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We performed ab initio density functional theory simulations of 1
2
〈111〉 interstitial dislocation

loops, closed and open vacancy loops, 〈100〉 interstitial loops and voids in tungsten, using simulation
cells involving from 2000 to 2700 atoms. The size of the loops transcends the microscopic scale
and reaches the mesoscopic scale where asymptotic elasticity treatment applies. Comparing the
formation energies of dislocation vacancy loops and voids, we conclude that a void remains the most
energetically favorable vacancy defect over the entire range of sizes investigated here. A closed 1

2
〈111〉

vacancy loop is more stable than an open loop if the number of vacancies in the loop is greater than
∼45, corresponding to the diameter of the loop of approximately 1.8 nm. We have also computed
elastic dipole tensors and relaxation volumes of loops and voids, representing the source terms in
continuum models for radiation induced stresses and strains in the material. A detailed analysis
of metastable configurations of closed and open vacancy loops performed using molecular statics
simulations shows that vacancy loop configurations are not unique, and significant fluctuations of
defect structures may occur in the course of microstructural evolution under irradiation.

I. INTRODUCTION

Tungsten is an armour material in the design of the
demonstration fusion power plant (DEMO) [1, 2], and it
has been chosen as the plasma facing material in the di-
vertor of ITER [3]. It has the highest melting point of
all pure metals, high thermal conductivity and low phys-
ical sputtering yield, which are important considerations
for a material that is expected to be exposed to high
heat flux and intense bombardment by light ions from
the plasma. Unstable isotopes of tungsten have relatively
short half-life [4], enabling the recycling of tungsten ex-
posed to neutron irradiation.

Exposure to neutron irradiation also produces struc-
tural defects in the form of Frenkel pairs of vacancies
and self-interstitial atoms as well as clusters of defects.
These clusters form in high-energy collision cascades, and
initially adopt highly non-equilibrium structural config-
urations that then rapidly relax into the relatively low-
energy defect structures like dislocation loops and voids
[5–11]. The accumulation of defects gives rise to the
degradation of thermal [12] and mechanical [13] prop-
erties of tungsten, which in turn limits the lifetime of
tungsten components.

Lattice defects also form in ion irradiation experiments
that mimic effects of exposure to neutrons [10, 14–18].
In-situ transmission electron microscopy (TEM) experi-
ments show that defects formed in thin tungsten foils at
low exposure (≤0.01 dpa) over a broad range of temper-
atures from 30K to 1073K are predominantly 1

2 〈111〉 va-
cancy and interstitial dislocation loops [10, 14]. At higher
radiation exposure from 0.4 to 30 dpa, in the broad tem-
perature range from 300K to 1073K, 1

2 〈111〉 interstitial
loops become more prevalent [15, 16]. Some of the dis-
location loops are observed to have a 〈100〉 Burgers vec-
tor, but the proportion of these loops diminishes at high
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temperatures. TEM examination of neutron irradiated
tungsten shows the formation of fairly large voids in the
material exposed to high dose at elevated temperatures
[19].

Although TEM is a powerful tool for observing the
formation and evolution of defects under irradiation, its
resolution is limited. Dislocation loops that are smaller
than 1nm in diameter are difficult to resolve in conven-
tional TEM images. It is also very difficult to identify
the nature, vacancy or self-interstitial, of the loops that
are smaller than 4nm in diameter. Yet simulations of
collision cascades [5–8] suggest that the statistics of sizes
of defects follow a power law, which suggests that the
majority of defects are below the threshold of resolution
of conventional TEM [10, 20].

Long-range elastic interactions between radiation de-
fects [21], and the macroscopic stress fields that pop-
ulations of defects produce in the materials [22], af-
fect the dynamics of defects and hence the evolution
of microstructure [14, 23]. The observed spatially self-
organized configurations of dislocation loops [16, 24] can
be explored using Langevin defect dynamics and stochas-
tic dislocation dynamics models [24, 25] that treat both
the fluctuating thermal motion of defects and disloca-
tions as well as elastic forces acting between the defects.
A defect has a self-interaction with a surface due to image
forces, leading to a high surface sink strength for mobile
defects [26, 27]. However, at a depth below the surface
large compared to the size of the loop, elastic interac-
tions between defects can reduce macroscopic diffusivity
and prevent escape to the surface [14].

The energy of elastic interaction between localized de-
fects can be evaluated using the elastic dipole tensor and
Greens function formalism [21, 28–34], where the elastic
dipole tensor fully defines the elastic field of a localized
defect in the asymptotic limit [35]. Elements of elastic
dipole tensor can now be readily derived from ab initio
density function theory (DFT) calculations or molecular
statics [21, 28–34].

In this study, we perform large scale DFT calcula-
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tions of formation energies, dipole tensors and relax-
ation volumes of 1

2 〈111〉 dislocation loops, including self-
interstitial atom (SIA), and vacancy loops in tungsten.
We have also investigated 〈100〉 SIA loops, and vacancy
clusters and voids. We also consider planar vacancy de-
fects, sometimes called ‘open vacancy loops’ in the litera-
ture [36] - a hypothetical class of defects comprising a disc
of vacancies, which if the surfaces were pressed together
would form a vacancy dislocation loop. If the elastic and
core energy combined for a vacancy loop is greater than
the surface energy of the equivalent-sized planar vacancy
defect, then there is a thermodynamic driving force from
the loop to the planar defect. The transformation may be
facilitated in a densely defected environment by fluctu-
ating nanoscale stresses [37] or impinging mobile defects
[38].

The sizes of defects explored by DFT transcend the
microscopic scale and reach the mesoscopic scale. The
computed values do not rely on the fitted semi-empirical
interatomic potentials [36] and do not require extrapo-
lating the DFT data [11] from the microscopic limit.

We compare the DFT data with molecular statics cal-
culations performed using interatomic potential as well
as with analytical expressions derived from linear elas-
ticity. Further molecular statics analysis is performed to
explore the metastable states involving the transition be-
tween closed and open vacancy loops. The results show
that while the asymptotic linear elasticity treatment re-
tains its accuracy on the mesoscopic scale and approxi-
mates the energy of loops and void well, the energy of
both types of defects contains a substantial non-elastic
contribution associated with dislocation cores or open
surfaces. This also shows that the DFT data, describing
dislocation loops and voids on the mesoscale, are readily
transferable to the continuum scale simulations.

II. AB INITIO CALCULATIONS

Density functional theory calculations described in
this study were performed using the OpenMX ab ini-
tio simulations package [39–42]. OpenMX is a DFT
simulation program using norm-conserving pseudopo-
tentials [43–47] and pseudo-atomic localized basis func-
tions [39, 40]. It is primarily designed for large-scale
DFT calculations on parallel computers using MPI or
MPI/OpenMP hybrid parallelism. To accelerate the
large-scale simulations we have inoculated the Eigen-
value SoLvers for Petaflop-Applications (ELPA) [48, 49]
version 2018.05.001 to OpenMX. ELPA provides highly
scalable and efficient means for finding eigenvalues and
eigenstates. The MPI/OpenMP hybrid implementation
of ELPA also substantially reduces the memory require-
ments, enabling modelling metallic systems containing
thousands of atoms.

