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Abstract 

Effects of parallel and poloidal flows, as well as the flow shear, on the resistive wall 

mode (RWM) instability have been numerically investigated in toroidally rotating 

plasmas, utilizing a recently updated version of the MARS-F code (Liu Y Q et al 2000 

Phys. Plasmas 7 3681). A significant difference between these flows is that the 

background toroidal flow frequency is symmetric with respect to the poloidal angle, 

whilst both the poloidal and toroidal projections of the additional parallel flow are 

functions of both the plasma minor radius and poloidal angle. It is found that the 

stability of the resistive wall mode is hardly modified by the parallel flow, as a 

consequence of cancellation of the stabilizing effect provided by the poloidal 

projection of the parallel flow from one side, and the destabilizing effect provided by 

the toroidal projection from the other side. The destabilizing effect of the toroidal 

projection comes predominantly from the m=1 poloidal Fourier harmonic of the flow 

contribution. The shear of the parallel flow is found to generally weaken the 
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stabilization/destabilization effect on the RWM, as compared to the case of uniform 

parallel flow. 

 

1. Introduction 

The resistive wall mode (RWM) can limit the operational space of advanced 

tokamaks, which aim at producing high pressure, large faction of bootstrap current, 

long-pulse or steady state plasmas. Since advanced tokamak scenarios are envisaged 

for most of the future devices such as HL-2M [1], JT-60SA [2], ITER [3] as well as 

CFETR [4], understanding the RWM stabilization physics, under various plasma 

conditions, is still an important and urgent task, despite extensive efforts that have 

been taken during recent years in studying this plasma instability.  

The RWM can be viewed as a residual instability from the external ideal kink 

(XK) mode [5], which is a low-n (n is the toroidal mode number), global 

magneto-hydrodynamic (MHD) instability driven by plasma current and/or pressure. 

For a pressure driven XK, the normalized plasma pressure, the 

       0%N pa m B T I MA   value controls the mode stability, where   is the 

ratio of the volume averaged plasma pressure to the magnetic pressure, pI  the total 

plasma current, a the plasma minor radius, and 0B  the vacuum toroidal magnetic 

field. When N  exceeds a critical value (the so-called Troyon no-wall limit  [6]), the 

XK becomes unstable. A close-fitting perfectly conducting wall can stabilize the XK, 

resulting in (often substantially) increased N . However, the presence of a resistive 

wall (often a vacuum vessel of the tokamak) only reduces the XK growth rate without 
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shifting the stability boundary, converting the XK to a RWM growing on a timescale 

characteristic of the field penetration time through the wall. A truly unstable RWM 

can hardly non-linearly saturate due to the global nature of the instability, thus often 

leading to major disruptions of the plasma, causing the so-called hard beta limit. It is 

thus highly desirable to achieve the RWM stabilization, in order to maximize the 

economic benefit  for advanced tokamaks. 

It is now well established that either active control [7-12] or plasma toroidal flow 

in combination with drift kinetic effects [13-19], or the synergistic actions from both 

[20-22], can potentially stabilize the RWM. Active control is based on magnetic coils 

to compensate the field perturbation which passes through the resistive wall. Magnetic 

feedback experiments, carried out in both tokamaks [23, 24] and reversed field 

pinches [25, 26], as well as extensive theoretical investigations [9, 27], have 

demonstrated that successful suppression of the RWM can increase the plasma beta up 

to the ideal wall beta limit. On the other hand, passive stabilization of the mode, 

relying on the plasma flow and drift kinetic effects, appears more attractive (without 

using magnetic coils and sensors) if this can offer a full suppression of the RWM. 

This is also the subject of the present study.  

Within the MHD description, the RWM stabilization mainly comes from the ion 

sound wave damping and the shear Alfven wave continuum damping [13-15, 28, 29]. 

The critical toroidal rotation velocity, required for complete stabilization of the mode, 

is normally a few percent of the Alfven speed [30]. On the other hand, MHD-kinetic 

hybrid theory, including drift kinetic resonances [18, 19, 31-33], predicts substantially 
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lower value (even down to zero) of the critical toroidal rotation speed required for the 

mode stabilization, thus offering a better explanation of recent experimental results 

obtained in DIII -D [34] and JT-60U [35].  

