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Abstract. The role of magnetic perturbations generated by filaments in
the scrape-off layer is investigated by performing simulations of 3D seeded
filaments with an electromagnetic numerical code which includes sheath boundary
conditions. Depending on the plasma β, three smoothly connecting regimes
were identified: an electrostatic regime where the magnetic field is substantially
unaffected by the motion of the filament, an intermediate regime where the
magnetic field is excited but relaxes within the filament’s lifetime and an
electromagnetic regime where the frozen-in condition is well satisfied. The
electromagnetic effects are found to have a significant impact on the filament
dynamics at values of β relevant for fusion devices, including increased midplane
radial velocity, bending of the filament and braiding of magnetic field lines.
Importantly, a finite Alfvén speed can allow electrical disconnection of the target
and the upstream part of the filament, thus removing the slowing down effect
associated with the sheath and producing faster filaments and more intense cross-
field transport in perturbations that were affected by the sheath in the β = 0
limit.

1. Introduction

Filaments, also known as blobs, are field aligned coherent plasma perturbations that form
in the boundary region of magnetic fusion devices and pass into the Scrape-Off Layer (SOL)
[1]. Depending on the plasma regime, filaments can impart large quantities of particles and
energy onto the first wall, making control, and therefore understanding, of these structures
a priority to prepare for larger reactor relevant tokamaks of the future.

Diagnostics, such as fast cameras that capture microsecond time scales [2, 4, 3, 5],
Langmuir probes [6, 7, 8, 9, 10, 11, 12] and gas puff imaging [13, 14, 15, 16, 17] provide a
wealth of data useful to characterise the filaments but several aspects behind their global
dynamics still need to be clarified. Numerical simulations can help in developing a more
sophisticated understanding, with the experimental observations as a basis to estimate
filament properties for use in seeded filament simulations. These allow for the dynamics of
isolated individual filaments to be studied and to validate physics models by comparing the
model evolution to experimental data [20, 5]. Several 2D and 3D fluid codes exist that can
perform these simulations such as STORM [21, 22, 23, 5], GBS [27, 28], HESEL [29, 30]
and TOKAM3X [31], which use similar but distinct models and numerical approaches.

Filaments have been extensively studied in electrostatic regimes where the magnetic
field does not evolve with time, however little work exists studying the electromagnetic
regime [33, 34, 35, 36, 38, 39, 40]. This regime might be relevant to large L-mode filaments,
inter-ELM filaments and, most likely, ELMs. The importance of the electromagnetic
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effects is typically characterised by the parameter β = 2µ0p/B
2, which represents the

ratio between the kinetic plasma pressure, p, and the magnetic plasma pressure, B2/(2µ0).
The electrostatic limit assumes β and the terms associated with it in the model to be
negligibly small, while the electromagnetic effects become relevant in plasmas where β
achieves rather small but finite values often calculated using linear physics arguments (see
e.g. [41] for a comprehensive review). In particular, for the problem we will be tackling
(fluid limit, simplified geometry without magnetic shear) these arguments suggest that
the electrons have an electromagnetic parallel response when β is comparable to or larger
than the mass ratio me/mi and the corresponding linear eigenmodes have a significant
electromagnetic component when β is of the order of (L⊥/L‖)

2, where L⊥ and L‖ are
typical perpendicular and parallel length scales of the system. Estimating a nonlinear
criterion for electromagnetic behaviour is less trivial [41]. A possible formulation of such
a criterion for filament physics will be presented in this paper.

The motion of filaments is governed by E×B drifts, where electric fields result from
the interaction between pressure gradients and magnetic curvature effects [47, 1]. The
electric fields involved are driven by the currents flowing in the filament which can take
paths parallel (parallel current, J‖) or perpendicular (diamagnetic, Jd, or polarisation,
Jp, currents) to the confining magnetic field. In general, the relative strengths of these
currents, and therefore the dominant balance in the charge conservation equation, depend
on properties of the filament such as its perpendicular size [47, 48, 24], resistivity [48, 22]
or magnetic shear of the equilibrium [48]. In the electromagnetic treatment, the currents
generate perturbed magnetic fields. Naturally, larger currents are driven when the pressure
perturbation associated with the filament is larger.