The pseudopotential includes the 5p, 5d, and 6s states
of a tungsten atom as valence states, involving in to-
tal 12 valence electrons. A set of basis functions corre-

sponding to two s, two p and two d optimized atomic
orbitals is used in the calculations, with the cutoff ra-
dius of 7 Bohr radii aB . The exchange correlation func-
tional is taken in the generalized gradient approxima-
tion (GGA), according to Perdew, Burke and Ernzerhof
(PBE) [50, 51]. Charge density is represented on regular
real-space grid, where the distance between the grid point
is always smaller than 0.1 Å. The maximum force acting
on an atom in a relaxed ionic configuration is assumed to
be less that 1×10−4 Hartree/Bohr radius. Since the sim-
ulation boxes considered in this study are all very large,
in k-space the calculations only involve one gamma point.

We created perfect BCC cubic cells containing 2000
and 2662 atoms, and relaxed them to the stress free con-
dition. Then, we fixed the size of the simulation cell, and
created a defect inside it by adding or removing atoms.
In this way, we created 1

2 〈111〉 SIA, vacancy open and va-
cancy closed loops, 〈100〉 SIA loops and voids. We only
considered pure prismatic loops, where the normal vector
to the habit plane of a loop is collinear with the Burgers
vector.

When treating b = a
2 〈111〉 prismatic loops, we created

hexagonal loops with 7 and 19 atoms in the 2000 atoms
cells, and loops with 37 and 61 atoms in the 2662 atoms
cells. SIA loops were created by inserting an extra atom
in each neighbouring atomic string running in the [111]
direction. Open loops were created by simply removing
atoms from the simulation cells. Closed loops were cre-
ated by removing atoms, followed by pulling atoms in the
centre of the loop close together. The two upper and two
lower layers of atoms, corresponding to the removed layer
of atoms and within the loop radius, were moved in the
Burgers vector direction such that the spacing between
all layers between the third upper and lower layers were
equally spaced. When considering 〈100〉 SIA loops, we
created square loops with 13 and 25 atoms in 2000 atom
cells, and loops with 41 and 61 atoms in 2662 atoms cells.
Voids with 9, 27, 51, 59, 65 and 89 atoms were all created
in 2000 atoms cells.

Before performing ionic relaxation using OpenMX, we
relaxed all the configuration using the conjugate gradient
minimisation algorithm implemented in LAMMPS [52].
We used the Mason-Nguyen-Manh-Becquart (MNB) in-
teratomic potential for tungsten [53], which produces
energetically stable closed vacancy loop structures even
when the loop is relatively small.

The formation energy of a defect can be written as
[31–34]:

EFD = [ED(ND)− Eapp]− ND
Nperf

Eperf (Nperf )− Ecorrel ,

(1)
where Nperf is the number of atoms in a perfect lat-
tice cell, ND is the number of atoms in a simulation
box containing a defect. ED is the total energy of the
cell containing a defect, Eapp is the energy associated
with applied strain, Eperf is the energy of the perfect
lattice cell, and Ecorrel is a correction term resulting from
the condition of vanishing global average strain and pe-
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C11 (GPa) C12 (GPa) C44 (GPa) a (Å)

OpenMX 535.23 191.09 150.37 3.199

VASP [31] 518.26 199.77 142.09 3.184

VASP [54] 517.4 199.3 142.3 3.186

MNB [53] 521.85 204.11 160.62 3.165

GAP [55] 526 200 149 3.1852

Exp. [56] 522.24 204.4 160.6 3.16

TABLE I. Elastic constants and the bcc lattice parameter
of tungsten calculated using OpenMX, VASP [31, 54], the
MNB many-body potential [53], the Gaussian Approximation
Potential (GAP) [55]. The computed values are compared
with the corresponding experimental values taken from Ref.
[56].

riodic boundary conditions. Eapp = 0 here, because we
keep the boundaries of the simulation cells fixed, and
do not relax the boundaries of the cells containing de-
fects. Ecorrel can be evaluated numerically if the elastic
dipole tensor Pij and and elastic constant tensor Cijkl
are known [21, 28, 29, 31–34]. Ecorrel was evaluated using
the CALANIE code described elsewhere [34].

The elastic dipole tensor of a defect can be evaluated
from the macrostress σ̄ij developing in the simulation cell
as a result of formation of a defect in it [21, 28, 29, 31–34],
namely

Pij = −
∫
Vcell

σij(r)dV = −Vcellσ̄ij , (2)

where σij is the spatially varying stress in a periodically
translated simulation cell, and σ̄ij is the average stress
in the cell. The above formula assumes the validity of
the linear elasticity approximation. It also assumes that
atomic displacements at the cell boundary are well ap-
proximated by linear elasticity.

The relaxation volume of a defect equals the volume
change of the elastic material resulting from the elastic
relaxation of the position of atoms around the defect [35].
The volume change is measured with respect to the per-
fect crystal reference state. For example, the relaxation
volume of a vacancy is negative because the material sur-
rounding the vacancy relaxes towards it. The relaxation
volume tensor of a defect can be related to its dipole
tensor as [21, 35]

Ωij = SijklPkl, (3)

where S = C−1 is the elastic compliance tensor, satisfy-
ing the condition CijklSklmn = 1

2 (δimδjn + δinδjm). The
relaxation volume of the defect can be computed by tak-
ing the trace of tensor Ωij , namely [35]

Ωrel = Tr(Ωij) = Ω11 + Ω22 + Ω33. (4)

The elements of the elastic constant tensor, Cijkl, can
be computed using the Le Page and Saxe method [57].

FIG. 1. Formation energies of 1
2
〈111〉 SIA, vacancy open and

vacancy closed loops, 〈100〉 SIA loops and voids, calculated
using density functional theory package OpenMX. Lines con-
necting the data points are not interpolations, rather they are
shown to guide the eye.

We performed the calculations using a 2-atom simula-
tion cell and 21 × 21 × 21 k-point mesh. In the Voigt
notation, we find C11 = 535.23 GPa, C12 = 191.09 GPa,
C44 = 150.37 GPa, and the equilibrium lattice constant
of a = 3.199 Å. These values compare well with the ex-
perimental values [56] as well as with values derived from
earlier VASP calculations [31, 54]. The ab initio and ex-
perimental values are summarised in table I, together
with the values found using the MNB many-body inter-
atomic potential [53].

We also performed several other benchmark tests.
We calculated the formation energy of configurations
with a vacancy and a self-interstitial atom (SIA) in a
〈111〉 dumbbell configuration using supercells containing
4×4×4 bcc unit cells and a 5×5×5 k-point mesh. The
formation energy of vacancy found in the simulations is
3.428 eV whereas the formation energy of a 〈111〉 dumb-
bell is 10.557 eV. These values agree well with the VASP
data evaluated using the PAW potential [31], where the
formation energy of a vacancy was found to be 3.223 eV,
and the formation energy of a 〈111〉 dumbbell 10.287 eV.

