
UKAEA-CCFE-PR(20)122

K.L. van de Plassche, J. Citrin, C. Bourdelle, Y.

Camenen, F. J. Casson, V.I. Dagnelie, F. Felici, A. Ho,

JET Contributors

Fast modelling of turbulent transport
in fusion plasmas using neural

networks

Enquiries about copyright and reproduction should in the first instance be addressed to the UKAEA
Publications Officer, Culham Science Centre, Building K1/0/83 Abingdon, Oxfordshire,
OX14 3DB, UK. The United Kingdom Atomic Energy Authority is the copyright holder.

The contents of this document and all other UKAEA Preprints, Reports and Conference Papers are
available to view online free at scientific-publications.ukaea.uk/

https://scientific-publications.ukaea.uk/

Fast modelling of turbulent
transport in fusion plasmas using

neural networks

K.L. van de Plassche, J. Citrin, C. Bourdelle, Y. Camenen, F. J.

Casson, V.I. Dagnelie, F. Felici, A. Ho, JET Contributors

This is a preprint of a paper submitted for publication in
Physics of Plasmas

Fast modelling of turbulent transport in fusion plasmas using neural networks
K.L. van de Plassche,1, a) J. Citrin,1 C. Bourdelle,2 Y. Camenen,3 F. J. Casson,4 V.I. Dagnelie,1, 5 F. Felici,6 A.
Ho,1 and JET Contributors7
1)DIFFER, PO Box 6336, 5600 HH Eindhoven, The Netherlands
2)CEA, IRFM, F-13108 Saint-Paul-lez-Durance, France
3)CNRS, Aix-Marseille Univ., PIIM UMR7345, Marseille, France
4)CCFE, Culham Science Centre, Abingdon, UK
5)ITP, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
6)EPFL-SPC, CH-1015, Lausanne, Switzerland
7)See the author list of E. Joffrin et al. accepted for publication in Nuclear Fusion Special issue 2019,
https://doi.org/10.1088/1741-4326/ab2276

(Dated: 6 September 2019)

We present an ultrafast neural network (NN) turbulent tokamak transport model, QLKNN, for heat and particle fluxes.
QLKNN is a surrogate model based on a database of 3 · 108 flux calculations of the quasilinear gyrokinetic trans-
port model QuaLiKiz. To ensure accurate reproduction of the underlying model, we include known features of the
physical system by choosing specific training targets and using a customized cost function in our training pipeline.
We have coupled QLKNN to the tokamak modelling framework JINTRAC and rapid control-oriented tokamak trans-
port solver RAPTOR. We demonstrate and validate the coupled frameworks through application to three JET shots
covering a representative spread of H-mode operating space, predicting turbulent transport in the plasma core region
(0.2 < ρN,tor < 0.85). QLKNN is able to accurately reproduce QuaLiKiz-predicted kinetic profiles (Ti,e and ne) but or-
ders of magnitude faster, from 7 days on 16 cores (JINTRAC-QuaLiKiz) to 20 minutes on 2 cores (JINTRAC-QLKNN)
and 90 seconds on 1 core (RAPTOR-QLKNN). The discrepancy between QLKNN and QuaLiKiz is only on the or-
der 1%-10% in rotationless cases. The impact of rotation on turbulent fluxes is included in QLKNN through a new
flux scaling rule in postprocessing, based on a set of linear gyrokinetic simulations. This difference from the native
QuaLiKiz rotation rule results in slightly larger (3%-15%) differences in the final kinetic profiles for cases including
rotation. Dynamic behaviour is also well captured by QLKNN, with differences of only 4%-10% compared to full Qua-
LiKiz observed at mid-radius, for a study of density buildup following the LH transition. Deployment of neural network
surrogate models in multi-physics integrated tokamak modelling is a promising route towards enabling accurate and
fast tokamak scenario optimization, Uncertainty Quantification, and control-oriented applications.

I. INTRODUCTION

Accurate prediction of tokamak core plasma temperature
and density is essential for interpretation of current-day fu-
sion experiments, designing future devices, and optimiza-
tion of plasma scenarios. Time-evolved tokamak simulation
on discharge timescales is typically carried out within a ’in-
tegrated modelling’ approach1, where multiple models rep-
resenting various physics calculations are coupled together
within a single code or workflow. An essential component
of integrated models is the prediction of turbulent transport
fluxes, particularly in the tokamak core where transport is of-
ten dominated by plasma microinstabilities2,3. However, cal-
culating these fluxes using first-principle-based nonlinear gy-
rokinetic models within an integrated modelling framework –
while feasible4 – is too computationally expensive for routine
simulation.