So far, most of previous work on passive stabilization of the RWM only assumes 

toroidal plasma flow, neglecting any effects from the poloidal and/or parallel flow of 

the plasma. This is partially due to the fact that the poloidal flow is usually strongly 

damped in a tokamak device due to neoclassical effects [36]. On the other hand, 

recent experiments in JET have shown that the poloidal flow velocity of the plasma 

can be one order of magnitude higher than the neoclassical prediction [37, 38]. This 

often occurs in discharges where internal transport barrier (ITB) has been observed. In 

fact, a strong poloidal flow appears to be an important player in forming ITB.  

In this work, we investigate the n=1 RWM stabilization by various combinations 

of the poloidal and toroidal flows. By doing so, we clarify the fundamental physics 

associated with the (general) flow damping of the RWM. This study thus further 

advances the previous understanding achieved in [39], where the poloidal flow is 

found to play an important role on the RWM stabilization, due to coupling to the 

toroidal flow via the parallel flow. 

The next section discusses the computational model with parallel/poloidal flow. 

A toroidal equilibrium, assumed in thus study, is also briefly described here. Section 3 

reports numerical results. Section 4 concludes the work.  
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2. Computational model and equilibrium model 

2.1. Toroidal MHD model with parallel/poloidal flow in MARS-F code 

In this work, the MHD stability code MARS-F [7] is updated to include a generic 

equilibrium flow, i.e. both toroidal and poloidal flows. MARS-F employs a 

curve-linear flux coordinate system ( , , )s   , where the radial coordinate Ns   

( N  is the normalized equilibrium poloidal flux, being equal to 0 at the magnetic 

axis and unity at the plasma boundary) labels the magnetic flux surface,   a generic 

poloidal angle and   the geometric toroidal angle. The equilibrium magnetic field is 

represented as  

( ) ,T      B  

where   is the equilibrium poloidal magnetic flux [note that   here is not 

normalized to 0 and 1], T is the poloidal current flux function.  

Within the single fluid model, an equilibrium flow satisfying mass conservation 

can be generally represented as  

2 1
0

ˆ( ) ( , ) ( ) ,tR s s U s        
 

V B                              (1) 

where R is the plasma major radius, ˆ( ) ( , )t s s    the angular velocity of a 

generic toroidal flow of the plasma, ( )U s  the flow component parallel to the 

equilibrium magnetic field lines, and   the equilibrium plasma density normalized 

to unity at the magnetic axis. In this work, we consider sub-sonic equilibrium flow. 

Therefore, the plasma flow induced modification to the equilibrium is neglected. 

Note that we introduce a generic toroidal flow component ˆ ( , )s   in our model 

(1), that varies along both the plasma minor radius and poloidal angle [40]. This 
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makes our flow model different from that assumed in [39]. This does not contradict 

the mass conservation law 0( ) 0 V . However, assumption of additional physics 

constraint, such as the radial ion force balance, will eliminate the ˆ ( , )s   

component, in which case the 1-D component ( )t s  represents the sum of the 

toroidal E B  and the ion diamagnetic rotation frequencies. Nevertheless, in this 

study, we shall keep the 2-D component ˆ ( , )s   in our equilibrium flow model. As 

we will see later, this allows us to study the effect of a pure poloidal flow on the MHD 

instability.  

The parallel flow component ( )U s  is always a 1-D function, in order to satisfy 

equilibrium mass conservation. The parallel flow can be projected into the toroidal 

and poloidal directions, resulting in  

1
2

1

ˆ( , ) ( ) ( , ) ( ) ,

( , ) ( ) ,

t

T
s s s U s

R

s U s
J





  


 






    


 


                             (2) 

where J is the Jacobian associated with the curve-linear coordinates ( , , )s   . A 

choice of 1 2ˆ ( , ) ( )s U s T R      and ( )t s =0 leaves us with a pure poloidal 

equilibrium flow. On the other hand, setting ˆ ( , )s  =0 as well as ( )t s =0 allows us 

to study the effect of pure equilibrium parallel flow on the MHD instability. Finally, 

setting ( )U s =0 and ˆ ( , )s  =0, the conventional case of a pure 1-D toroidal flow is 

recovered.  