Another interesting observation is that filaments crossing the separatrix experience a
change in the topology of the equilibrium magnetic field. In the presence of non-negligible
electromagnetic effects reconnection processes might be involved, possibly affecting particle
and heat exhaust in the proximity of the last closed flux surface all the way down to the
strike point (i.e. the region where the separatrix hits the target) a subject that will be
discussed in a follow up paper [49]. The underlying electromagnetic physics presented in
this paper provides solid basis for future, more complex investigations.

Some properties of filament dynamics in electromagnetic regimes were already
investigated in literature. D’Ippolito et al. [45] and Krasheninnikov et al. [37] introduced
a first basic theoretical interpretation that is closely related with the ballooning criterion
αMHD = βL2

‖/(RL⊥) � 1, which comes from balancing the ballooning growth rate with
the inverse of the parallel Alfven time, representing the field line bending stabilisation.
Ribeiro and Scott [33, 36] analysed gyrofluid electromagnetic simulations in the plasma
edge, both on open and closed field lines, but their emphasis was on turbulence, not on the
electromagnetic features associated with filaments. Xu et al. [38] introduced the concept
of a filament as a drift Alfvén vortex, of coupling with shear Alfvén waves and field line
bending associated with the pressure perturbation. Finally, Lee et al. [39, 40] demonstrated
with 3D numerical simulations that field line bending occurs and that a finite Alfvén speed
can lead to faster radial propagation. Also, they showed that drift wave instabilities within
the filament can be stabilized by electromagnetic effects, thus leading to a more coherent
structure.

In our contribution, we extend the work done in Refs. [39, 40] by providing
a quantitative description of the electromagnetic effects on filament dynamics and by
introducing a non-linear criterion to assess the level of the electromagntic effects. Our
results are obtained with 3D drift fluid simulations carried out with a newly extended
version of the STORM module [21] of the BOUT++ code [26]. In particular, we study the
β dependence of the radial velocity and identify when the transition between electrostatic
and electromagnetic regimes occurs. Finally, we will devote particular attention to the
dynamics of the magnetic field lines perturbed by the passage of the filament, which
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respond in qualitatively different ways depending on the local β of the filament and can be
entrained within it for a significant amount of time, thus satisfying the frozen in condition
on the time scale considered.

2. Model

A simplified slab geometry is used, with target plates normal to the magnetic field lines.
The magnetic field and the radial direction comprise two of the orthogonal directions, z
and x respectively, with the third, y, normal to both, named binormal. The background
magnetic field, B0 = B0ẑ, with ẑ the unit vector along z, is considered to be constant
in direction and amplitude. The numerical domain is chosen to represent MAST scales
[12, 5]. The filaments are evolved between two identical targets at opposite ends of the
numerical domain at z = ±Lz, and the model can be run inside the full domain or with a
symmetry condition imposed at the midplane (assuming up-down symmetry as in a double
null configuration). The midplane is defined as the plane parallel to and half way between
the two targets. Unless stated otherwise, in our simulations, we used an [x, y, z] grid of
128 × 128 × 32 points with Lx = Ly = 100 and Lz = 2692.3 in normalized units (defined
later), corresponding to Lx = Ly ≈ 13cm and Lz ≈ 345cm. Some of the simulations
presented in the following were repeated with Lz twice as large to describe conditions
more relevant for MAST (but at a larger computational cost since we also double the
number of parallel grid points to maintain constant resolution).

The equations used in this work are an extension of previous versions of the STORM
model, the full details of which are presented elsewhere[21, 23, 24, 5]. They represent
a finite β, drift ordered, anisotropic fluid model with cold ions and arbitrary fluctuation
amplitude (i.e. the Boussinesq approximation is not used). The closure is collisional,
allowing for neoclassical transport in the SOL [25]. The updates to the model presented
in this paper are centred on the relaxing of the electrostatic approximation.