Reduced order turbulence models have thus been developed
for increased tractability. They remain first-principle-based
yet computationally cheaper through invoking the quasi-
linear approximation. Quasilinear turbulence models like
QuaLiKiz5–7 and TGLF8 are valid in extensive parameter
regimes in the tokamak core. These models can predict tur-
bulent transport fluxes approximately 6 orders of magnitude

a)k.l.vandeplassche@differ.nl

faster than δ f local nonlinear codes. For QuaLiKiz, this
means around 10-100 seconds on a single CPU, depending
on the physics fidelity used in the simulation. The speed has
enabled routine runs of QuaLiKiz coupled to integrated mod-
elling suites such as JINTRAC9,10, recently leading to nu-
merous successful validation exercises against JET5,11,12 and
AUG13 discharges. However, these simulations still can take
days to run, parallelized on 16 cores. This sets limits on large-
scale model validation and theory-based optimization of fu-
sion experiments, as well as for model-based real-time control
applications.

To further accelerate integrated modelling workflows we
apply feed-forward neural networks (FFNNs) as a surrogate
model, reproducing the underlying turbulent transport model
within tens of microseconds. The concept rests on taking ad-
vantage of the fast evaluation time of the reduced tokamak
turbulence models (e.g. QuaLiKiz), and applying them for
generating large training sets then used for neural network re-
gression. The neural networks can then be used as a drop-in
replacement inside the integrated model, removing one of the
main computational bottlenecks.

Similar development of neural network surrogates for
physics models applied within tokamak integrated modelling
has been carried out for: the TGLF quasilinear turbulent trans-
port model14, the EPED pedestal confinement model14 and the
neutral beam heating code NUBEAM15–17. This paper repre-
sents the state-of-the-art of the QuaLiKiz neural network sur-

mailto:k.l.vandeplassche@differ.nl

2

rogate model, far beyond our original proof-of-principle18,19.
The input dimensionality is increased from 4 to 10, leading
to increased surrogate model fidelity. Furthermore, particle
transport is now included.

Other novel aspects include the large amount of samples in
the training dataset (discussed in section III), and the focus on
including physics-based features in the training pipeline (dis-
cussed in sections IV and V). To properly introduce the ap-
plied methodology, we summarize neural network techniques
in section II. Finally, we show the application of the neural
network surrogate model within integrated modelling frame-
works in section VII.

II. NEURAL NETWORKS

Neural networks are universal approximators and hence a
powerful tool for regression20. In this work we apply fully
connected feed-forward neural networks to a supervised re-
gression problem, in which we reproduce the input-output
mapping of the QuaLiKiz code. The basic building block of
a FFNN is the neuron, which takes multiple inputs, multiplies
each input with a weight wi, sums the results, adds a bias b
and applies a non-linear activation function f , as shown in
figure 1. In a FFNN neurons are distributed into layers, with

y = f

(
n

∑
i=0

wixi +b

) x0

xi

xn

y

FIG. 1. Schematic and mathematical representation of a neuron.

each neuron in a layer taking the output of each neuron in
previous layer as input. Most FFNNs have at least an input
layer in this case taking the physical input features described
in Section III, a hidden layer capturing the to-be learned hid-
den relationships and an output layer, combining the learned
relationships into a target. A FFNN with a single hidden layer
is able to reproduce any sufficiently smooth input-output map-
ping up to arbitrary error21, but in practice training a network
with at least two hidden layers has better convergence prop-
erties. The equation for a two-hidden-layer neural network is
shown in equation 2. We use the notation of Ref.22, wl

jk for the
weight of the connection from the kth neuron in the (l− 1)th

layer to the jth neuron in the lth layer. Then, bl
j is the bias of

the jth neuron in the lth layer. Then the activation (i.e. "input
of") the jth neuron in the lth layer with activation function f is
simply:

al
j = f

(
∑
k

wl
jkal−1

k +bl
j

)
(1)

For example we show the explicit formula for a 2-hidden
layer neural network with N-dimensional input xin and M-
dimensional output y in Equation 2. The output layer has a
linear activation function which is simply the identity func-
tion f (x) = I(x) = x, as is usual for regression problems. We

also assume each hidden layer has the same non-linear acti-
vation function σ . A schematic representation of this neural
network can be found in Figure 2.

y = a3
1 =

M

∑
i

w3
i σ

(
∑

j
w2

i jσ

(
N

∑
k

w1
jkxin,k +b1

j

)
+b2

i

)
+b3

o

(2)

xin,1

xin,2

xin,3

b2
3

a3
1

y

w3
1,3

Input
layer

Hidden
layers

Output
layer

FIG. 2. A schematic representation of a two-hidden-layer feed-
forward neural network.