III. DFT RESULTS AND COMPARISON WITH
LINEAR ELASTICITY

The formation energies and elastic dipole tensors of
1
2 〈111〉 self-interstitial atom (SIA) dislocation loops, open
and closed vacancy loops, 〈100〉 SIA loops and voids, cal-
culated using OpenMX, are shown in Figs. 1 and 2. A
spherical void, according to the data, remains the most
stable vacancy cluster configuration. The 〈100〉 SIA loops
have higher formation energies than 1

2 〈111〉 SIA loops.
One of the key findings of this study is the explicit

demonstration of that the relative stability of 1
2 〈111〉
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FIG. 2. Elastic dipole tensors of 1
2
〈111〉 SIA, open and vacancy closed vacancy loops, and voids, computed using OpenMX. The

Burgers vector of loops b = 1
2
[111]. Pαα are the diagonal elements of the elastic dipole tensor, whereas Pαβ are the off-diagonal

elements.

FIG. 3. Elastic dipole tensors of 〈100〉 SIA loops with the
Burgers vector b = [001], calculated using OpenMX. All the
elements not shown in the Figure, vanish because of symmetry
considerations.

closed and open vacancy loops changes when the loops
contain approximately 45 vacancies. The formation en-
ergy of a 37 vacancy planar defect is lower than that the
corresponding closed loop, whereas the formation energy
of a 61 vacancy closed loop is lower than that of the cor-
responding planar defect. The atomic configurations of
37- and 61- vacancy loops are show in Fig. 4. They were
generated using AtomEye [58] by filtering out the nearly
perfect lattice atoms using a central symmetry criterion.

We can compare the DFT values with analytical ex-
pressions for the energy of defects derived from the the-
ory of linear elasticity [59]. The purpose of such a com-
parison is not only to establish the range of validity of
elasticity theory, but also to produce explicit analytical

expressions valid in the asymptotic limit where the size
of dislocation loops is large.

The formation energy of an SIA or a closed vacancy
dislocation loop in the asymptotic continuum limit, de-
scribed by the elasticity approximation, can be written
as a sum of contributions from the dislocation segments
forming the perimeter of the loop [59] or, in a generalised
form, as a contour integral over the perimeter of the loop
as [60]

E =

[∮
E(t)dt

]
ln

(
R̃

δ

)
+

∮
Eδ(t)dt+

∮
Ec(t)dt, (5)

where R̃ is a measure of loop linear size, for example the
loop radius, and δ is the effective radius of the disloca-
tion core where the elasticity approximation fails. E(t)
is the pre-logairthmic factor, defining the magnitude of
elastic self-energy per unit length of the dislocation line
with Burgers vector b and tangent vector t. This pre-
logarithmic factor can be computed from the tensor of
elastic constants Cijkl of the material using the equation
[59, 60]

E(t) =
1

2π
bibmnjnqCijklCnpmq

× Im

[
3∑

α=1

κ(α)
p κ

(α)
l

Nkn(κ(α))

ns
∂D(κ(α))
∂κs

]
. (6)

Here D(κ) is the determinant of matrix Lik(κ) =
Cijklκjκl, and index α refers to the three roots of the
sixth-order algebraic equation D(κ) = 0, which are situ-
ated in the upper half of the complex plane. In equation
(5), Eδ(t) and Ec(t) are the core-traction and non-linear
core energy per dislocation unit length, respectively. Al-
though in principle the core traction term Eδ(t) can also
be evaluated explicitly from elasticity [59], and Ec(t) can
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FIG. 4. Atomic configuration of a circular vacancy 1
2
〈111〉 loop. Bulk atoms were filtered out according to the central symmetry

parameter criterion. (Top left) 37 atoms closed loop. (Top right) 37 atoms open loop. (Bottom left) 61 atoms closed loop.
(Bottom right) 61 atoms open loop.

be determined by comparing the elastic energy with the
energy derived from discrete atomistic simulations, in
practice only the first term E(t) in equation (5) should
be treated as a meaningful and reasonably well defined
quantity.

In the isotropic elasticity limit E(t) does not depend
on the direction of the tangent vector of the dislocation
line, and for an edge dislocation this factor equals [61]

E(t) =
µb2

4π(1− ν)
, (7)

where µ is the shear modulus and ν is the Poisson ratio
of the material.

To assess how strongly the energy of edge dislocations,
forming the perimeter of a pure prismatic dislocation
loop, depends on the orientation of the dislocation line
with respect to the crystal lattice, in Figure 5 we show
how the pre-logarithmic factor E(t) varies as the dis-
location line rotates around its Burgers vector. In the
nearly exactly isotropic elasticity limit, corresponding to
the values of elastic constants observed experimentally at
ambient conditions, the energy of either 1

2 〈111〉 or 〈001〉
edge dislocations barely depends on the orientation of
the tangent vector of the dislocation line. Although the
empirical potential or DFT models predict tungsten as
being elastically anisotropic, Figure 5 shows that the de-
gree of elastic anisotropy remains fairly small in all the
cases considered in this study. This justifies the use of

E111 E001
E001
E111

E111 E001
OpenMX 0.833 1.130 1.356 3.769 5.110

VASP [31] 0.788 1.065 1.352 3.548 4.797

VASP [54] 0.788 1.065 1.352 3.550 4.800

MNB [53] 0.829 1.104 1.332 3.711 4.943

GAP [55] 0.813 1.097 1.348 3.662 4.937

Exp. 0.827 1.101 1.332 3.696 4.923

TABLE II. Values of pre-logarithmic factors in the expres-
sion for the orientation-average line energy of 1

2
〈111〉 and

〈001〉 edge dislocations computed using anisotropic elastic-
ity [59, 60], and given in eV/Å units. The last two columns
show values of parameter E (in eV) in the leading term of
the asymptotic elasticity expression for the energy of a dis-
location loop as a function of the number N of point defects
that the loop contains E(N) ∼ E

√
N ln(N), see text for more

detail. Note that in the isotropic elasticity approximation,
where C11 − C12 = 2C44, the ratio of elastic energies of line
〈001〉 and 1

2
〈111〉 edge dislocations equals 4/3=1.3333.. [60],

and the fact that the values given in the third column are
very close to 4/3 shows that all the models explored in this
study predict tungsten as being nearly elastically isotropic.

orientation-average values of E(t), which we use below
when referring to the energy of either 1

2 〈111〉 or 〈001〉
edge dislocations.
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FIG. 5. Pre-logarithmic factor E(t) entering the first term
of equation (5) plotted as a function of the orientation of the
tangent vector of the dislocation line. The curves are com-
puted using equation (6) for the 1

2
〈111〉 and 〈001〉 edge dis-

locations using the elastic parameters given in Table I. The
orientation-average values of pre-logarithmic factors are sum-
marised in Table II.