Inclusion of parallel/poloidal flow leads to additional terms (underlined below) to 

the perturbed MHD equations, as compared to the previous formulation [7, 13, 14] 

with toroidal flow alone 
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1 ( ),                                 (3) 

2

1 2 1
1

( ) ( )

                    ( ) ( ) ,
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              (4) 

2
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1
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                       ( ) ( ) [ ( ) ],
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k v

U U U U

   

 

  

             

  

        

v j B J b Z v v

v b V b b

v B v J B v B v

         (5) 

2 1( ) ( ) ( ) ( ),in R U           b v B b b B           (6) 

,p P P                           (7) 

0 , j b                      (8) 

where   is the (generally complex) eigenvalue of the instability, corrected by a 

Doppler shift in  with ˆ( ) ( , )t s s     . The quantities  1, , , , ,p ξ v b j  

represent the plasma perturbed density, displacement, velocity, magnetic field, current 

and pressure, respectively. The symbols  , , ,P B J  are equilibrium quantities, 

obtained by the equilibrium code CHEASE [41]. Ẑ  is the unit vector in the vertical 

direction,   the strength of the parallel sound wave damping, ( )k n m q R   

the parallel wave number, with m being the poloidal harmonic number and q the 

safety factor. , 2th i i iT M  is the thermal ion velocity, with iT , iM  being the 

thermal ion temperature and mass. ˆ Bb B  is the unit vector along the equilibrium 

magnetic field.   is the ratio of specific heats, taken to be 5/3 for an ideal gas.  

In the vacuum region, the perturbed magnetic field satisfies divergence-free 

conditions. In the region occupied by the resistive wall, an eddy current equation is 

solved following a thin shell approximation [20]. The above new formulation (1)-(8) 

has been implemented into the MARS-F code. A series of tests have been carried out 
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to verify the new code.  

 

2.2. Equilibrium model 

We consider an up-down symmetric equilibrium, with the plasma boundary shape 

shown in figure 1(a). The shape of the resistive wall conforms to the plasma 

boundary surface. The key equilibrium radial profiles are plotted in Fig. 1(b-e). Note 

that we choose a slightly reversed magnetic shear in the plasma core, which is often 

compatible with the advanced tokamak scenario in the presence of ITB [42]. The 

safety factor has the on-axis value of 0 1.76q  , the minimal value of min 1.6q  , 

and the edge value of 3.28eq  . The normalized beta value for this equilibrium is 

3.37N  . The no-wall beta limit is computed as 2.54no wall
N

  , and the beta limit 

with an ideal wall is 3.72ideal wall
N

  . A linear scaling factor for the equilibrium 

pressure, C , is consequently introduced ( ) ( )no wall ideal wall no wall
N N N NC         , 

yielding 0.52C   for the equilibrium shown in Fig. 1.  

The radial profiles for the plasma toroidal rotation frequency ( )t s  (solid line) 

and the parallel flow component ( )U s  (dashed line), are shown in Fig. 2. The 

( )t s  profile is chosen from an early JET discharge [43], and ( )U s is a 

scaled-down version of ( )t s . Note that in this work, the toroidal rotation 

frequency is normalized by the on-axis toroidal Alfven frequency 

0 0 0 0( )A B R    , and the parallel component U is normalized by 

0 0N AU R B  . Whilst the amplitude of these plasma flow speeds will be scanned 

in our study, we generally assume that the poloidal flow is slower than the toroidal 
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flow. This is a reasonable assumption taking considering neoclassical poloidal flow 

damping. 

 

3. Numerical results 

In the following four sub-sections, with the new MARS-F implementation, we shall 

investigate the n=1 RWM instability affected by (i) parallel flow, (ii) a pure poloidal 

flow, (iii) toroidal projection of parallel flow and (iv) flow shear, respectively. In these 

computations, we do not consider full drift kinetic effects on the RWM stability, but 

instead include a simpler viscous type of model involving ion-Landau damping of 

parallel sound waves.  

 

3.1. Effect of parallel flow on RWM stability  

The effect of parallel flow on the RWM has previously been considered in Ref. 39. 

