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Magnetised plasma turbulence can have a multiscale character: instabilities driven by
mean temperature gradients drive turbulence at the disparate scales of the ion and the
electron gyroradii. Simulations of multiscale turbulence, using equations valid in the limit
of infinite scale separation, reveal novel cross-scale interaction mechanisms in these plas-
mas. In the case that both long-wavelength (ion-gyroradius-scale) and short-wavelength
(electron-gyroradius-scale) linear instabilities are driven far from marginal stability, we
show that the short-wavelength instabilities are suppressed by interactions with long-
wavelength turbulence. The observed suppression is a result of two effects: parallel-to-
the-field-line shearing by the long wavelength E ×B flows, and the modification of the
background density gradient by long-wavelength fluctuations. In contrast, simulations of
multiscale turbulence where instabilities at both scales are driven near marginal stability
demonstrate that when the long-wavelength turbulence is sufficiently collisional and
zonally dominated the effect of cross-scale interaction can be parameterised solely in
terms of the local modifications to the mean density and temperature gradients. We
discuss physical arguments that qualitatively explain how a change in equilibrium drive
leads to the observed transition in the impact of the cross-scale interactions.

1. Introduction

In a magnetised plasma, gradients in the mean temperature of the component particle
species act as sources of free energy that drive instability. Instabilities saturate through
nonlinear interactions to form turbulence; the nature of the turbulence is determined by
the character of the underlying instabilities. In this paper we consider the effect of cross-
scale nonlinear interactions in turbulence driven at the well-separated space-time scales
associated with ion and electron dynamics, respectively. This represents a fundamentally
different system to the one usually employed in turbulence studies, which consists of a
single injection range, a single inertial range, and a single dissipation range.

Instabilities in magnetised plasmas typically have a structure that is elongated along
field lines; this is a result of the Lorentz force which causes particles to perform gyro orbits
in the plane perpendicular to the magnetic field line, whilst allowing unimpeded motion
in the parallel-to-the-field direction. By definition, in a magnetised plasma the typical
particle gyroradius is much smaller than the device scale a that determines the parallel-
to-the-field scale of instabilities. In the core of magnetic confinement fusion devices two
of the dominant instabilities which drive turbulence are the ion temperature gradient
(ITG) and the electron temperature gradient (ETG) instabilities Cowley et al. (1991);
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Romanelli (1989); Horton et al. (1988); Lee et al. (1987). The ITG instability drives
turbulence at the scale of the ion thermal gyroradius ρth,i, at frequencies of order the ion
transit frequency vth,i/a, with vth,i the ion thermal speed. The ETG instability drives
turbulence at the scale of the electron thermal gyroradius ρth,e, at frequencies of order
the electron transit frequency vth,e/a, with vth,e the electron thermal speed.

When the ion and electron temperatures are approximately equal the space and time
scales associated with the ETG and ITG instabilities can be well separated: the separation

of scales is determined by the square root of the electron-to-ion mass ratio (me/mi)
1/2 ∼

ρth,e/ρth,i ∼ vth,i/vth,e. For the deuterium ions commonly used in magnetic confinement

fusion, the small value of (me/mi)
1/2 ≈ 1/60 allows for the possibility that two distinct

types of turbulence co-exist at disparate space-time scales. This possibility has sparked
considerable interest in multiscale turbulence, see e.g. Maeyama et al. (2017a,b, 2015);
Howard et al. (2016a,b, 2015, 2014); Bonanomi et al. (2018); Görler & Jenko (2008);
Candy et al. (2007); Waltz et al. (2007); Staebler et al. (2016, 2017); Creely et al. (2019);
Itoh & Itoh (2001).

Direct numerical simulations (DNS) of multiscale plasma turbulence show that the
interactions between long-wavelength and short-wavelength scales can be important
for determining the character of the turbulence and the flux of heat exhausted from
the fusion plasma Howard et al. (2016a,b); Maeyama et al. (2015, 2017a). The small

value of (me/mi)
1/2

makes DNS of multiscale plasma turbulence extremely challenging;
the increased cost of multiscale DNS compared to conventional simulations scales with

(mi/me)
3/2

. Recent multiscale DNS have been performed using the electron-to-deuterium
mass ratio (e.g. Howard et al. (2016a,b); Bonanomi et al. (2018)) and electron-to-
hydrogen mass ratio (e.g. Maeyama et al. (2015, 2017a)). The multiscale DNS provide
evidence showing that the presence of short-wavelength turbulence can sometimes mod-
estly enhance long-wavelength, ITG-driven fluxes Howard et al. (2016a,b); Maeyama
et al. (2015, 2017a). In contrast, multiscale DNS of microtearing mode (MTM) driven
turbulence show that the presence of short-wavelength ETG modes can suppress the
long-wavelength MTM Maeyama et al. (2017b). Most relevant to the results presented
in this paper, the multiscale DNS give clear evidence that shows that short-wavelength
turbulence can be suppressed in the presence of long-wavelength turbulence as a result
of cross-scale interaction Maeyama et al. (2015, 2017a); Howard et al. (2016b).

In this paper we use numerical simulations of scale-separated turbulence to demon-
strate the effect of long-wavelength turbulence on short-wavelength fluctuations. We show
that strongly driven, long-wavelength turbulence can stabilise the short-wavelength ETG
instability through cross-scale interaction. We show that this stabilisation is due to two
effects: the modification of the background drives of instability by gradients of long-
wavelength fluctuations; and the parallel-to-the-field shearing of short-wavelength fluctu-
ations by long-wavelength E ×B drifts. These mechanisms may explain the suppression
of the short-wavelength modes observed in DNS of strongly driven turbulence. We show
that parallel-to-the-field shearing can be a significant cross-scale interaction mechanism
far above marginal stability, but that it can be less important in turbulence driven near
marginal stability. We examine one example of near-marginal turbulence where we find
that the effect of cross-scale interaction on the ETG instability can be described with
the local modification of the density and temperature gradient length scales by gradients
of long-wavelength fluctuations.
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2. Scale-separated model

The local, δf gyrokinetic equations describe the evolution of magnetised plasma turbu-
lence driven by mean gradients in the limit that ρth,i/a→ 0 and ρth,e/a→ 0 Catto (1978);
Frieman & Chen (1982); Brizard & Hahm (2007); this model is the starting point in the
derivation of scale-separated equations for multiscale, electrostatic turbulence Hardman
et al. (2019). We now briefly review this derivation, first presented in Hardman et al.
(2019). Ultimately, we find that the local gradients of slowly evolving, long-wavelength
turbulence act to modify the mean gradients and flows which drive (or suppress) rapidly
evolving, short-wavelength fluctuations. In analogy to the coupling between turbulence
and large-scale transport Sugama & Horton (1997); Abel et al. (2013), we might expect
short-wavelength turbulence to generate fluxes that diffuse long-wavelength turbulence.