Through equation (5), we can relate the elastic energy
of dislocation lines forming the perimeter of a dislocation
loop, to the formation energy of the loop as a whole,
assuming that the elastic field of the loop dominates its
formation energy. In a bcc lattice with lattice parameter
a, the volume per atom equals Ω0 = a3/2. Since the
magnitude of the Burgers vector of a 1

2 〈111〉 loop is |b| =
a
√

3/2, and the magnitude of the Burgers vector of a
〈001〉 loop is |b| = a, we find that the area per atom,
viewed in projection along the Burgers vector direction,
is a2/

√
3 for a 1

2 〈111〉 loop, and a2/2 for a 〈001〉 loop.
Since the area of a hexagonal dislocation loop with

side L is 3
√

3L2/2, we can relate the number of atoms
N in a hexagonal loop to its area and length L as N =
9L2/2a2. From this expression, we find the elastic energy
of a hexagonal loop as

Ehex(N) = 2
√

2a
√
N Edisl(N), (8)

where Edisl is the energy per unit length of a dislocation
line forming the perimeter of the loop. From equation

(5) this is seen to be Edisl = ln(R̃/δ) ∼ (1/2) lnN , and
hence the energy of a hexagonal 1

2 〈111〉 dislocation loop
is

Ehex(N) ∼
√

2aE111

√
N ln(N) +O(

√
N). (9)

Similarly, for a square 〈001〉 dislocation loop we find that
the side L of the loop is related to the number N of atoms
that the loop contains as N = 2L2/a2. Since the length
of the perimeter of a square loop is 4L, we find that the
elastic energy of a square 〈001〉 loop can be expressed
in terms of the energy of line dislocations forming its
perimeter as

Esquare(N) ∼
√

2aE001

√
N ln(N) +O(

√
N). (10)

This expression is formally identical to the expression
for the energy of a hexagonal loop containing the same
number of atoms (9) above, and this enables using the
same simple asymptotic formula for the elastic energy
of dislocation loops of both types E(N) ∼ E

√
N ln(N).

Values of parameter E in this formula, derived from the
orientation-average line energies shown in Figure 5, are
given in Table II.

Curves obtained by fitting Eq. (5) to the data de-
rived from OpenMX and MNB potential calculations are
shown in Fig. 6. To improve the quality of the fit in
the mesoscopic range of values of N , we also include the
core energy term ∼

√
N and a constant term particularly

significant at N ≈ 1, arriving at

Eloop(N) = E
√
N lnN + E1

√
N + E2. (11)

Parameters E1, E2 were fitted using linear least squares
to the form

Eloop(N)√
N

− E lnN = E1 +
E2√
N
. (12)

The values of parameters derived from fitting and refer-
ring to the various simulation models explored in this
study, are summarised in table III. A simple examina-
tion of values given in the table shows that the leading
term in the asymptotic expression becomes dominant for
N ≥ 30, and this condition approximately defines the
range of validity of the elasticity approximation.

We should like to point out that the above analysis
highlights a general fundamental point associated with
the linear elasticity approximation, namely that the total
energy values derived from the elasticity theory are valid
only in the asymptotic sense. For example, the elastic-
ity treatment enables evaluating the leading term in the
expression for the energy of a dislocation loop (11). How-
ever, the ratio of the leading term to the second term in
equation (11) is (E/E1) lnN . This shows that only in the
macroscopic limit where N is very large that the elastic
part of the energy of the loop (the first term in (11)) be-
comes much larger than the contribution to the energy
from the dislocation core (the second term in (11)).
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FIG. 6. Formation energies of prismatic SIA and vacancy dislocation loops evaluated using OpenMX and MNB potential, and
fitted according to Eq. 5.

Structure Method E E1 E2
1
2
〈111〉[111]i DFT OpenMX 3.769 9.08± 0.36 3.0± 1.5

1
2
〈111〉[111]i DFT VASP [54] 3.550 13.33± 0.75 −9.2± 2.6

1
2
〈111〉[111]i GAP [55] 3.662 8.93± 0.43 3.7± 1.5

1
2
〈111〉[111]i MNB [53] 3.711 4.89± 0.09 7.3± 0.7

1
2
〈111〉[111]v DFT OpenMX 3.769 5.70± 0.54 −9.5± 2.2

1
2
〈111〉[111]v GAP 3.662 6.68± 0.20 −14.6± 1.4

1
2
〈111〉[111]v MNB 3.711 3.26± 0.09 −5.5± 0.9

〈100〉[100]i DFT OpenMX 5.110 9.82± 0.16 4.2± 0.8

〈100〉[100]i DFT VASP 4.800 9.87± 0.55 1.2± 1.8

〈100〉[100]i GAP 4.937 10.25± 0.37 0.5± 1.3

〈100〉[100]i MNB 4.943 −0.38± 0.11 16.0± 0.9

〈100〉[100]v GAP 4.937 5.07± 0.17 −29.1± 1.3

〈100〉[100]v MNB 4.943 2.45± 0.19 −12.7± 1.8

〈100〉[211]v MNB 3.4± 0.6 6.1± 3.8 −10± 10

TABLE III. Empirically determined fits to the formation energy of interstitial (i) and vacancy (v) closed dislocation loops

considered in this work. Fits are in the form Eloops(N) = E
√
N lnN + E1

√
N + E2. Note that when habit plane normal and

Burgers vector are parallel, E is fixed by crystal and elastic properties of the material, E1 is a measure of non-linear core
energies, and E2 is an offset. Fits for interstitial loops were taken for sizes N ≥ 7. For the MNB potential, fits for vacancy
closed loops were taken for sizes N ≥ 19. The error bars are 68% confidence intervals (one standard deviation).

Neglecting the dislocation core effects, the dipole ten-
sor of a dislocation loop can be written as [21]:

Pij = CijklbkAl, (13)

where b is the Burgers vector and A is the area vector of
a loop. The relaxation volume of a large dislocation loop
simply equals its geometric volume, see equation (43) of
[62] and the derivation given in [21]

Ωrel = b ·A = ±NΩ0 = V, (14)

where N is the number of point defects that form the
dislocation loop, and Ω0 = a3/2 is the atomic volume.
The relaxation volume is positive for a loop of intersti-
tial type and negative for a loop of vacancy type [21, 62].
It is possible to derive an explicit expression for Pij as a
function of N , and similarly to the above expression for
the relaxation volume, and in the elasticity approxima-
tion it is expected that the dipole tensor of a loop should
vary linearly as a function of N .
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FIG. 7. Calculated elastic dipole tensor Pij and relaxation volume of 1
2
〈111〉 SIA and vacancy closed loops with b = 1

2
[111] using

OpenMX and MNB potential, and linear elasticity predictions according to Eq. (13) and (14). The fact that the relaxation
volumes of loops derived from simulations are larger than predictions derived from the theory of elasticity, highlights the
contribution to the relaxation volumes from the highly distorted core regions at the perimeter of the loops. The contribution
to the relaxation volume of dislocation loops from the core effects results in that interstitial loops appear somewhat larger, and
vacancy loops somewhat smaller than what should be expected from the elasticity considerations.