The results there imply that parallel flow has a strong effect on the mode stability. A 

close analysis of the modeling procedure in Ref. 39 reveals that the authors assume 

that the total toroidal flow, including that of the toroidal projection of the parallel flow, 

is fixed while introducing the parallel flow. This means that, when the parallel flow is 

introduced, Ref. 39 also changes the toroidal flow component ( )t s  in Eq. (2) from 

Section 2.1 above, such that the total toroidal flow ( , )s   from Eq. (2) is 

approximately fixed (assuming ˆ ( , ) 0s   ). Note that the total toroidal flow cannot 

be exactly fixed, since the toroidal projection of the parallel flow is a 2-D flow, which 

cannot be exactly replaced by the 1-D flow ( )t s . Certain proxy has to be taken, e.g. 
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by taking the toroidal projection of the parallel flow only along the outboard 

mid-plane.  

We have followed the same procedure in our study, and find qualitatively similar 

results to Ref. 39. In what follows, however, we choose another approach, in order to 

more clearly identify the role of parallel flow on the RWM stability. This, together 

with results to be shown in the follow-up section (Section 3.2), clarifies the RWM 

damping physics, when both the parallel/poloidal and toroidal plasma flows are 

present.  

More specifically, we shall keep the toroidal flow component ( )t s  fixed while 

scanning the parallel flow velocity. For comparison, we first report MARS-F results in 

the absence of parallel flow (Fig. 3). In this case, a strong parallel sound wave 

damping, in combination with the Alfven and sound wave continua resonances, fully 

stabilizes the RWM at sufficiently fast toroidal flow. The critical rotation frequency, 

required for complete stabilization of the mode, is 0.045cri  . This result is 

expected following the fluid theory for the RWM [13].  

Next, we fix the toroidal rotation ( )t s  and vary the parallel flow component 

( )U s  ( ˆ ( , )s   is set to zero). The shapes of the radial profiles for ( )t s  and 

( )U s  are taken from Fig. 2. The on-axis values for ( )t s  are fixed at 0 0.02   

and 0 0.04  , respectively. The latter flow amplitude is close to the critical value 

for the RWM stabilization as found from Fig. 3. The MARS-F results, reported in Fig. 

4, show that the stability of the RWM is hardly modified by the parallel flow.  

As for an intuitive understanding, a plasma flow along the equilibrium field line 
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mainly introduces a rotational transform. In other words, the MHD physics remains 

the same if a reference frame were introduced which flowed along the field lines. This 

transform is not trivial to perform though in practice. Another intuitive interpretation 

is that the RWM dynamics, like many other macroscopic MHD instabilities, involve 

mainly physics along the perpendicular (to field lines) direction. (This is not strictly 

true though, since we know that the parallel dynamics couple to the perpendicular 

motion through the plasma compressibility.) When the plasma is close to be 

incompressible (which holds at the marginal stability point for ideal MHD), and the 

additional coupling via sub-sonic equilibrium flow (due to centrifugal and Coriolis 

forces) is weak, the parallel dynamics is not important.  

Figure 5 further demonstrates that the effect of parallel flow is very weak on the 

RWM stability. The stability window [14], in terms of the wall minor radius, is found 

to undergo little modification, when the parallel flow is introduced in either positive 

(to the equilibrium parallel current) or negative directions. This holds for both toroidal 

rotation cases considered here.    

 

3.2. Effect of poloidal flow on RWM stability 

As discussed in Section 2.1, the parallel flow can be projected into poloidal and 

toroidal components. In this sub-section, we study the effect of a pure poloidal flow 

on the RWM stability. The toroidal projection of the parallel flow is eliminated for 

these simulations by setting 1 2ˆ ( , ) ( )s U s T R      in Eq. (2). 

Here, we present numerical results showing stabilization of the RWM by the 
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pure poloidal flow in a toroidally rotating plasma. We again keep the toroidal flow 

fixed while scanning the parallel flow speed U . Figure 6 shows two examples of the 

computed RWM eigenvalue versus the on-axis value of U , fixing the toroidal 

rotation frequency at 0 0.02   (circles) and 0 0.04   (squares), respectively. We 

emphasize that only the poloidal projection of the parallel flow is included in these 

computations.  

It is apparent that the growth rate of the RWM decreases with increasing 0U , 

although 0U  is much smaller than the toroidal rotation frequency. The mode 

becomes stable for both cases, when 0U  the exceeds a critical value of 

3
0 1.5 10U   . The stabilizing effect of the pure poloidal flow is found to be stronger 

for the case with slower background toroidal flow. In fact, the mode growth rate 

decreases about fi ve times quicker (with increasing 0U ) for the plasma rotating at 

0 0.02  , than the case of 0 0.04  , as shown in Fig. 6(a).  