However, this effect is small by (me/mi)
1/2

in the ordering, and hence too small to appear

at leading order in the (me/mi)
1/2

expansion that we employ.

In the limit that (me/mi)
1/2 → 0, multiscale turbulence can be meaningfully decom-

posed into components: the long-wavelength “ion scale” (IS) and the short-wavelength
“electron scale” (ES). We assume that IS turbulence varies only on ρth,i perpendicular-
to-the-field scales in space and on a/vth,i scales in time, whereas ES turbulence has
much finer ρth,e perpendicular-to-the-field structures, and evolves on the rapid a/vth,e

time scale. Both IS and ES turbulence have parallel-to-the-field scales of order a. Here,
ρth,p = vth,p/Ωp, with p the particle species index, vth,p =

√
2Tp/mp, Ωp = ZpeB/mpc

the species cyclotron frequency, Tp the species temperature, Zp the species charge
number, e the unit charge, B the magnetic field strength, and c the speed of light.
The distribution function δf and electrostatic potential φ of the turbulence are sums of
the IS and ES components;

δf = δf + δ̃f , φ = φ + φ̃, (2.1)

where χ and χ̃ are the IS and ES pieces of any quantity χ, respectively. To carry out this
decomposition, we introduce the ES average 〈·〉ES, an average over ρth,e perpendicular-to-
the-field scales and a/vth,e times. We assume that ES turbulence is statistically periodic

on ρth,e scales, i.e., 〈δ̃f〉ES = 0. This allows us to use 〈·〉ES to extract the scale-separated,

coupled gyrokinetic equations for δf and δ̃f from the gyrokinetic equations for δf .
The IS component of the turbulence is evolved with the usual gyrokinetic equation for

the ion species, and a parallel-orbit-averaged equation for the electron species. The IS

turbulence evolves independently of the ES turbulence to leading order in the (me/mi)
1/2

expansion. At the ES the ion species have a Boltzmann response. The evolution of the ES
turbulence is governed by the short-wavelength electron gyrokinetic equation Hardman
et al. (2019)

(
∂

∂t
+ vE · ∇

)
g̃ + v‖b · ∇θ

∂g̃

∂θ
+ (vM + ṽE) · ∇g̃ + ṽE · (∇F0 +∇g)

=
eF0

Te

(
v‖b · ∇θ

∂ϕ̃

∂θ
+ vM · ∇ϕ̃

)
+ C̃, (2.2)

where we express the ES gyrokinetic equation in terms of the particle guiding centre
R = r + b × v/Ωe, with r the particle position, b the magnetic field direction, v the
particle velocity; ε the particle kinetic energy; λ = µ/ε the pitch angle, with µ the
magnetic moment; σ the sign of the particle velocity in the magnetic field direction
v‖ = v · b = σ(2ε/mp)

1/2(1 − λB)1/2; the gyroaveraged ES potential ϕ̃ = 〈φ̃〉ϑ,

with ϑ the angle of gyration about b and 〈·〉ϑ the electron gyroaverage at fixed R;
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Figure 1: A cartoon of a large-scale, IS flux tube with several narrow ES flux tubes
embedded within it.

the ES gyroaveraged electron distribution function g̃ = 〈δ̃f e〉ϑ = h̃ + eϕ̃F0/Te, with

δ̃f e(r) = h̃(R) + eφ̃(r)F0/Te, h̃ the non-Boltzmann part of the ES electron distribution
function, and F0 the Maxwellian electron mean distribution function. The poloidal angle
θ is the parallel-to-the-field coordinate; vM is the electron magnetic drift; and C̃ accounts
for the effects of collisions on g̃. The long-wavelength and short-wavelength E ×B drifts
are vE = (c/B)b × ∇φ and ṽE = (c/B)b × ∇ϕ̃, respectively; and g = δf e is the
long-wavelength, IS, electron distribution function. Gyroaverages do not appear in the
definitions of vE or ∇g as ρth,e is much smaller than the spatial scale of the IS structures.
Equation (2.2) is closed by the ES quasineutrality relation Ziñi = ñe, with ñp the ES
fluctuating density of species p. The ES quasineutrality relation can be written

∫
d3v|r

(
g̃(R) +

eF0

Te

(
φ̃(r)− ϕ̃(R)

))
= −Zieφ̃(r)

Ti
n0e, (2.3)

where n0e is the mean electron density, and the subscript r on the volume element in the
velocity space integral indicates that the integral is to be taken at fixed particle position.

Cross-scale interaction is mediated by the terms vE ·∇g̃ and ṽE ·∇g in the electron
gyrokinetic equation, equation (2.2). The gradient ∇g and the drift vE are constant
on a/vth,e time scales, and so appear as additional “equilibrium” terms in the short-
wavelength electron gyrokinetic equation. By inspecting equation 2.2 we see that we are
able to ascribe simple physical interpretations to the cross-scale terms: the term vE · ∇g̃
represents an advection term that will introduce velocity shear; and the gradient ∇g
appears in the term ṽE · (∇F0 + ∇g) i.e., ∇g modifies the usual equilibrium drive of
instability ∇F0. Equations (2.2) and (2.3) are solved in a thin ES flux tube embedded
within a larger IS flux tube, see figure 1 for a cartoon. In each ES flux tube ∇g and vE
take values which are constant in the perpendicular-to-the-field plane; the effects of the

perpendicular derivatives of ∇g and vE are small by (me/mi)
1/2

and so only appear at
higher order. However, both ∇g and vE can vary along the field line: this results in a
background drive of instability that is no longer uniform in θ, and in suppression of short-
wavelength instabilities due to parallel-to-the-field E ×B shearing by long-wavelength
flows. The component of vE due to the piece of the electrostatic potential φ that is
constant on the flux surface may be removed from equation (2.2) by boosting to a
toroidally rotating frame Hardman (2019); this component of vE can only change the
instability frequency by a Doppler shift. We will discuss the physical interpretation of
these cross-scale interaction mechanisms further in section 4.