The equations solved here are given in normalised form as:

∂$
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(5)

where $ is the generalised vorticity (the Boussinesq approximation is not made), n is the
plasma density, XU and XV are combinations of respectively ion and electron velocities, U
and V , with the parallel component of the vector potential ψ, T is the electron temperature,
ϕ is the electrostatic potential, ĝ is the artificial gravity term to account for the magnetic
field curvature, D is the collisional particle diffusivity coefficient, Sn and SE are particle
and energy sources (defined below), η‖ is resistivity, µv is the ion viscosity, κ⊥ is the
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perpendicular thermal diffusivity coefficient and µ = mi/me is the mass ratio. Also,
vE×B = |ẑ ×∇φ| is the modulus of the E×B velocity and the Poisson bracket is defined
as: [f, g] = (ẑ ×∇f) · ∇g, where f and g are generic functions. The conductive heat flux,
q‖ is given by:

q‖ = −κ‖,0T 5/2∇‖T − 0.71nT (U − V ), (6)

with κ‖,0 is the temperature independent part of the thermal conductivity. These equations
are closed by:

$ = ∇ · (n∇⊥ϕ), (7)
J‖ = −∇2ψ, (8)

with the parallel current, J‖ = n(U − V ), and the electromagnetic velocities:

XU = U +
β

2
ψ, (9)

XV = V − µβ
2
ψ. (10)

The normalisation used in the model is the Bohm normalisation, details can be found
in [5]. Time scales are normalised by the ion gyro-frequency, Ωi = eB/mi and length scales
by the hybrid gyro-radius, ρs = cs/Ωi, where cs =

√
T/mi is the sound speed, mi is the

ion mass and e is the electron charge. The electrostatic potential, φ is normalised by T/e
and the plasma density, n, is normalised to a background density. The electromagnetic
potential is normalised by ψ → β

2
mics
e ψ. Our reference values for the normalisation are:

electron temperature Te,0 = 20eV , plasma density n0 = 0.5 × 1019m−3, safety factor
q95 = 7, magnetic field B0 = 0.5T and curvature radius Rc = 1.5m. These are typical
MAST values used also in previous publications, see e.g. [42]. Using the expressions in
[21] we find that these values give: µv = 5.85× 10−2, D = 2.98× 10−3, η‖ = 4.28× 10−2,
κ‖,0 = 1.37 × 105, κ⊥ = 8.52 × 10−3 and ĝ = 1.71 × 10−3. Finally, using deuterium,
µ = 3.64× 103.

The background plasma upon which the filament evolves is produced by imposing the
following sources of particles and energy:

Sn(z) = C1
10e

10z
Lz

Lz(e10 − 1)
, (11)

SE(z) = C2
e−

5z
Lz

Lz
, (12)

where C1 and C2 were adjusted until the midplane value (at z = 0) of the normalised
density and temperature reached 1. In our simulations, this was obtained for C1 = 0.595
and C2 = 14.25.

Initial conditions for filament seeding are discussed in detail in previous papers, see e.g.
[5]. In this paper, filaments were seeded as density perturbations with the temperature
of the background plasma, since parallel heat transport is very efficient and it smooths
temperature perturbations quite rapidly. A radially symmetric Gaussian profile, with
width w = 5ρs ≈ 6mm, was used in the perpendicular direction and a profile in the
parallel direction, given by:

ρ(z) =
1

2
A

[
1− tanh

(
z − Lf
δz

)]
, (13)

where A is the amplitude of the density perturbation with respect to background and z
goes from 0 at the midplane to Lz at the target. We took δz = 0.1Lz and Lf = Lz for
simulations analysing the dynamics of the filament, whilst Lf = 0.5Lz for those focusing on
the field line behaviour. The former choice represent an almost completely homogeneous
perturbation, while the latter a filament that is localized above the X-point.
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2.1. Electromagnetic Terms in the Model

In this Section, we briefly discuss how finite β effects enter our physical model. In the
electrostatic regime, the inductive part of the electric field E is neglected. In the finite β
drift ordering, appropriate for the filament dynamics, we have [50]:

