8: Get: R3 point P(ivac)
9: Get: stress tensor σ(P)← DDD lib.

10: Calculate: ∇xTr(σ) vector at P as indicated in eq. (14).
11: for j = 1, 3 do
12: Select: trial jump step δx j.
13: while |δx j − δx′j| > TOL do
14: Calculate u j from δx j and ∂σkk/∂x j using eq. (14).
15: Using u j and δt, sample δx′j from Gaussian distribution (8).
16: end while
17: Calculate reaction rate: rivac

j as: rivac
j =

(
2D/δx′j

)2

18: RTOT = RTOT + rivac
j

19: end for
20: end for
21: for idisl = 1, M do
22: Resolve all vacancy absorption instances and update nodal network (refer to eq. (15))↔ DDD lib.
23: Calculate vacancy emission rate ridisl according to eq. (17).
24: RTOT = RTOT + ridisl

25: end for
26: Sample δt′ from Poisson distribution: δt′ = (RTOT)−1 ln χ (χ is a uniform random number).
27: end while
28: Sample event from uniform distribution RTOT using binary search tree.

29: Execute event:


- Displace vacancy along each directions by amount δx j, j = 1, 2, 3

or
- Insert vacancy in box

30: tTOT = tTOT + δt′

31: n = n + 1
32: end for

where N and M are, respectively, the number of vacancies and dislocation segments in the simulation box at any give
time step. In this fashion, the DDD method acts as a library linked to the main workflow loop, from which information
is passed bidirectionally. These links are highlighted in red color in the algorithm. Basically, algorithm 1 consists of
two for loops nested within a do-while loop. Each of the for loops is tasked with computing event rates due to
vacancy diffusion (first loop) and vacancy emission (second loop), respectively. As such, one runs over all vacancies
while the other runs over all dislocation segments. The do-while loop ensures the self-consistency of the δx ≡ δx′

condition.

Appendix A.3. Computational cost

To assess the computational cost of the simulations conducted here (which follow algorithm 1), we calculate the
ratio of CPU time to simulated (physical) time as a function of pressure, temperature, and vacancy concentration.
We find that temperature is overwhelmingly the dominant parameter, with pressure and vacancy concentration having
only a minor impact on CPU time. An example is shown in Figure A.11, where the ratio of CPU time to simulated
time for local and global vacancy emission implementations is given as a function of simulated temperature and
pressure (with Cv = C0). Temperature is seen to exponentially increase the CPU cost, while pressures up to ±100
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MPa have little to no effect on the computational efficiency. The local treatment of vacancy emission adds a cost
factor of approximately 100× to the simulations compared to the global implementation. This approximately scales
with the number of dislocation segments in the simulation box, so that a local treatment of emission incurs in an extra
cost associated with a linear sweeping over all dislocation segments. This knowledge can guide further simulation
campaigns when CPU time is of the essence.
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Figure A.11: Ratio of CPU time to simulated time for local and global vacancy emission implementations as a function of simulated temperature
and pressure (with Cv = C0).

Appendix B. Second-order stress effects on the osmotic force

Starting from the general expression for the osmotic force in eq. (20):

f os =
bkT
Ωa

log
Cv

C0
(B.1)

one can refer Cv and C0 to the local and remote concentrations near a dislocation core, such that the logarithmic term
is expressed as log (Clocal/Cremote). This converts the spatial uniformity of Cv and C0 to the level of proximity to a
dislocation where stress gradients can be felt by vacancies.

Clocal and Cremote can be replaced by their time dependent solutions (see eq. (8)):

Clocal(x, t) =
1

(4πDt)1/2 exp
{
−

(x − ut)2

4Dt

}
and

Cremote(x, t) =
1

(4πDt)1/2 exp
{
−

x2

4Dt

}
Here we have assumed that vacancies near dislocations cores feel stress gradients and are subjected to a drift, while
far away from them they do not. Inserting the above expressions into eq. (B.1) and operating:

f os =
bkT
Ωa

log
Clocal

Cremote
=

bkT
Ωa

log
exp

{
−

(x−ut)2

4Dt

}
exp

{
− x2

4Dt

} =
bkT
Ωa

[
− (x − ut)2 + x2

4Dt

]
=

bkT
Ωa

ux
2D

(B.2)
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where second order terms in time have been discarded. Replacing u by its expression in eq. (14), and assuming that
‖x‖ ≈ δx:

u ≈
DΩa

3kT
∇Tr(σ) (B.3)

leads to:

f os ≈
b2

3
∂σ

∂x
(B.4)

where it has been further assumed that the vacancy diffusion length is on the order of the Burgers vector’s modulus.
Using the steady-state solution of the drift-diffusion equation leads to the same expression, assuming perfect

vacancy absorbance at the dislocation core, and a uniform remote vacancy concentration of C0, i.e. [44]:

Ccore(x) = C0

exp
{

ux
D

}
− 1

exp
{

u`
D

}
− 1


Accordingly, the osmotic force becomes:

f os =
bkT
Ωa

(
1 −Ccore/C0

)
≈

bkT
Ωrel

exp
{

ux
D

}
− 1

exp
{

u`
D

}
− 1

 =
bkT
Ωa

1 − ux/D

exp
{

u`
D

}
− 1

 (B.5)

where we have used a first-order expansion of the exponential, x ≡ δx ≈ 0, and ` is a screening distance. This results
in the expression:

f os =
bkT
Ωa

u
D

(` − δx) (B.6)

which is identically equivalent to eq. (B.4) when δx ≈ b and ` ≈ 2b, both reasonable values for both parameters. This
shows that when stress gradients are operative, the osmotic force is also subjected to a mechanical bias.

24