To enable the study of cross-scale interaction in this multiscale framework, the cross-
scale terms vE ·∇g̃ and ṽE ·∇g in equation (2.2) were implemented in the δf gyrokinetic
code GS2 Kotschenreuther et al. (1995); Hardman (2019).



5

0 500 1000 1500
t/(a/vth,i)

0

50

100

〈 φ2〉x,y,θ/(Tρ∗th,i/e)2

(a)

−50 0 50
x/ρth,i

−50

0

50

y
/ρ

th
,i

φ/(Tρ∗th,i/e) at θ = 0

−10

−5

0

5

10

15

(b)

Figure 2: (a) The IS potential φ in units of ρ∗th,i = ρth,i/a, shown as a function of
time (volume-averaged), and (b) at the outboard midplane at t ' 1560a/vth,i. Times at
which the IS turbulence is sampled are indicated with vertical lines, and sampled (xs, ys)
positions are indicated by crosses.

3. Numerical results.

In this paper we address the key question of how the linear stability of the ETG
mode is affected by cross-scale interaction. We focus on a plasma in which single-scale
microturbulence is well understood: we use a simple magnetic geometry consisting of
concentric circular flux surfaces, with parameters largely corresponding to the widely-
used Cyclone Base Case benchmark (CBC) Dimits et al. (2000). In the simulations we
take a to be the half-diameter of the last closed flux surface; we take the normalised minor
radius at the centre of the flux tube ρ0 = r0/a = 0.54, with r0 the minor radius of the
flux surface; the major radius R = 3.0a; the safety factor at the centre of the flux tube
q0 = 1.4; the magnetic shear ŝ = ρd ln q/dρ = 0.8; equal ion and electron temperatures
Ti = Te = T ; the normalised temperature gradient a/LT = −d lnT/dρ = 2.3; the
normalised density gradient a/Ln = −d lnn/dρ = 0.733; the normalised self collision
frequencies aνii/vth,i = aνee/vth,e = 10−2; and the mass ratio me/mi = 1/3670. In the IS
simulations, instead of implementing the parallel-orbit-averaged equation for the electron
species, we impose that the passing, nonzonal electron response is Boltzmann, whilst
continuing to solve for the remainder of the electron distribution function with the usual
GS2 algorithm. We note that the results presented in this paper are independent ofme/mi:
IS simulations with me/mi = 0 and a Boltzmann passing, nonzonal electron response
show identical fluxes and cross-scale interactions with ETG instabilities. Physically, this is
because the electron bounce time is shorter than the correlation time of the IS turbulence.

To assess the impact of cross-scale interaction on the ETG instability we carry out
the following numerical investigation. We perform simulations of long-wavelength ITG-
driven turbulence, using the resolutions detailed in appendix A.1. We compute a sample
of ∇g(θ, ε, λ, σ) and vE(θ) at 6 times ts, on a 6× 5 grid in radial and binormal position,
xs and ys, respectively. For each ts at every sampled (xs, ys) we compute the ETG linear
growth rate γ(ts, xs, ys), including the cross-scale interaction terms vE ·∇g̃ and ṽE ·∇g in
equation (2.2). The resolutions used for the linear calculations are detailed in appendix
A.2. This statistical approach is necessary because vE and ∇g must be calculated from
turbulent fields which may vary intermittently in time and space. Figure 2a shows the

spatially-averaged IS potential 〈φ2〉x,y,θ(t), with sampled times indicated with a vertical
line; and figure 2b shows the IS potential φ(x, y) at the outboard midplane at time t '
1560a/vth,i – the last sampled time in 2a, with sampled positions indicated with crosses.
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Figure 3: (a) The linear growth rate for three cases: i) for the parameters given at
the start of section 3; ii) a/LTi

= a/LTe
= 1.38; and iii) a/LTi

= a/LTe
= 2.3 and

aνpp/vth,p = 10−4. (b) The ETG growth rate in the absence of cross-scale interaction.
Modes within the dashed curve are unstable.

The (x, y) coordinates are proportional to the flux-surface and field-line labels, ψ and
α, respectively, that define the magnetic field B = ∇α×∇ψ: we use the perpendicular-
to-the-field coordinates (x, y) that are defined to have units of length; i.e., x = (ψ −
ψ0)(dψ/dx)−1 and y = (α−α0)(dα/dy)−1, respectively, with (ψ0, α0) the coordinates of
the centre of the IS flux tube, dψ/dx = Brefaρ0/q0 and dα/dy = Brefa∂ρ/∂ψ|ρ0 , where
Bref is a reference magnetic field. We take Bref to be the toroidal magnetic field strength
on the flux surface ψ0 at the major radius Rref = (Rmax + Rmin)/2, where Rmax and
Rmin are the maximum and minimum major radial positions taken in the flux tube,
respectively. We note that we choose to define the poloidal angle θ in the simulations to
be such that b · ∇θ is constant in θ.

Figure 3 shows the linear growth rate γ spectrum in the absence of cross-scale
interaction. In figure 3a we show γ(ky) for modes with θ̂0 = 0, where θ̂0 is the poloidal
angle at which the wave fronts of the mode align with the minor radial direction of
the flux surface. Modes with θ̂0 = 0 have radially aligned wave fronts at the outboard
midplane. Figure 3a shows that for the simulation parameters used in this paper, see
curve i), there is a natural stable gap in binormal wave number ky between the ITG
and ETG modes: this serves to define the cut-off between the IS and ES. We note that
this separation of scales can become larger when both the drives of instability a/LTi

and
a/LTe

are reduced, see curve ii), whereas the separation can disappear for sufficiently
strong drive or low collisionality, see, e.g., curve iii). In figure 3b we plot the full ETG

linear growth rate spectrum γ(ky, θ̂0) in the absence of cross-scale interaction. Note that

the most unstable modes occur at θ̂0 = 0. The dashed curve in figure 3b indicates the
stability boundary where γ = 0, calculated with an interpolated spline fit. Figures 4a and
4b show the ETG growth rates in the presence of cross-scale interactions at two of the
sampled IS positions and times. Comparing figure 3b with figures 4a and 4b shows that
the effect of cross-scale interaction can be dramatic: in these examples the ETG mode is
largely suppressed, and completely stabilised, respectively.