The expected linear variation of elements of the dipole
tensor of loops evaluated using Eq. (13) is shown in
Fig. 7 and 8 together with values derived from DFT
simulations. The values predicted by elasticity for the
1
2 〈111〉 SIA loops are lower than the DFT and MNB po-
tential data points. It suggests the effective area of an
SIA loop is slightly larger than its geometrical value ex-
pected from elasticity considerations. The values derived
from DFT and atomistic simulations for vacancy loops
are also larger than the values derived from elasticity.
This is not unexpected as the non-linear deformations as-
sociated with the dislocation cores at the loop perimeter
give an extra positive contribution to the dipole tensor
and the relaxation volume of the loops.

The analysis of [001] SIA loops, where the Burgers vec-
tor points in the z direction, shows that the P11 ≡ Pxx
and P22 ≡ Pyy elements of the dipole tensor are higher
than the values predicted by linear elasticity, whereas the

P33 ≡ Pzz atomistic data fluctuate around the straight
line corresponding to the linear elasticity approximation.

The relaxation volumes of loops derived from atomistic
simulations also differ from the elasticity predictions [54],
and for the 〈100〉 loops the difference between the DFT
and atomistic values on the one hand, and elasticity pre-
dictions on the other hand, are fairly significant. This
is not surprising since the core of a 〈100〉 dislocation is
characterised by strong non-linear deformations, which
increase the apparent relaxation volume of the defect.

The formation energy of an open vacancy loop or a
void is dominated by their surface energy and surface
stress [36, 54]. We write

Esurf =

∫
γdA, (15)

where γ is the surface energy density, and dA is an in-
finitesimal element of surface area. This integral can be
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FIG. 8. Calculated elastic dipole tensor Pij and relaxation volume of 〈100〉 SIA loops with b = [001] using OpenMX and MNB
potential, and linear elasticity predictions according to Eqns. (13) and (14).

degeneracy c(hkl)

{100} 6 0.02893824442681180

{110} 12 0.02222232701901629

{111} 8 0.01158844076701676

{211} 24 0.01945812846145005

TABLE IV. Coefficients for calculating the average surface
energy of a spherical void.

approximated by a sum over surface facets

Esurf ≈
∑
(hkl)

γ(hkl)A(hkl), (16)

where A(hkl) is the area of an (hkl) surface.
For a spherical void, we may approximate its surface

energy Evoid as

A(hkl) = c(hkl)Atotal, (17)

where coefficient c(hkl) equals the Voronoi area corre-

sponding to a surface normal direction on a unit sphere
divided by 4π. The sum of all the c(hkl) is unity, and
their values are listed in Table IV (see appendix A). The
surface area of a spherical void Atotal = 4πr2. The ra-
dius r of a void can be calculated from its volume as
V = NΩ0 = (4/3)πr3.

Evaluating the energy of a planar void (which is an
open dislocation loop) is somewhat complicated by the
need to take into account the thin strip of atoms on its
perimeter (see appendix A). In appendix C, we find an
expression providing a good fit to the data, but we also
show that it is acceptable to approximate the energy sim-
ply by considering the areas of the planar facets, as in
Ref. [36]

Eopen ≈ 2Aface γn̂, (18)

where γn̂ is the surface energy density for a surface with
normal n̂ and Aface is the area of one face of the planar
void. In this approximation, the energy associated with
the perimeter of the open loop is ignored.

The formation energies predicted by the above approx-
imations, together with DFT and MNB potential data,
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FIG. 9. Formation energies of 1
2
〈111〉 open vacancy loops and

voids calculated using OpenMX and MNB potential, com-
pared with values derived from Eqs. (16) and (18).

are presented in Fig. 9. From the comparison, it appears
that the formulae for the formation energy of spherical
and planar voids match the atomistic simulation data
very well. Values of γ are presented in appendix B.

The dipole tensor of a spherical void has so far been
evaluated only in the isotropic elasticity limit in the lit-
erature [54]. The relaxation volume of a void can be
written as

Ωrel ≈ −4π

(
1− ν
1− 2ν

)
sr2

K
, (19)

where ν is the Poisson’s ratio, s is the average surface
stress, and K is the bulk modulus. The dipole tensor of
a void only has diagonal elements. In the isotropic limit,
we can write

P11 = P22 = P33 = KΩrel = −4π

(
1− ν
1− 2ν

)
sr2. (20)

The value of Poisson’s ratio and bulk modulus can be
obtained through ν = C12/(C11 + C12) and K = (C11 +
2C12)/3. The definition and values of surface stress sij
calculated using OpenMX and MNB potential are pre-
sented in appendix B. The average surface stress is cal-
culated by taking the average of the eigenvalues of sij
of different (hkl) surfaces on a sphere according to the
coefficient c(hkl). We obtain s = 0.1891eV/Å2 from the

OpenMX data, and s = 0.2523eV/Å2 from the MNB po-
tential data.

In Fig. 10, we show the predicted values of diagonal el-
ements of dipole tensor of a void according to Eq. (20) to-
gether with our data. Since the values of s differ between
OpenMX data and MNB potential data, the correspond-
ing predictions are also different. However, both suggest

good compatibility between linear elasticity theory and
DFT and many-body potential. We note that tungsten is
elastically nearly isotropic, and for anisotropic materials
our theory will need to be adjusted.

IV. COMPARISON WITH MANY-BODY
POTENTIALS

The molecular statics analysis by Gilbert et al. [36],
using the DND many-body potential [63], found the criti-
cal size at which a closed 1/2〈111〉 vacancy loop in tung-
sten is more stable than an open vacancy loop, occurs
at a diameter of 34 Å, corresponding approximately to a
157-vacancy defect. The average surface energy density
γ calculated using the DND potential is 0.174 eV/Å2.
This value is smaller than the DFT result obtained using
VASP, where γ = 0.229 eV/Å2 [54]. It is expected that
a DFT calculation should predict a vacancy closed loop
to be more energetically favourable than an open loop
(planar void) at smaller sizes, comparing to molecular
statics. Similar calculations by Fikar et al. [64] found
a critical size of 30 vacancies for the Ackland-Thetford
[65] potential and 115 vacancies for the Marinica et al.
EAM4 potential [66].

We can compare the formation energy per vacancy of
1
2 〈111〉[111] vacancy closed loops and 1

2 〈111〉[111] planar
voids computed using openMX with an embedded-atom
potential [53], see Fig. 11. As empirical potential re-
laxations are computationally inexpensive, we have sam-
pled a broad range of competing metastable structures.
We characterize an idealised circular planar void with
Burgers vector parallel to its habit plane normal n̂ by its
Burgers vector b, and a single radius r. For convenience
we choose the sign of n̂ such that n̂ · b > 0. The vacan-
cies within the defect lie within a cylinder, bounded by
a circle oriented normal to n̂ with radius r, and a sec-
ond similar circle translated by the vector b. We set the
radius with V = πr2b = NΩ0.