Figure 7 further demonstrates the substantial effect of poloidal flow on the RWM 

stability. The width of the stability window increases with (positive) 0U , when the 

poloidal projection alone is included in the computations, as shown in Fig. 7(a). With 

negative 0U , addition of poloidal flow destabilizes the RWM and narrows the 

stability window.  

 

3.3. Effect of toroidal projection of parallel flow on RWM stability 

Now we consider the opposite case, where we only keep the toroidal projection 

of parallel flow. Note that this flow component varies along both the plasma minor 
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radius as well as the poloidal angle, unlike the 1-D toroidal flow ( )t s  which is also 

included here.  

Figure 8 reports the 0U -scan results at fixed 1-D flow ( )t s , with all the 

parameters being the same as Fig. 6, except replacing the poloidal projection by the 

toroidal projection. We again find that the larger effect from the 0U -scan occurs at 

slower toroidal rotation 0 0.02  . The critical value for marginal stability, in terms 

of 0U , is similar between two values of 0 .   

What is counter-intuitive is that increasing 0U  destabilizes the RWM, despite 

the fact that the toroidal projection of parallel flow and the 1-D toroidal flow ( )t s  

have the same sign when 0U  is positive. In order to understand this effect, we 

decompose the toroidal projection into poloidal Fourier harmonics 

1 2
0

1

ˆ ( , ) ( ) ( ) 2 [ ( ) ]im
m m

m

s U s T R s Re s e  





     . The dominant harmonics turn 

out to be m=0 and m=1 (and -1). These are shown in Fig. 9(a). The m=0 harmonic has 

the same (positive) sign as ( )t s . The m=1 (or -1) harmonic, however, has the 

opposite sign. The computed destabilization, shown by Fig. 8, comes from the Fourier 

harmonic coupling effect with the m=1 component of the 2-D flow ˆ ( , )s  , as 

demonstrated by Fig. 9(b).  

Indeed, by including the m=0 component of ˆ ( , )s   alone, Fig. 9(b) shows 

stabilizing effect, as expected. On the other hand, a strong destabilization occurs if we 

only include the m=1 component of ̂ ( , )s   into the MARS-F computation. Note 

that this destabilization must come from toroidal coupling effect, not simply due to 

the fact that the m=1 harmonic has opposite sign to the 1-D flow ( )t s . This is 
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because the flow associated with the m=1 component changes direction along the 

poloidal angle. The surface averaged contribution to the flow, from the m=1 

component, thus vanishes.  

 

3.4. Effect of flow shear on RWM stability 

In what follows, we investigate how the change of flow shear for the parallel flow 

component ( )U s  affects the RWM stability. We introduce a set of parallel flow 

profiles, 0(1 )U U s   , with different choices of ( , )  -values. Three 

representative choices are shown in Fig. 10. Note that case 1 (uniform profile with 

vanishing shear) and case 3 (strong local shear near the q=2 surface) represent two 

extreme situations.  

The MARS-F computed RWM eigenvalues, assuming the above three profiles 

for the parallel flow ( )U s , are reported in Fig. 11. Note that, besides the flow shear 

variation, we also compare cases with inclusion of poloidal or toroidal projection 

alone of the parallel flow, or with inclusion of the full parallel flow. In the latter, the 

flow shear of ( )U s  has negligible effect on the RWM stability, largely due to the 

fact that the parallel flow itself has a very weak effect on the mode. On the other hand, 

the flow shear associated with the poloidal or toroidal projection significantly affects 

the mode stability. Generally the effect is weaker with stronger shear. It is important 

to note that this conclusion holds if we fix the parallel flow amplitude at the q=2 

surface ( 2qU  ) while varying the shear. Although generally there is no unique way of 

comparison, we find out that this is the best way to isolate the flow shear effect from 
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that of the flow amplitude.  

Compared to the case without parallel flow or its projections (i.e. 2 0qU   ), 

stabilization or destabilization of the RWM depends on the direction of the parallel 

flow. Stabilization of the mode is achieved either by poloidal projection of parallel 

flow in the positive direction (aligning with the equilibrium parallel current), or by 

toroidal projection of parallel flow in the negative direction. Destabilization is found 

in opposite cases. 