To determine the average, or typical effect of IS turbulence on the ETG instability
we calculate the maximum ETG growth rate γmax at every (ts, xs, ys), where we note

that the maximum γ may occur at a (ky, θ̂0) that is different from the single-scale case.
Figure 5a shows that the majority of IS drifts and gradients had the effect of stabilising
the ETG mode: we find that γmax < 0 at 115 (ts, xs, ys) within the sample of 180, with
only a single (ts, xs, ys) showing a γmax larger than the maximum growth rate in the
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Figure 4: The ETG growth rate in the presence of cross-scale interaction due to IS
turbulence. Figures (a) and (b) show growth rates calculated at different (xs, ys) and
times ts. Note the suppression of the growth rate in (a) and (b) compared to Figure 3b.
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Figure 5: (a) The maximum ETG growth rate γmax computed including the cross-scale
terms vE · ∇g̃ and ṽE · ∇g in equation (2.2). We see that the typical effect of cross-scale
interaction for these parameters is to stabilise the ETG mode. The dashed vertical line
indicates the value of γmax for the ETG mode in the absence of cross-scale interaction.
(b) The average ETG growth rate 〈γ〉ts,xs,ys as a function of (ky, θ̂0).

absence of cross-scale interaction. This is illustrated further in figure 5b, which shows
that the average of the sampled ETG growth rates 〈γ〉ts,xs,ys is negative, for all (ky, θ̂0).

In figure 6 we show the distribution of ky and θ̂0 of the fastest growing ETG modes
in the presence of IS turbulence, with only modes that have γmax > 0 included in the
histograms. Note the significant spread in ky and θ̂0 that results from the cross-scale
interactions with the IS turbulence.

These results indicate that strongly driven ITG turbulence can suppress, or stabilise,
strongly driven ETG instabilities. This is in agreement with results from multiscale
DNS which show reduced short-wavelength heat transport in the presence of strongly
driven ITG instabilities, see, e.g., Howard et al. (2016a,b); Maeyama et al. (2015). In the
following sections we explore the physical mechanisms that result in the stabilisation of

the ETG instability in the (me/mi)
1/2 → 0 limit.

4. Physical Mechanisms and Interpretation

The cross-scale terms in equation (2.2), ṽE ·∇g and vE ·∇g̃ have intuitive physical inter-
pretations. The gradient ∇g modifies the local gradients of the background Maxwellian
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Figure 6: (a) The ky of the fastest growing ETG mode. (b) The θ̂0 of the fastest growing

ETG mode. The dashed lines indicate the ky and θ̂0 of the ETG mode in the absence of
IS turbulence. Only modes with γmax > 0 are included in the figures.

distribution function ∇F0, and thus modifies the instability drive. The drift vE is a
cross-field flow that advects ES fluctuations and that can vary strongly in the parallel-
to-the-field direction. This parallel-to-the-field variation introduces a new parallel length
scale and means that vE cannot simply be removed from the equations by changing to
a rotating or boosted frame. The most unstable toroidal instabilities typically have a
parallel wave number k‖ that is set by the connection length qR, i.e. k‖qR ∼ 1, cf. Parisi
et al. (2020). Parallel-to-the-field shearing of the ETG fluctuations acts to increase k‖
by imposing a parallel length scale such that k‖qR & 1, and hence stabilises toroidal
modes. We illustrate the physical picture for parallel-to-the-field shearing in figure 7.
Figure 7a depicts the field-aligned structure of the toroidal ETG mode in the absence
of parallel shearing. Figure 7b shows the result of imposing a cross-field flow that varies
along the magnetic field line: the k‖ of the ETG mode is now set by the parallel-to-the-
field structure of vE , and not by the connection length qR. The drift vE varies strongly in
the direction of b because at a specific xs and ys the IS potential φ = φ(θ). We note that
we may express ∇g = ∇h +∇(eφ/Te)F0, with h the nonadiabatic response of electrons
at IS. In the orbit-averaged model h is a constant in θ, at fixed (ε, λ), and is zero in
the passing piece of the velocity space for modes which oscillate in y (nonzonal modes)
Hardman et al. (2019). Despite this, g can vary strongly in the direction of b because of
the contribution from the adiabatic response eφF0/Te. Hence, ∇g contains a contribution
to the density gradient ∇(eφ/Te)F0 that has the effect that the total modified drive of
instability ∇g +∇F0 drives the mode nonuniformly in θ: this effect can also impose an
increased k‖ on the mode. We note that the contribution to ∇g from the nonadiabatic

electron response ∇h contains modifications to the background density and temperature
gradients, and gradients of higher-order velocity moments that may drive or suppress
instabilities. It is worth noting that the velocity moments of h do in general depend on
θ: this is a consequence of the fact that trapped particles can only access a limited range
of θ, and the fact that the nonzonal, passing electron nonadiabatic response vanishes in
the orbit-averaged model.