E⊥ = −∇⊥ϕ,

E‖ = −∇‖ϕ−
β

2

∂ψ

∂t
ẑ,

(14)

where the perpendicular component remains electrostatic to leading order [50], while the
parallel field becomes electromagnetic. This relates to the magnetic field, B, which is a
combination of the static background field, B0ẑ, and the perturbed, time varying field
induced by the filament:

B = B0ẑ +
β

2
∇× (ψẑ). (15)

The correction applied in this way gives a magnetic field that has a perturbed direction
but approximately the same magnitude, taken to be B0. Therefore, the definition of the
parallel gradient operator has to be updated to include the second term on the right-hand
side:

∇‖ = ∇‖0 +
β

2
[∇× (ψẑ)] · ∇, (16)

where ∇‖0 = ẑ · ∇ was the electrostatic operator.

2.2. Boundary Conditions

On the time scales involved in filament dynamics, the materials surrounding the plasma can
be treated as perfect conductors as their magnetic response is slow. In a perfect conductor,
the magnetic field is frozen and no perturbation can arise. We are therefore led to assume
that ∇× (ψẑ) = 0 and so ψ = 0. This is known as the ’line tying’ boundary condition in
literature.

While this would be a correct assumption in solar physics, where a hotter plasma
background would represent the ideal conductor, it fails when the plasma is in contact with
a material surface, such as the divertor targets. This is because at the interface, a Debye
sheath is formed, the entrance of which is the typical boundary of the fluid simulations. In
this case, taking ψ = 0 is inconsistent for perpendicular targets as it would lead, through
8, to the conclusion that no parallel current can enter the domain boundaries, which is
incorrect in the presence of perturbations. Given these considerations, ψ at the target
(i.e. at z = ±Lz) should be obtained by inverting 8 for the current J‖ given by Bohm’s
boundary condition.

Despite the fundamental conceptual difference between the two approaches, numerical
simulations we performed showed that the effect on the dynamics of the filaments was
negligible. As a consequence, most of the results presented here are obtained with the
standard line tying condition, which is numerically less expensive. It is likely that the
time scale of the simulation duration allows for this approximation, with longer dynamics
requiring a more rigorous approach.

Perpendicular and parallel boundary conditions on other fields are identical to those
used in previous STORM publications, see e.g. [21, 23, 5]

3. Results

Filaments are seeded onto the equilibrium background plasma, generated as discussed
above, and evolved for approximately 20-30 µs, the time scale typical of experimental
filaments [5]. The parameter β is varied to isolate electromagnetic effects without
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Figure 1. Density contours of a filament from target to target in the parallel
direction at the start of the simulation and after 10µs and 20µs. Contours are
shown as drift plane slices, with normalised densities between 0.2 (blue) and 8
(red) above the background density.

changing the filament pressure or background magnetic field, density or temperature.
All other dimensionless parameters are kept at their original value. While this is clearly
not representative of actual experimental scans, which typically vary all dimensionless
parameters, this reductionist approach is used here to isolate and emphasise the β
dependence of the overall dynamics. Note that at the nominal normalising parameters,
β ≈ 1.6× 10−4 but this underestimates the effective β in MAST as the magnetic field on
the low field side is typically lower than this (around 0.1÷ 0.2 T rather than 0.5 used here
and in previous STORM publications). Other investigations have discussed amplitude,
density and temperature effects on filament dynamics (see e.g. [43] for a comprehensive
analysis), which we expect to interact with those discussed here.

A typical example of the evolution of a high β filament in the electromagnetic regime
is shown in figure 1. In this case, β = 1.6× 10−2 and the peak filament density amplitude
was 8 times the background density (i.e. A = 8). These parameters represent an extreme
simulation, with a combination of high filament amplitude and plasma β, unlikely to occur
experimentally. However, these extreme values showcase the qualitative electromagnetic
effects at work in realistic filaments in fusion devices, which can have the same β at typically
lower amplitude.

A key behaviour of electromagnetic filaments observed in previous studies [39, 40]
is filament bending, where the centre of the filament bulges forwards of the ends of the
filaments. As seen in Fig.1, this behaviour is replicated within the STORM model as β is
increased. This can be understood as a combination of the perturbation of the magnetic
field direction, but also due to an increased localisation of dynamics coupled with the
density profile of the filament. Filament bending will be explored in more depth in relation
to electromagnetic field propagation.