 

4. Conclusions and discussion 

We carried out detailed numerical investigation on the n=1 RWM stabilization by 

various combination of the poloidal/parallel and toroidal plasma flows, utilizing the 

updated version of MARS-F code. The effect of the flow shear of the parallel flow has 

also been studied. 

One of the key findings is that the parallel flow provides minor stabilization to 

the RWM. At a first glance, this may be contradicting to the conclusion reached by 

Aiba et al. [39]. In their work, the parallel flow was introduced with fixed total 

amount of toroidal flow. In our work, we fix the 1-D toroidal flow frequency while 

adding the parallel flow component. This allows to study the effect of a pure parallel 

flow on the mode stability. Our result suggests that the parallel flow acts more like 

introducing a rotational transform (along the equilibrium field line) to the mode, than 

providing physical stabilization.  

On the other hand, if we keep only the poloidal or toroidal component of the 
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parallel flow, the effect on the RWM stability is appreciable, even at small magnitude 

of parallel flow, i.e. at about 10% of that of the 1-D background toroidal flow speed.  

With the same sign for the 1-D toroidal flow and the parallel flow, we find that the 

poloidal projection of the parallel flow provides additional stabilization to the RWM, 

whilst the toroidal projection destabilizes the mode. As a result, when both the 

poloidal and toroidal components are included (i.e. with full parallel flow), the 

stabilization and destabilization effects cancel each other, resulting in a minor effect 

of parallel flow on the RWM stability.  

An interesting observation is that, despite the fact that the toroidal projection of 

parallel flow in average enhances the 1-D background toroidal flow, the RWM 

stability is reduced. We find out that this destabilization originates from the m=1 

poloidal Fourier harmonic of the toroidal projection, which has an opposite sign to the 

1-D background flow. This m=1 component destabilizes the mode via mode coupling 

effect.  

The shear of the parallel flow component, near the q=2 surface, generally 

weakens the effect on the RWM stabilization/destabilization. Consequently, a large 

shear at the q=2 rational surface with negative poloidal projection or positive toroidal 

projection reduces the mode destabilization. A uniform parallel flow with positive 

poloidal projection or negative toroidal projection enhances the mode stabilization. 

The finding that a small amount of poloidal flow can effect appreciable 

stabilization to the RWM may be important for ITER, where the toroidal flow is not 

expected to be fast, and the drift kinetic stabilization (at slow toroidal flow) is 
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predicted to only partially stabilize the mode [31].  

The aforementioned drift kinetic effects have been ignored in this study, for the 

purpose of reaching clear physics understanding within the fluid picture. Combination 

of parallel flow, or its poloidal/toroidal projections, with drift kinetic theory requires 

further development of the MHD-kinetic hybrid formulation. In particular, the particle 

bounce orbit average of the toroidal projection (which is a function of both plasma 

minor radius and poloidal angle) of the parallel flow need to be added into the drift 

kinetic resonance operators. The resonance between poloidal flow and particle drift 

motions has so far not been considered in the kinetic RWM theory, although the 

physics is similar to that of the magnetic pumping for the neoclassical poloidal flow 

damping. Detailed hybrid formulation still need to be developed, which will be part of 

a future work.   
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Figures and figure captions 

 

 

Figure 1. (a) Geometry of an up-down symmetric equilibrium shown in the poloidal 

cross section. With a JET-like plasma shape and a conformal resistive wall. Shown 

also are equilibrium radial profiles for (b) the safety factor, (c) the plasma pressure 

normalized by 2
0 0B  , (d) the surface averaged toroidal current density normalized 

by  0 0 0B R , and (e) the plasma density normalized to unity at the magnetic axis. 

Here Ns   labels the plasma minor radius, with N  being the normalized 

poloidal equilibrium magnetic flux. 
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Figure 2. The radial profiles for the plasma toroidal rotation frequency (solid line), 

normalized by 0 0 0 0( )A B R     and the plasma parallel flow component 

(dashed line), normalized by 0 0N AU R B  . 