To shed light on the physical mechanisms underlying the result shown in figure 5, we
separately consider the effect of including ∇g and vE . In figure 8a we show the histogram
of the maximum ETG growth rate γmax computed including only the cross scale term
vE ·∇g̃ (setting ∇g = 0). In figure 8b we show the histogram of γmax computed including
only the cross scale term ṽE · ∇g (setting vE = 0). We see by comparing figures 5a, 8a,
and 8b that both the effect of parallel-to-the-field shearing and modifications to the
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(a) (b)

Figure 7: (a) Cartoon of field-aligned contours of ETG-driven potential fluctuations in
the absence of parallel-to-the-field shear. (b) The same ETG-driven mode in the presence
of an E ×B drift which varies in the direction of b on a scale shorter than the connection
length by a factor of order unity: the parallel-to-the-field scale of the mode is shortened.
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Figure 8: Histograms of the maximum ETG growth rate γmax computed using equation
2.2, but including only the cross-scale terms indicated. The dashed vertical line indicates
the maximum ETG growth rate in the absence of cross-scale coupling.

background gradients are important in the ETG stabilisation shown in figure 5. From
figure 8a we see that the effect of vE appears to be uniformly stabilising; i.e., there are no
instances where γmax becomes larger than the single-scale ETG growth rate. However, in
figure 8b we see that the effect of ∇g almost always stabilises the ETG mode, but in rare
instances can make the ETG mode more unstable. In the following sections we study
these cross-scale physics mechanisms in more detail and provide qualitative explanations
for these results.

We note that our decomposition of the cross-scale terms, while physically motivated,
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is not unique. In particular, we recall that we can further decompose ∇g = ∇h +
∇(eφ/Te)F0. In figures 8c and 8d we show the cross-scale effects of ∇h and ∇(eφ/Te)F0

on the ETG mode separately. The piece due to the nonadiabatic response ∇h can both
drive and suppress the ETG mode, whereas the piece due to the adiabatic response
∇(eφ/Te)F0 appears to only suppress the ETG mode. We give a qualitative explanation
for this observation in section 6.

5. Evidence for parallel-to-the-field shearing

In this section we show that the physical picture given in figure 7 is consistent
with the simulation results presented in section 3: the IS turbulence indeed shortens
the parallel-to-the-field scale of the ETG modes. To demonstrate this we first consider
the structure of the cross-scale terms and the structure of the ETG eigenmode in the
ballooning coordinate, labelled by θ. The fastest-growing ETG mode from a single-scale
simulation with CBC parameters occurs at kyρth,e = 0.58 and θ̂0 = 0. Figure 9a compares

the potential eigenmode for the (kyρth,e = 0.58, θ̂0 = 0) mode from a single-scale

simulation, to the (kyρth,e = 0.58, θ̂0 = 0) mode obtained at a specific example space-
time location in the IS turbulence. We see that the cross-scale interaction introduces
oscillatory features into the potential eigenmode. This is a result of the variation of vE
and ∇g = ∇(eφ/Te)F0 +∇h along the magnetic field line. To illustrate this, in figure 9b
we show the imposed IS E ×B drift frequency

ωE×B =
cκρ
Bref

(
kx
∂φ

∂y
− ky

∂φ

∂x

)
, (5.1)

with kx the field-aligned radial wave number of the ETG mode, i.e., the wavenumber
k = kx∇x+ky∇y, and the geometrical factor κρ = Bref(dx/dψ)(dy/dα) ' 1.01 for CBC
parameters. The frequency ωE×B is compared to the thermal magnetic drift frequency

ωM =
v2

th,e

Ωe
k · b×

(∇B
B

+ b · ∇b
)
. (5.2)

In figure 9c we show the drive frequencies associated with the ∇(eφ/Te)F0 piece of ∇g ,
ω∗φ = −ωE×B , compared to the background density gradient drive ω∗n = −ckyTe/eBrefLn;
and in figure 9d we show the background temperature gradient drive frequency ω∗Te

=

−ckyTe/eBrefLTe
, and the drive frequencies due to the density δnh and temperature δTe

moments of ∇h,

ω∗δn,h =
cκρTe

eBref

(
ky
n

∂δnh
∂x
− kx

n

∂δnh
∂y

)
(5.3)

and

ω∗δTe
=
cκρTe

eBref

(
ky
Te

∂δTe

∂x
− kx
Te

∂δTe

∂y

)
, (5.4)

respectively. There are two key feature to note in figures 9b, 9c, and 9d. Firstly, the
frequencies that mediate the effects of IS turbulence on ETG modes are comparable
in amplitude to the equilibrium drive and thermal magnetic frequencies. Secondly, the
frequencies vary in ballooning θ on the scale of the ETG eigenmode in 9a. In the strongly
driven turbulence that we consider here, we have found that the θ dependence of ωE×B
cannot be described by a simple function with few parameters. In consequence, simplified
quantitative modelling of the effects of parallel-to-the-field shearing by vE is challenging.
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Figure 9: (a) The real part of the normalised potential eigenmode for the fastest-growing
ETG mode for i) a specific instance of IS gradients and NoIS) the eigenmode in the
absence of cross-scale coupling. The normalised growth rates are γ/(vth,e/a) = 0.045 and
0.094, respectively. For simplicity, we chose to compare a case where the fastest-growing
mode in the prescence of IS turbulence appears at kyρth,e = 0.58 and θ̂0 = 0.0. (b)
The thermal magnetic drift frequency ωM compared to the IS E ×B drift frequency
ωE×B . (c) The drive frequencies due to equilibrium density gradients ω∗n, and due to
gradients in the adiabatic part of the IS, electron distribution function ω∗φ. (d) The drive
frequencies due to equilibrium temperature gradients ω∗Te

, and gradients of temperature
and density in the nonadiabatic part of the IS, electron distribution function, ω∗δTe

and
ω∗δn,h, respectively.

As we discuss in section 6, we find that it is possible to approximate ω∗δn,h and ω∗δTe
by

a constant value.
To assess whether or not the physical picture in figure 7 is consistent with the

simulation results, we calculate the k‖ spectrum of the fastest growing ETG mode at
each (ts, xs, ys) in the sample. For a single ballooning mode, we define the k‖ spectrum

to be |φ̃(k‖)|2, where

φ̃(k‖) =

∫ ∞

−∞
exp[ik‖z]φ̃(z)dz, (5.5)

cf. Parisi et al. (2020), with z = θ/b · ∇θ, and φ̃(z) is normalised so that the maximum
value of φ̃(z) is 1 – this maximum may occur away from z = 0. We note that we
define the θ coordinate in the simulations such that b · ∇θ is constant in θ. In figure
10 we compare |φ̃(k‖)|2 for the fastest growing ETG mode in the absence of cross-scale