We remove atoms within this cylinder, then to close it
to promote the formation of a loop we can then displace
the remaining atoms separated by d from the centre of
the defect by a vector

δ = ±ξb
2

(
1− |z|

z0

)
min

(
1, 2− x

r

)
, (21)

in the region |z| < z0 and x < 2r, where z = r · n̂ is the
projection along the normal, z0 is half the simulation cell

length, and x = |d−(d · b̂)b̂| is the projection perpendic-

ular to b, where b̂ is the unit vector of b. ξ is a scaling
factor, which we set to zero to generate a planar void.
Setting ξ to higher values up to 1.0 promotes the forma-
tion of a range of planar voids and vacancy loops, which
may appear with different metastable core structures.

Loops with habit planes not parallel to b were gen-
erated similarly, but with atoms initially removed in
a sheared elliptical cylinder. These are considered in
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FIG. 10. Elastic dipole tensors and relaxation volumes of voids calculated using OpenMX and MNB potential, plotted together
with linear elasticity predictions derived from Eqns. (20) and (19). All the off-diagonal elements of dipole tensors vanish
because of symmetry considerations.
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FIG. 11. The formation energy Ef per vacancy of 1
2
〈111〉[111]

vacancy closed loops (closed symbols) and 1
2
〈111〉[111] planar

voids (open symbols) computed with DFT (this work), results
taken from a newly developed GAP potential in Ref. [55], and
the empirical embedded-atom MNB potential [53]. Note that
the MNB potential has a higher vacancy formation energy
than the other two, so has been shifted down by 0.3eV.

more detail in appendix C. We have only found sta-
ble b = a0/2〈111〉 vacancy loops on a [111] normal habit
plane. If initiated on other planes, they shear back to a
[111] normal or do not remain closed. b = a0〈100〉 loops
were found to be stable on [100] and [211] habit planes,
with the latter being lower in energy. We could not find
b = a0〈110〉 loops on any habit plane, attempts either

formed planar voids or split into multiple 1/2〈111〉 and
〈100〉 segments.

The identification of the defect nature as loop or planar
void was performed using the DXA analysis [67] after
relaxation.

We also compare with results taken from a recently de-
veloped GAP potential [55]. The MNB potential was de-
veloped comparing to the AM05 DFT functional, and has
a higher vacancy formation energy than the OpenMX va-
cancy formation energy, 3.74eV compared to 3.428 eV. If
we take this into account by shifting the energy for these
empirical results by -0.3eV, so that the vacancy forma-
tion energies coincide, three distinct branches of 1/2〈111〉
vacancy defects emerge. The energy per vacancy in a pla-
nar void coincides for all the three methods, appearing to
plateau just under 3 eV. The energy per vacancy of a va-
cancy loop has an upper and a lower branch. The upper
branch shows well-matched results for all three methods,
showing a formation energy decreasing as

√
N lnN . The

lower branch is only occupied by the MNB empirical po-
tential, and appears to show a different dislocation core
structure. The fact that low energy structures appear
on this branch for the empirical potential at loop sizes
N = 20 − 40 is most probably a failure of the empirical
potential to reproduce the correct core at these sizes.

We have further information about these branches of
structures from their relaxation volumes, shown in fig-
ure 12. We see the upper branch, corresponding to pla-
nar voids, coinciding for both DFT and empirical po-
tentials, with a small relaxation volume per point defect.
The bottom branch shows well-resolved 1/2〈111〉[111] va-
cancy loops, with a relaxation volume of (minus) one
atomic volume per vacancy in the defect. This is the
expected relaxation volume per vacancy in the infinite
loop size limit. The middle branch shows 1/2〈111〉[111]
vacancy loops, which at larger sizes DXA analysis iden-
tifies as having a Burgers vector b = a0/2〈111〉, but with
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FIG. 12. The relaxation volume per vacancy of 1/2〈111〉[111]
vacancy loops (closed symbols) and 1/2〈111〉[111] planar voids
(open symbols) computed with DFT (this work) and the
empirical embedded-atom MNB potential [53]. Points are
coloured by formation energy per point defect.

a smaller relaxation volume per vacancy. It is unclear
whether the low branch is an erroneous prediction.

Our results at present suggest our DFT data on meso-
scopic loops are not yet reaching the macrosopic limit
where linear elasticity applies. One the other hand, our
data complements where the linear elasticity approxima-
tion fails.

V. CONCLUSIONS

We have evaluated the dipole tensors and formation
energies of 1

2 〈111〉 SIA, closed and open vacancy loops,
〈100〉 SIA loops and spherical voids using large scale den-
sity function theory calculations. The results compare
well with elasticity and molecular statics calculations and
show good transferability to larger scale continuum mod-
els.

The data enable deriving interpolations for the forma-
tion energy of micro- and mesoscopic defects, as well as
for the dipole tensors of the defects entering the general
equation for the energy of an ensemble of interacting de-
fects

EFtotal =
∑
a

EFa +
1

2

∑
a,b

P aij
∂2Gik(Rab)

∂xj∂xl
P bkl −

∑
a

P aijε
ext
ij ,

(22)
where Rab is the separation between defects a and b, Gij
is the elastic Green’s function and εextij is the strain tensor
of external elastic field.

Analysis of vacancy loops using molecular statics sug-
gests that there are intermediate metastable configura-
tions between open and closed loops. Although the lin-
ear elasticity approximation compares well with our DFT
data, it appears that the configuration and the formation
energy of open and closed vacancy loops might not be
unique, particularly on the mesoscopic scale where the
core effects play a significant part.

Appendix A: Surface area of voids and open loops

We take the approximation that the surface of a void
is composed of facets of {100}, {110}, {111} and {211}
surfaces. There are totally 50 different orientations. The
area of each facet is calculated according to the Voronoi
area around the point of a surface normal vector on a
unit sphere in spherical geometry. The area A(hkl) corre-
sponding to the (hkl) surface is normalized by 4π, which
gives the coefficient c(hkl). Their values are in table IV.

In the case of an open loop (or planar void), if we
consider it resembles a cylinder, the top and bottom sur-
face is determined by its habit plane. We also need to
calculate the contribution along its perimeter. The con-
tribution of different surfaces along its perimeter may be
obtained by calculating the length of the intersection of
a unit circle on each facet of the unit sphere, where the
normal vector of the plane that the unit circle is in is
along the Burgers vector of the loop. The length of the
intersection is then normalized by 2π, which gives the
coefficient d(hkl). In the case of a 1

2 〈111〉 open loop, we
can obtain,

d(1̄10) = d(1̄01) = d(01̄1) = d(11̄0) = d(101̄) = d(011̄)

= d(2̄11) = d(12̄1) = d(112̄) = d(21̄1̄) = d(1̄21̄) = d(1̄1̄2)

= 1/12. (A1)

In the case of a 〈100〉 open loop, we can obtain,

d(010) = d(001) = d(01̄0) = d(001̄)

= d(011) = d(01̄1) = d(011̄) = d(01̄1̄) = 1/8. (A2)

Other unlisted values are all zeros.