3.1. Radial Velocities and Scaling

As filament studies seek to understand the cross-field particle transport in the SOL, the
filament radial velocity is important. Combined with the filament density, the velocity
affects the rate of particle transfer and thus the SOL profile. The radial velocity is
calculated by defining the location of the filament by its centre of mass in each drift
plane (i.e. x − y plane, where the drifts take place), calculated with a small threshold to
ignore the background plasma. In this work a threshold of 20% above nominal background
level is used. We start by investigating the effect of β and of the density amplitude, A, on
the maximal radial velocity. This velocity is measured at both the midplane and near the
target in order to capture information about the parallel bending of the filament.

The results of varying plasma β and the filament amplitude are shown in Fig. 2. Each
β corresponds to a given Alfvén velocity, vA =

√
2
β cs, which represents the typical velocity
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of the waves which propagate the electromagnetic potentials in the parallel direction, which
in turn drive the filament’s perpendicular motion through the E×B drift.

It is useful to briefly elaborate on this important concept. In a finite β drift model
such as ours, kinetic drift Alfvén waves [41] can be excited by pressure perturbations,
such as those associated with a filament. These waves can communicate variations in
the electrostatic potential, φ, throughout the system. When a filament enters the SOL,
it excites waves that travel towards the target and reflect back, communicating to the
upstream plasma the presence of the sheath. The latter would tend to slow down the
motion of sufficiently wide filaments (above a critical width [44]) by acting as a current drain
and thus weakening the convective cells associated with the filament potential (remember
that φ is the stream function for the E × B velocity). This happens very rapidly in the
electrostatic regime (at infinite speed if there is no electron inertia), but at finite β the
travelling waves take a finite time ∆t = 2L‖/vA ∝ L‖

√
β to do the round trip. If in this

time the filament has moved more than its width across the field, the information associated
with the presence of the target will not reach it and therefore the filament perturbation
will move as if the sheath did not exist.

It can be expected that electromagnetic effects become important when the Alfvén
waves can no longer propagate fast enough to keep the upstream and downstream region
of the filament in communication. This interpretation can be applied to usefully define a
nonlinear electromagnetic condition for filaments. Taking L⊥ as the typical length scale
associated with the electrostatic potential structure of the filament, and V⊥ the typical
radial filament velocity at the parallel midpoint, the electrostatic regime is valid only if
∆t � L⊥/V⊥ or equivalently,

√
β
L‖
L⊥
� cs

V⊥
. A similar interpretation was introduced in

[45], where the discussion was limited to ideal MHD instabilities. To see electromagnetic
effects in a 14 meter target to target filament (2L‖) as in the MAST experiment, with
a characteristic peak velocity of 1 km/s (V⊥) and a 1 cm width (L⊥), the Alfvén speed
must be slower than approximately 1400 km/s (vA), corresponding to a plasma β larger
than around 1x10−3 if cs ≈ 30 km/s, which is typical for MAST [5]. All these points are
compatible with the results shown in the right panel of Fig.2 (which uses realistic L‖).

At small β (high vA), the radial velocities of the filaments are identical at the target
and midplane. This coincides with the electrostatic regime, β � (L⊥cs)

2/(L‖V⊥)2, where
the potential is communicated instantaneously along the parallel direction and so the
filament travels coherently. As the β value increases (vA decreases), the electromagnetic
regime, β � (L⊥cs)

2/(L‖V⊥)2, is entered where the midplane velocity increases beyond
the target velocity. The discrepancy between these two values for a filament is indicative
of the filament bending. The target velocity tends towards zero due to line tying at the
boundary and increasing freezing of the field lines in the plasma, as in ideal MHD. The
field line can not move at the boundary, and the plasma can slip less and less efficiently
as β grows. Note that, as predicted by our non-linear criterion for this specific case, the
radial propagation velocity starts to be affected when β ≈ 10−3 for L‖ = 2692.3 and for
visibly smaller β (around a factor 3÷4) when the connection length is doubled (see Fig.2).
The validity of our nonlinear estimator is therefore confirmed by these results. It is worth
remarking that these results might have consequences for reactor relavant machines, which
will have much longer connection lengths with respect to present day machines and could
be more affected by finite β effects.