interaction with the average k‖ spectrum 〈|φ̃(k‖)|2〉 of the fastest growing ETG modes in
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Figure 10: A comparison of the power spectrum of the electrostatic potential φ̃ of the
fastest growing ETG ballooning mode as a function of k‖ for several cases. In case NoIS)
we show the power spectrum of the fastest growing ballooning mode in the absence of
cross-scale coupling. The remaining curves show the (ts, xs, ys)-averaged power spectrum
of the fastest growing ETG mode in the case that: i) both cross-scale terms vE ·∇g̃ and ṽE ·
∇g are included; ii) only the shearing term vE ·∇g̃ is included; iii) only the modification
to ∇F0 from the adiabatic response of electrons is included, i.e., ṽE · ∇(eφ/Te)F0; and
iv) only the modification to ∇F0 from the nonadiabatic response of electrons is included,
i.e., ṽE · ∇h. To measure the spread of the distribution of k‖ we use σk‖ , defined in
equation (5.6). We find i) σk‖ = 0.065, ii) σk‖ = 0.064, iii) σk‖ = 0.043, iv) σk‖ = 0.031,
and NoIS) σk‖ = 0.027.

several calculations including various combinations of the cross-scale interaction terms.
Figure 10 indicates that cross-scale interaction introduces tails in the k‖ spectra. These
tails correspond to the oscillatory structure of the eigenmode shown in figure 9a. To
quantify the size of these tails, we introduce a measure of the spread of the distribution
of k‖:

σ2
k‖

2
=

∫
k2
‖〈|φ̃(k‖)|2〉dk‖∫
〈|φ̃(k‖)|2〉dk‖

. (5.6)

For the fastest-growing ETG mode in the absence of cross-scale interaction σk‖ = 0.027.
For the average k‖ spectrum of the fastest-growing ETG modes in the presence of all
cross-scale interaction terms we find that σk‖ = 0.065. This indicates that the effect
of cross-scale interaction is indeed to introduce larger k‖ into the ETG mode. Figure
10 indicates that the dominant component of the k‖ tails is introduced by the parallel

shearing term vE · ∇g̃. We also note that the term ṽE · ∇h introduces almost no k‖
component: cross-scale interaction via ṽE · ∇h leaves the form of the ETG eigenmode
unchanged. This is consistent with the fact that h is constant in θ at fixed (ε, λ, σ, x, y)
in the parallel-orbit-averaged model.

6. Modifications to the drives of instability

The physical interpretation of the impact of ∇g in equation (2.2) is that ∇g modifies
the background gradients in ∇F0 which drive the instability. As discussed in section 4,
∇g is in general a complicated function of (θ, ε, λ). In this section we examine to what
extent we can model ∇g by simple modifications to the values of a/LTe and a/Ln locally
in the IS flux tube. For this we use the results of the simulations presented in figures 8b,
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Figure 11: (a) The maximum ETG growth rate for CBC magnetic geometry γCBC
max as a

function of the normalised background gradient length scales a/LTe
and a/Ln. The cross

indicates the nominal CBC values of a/LTe
= 2.3 and a/Ln = 0.733. (b) The maximum

ETG growth rate γmax including only the effects of the cross-scale term ṽE ·∇h compared
to the model growth rate γCBC

max (a/Leff
Te
, a/Leff

n,h). The dashed line indicates the required
slope for a perfect correlation. (c) γmax including the effects of the cross-scale term ṽE ·∇g
compared to the model growth rate γCBC

max (a/Leff
Te
, a/Leff

n ). (d) The histogram of density

gradient length scales a/Leff
n . The dashed line indicates a/Leff

n = 0.733.

8c and 8d. This simplified model should be valid when the plasma is collisional and the
fluctuations are zonally dominated: in this limit, h can be approximated as a perturbed
Maxwellian that has no variation within a flux surface. We realise this limiting scenario
in section 7.

We present the maximum ETG growth rate for the CBC magnetic geometry as a
function of the background temperature and density gradients, γCBC

max (a/LTe , a/Ln), in
figure 11a. We define effective background temperature and density gradients,

a

Leff
Te

=
a

LTe

−
〈
aκρ
Te

∂δTe

∂x

〉

θ

, (6.1)

a

Leff
n,h

=
a

Ln
−
〈
aκρ
n

∂δnh
∂x

〉

θ

, (6.2)

and

a

Leff
n

=
a

Ln
−
〈
aκρ
n

∂δn

∂x

〉

θ

, (6.3)



14

−50 0 50
x/ρth,i

−50

0

50

y
/ρ

th
,i

φ/(Tρ∗th,i/e) at θ = 0

−3

−2

−1

0

1

2

(a)

0.00 0.02 0.04
γCBCmax /(vth,e/a) (model)

0.00

0.02

0.04

γ
m
ax
/(
v t

h
,e
/a

)

γmax: interaction near marginal

(b)

Figure 12: (a) Contours of the electrostatic potential φ(x, y) for the sampled near-
marginal IS turbulence. The 128 sampled positions xs lie equally spaced on the dashed
line. (b) The maximum ETG growth rate γmax calculated using equation (2.2), including
both cross-scale terms vE · ∇g̃ and ṽE · ∇g , compared to the model growth rate
γCBC

max (a/Leff
Te
, a/Leff

n ) that is calculated using the results in figure 11a and definitions
(6.1) and (6.3). The dashed line indicates the slope for a perfect correlation.

respectively, with 〈·〉θ =
∫ π
−π ·dθ/B·∇θ an average in θ between (−π, π) at fixed (x, y), δnh

and δTe the density and temperature moments of h, respectively, and δn = δnh+neφ/Te.
The normalised density gradient scale a/Leff

n,h measures the effective change to a/Ln
by density gradients in the long-wavelength nonadiabatic response of electrons, whereas
a/Leff

n measures the effective change to a/Ln by gradients in the total long-wavelength
density fluctuation.