Appendix B: Surface energy density and surface
stress from DFT calculations

We calculated the surface energy density and surface
stress of {100}, {110}, {111} and {211} surfaces using
OpenMX, and also compared them with data calculated
by molecular statics using MNB potential [53].

Firstly, we relax simulation boxes of perfect lattice to
stress free condition. In the calculation of a (001) surface,
we used a unit cell with a1 = [100], a2 = [010], and
a3 = [001] containing 2 atoms. In the calculation of other
surfaces, i.e. (101̄), (111), (1̄21̄), we used a unit cell with
a1 = [101̄], a2 = [1̄21̄], and a3 = [111]/2 containing 6
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atoms. Details of different box sizes and k-points are
listed in table V.

Then, we fixed the box shape and removed half of the
atoms along the surface direction creating the decided
surfaces. The surface energy density can be obtained as

γ(hkl) =
1

2A

(
E2s −

N2s

Nperf
Eperf

)
, (B1)

where A is the area of a surface, E2s is the energy of the
box having 2 surfaces, Eperf is the total energy of the
relaxed perfect lattice box, N2s is the number of atoms
of the box with 2 surfaces and Nperf is the total number
of atoms of the relaxed perfect lattice box. The factor of
2 comes from the top and bottom surfaces. Calculated
values are presented in Table V.

The surface stress can be written as [68]:

sij =
1

A

∂(γA)

∂εij
=

1

2A

∂E2s

∂εij
=

1

2A
Vboxσ̄ij (B2)

where σ̄ij is the stress of the simulation box with surfaces.
It allows us to obtain sij directly from the same DFT
calculation. Besides, we can rewrite the right hand side
according to chain rule:

sij =
1

A

∂(γA)

∂εij
=
γ

A

∂A

∂εij
+

∂γ

∂εij
. (B3)

Assuming a surface with a unit normal vector in the
z direction, and the surface is on x − y plane, one can
derive

1

A

∂A

∂ε
=

 1 0 0

0 1 0

0 0 0

 . (B4)

Generally, if the unit normal vector n̂ = (nx, ny, nz) is in
an arbitrary direction, one can derive:

1

A

∂A

∂εij
= δij − ninj (B5)

This gives the derivative of a small flat area in an arbi-
trary direction.

Then, we can also obtain the derivative of the surface
energy density with respect to strain ∂γ/∂ε. Raw data of
sij and ∂γ/∂ε in the simulation box coordinate are pre-
sented in table VI and VII. We adjusted OpenMX data
according to the symmetry that we can observe in MND
potential data, and rotate them in the [100],[010],[001]
coordinate. These data are presented in table VIII and
IX.

Appendix C: Formation energy of a planar void with
arbitrary normal

We characterize an idealised planar void (or open loop)
by its Burgers vector b, the unit vector normal to its

L1 L2 L3 k1 k2 k3 γ (MNB) γ (OpenMX)

(001) 1 1 40 21 21 3 0.2397 0.2591

(101̄) 28 1 1 3 9 25 0.2182 0.2115

(111) 1 1 46 15 9 3 0.2594 0.2385

(1̄21̄) 1 16 1 15 3 25 0.2413 0.2236

mean 0.235 0.228

TABLE V. Details of different box sizes and k-points, and the
surface energy density γ. L1, L2 and L3 are the box lengths
in the unit of unit cell. In the calculation of (100) surface, we
used a unit cell with a1 = [100], a2 = [010], and a3 = [001]
containing 2 atoms. In the calculation of other surfaces, we
used a unit cell with a1 = [101̄], a2 = [1̄21̄], and a3 = [111]/2
containing 6 atoms. Unit cell vectors are in units of lattice
constant. k1, k2 and k3 are the k-point mesh being used. γ is
in unit of ev/Å2.

MNB s11 s22 s33 s12 s23 s31

(001) 0.2294 0.2294 0.0000 0.0000 0.0000 0.0000

(101̄) 0.0000 0.2917 0.2535 0.0000 0.0541 0.0000

(111) 0.2145 0.2145 0.0000 0.0000 0.0000 0.0000

(1̄21̄) 0.2621 0.0000 0.2514 0.0000 0.0000 0.0000

OpenMX s11 s22 s33 s12 s23 s31

(001) 0.1468 0.1468 -0.0117 0.0000 0.0000 0.0000

(101̄) 0.0081 0.2575 0.2214 0.0000 0.0587 0.0000

(111) 0.1347 0.1345 0.0015 0.0000 0.0184 0.0000

(1̄21̄) 0.1514 -0.0001 0.2225 -0.0010 -0.0236 0.0000

TABLE VI. Surface stress calculated using OpenMX and
MNB potential. They are in the unit of eV/Å2. They are
presented in the original coordinate system.

habit plane n̂, and a single radius r. For convenience we
will choose the sign of n̂ such that n̂ · b > 0, and write

b̂ = b/b. The vacancies within the defect lie within
a sheared elliptical cylinder, bounded by ellipse oriented
normal to n̂ with minor and major radii r and r/ζ, where

ζ = b̂ · n̂ ≤ 1, and a second similar ellipse translated by

the vector ζb̂. In the case n̂ ‖ b, this reduces to a regular
circular cylinder with ζ = 1. The volume V is invariant
to shear, so we set the radius with V = πr2b = NΩ0.

The energy of a planar void should have contributions
from the elliptical faces and the perimeter strip,

Eopen = 2Aface γn̂ +Aperi γperi. (C1)

As the perimeter strip is a sheared elliptical cylinder,
its area is non-trivial, but in practice it is not a good
estimator of the true area anyway. We can compute the
surface area of unrelaxed planar voids in a bcc material
using qhull [69], assuming each vacancy is surrounded by
a shell of points in the family a0[0 1/4

1/2]. The area of the
face is Aface = 2πr2/ζ. The area of the perimeter strip
can be estimated using the Ramanujan formula perimeter
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FIG. 13. Formation energy of vacancy defects computed with the MNB potential. Dislocation loops, determined using DXA,
are shown as closed symbols, and planar voids as open symbols. Solid lines are empirical fits to dislocation loop energy ( see
table III ) and dashed lines use the loop geometry and surface energy only (equation C3).