 

 

Figure 3. Growth rate ( R ) and mode frequency ( R ) of the n=1 RWM versus the 

plasma on-axis toroidal rotation frequency. The other parameters are fixed: the plasma 

pressure 0.52C  , the normalized wall distance / 1.25d a  and the parallel 

viscous damping coefficient 1.5  . 
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Figure 4. (a) Growth rate and (b) mode frequency of the RWM versus the plasma 

on-axis parallel flow component for two choices of the toroidal rotation at the plasma 

centre 0 0.02   (circles) and 0 0.04   (squares), respectively. The other 

parameters are fixed: 0.52C  , / 1.25d a  and 1.5  . The toroidal rotation 

frequency is normalized by the on-axis toroidal Alfven frequency 

0 0 0 0( )A B R    , and the parallel flow component is normalized by 

0 0N AU R B  . 
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Figure 5. Growth rates of the RWM ( R ) and the XK ( K ) versus the normalized 

wall position for different choices of the parallel flow component, at the values of (a) 

0 0.003U   and (b) 0 0.005U  . The other parameters are fixed: the plasma pressure 

0.52C  , the parallel viscous damping coefficient 1.5   and the toroidal 

rotation frequency 0 0.04  . 
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Figure 6. (a) Growth rate and (b) mode frequency of the RWM versus the plasma 

on-axis parallel flow speed for two choices of the toroidal rotation at the plasma 

centre 0 0.02   (circles) and 0 0.04   (squares), respectively. Only the poloidal 

projection of parallel flow is included while scanning 0U . The other parameters are 

fixed: the plasma pressure 0.52C  , the normalized wall distance / 1.25d a  and 

the parallel viscous damping coefficient 1.5  . The toroidal rotation frequency is 

normalized by the on-axis toroidal Alfven frequency 0 0 0 0( )A B R    , and the 

parallel flow component is normalized by 0 0N AU R B  . 
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Figure 7. (a) Growth rates of the RWM (R ) and the XK ( K ), and (b) mode 

frequency of the RWM versus the normalized wall radius, for different choices of the 

on-axis parallel flow speed at 0 0.001U   (circles), 0 0U  (triangles), 

0 0.001U  (squares) and 0 0.002U  (diamonds). Only the poloidal projection of 

parallel flow is included while scanning 0U . The other parameters are fixed: the 

plasma pressure 0.52C  , the parallel viscous damping coefficient 1.5   and 

the toroidal rotation frequency 0 0.04  . 
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Figure 8. (a) Growth rate and (b) mode frequency of the RWM versus the plasma 

on-axis parallel flow component for two choices of the toroidal rotation at the plasma 

center 0 0.02   (circles) and 0 0.04   (squares), respectively. Only the toroidal 

projection of parallel flow is included while scanning 0U . The other parameters are 

fixed: 0.52C  , / 1.25d a  and 1.5  . The toroidal rotation frequency is 

normalized by the on-axis toroidal Alfven frequency 0 0 0 0( )A B R    , and the 

parallel flow component is normalized by 0 0N AU R B  . 
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Figure 9. (a) Radial profiles for the real parts of toroidal projection, with poloidal 

harmonics of m=0 and m=1, the other harmonics are at least 10 times smaller than the 

m=1 by amplitude and the imaginary parts of all harmonics are very small, (b) growth 

rate of the RWM versus the amplitude of each harmonic (m=0 and m=1) for two 

choices of the toroidal rotation 0 0.02  (circles) and 0 0.04  (squares), 

respectively. Note that the m=0 component is included into toroidal flow ( )t s . 
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Figure 10. Three choices of the radial profile for the parallel flow component: 

uniform (case 1, solid), parabolic (case 2, dashed) and with a large local shear (case 3, 

dotted). The dash-dotted line denotes the location of the q=2 rational surface. 
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Figure 11. (a) Growth rate and (b) mode frequency of the RWM versus the parallel 

flow component at the q=2 rational surface, assuming three radial profiles as shown in 

Fig. 10: case 1 (uniform profile, circles), case 2 (parabolic profile, squares) and case 3 

(large local shear, triangles). Compared are also three flow models: parallel flow 

(lines without symbols), only poloidal projection (filled symbols) and only toroidal 

projection (open symbols) component of parallel flow. Note that three curves with 

parallel flow are very close to each other. The other parameters are fixed: 0.52C  , 

/ 1.25d a , 1.5   and 0 0.04  . 