In figure 11b we show that there is a strong correlation between the γmax calculated
using equation (2.2) including only the cross-scale term due to the IS, nonadiabatic
electron response ṽE · ∇h and the model growth rate γCBC

max (a/Leff
Te
, a/Leff

n,h). In contrast,
in figure 11c we show that the cross-scale interaction due to ∇g cannot be modelled by
γCBC

max (a/Leff
Te
, a/Leff

n ), Instead, the model γCBC
max almost always overestimates the growth

rate of the ETG modes. We can understand these results by referring to figure 10.
Cross-scale interaction due to the electron nonadiabatic response ∇h did not change
the k‖ spectrum of the ETG eigenmodes: ∇h has the effect of making the mode more
or less unstable by changing the drives only. In contrast the difference between ∇g and
∇h, ∇(eφ/Te)F0, had the effect of introducing larger k‖ components into the mode,
which cannot be captured by simple modifications to a/Ln and a/LTe

. The fact that
γCBC

max (a/Leff
Te
, a/Leff

n ) typically overestimates the ETG growth rate in figure 11c indicates

that the effect of the parallel-to-the-field variation in ∇(eφ/Te)F0 is stabilising.

Finally, we return to the result presented in figure 8b: the average effect of ∇g was to
suppress ETG instability. We can now understand this result qualitatively. Firstly, we
note that the CBC value for a/Ln maximises the ETG growth rates at fixed a/LTe

, as
shown in figure 11a: any modification to a/Ln will reduce the ETG growth rate γmax.
The histogram of density gradient length scales a/Leff

n shown in figure 11d indicates
that the typical modification to a/Ln is sufficient to reduce γmax by an amount of order
unity. Secondly, the parallel-to-the-field variation in the adiabatic response ∇(eφ/Te)F0

suppressed the instability further by increasing the k‖ in the ETG mode.
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7. Cross-scale interaction in near marginal turbulence

The simulation results presented in the previous sections were obtained for parameters
where there is a strong background drive of instability for ITG modes at scales comparable
to ρth,i and ETG modes at scales comparable to ρth,e. In this section we present results
for the case where a/LTi and a/LTe are reduced so that both the ITG and ETG modes
are driven near marginal stability. Weakly driven IS turbulence can reach a Dimits-shift
regime where the fluxes are low, and a long-wavelength, long-lived zonal flow regulates
the IS dynamics; see, e.g., Dimits et al. (2000); Rogers et al. (2000). This represents a
very different state from strongly driven, critically balanced, IS turbulence, cf. Barnes
et al. (2011). Consequently, the relative importance of parallel-to-the-field shearing and
modifications to the background drives may differ in turbulence driven near marginal
stability.

To obtain a near-marginal case, we use the parameters described in section 3, but re-
duce the normalised background temperature gradient length scales to a/LTe

= a/LTi
=

1.38. We use the resolutions given in appendix A.1, and we take me/mi = 0 in the
IS simulation. The IS turbulence is evolved until a long-lived, zonally dominated state
emerges. We sample the IS gradients ∇g and drifts vE at radial coordinates in the IS
flux tube xs, for a single time ts and binormal position ys. In figure 12a we show φ(x, y)
at ts for the near-marginal IS turbulence, with the sampled radial points taken along the
dashed line. At each of the 128 equally spaced xs positions we perform an ETG linear
calculation, including the effects of cross-scale interaction via equation (2.2) and using
resolutions detailed in appendix A.2. In contrast to the strongly driven case, in figure 12b
we show that the maximum growth rate of the ETG mode γmax – calculated including
both cross-scale interaction terms, vE · ∇g̃ and ṽE · ∇g – is strongly correlated with the
model growth rate γCBC

max (a/Leff
Te
, a/Leff

n ), with the effective density gradient scales a/Leff
Te

and a/Leff
n defined in equations (6.1) and (6.3), respectively, and γCBC

max shown in figure
11a. The imperfections in the correlation in figure 12b are primarily due to parallel-to-
the-field shearing from the term vE ·∇g̃ in equation (2.2) (cf. figure 10 which shows that
vE · ∇g̃ injects larger k‖ components than ṽE · ∇(eφ/Te)F0). We infer that the effect of
parallel-to-the-field shearing is weak in this near-marginal turbulence. We verified that
the average k‖ spectrum of the fastest growing eigenmodes was identical in the cases
with and without cross-scale interaction.

We can understand the result in figure 12b with the following intuition. The wavenum-
ber spectrum of near-marginal turbulence is dominated by the zonal mode, a mode
which is constant on each flux surface and only depends on the radial coordinate. In
consequence, perpendicular gradients in near-marginal turbulence are dominantly in the
radial direction, and the variation of the the electrostatic potential φ in the parallel-to-
the-field direction in the turbulence is weak. In this regime, the E ×B advection term
vE · ∇g̃ only modifies the ETG frequency by a Doppler shift Hardman et al. (2019).
Hence, the dominant cross-scale interaction term that alters the ETG growth rate is due
to the radial gradients of the IS electron distribution function, i.e., ∇g ' ∇x∂g/∂x. In
addition, if the plasma is sufficiently collisional then g is restricted to be a perturbed
Maxwellian of only density and temperature gradients, and in consequence, the effect
of cross-scale interaction in near-marginal turbulence may be parameterised with the
effective background gradient length scales a/Leff

Te
and a/Leff

n . The results presented in
this section demonstrate that this near-marginal cross-scale interaction regime can be
realised.
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8. Discussion

The results presented in this paper were obtained in the limit (me/mi)
1/2 → 0 with

a theory that assumes scale-separation between long-wavelength and short-wavelength
structures. This theory may not describe multiscale turbulence accurately for realistic

values of (me/mi)
1/2

under a variety of circumstances; e.g., when radially elongated ES
structures Dorland et al. (2000); Jenko et al. (2000); Jenko & Dorland (2002) grow
to be as large as a typical IS eddy; or when there is no significant dissipation at
wavelengths between the scales of the IS and ES turbulence. Nonetheless, in this paper
we have demonstrated that significant cross-scale interactions do persist in the limit

(me/mi)
1/2 → 0: strongly driven, long-wavelength turbulence can stabilise a strongly

driven ETG instability; and long-wavelength turbulence driven near marginal stability
can change the growth rate of a weakly driven ETG mode by an order unity factor.
The physical mechanisms responsible for these cross-scale interactions were shown to
be, firstly, the modification of the background drives of instability by gradients in
long-wavelength fluctuations, and secondly, the parallel-to-the-field shearing of short-
wavelength fluctuations by long-wavelength E ×B drifts. In the case of strongly driven
turbulence, the effects of both parallel-to-the-field shearing and nonuniform modified
background drives contributed to the stabilisation of the ETG instability. However, in the
case of near-marginal turbulence, the effect of parallel-to-the-field shearing was weak, and
the effect of cross-scale interaction could be parameterised with the effective background
gradient length scales a/Leff

n and a/Leff
Te

.