MNB ∂γ/∂ε11 ∂γ/∂ε22 ∂γ/∂ε33 ∂γ/∂ε12 ∂γ/∂ε23 ∂γ/∂ε31

(001) -0.0103 -0.0103 0.0000 0.0000 0.0000 0.0000

(101̄) 0.0000 0.0735 0.0352 0.0000 0.0541 0.0000

(111) -0.0449 -0.0449 0.0000 0.0000 0.0000 0.0000

(1̄21̄) 0.0208 0.0000 0.0102 0.0000 0.0000 0.0000

OpenMX ∂γ/∂ε11 ∂γ/∂ε22 ∂γ/∂ε33 ∂γ/∂ε12 ∂γ/∂ε23 ∂γ/∂ε31

(001) -0.1123 -0.1123 -0.0117 0.0000 0.0000 0.0000

(101̄) 0.0081 0.0460 0.0100 0.0000 0.0587 0.0000

(111) -0.1038 -0.1040 0.0015 0.0000 0.0184 0.0000

(1̄21̄) -0.0722 -0.0001 -0.0010 -0.0010 -0.0236 0.0000

TABLE VII. The derivative of surface energy density with
respect to strain calculated using OpenMX and MNB poten-
tial. They are in the unit of eV/Å2. They are presented in
the original coordinate system.

length p,

p ' πr
(

(3 + 3/ζ)−
√

(3 + 1/ζ) (1 + 3/ζ)
)
, (C2)

giving Aperi ' pζb.
If we write the surface area as the elliptical surfaces

plus a variable effective contribution from the perimeter
strip, i.e. A = 2Aface + λAperi, we can find the effec-
tive contribution λ. The result is shown in figure 14. At
small defect sizes, λ is small, indicating that a good esti-
mate for the surface area is the elliptical surfaces alone.
At large defect sizes, λ increases with logN , and shows
no convergence at large size. This is a consequence of
the discrete atomic nature of the defect boundary and a
manifestation of the Schwarz lantern problem [70]: it is

MNB s11 s22 s33 s12 s23 s31

(001) 0.2294 0.2294 0.0000 0.0000 0.0000 0.0000

(101̄) 0.1076 0.3300 0.1076 0.0000 0.0000 0.1076

(111) 0.1430 0.1430 0.1430 -0.0715 -0.0715 -0.0715

(1̄21̄) 0.2149 0.0838 0.2149 0.0838 0.0838 -0.0472

OpenMX s11 s22 s33 s12 s23 s31

(001) 0.1468 0.1468 0.0000 0.0000 0.0000 0.0000

(101̄) 0.0891 0.3008 0.0891 0.0000 0.0000 0.0891

(111) 0.0897 0.0897 0.0897 -0.0449 -0.0449 -0.0449

(1̄21̄) 0.1499 0.0742 0.1499 0.0742 0.0742 -0.0015

TABLE VIII. Surface stress calculated using OpenMX and
MNB potential. They are in the unit of eV/Å2. They are ad-
justed according to symmetry observed and rotated to [100],
[010], [001] coordinate system.

not possible to approximate the surface area of a smooth
curved surface using triangles with fixed normals.

To solve for λ analytically would require a solution
of the well-known Gauss circle problem, so instead we
provide fits of the empirical form λ(N) = α logN + β in
table X. The energy of the elliptical planar void should
then be, to a good approximation,

Eopen =
2πr2

ζ
γn̂ + λ pζb γ̄, (C3)

where γ̄ is an average surface energy. The energy of pla-
nar voids and dislocation loops computed with the MNB
potential are shown in figure 13, showing a very high
quality agreement.
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MNB ∂γ/∂ε11 ∂γ/∂ε22 ∂γ/∂ε33 ∂γ/∂ε12 ∂γ/∂ε23 ∂γ/∂ε31

(001) -0.0103 -0.0103 0.0000 0.0000 0.0000 0.0000

(101̄) -0.0015 0.1117 -0.0015 0.0000 0.0000 -0.0015

(111) -0.0299 -0.0299 -0.0299 0.0150 0.0150 0.0150

(1̄21̄) 0.0138 0.0034 0.0138 0.0034 0.0034 -0.0070

OpenMX ∂γ/∂ε11 ∂γ/∂ε22 ∂γ/∂ε33 ∂γ/∂ε12 ∂γ/∂ε23 ∂γ/∂ε31

(001) -0.1123 -0.1123 0.0000 0.0000 0.0000 0.0000

(101̄) -0.0167 0.0893 -0.0167 0.0000 0.0000 -0.0167

(111) -0.0693 -0.0693 -0.0693 0.0346 0.0346 0.0346

(1̄21̄) -0.0365 -0.0003 -0.0365 -0.0003 -0.0003 0.0358

TABLE IX. The derivative of surface energy density with re-
spect to strain calculated using OpenMX and MNB potential.
They are in the unit of eV/Å2. They are adjusted according
to symmetry observed and rotated to [100], [010], [001] coor-
dinate system.
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FIG. 14. Calculated surface area correction for a planar void
due to the perimeter strip. The surface area measure by qhull
is A = 2πr2/ζ + λpζb, where p is the perimeter length.

At small planar void sizes we note that λ is small, sug-

gesting that the perimeter strip effective area is smaller
than expected, and we may be able to neglect it. At
large planar void sizes the perimeter strip area scales as√
N , and so is small compared to the surface area (scal-

ing as N). It is not, therefore, unreasonable to neglect
the perimeter strip in all cases, and just use

Eopen ≈
2πr2

ζ
γn̂, (C4)

where r is a function of N . This is the justification for
our use of equation 16 in the main text.

b n α β
1
2
〈111〉 [111] 0.0859 0.215

1
2
〈111〉 [110] 0.0813 -0.107

〈100〉 [100] 0.0718 0.307

〈100〉 [110] 0.0955 -0.132

〈100〉 [211] 0.0949 0.148

〈110〉 [110] 0.0421 0.440

〈110〉 [100] 0.0560 0.482

〈110〉 [211] 0.0584 0.465

TABLE X. Fitted estimates for the effective contribution λ
to a planar void surface area from the perimeter strip, A =
2πr2/ζ + λpζb, where p is the perimeter length estimated by
Ramanujan formula, eqn C2. These values are fits of the form
λ(N) = α logN+β to the points in figure 14. Note that these
values are for unrelaxed planar voids in a bcc metal, and are
not material specific.
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Emine Küçükbenli, Yaroslav O. Kvashnin, Inka L. M.
Locht, Sven Lubeck, Martijn Marsman, Nicola Marzari,
Ulrike Nitzsche, Lars Nordström, Taisuke Ozaki, Lorenzo
Paulatto, Chris J. Pickard, Ward Poelmans, Matt I. J.
Probert, Keith Refson, Manuel Richter, Gian-Marco
Rignanese, Santanu Saha, Matthias Scheffler, Martin
Schlipf, Karlheinz Schwarz, Sangeeta Sharma, Francesca
Tavazza, Patrik Thunström, Alexandre Tkatchenko,
Marc Torrent, David Vanderbilt, Michiel J. van Setten,
Veronique Van Speybroeck, John M. Wills, Jonathan R.
Yates, Guo-Xu Zhang, and Stefaan Cottenier, “Repro-
ducibility in density functional theory calculations of
solids,” Science 351 (2016), 10.1126/science.aad3000,
https://science.sciencemag.org/content/351/6280/aad3000.full.pdf.

[43] G. B. Bachelet, D. R. Hamann, and M. Schlüter, “Pseu-
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