Note that we also performed scans in the perpendicular filament width, w, and
we found that the onset of the electromagnetic effects had a weak dependence on this
parameter. This is due to the fact that L⊥ is associated with the electrostatic potential
rather than the density and the former changes relatively weakly with the filament’s width
[44, 46], so that L⊥ = w is not a good approximation. Also, the situation is complicated
by the fact that small filaments below the critical size [44], are already disconnected from
the target, hence the role of the Alfvén waves (and hence the electromagnetic effects)
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Figure 2. Scaling of the maximal radial velocity of a filament with density
amplitude A and plasma β. Midplane velocity (blue) increases with plasma β,
target velocity (red) decreases with plasma β (only very slightly for the smaller
connection length). The left and right panel correspond to different parallel
connection lengths.

becomes marginal. We conclude that the nonlinear criterion is rigorously applicable only
for filaments above the critical threshold width, i.e. those that would be sheath connected
if they were electrostatic.

3.2. Field Line Dynamics

Large scale behaviour in the magnetic field is present as the plasma moves into the
electromagnetic regime. In particular, as β is increased, the magnetic field lines become
’frozen’ into the plasma (if resistivity is small enough, as in our case), resulting in field lines
being dragged by the filaments as in the well known ideal MHD picture. The freezing of
the field lines, however, can be incomplete at small β and the process is always continuous
and tending to complete slippage of the plasma through the magnetic field in the β → 0
limit. This represents the transition from an almost adiabatic condition, characteristic of
electrostatic dynamics, to the MHD constraint E‖ ≈ 0 obtained by balancing the inductive
and electrostatic part of the parallel electric field. Mathematically, this change of regime
represents a shift in the dominant balance in Ohm’s law, Eq.4, from ∇‖φ ≈ ∇‖ log(n)
to (β/2)∂ψ + ∇‖φ ≈ 0. To investigate this, we performed simulations similar to the
ones discussed in Section 3.1 but with a reduced β range and with resolution increased to
256× 256× 64 points in order to properly capture the dynamics of the field lines.

In order to visualise field line dragging, field lines are traced from equidistant points
along the target (z = Lz) at y = 0. This is performed by integrating along the magnetic
field from their origin at the target. The radial position of each field line at the midplane
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Figure 3. Magnetic field lines’ radial position at the midplane over time,
showing the different magnetic regimes: Electrostatic, intermediate and two
electromagnetic examples. The first electromagnetic case is realistic, the second
extreme for tokamaks. The blue band shows the approximate extent of the filament
density perturbation.

(z = 0) is then evolved and tracked over time to examine how it moves as a consequence
of the passage of the filament. The results are shown in figure 3. In this figure the blue
area gives the approximate position of the filament (i.e. the pressure perturbation), and
the black lines represent the radial trajectories of field lines at the midplane - each line
representing a different field line.

Three different qualitative regimes are illustrated with β values of 1.6x10−4, 1.6x10−3
and 1.6x10−2. The lowest β effectively corresponds to an electrostatic approximation,
whilst the highest β is in the electromagnetic regime where the frozen in condition is
well satisfied. In between these two extremes, field lines are significantly perturbed but
not completely frozen into the plasma and relax within the lifetime of the filament. This
excites Alfvén waves which tend to remove the field line bending produced by the passage
of the filament. The final high β high amplitude case shown in Fig.3 would represent a
violent perturbation like an ELM (but we do not claim here that our model can reproduce
ELMs), while low amplitude, high β cases can be considered characteristic of L-mode or
inter-ELM filaments produced by residual turbulence. It can be seen that at the highest β,
the field lines are frozen into the small amplitude filament and there is qualitative similarity
to the high β, high amplitude case.