We can qualitatively explain the difference in the nature of the cross-scale interactions
that we find in the cases of near-marginal and strongly driven turbulence. Near-marginal
ITG turbulence is dominated by zonal modes, see e.g., Dimits et al. (2000); Rogers et al.
(2000). Zonal modes have a structure that depends only on radial position, and hence
the long-wavelength E ×B drift vE only has the effect of shifting the ETG fluctuation
frequency by a Doppler shift – for zonal modes where φ = φ(x) the term vE · ∇g̃
in equation (2.2) can be removed by boosting to a toroidally rotating frame Hardman
(2019). In this situation where the effect of parallel shearing is negligible, the dominant
cross-scale interaction arises from the radial gradient ∇g ' ∇x∂g/∂x. If g is sufficiently
close to a perturbed Maxwellian – perhaps as a result of moderate collisionality – then we
find that ∂g/∂x has dominant contributions from a density gradient and a temperature
gradient. In contrast, strongly driven ITG turbulence is not zonally dominated, but
consists of critically balanced turbulent eddies Barnes et al. (2011) that can have a
parallel correlation length as large as the device scale qR. Hence, ∇g and vE can contain
parallel-to-the-field variation that results in the nonuniform drive and the shearing apart
of short-wavelength modes, respectively. In critically balanced turbulence, eddies with a
greater ky have a faster nonlinear turnover time, and hence a shorter parallel correlation

length and a greater characteristic k‖ ∝ k4/3
y (R/LTi

)4/3 Barnes et al. (2011). A range of
ky modes in the inertial range can contribute to the gradient ∇g and the drift vE , with
the result that ∇g and vE can have parallel-to-the-field oscillations on scales shorter than
qR. This observation leads us to expect that the impact of parallel-to-the-field shearing
increases with increasing R/LTi .

A criterion for when to expect parallel-to-the-field E ×B shear to suppress ETG
modes can be obtained from a simple quasilinear argument. The effective shearing rate ω̂E
should scale with the parallel-to-the-field variation in the cross-scale advection operator
vE · ∇, i.e., ω̂E ∼ kETG∂vE/∂θ. We can expect parallel-to-the-field shear suppression
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when the effective shear rate

ω̂E & γETG; (8.1)

i.e., when the shear rate is faster than the typical ETG mode growth rate γETG, at a
typical ETG mode wave number kETG. A quasilinear estimate gives vE ∼ γITG/kITG,
with γITG and kITG the typical ITG mode growth rate and wave number, respectively.
If we assume that the variation of vE in the parallel-to-the-field direction ∂vE/∂θ ∼ vE ,
then we find that we can expect parallel-to-the-field shear suppression of ETG turbulence
when

γITG

kITG
&
γETG

kETG
. (8.2)

This result is consistent with observations of the behaviour of multiscale turbulence
made in light of some DNS Staebler et al. (2016, 2017); Creely et al. (2019), though
their interpretation differs from the one given here: Staebler et al. (2016, 2017); Creely
et al. (2019) neglect the variation of E ×B drifts along field lines, and so neglect the key
physical mechanism that is critical to the quasilinear argument: the effect of parallel-to-
the-field E ×B shear. We note that parallel-to-the-field flow shear has previously been
considered as a part of a model of hyperviscous dissipation of ITG driven turbulence
Smith (1997).

The suppression of short-wavelength turbulence seen in some DNS is often assumed to
be the result of perpendicular-to-the-field E ×B shearing by long-wavelength turbulence.
In fact, that mechanism does not appear in the leading-order, scale-separated ES equation

(2.2) Hardman et al. (2019). In the limit that (me/mi)
1/2 → 0, ES structures do not

have a large enough spatial extent to be affected by perpendicular-to-the-field shear in
IS E ×B flows.

Finally, we note that the scale-separated model should be modified if factors
that we have assumed to be of order unity become large enough to interfere with

the (me/mi)
1/2

expansion; possible examples of such parameters include the ratio
(γETG/kETG)/(γITG/kITG), the degree of spatial anisotropy in the turbulence, and the
ratio of the zonal to nonzonal fluctuation amplitudes Hardman et al. (2019).
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Appendix A. Simulation Resolutions

This appendix details the resolutions used for the simulations presented in this paper.
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A.1. Nonlinear simulations

For the nonlinear simulations presented in section 3 we use a flux tube with a
perpendicular cross-section of 40πρth,i×40πρth,i, and a single poloidal turn in the parallel-
to-the-field direction. We use ny = 21 toroidal modes with ky > 0 and kmax

y ρth,i = 1.05.
We use nx = 255 radial modes with kmax

x ρth,i = 6.38. We specify that each (kx, ky)
mode has a [−π, π] extent in θ, with nθ = 33 points. We use a λ grid with nλ = 27.
To describe passing particles we take nλ,p = 11 points, chosen using Gauss-Radau rules
Hildebrand (1987). For the trapped particles we employ a nonspectral, unequally spaced
grid in λ, with nλ,t = 16 points at the outboard midplane. Following Barnes et al. (2010),

we use an ε grid derived from a spectral speed v =
√

2ε/m grid with nε = 12 points.
For the near-marginal nonlinear simulation presented in section 7 we use the resolutions
described above, with nε = 16.

A.2. Linear simulations

For the linear simulations presented in sections 3 - 6 we use ballooning modes with an
extent [−3π, 3π] in the ballooning angle. For compatibility with the nonlinear simulations,
each [−π, π] segment has nθ = 33 points, and we take nλ = 27 and nε = 12. For the near-
marginal linear simulations presented in section 7 we use the linear resolutions described
above, with nε = 16 for consistency with the near-marginal nonlinear simulation.
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