In order to better interpret the dynamics of each field line, the midplane drift plane
view is also analysed (z = 0). The same process is repeated with a regular grid of field
lines originating at the target in order to visualise the perpendicular motions of the field
lines. The trajectories of the field lines at the midplane are shown in figure 4 for two values
of β. The colour represents the time at which the trajectory was in that position, contours
show the filament densities of 0.2 and 2 above background at the final time instance. The
same process was repeated at the target, but the results are not shown because the field
lines do not have a significant excursion from their original position.

In the intermediate β case, perturbations are seen within the path the filament
travelled, but the trajectories begin to return to their original positions as the field relaxes -
see trajectories that almost close on themselves. In the high β case, there is a complicated
movement of field lines within the filament and simpler trajectories in the surrounding
region. These outer trajectories are following the E ×B drift caused by the electrostatic
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Figure 4. Trajectories of a uniform grid of field lines during the lifetime of the
filament. Field lines are seeded at the target and plotted at the midplane. The
filament begins at (0,0) and the density contours of 0.2 and 2 at time=20µs are
overlaid.

Figure 5. Midplane cross-section of filament density contours, and magnetic field
lines traced from the target at 4 µs intervals. Field lines get dragged along with
the filament and compressed into layers at the edge of the filament.

dipole formed by the filament. The latter is the well-known cause of the filament outward
radial motion [47]. Inside the filament the movement is dominated by a combination of
twisting from the initial current transient due to parallel gradients and the convection cells
that form within the filament structure. As the frozen in condition is partially satisfied
at high β, the field line trajectories trace the movement of the fluid itself. From these
visualisations it is apparent that the filament does not behave as a solid tube of plasma.

To better understand the dynamics of the magnetic field local to the filament, high
resolution clusters of magnetic field lines were seeded together. Figure 5 shows such an
arrangement with four arrays of closely spaced field lines traced within and in front of the
initial filament location for the high β, large amplitude case. Arranged in this way, the
field lines show several key dynamic behaviours. Field lines that were originally inside the
filament remain inside it during its motion, showing that the frozen in condition is well
satisfied. Field lines that were initially outside tend to bend around the filament as it
approaches them and can be trapped within the convective cells associated with it. It is
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Figure 6. Field line twisting associated with the filament motion. The high β,
A = 8 filament is represented at six different stages of its evolution (from left to
right, top to bottom) as it interacts with a grid of field lines fixed at the target.
Each stage of the evolution is separated by 4µs. Note that only half of the domain
is shown (from symmetry plane, to the right, to target, to the left).

likely that, even in this regime, some field lines will penetrate inside the filament and some
will escape, but it is difficult to provide a quantitative estimate due to the fact that the
filament is not a solid object and it deforms as it propagates.

Finally, we note that the parallel currents flowing in the filament in response to the
diamagnetic drive [47, 24] induce perpendicular magnetic fields [37] which will tend to
twist the field lines in the proximity of the pressure perturbation. This leads to a helical
deformation of the field lines, which can be clearly observed in the time series shown in
Fig.6.

As Figs. 3, 4, 5 and 6 show, the dynamics of the field line dragging are non-trivial, as
the lines do not simply move outwards radially, with the filament centre of mass. Instead,
local effects dominate their behaviour, with the field lines being twisted around. Clusters
of straight field lines initially lying on the same plane become 3D loops around the filament.
The planes that begin within the filament make several loops around it while those further
in front wrap around it but the ends trail behind. As Fig. 3 shows, the field lines somewahat
in front of the filament are pushed radially forwards as the filament moves, but at a slower
velocity than the filament. The field lines gather towards the edge of the filament and
become dense, showing field line compression, a possible sign that current sheets will
develop in the filament. This poses the question of whether magnetic reconnection could
occur in these current sheets, an interesting subject that we leave for future investigation
[49]. The filament then meets the compressed field lines and draws them around the density
perturbation (see Figs.4 and 5). Field lines that begin separated by several filament widths
end within a thin layer at the edge of the filament.

4. Discussion and Conclusions

It has been shown that electromagnetic effects arising from finite β can affect the dynamics
of Scrape Off Layer filaments, which then perturb the magnetic field as they pass through.
Under the parameter range investigated, which is relevant for MAST plasmas in the
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proximity of the separatrix [53], but is easily generalizable, these effects become apparent
at β as low as 1x10−3, e.g. for typical H-mode conditions in a medium size tokamak with
nsep ∼ 2 × 1019m−3, Tsep ∼ 100eV and B ∼ 1T . The electrostatic approximation is
probably sensible for the far SOL where the plasma β is smaller, but the electromagnetic
effects should be included as simulations are performed in hotter and denser regions.
It is important to remark that small filaments below the critical size [44] are already
disconnected and therefore the results of this paper are less relevant for them. Filaments
around the critical size (such as those studied in our investigation where w = 5 ∼ wcr)
will be affected but larger filaments well above the critical size are the ones where the
disconnection produces the more striking changes in propagation velocity.

A nonlinear criterion to estimate when electromagnetic effects become important
for sheath connected filaments was introduced and it resembles similar criteria for edge
turbulence [51, 52, 41]. Broadly speaking, three regimes of behaviour were identified:
the two limits of electrostatic [β � (L⊥cs)

2/(L‖V⊥)2] and electromagnetic regimes
[β � (L⊥cs)

2/(L‖V⊥)2], with a third regime between the two. When taking L⊥ ∼ 1cm and
V⊥ ∼ 0.01cs as the filament width and typical perpendicular velocity, the characteristic
β is relatively small. This criterion can be easily shown to be a generalisation of the
one presented in [37], which implicitly assumes that V⊥ = L⊥γMHD ∼ cs

√
L⊥/R and

therefore specialises for ballooning mode perturbations which are not connected to the
sheath to begin with [48].

As our simulations showed, we therefore expect realistic filaments to show non-
negligible electromagnetic effects, including bending of the perturbation in the parallel
direction, dragging of the field lines and effective electrical disconnection from the target
(and consequent faster cross field velocity). Importantly, these effects are significant only
for filaments that would be, at least partially, electrically connected with the sheath if
they were at low β. Filaments with small cross section in the inertial range, where
the polarisation current dominates over the sheath effects, are much less sensitive to the
electromagnetic effects discussed here as they already lack communication with the target.

Bending of plasma filaments in electromagnetic regimes has been shown qualitatively
in previous work by Lee et al [39, 40]. Our investigation can be seen as a natural extension
of that work, with the additional quantification of changes in the radial velocities at the
midplane and target. With increasing β, the radial velocity of plasma filaments increases at
the midplane (up to 100% in the simulations reported here), and decreases at the target.
This has been interpreted using Alfvén waves which travel more slowly (relative to the
sound speed, i.e the filament’s characteristic velocity) at higher plasma β and communicate
information about the electromagnetic field along the filament. If they are slow enough the
midplane segment of filament generates strong electric fields without being affected by the
target, which cannot be mitigated by the sheath impedance and sink effect of the target.
With this interpretation, geometric modifications in the tokamak such as the length of
the divertor leg could lead to enhanced electromagnetic effects in the filament. With a
sufficiently long connection length, the central section of the filament will behave as if it
is not attached to any target.

We also described how the filaments affect the magnetic field by dragging and braiding
the magnetic field lines with the movement of the fluid elements within the filament. The
complex motion of the field lines results from them being increasingly frozen into the
plasma at high β and so displaced by the dipolar convection cells formed in the filaments.
In addition, parallel currents act to twist the magnetic field lines into helices. At high β,
field lines within the filament do not leave, but the leading edge of the filament does draw
in new field lines it encounters. Parallel communication becomes delayed and different
sections of the filament behave differently. The internal fluid motions of the filament also
play a strong role in the field line dynamics.

As a result of the coupling between fluid motion and magnetic field lines, the filament
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can leave a magnetic wake, which might affect the motion of following filaments. Further
work is required to examine the long term behaviour of the filaments in these conditions
and the overall effect on perpendicular transport. Future work will also look into magnetic
reconnection and the role of currents in the filament [49]. Long term goals include more
realistic magnetic geometry and to study how the filament interacts with the separatrix as
it moves from the core to the SOL, as these, at the moment, are the biggest limitations of
the work presented here.
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