The weights and biases of the network are determined by
minimizing some cost function C, called training. Assuming
we have A input-output mapping samples, we collect these in
an M×A input matrix and N×A output matrix. Before train-
ing the full dataset is generally split in a training set, which is
used to update the weights and biases, a validation set which
is used to check generalization of the neural network model
every epoch and a test set which is never seen during training,
and is used to check generalization across any tunable parame-
ters related to the training process described later. The weights
and biases are updated using an optimizer, usually a variant
of (mini-batch) gradient descent23. For mini-batch gradient
descent the training set is further split in batches of size B,
which is itself an hyperparameter to be tweaked. A small
batch size will generally be slower to converge, but the result-
ing model has a better generalizing properties24. A common
choice for measure-of-goodness and regularizing term for re-
gression tasks are the mean square error and L2-regularization
respectively. Now we can write down a general formula for
the cost function, extended in this work in Section IV B, where
yi is the network prediction for a single sample, and ŷi the real
value in the dataset:

C =Cgood +λreguCregu (3)

C =
1
B

B

∑
i
(ŷi− yi)

2 +λregu‖W‖2
2 (4)

Where ‖W‖2 denotes the matrix l2-norm of all the weights
combined. The derivative of the cost function with respect
to its tunable parameters can be analytically determined using
the chain-rule in what is called backpropagation. This can
then be used in the update of the gradient descent, generally
of the form:

θn+1 = θn− γ∇C(θn) (5)

3

where θ are the tunable parameters (w and b) and γ is the
step size or learning rate, another hyperparameter to be op-
timized. The training algorithm needs an initial guess θ0 to
start training, which is in our case a random Gaussian distri-
bution with mean 0 and standard deviation 1 for all weights
and biases. The weights and biases are updated every batch
B. After the optimizer has seen the full training set, this is
called an epoch. The resulting neural network is then used
to determine the loss against the full validation set, which is
used to determine convergence. If convergence is reached,
the training is stopped and the neural network saved. If not,
all samples are re-shuffled and looped over until convergence
is reached. In this work we use early stopping to determine
convergence. Early stopping sets a bound on the amount of
epochs the validation loss is allowed to increase, a hyperpa-
rameter called patience. Early stopping prevents overfitting
and gives a robust stopping criterion.

This method of training is quick, even for a large amount
of parameters, as ∇C(θn) is analytical and efficient to calcu-
late. It is thus also quick to calculate the derivatives of the
final trained neural network with respect to its inputs dy/dx.
This is highly useful for our application, when the neural net-
work turbulent surrogate models are integrated into implicit
PDE solvers (solving the transport equations) and/or used for
trajectory control applications.

III. DATASET GENERATION

We use the quasilinear gyrokinetic transport model Qua-
LiKiz to generate a large database of turbulent transport model
calculations. QuaLiKiz solves the linear gyrokinetic disper-
sion relation in the electrostatic limit in s−α geometry. By as-
suming a shifted Gaussian ansatz for the mode eigenfunctions
in the strong ballooning limit, strongly trapped and passing
particles, and a small Mach number, the calculation is greatly
simplified leading to increased calculation speed (×103) be-
yond standard linear gyrokinetics. The linear responses at
the eigenfrequencies are then used to set the transport fluxes
(heat, particle, and momentum), in conjunction with a satura-
tion rule for the electrostatic potential amplitudes and spectral
shape, tuned to non-linear gyrokinetic simulations both at ion-
scales and electron-scales6,25.

The input space of the full QuaLiKiz code (∼15 dimen-
sions for typical simulations) is too large to cover with a brute-
force hypercube scan. We thus constrain the training set di-
mensionality to the subset most significantly impacting tur-
bulent transport within the framework of QuaLiKiz approx-
imations. These input dimensions include the logarithmic
ion temperature gradient (R/LTi), electron temperature gra-
dient (R/LTe), density gradient (R/Ln), ion-electron tempera-
ture ratio (Ti/Te), safety factor (q), magnetic shear (ŝ), local
inverse aspect ratio (r/R), collisionality (ν∗), and effective
charge (Ze f f), with a carbon impurity and deuterium main
ion. Notable simplifications are excluding plasma rotation
(γE×B = vpar = vperp = 0), assuming equal density gradient
for the two ion species, and no Shafranov shift. This sig-
nificantly extends the previous proof-of-principle 4D neural

network QuaLiKiz regression18. These nine inputs are taken
as the feature space of the neural network. The impact of
rotation, important for accurate tokamak plasma simulation,
is taken into account through a new separate model in post-
processing, as described in Section VI.

A database consisting of 3×108 QuaLiKiz input-flux rela-
tions was generated with HPC resources on the Edison super-
computer at NERSC, using 1.3 MCPUh. The database spans
ion scales (kθ ρs ≤ 2) and electron scales (kθ ρs > 2) and con-
tains contributions to transport fluxes and coefficients q (heat),
Γ (total particle), D (particle diffusivity), and V (particle con-
vection) per species. The input space was chosen as a rect-
angular, non-uniform 9-dimensional grid. The bounds cover
dimensionless parameter regimes typically encountered in the
core of standard aspect-ratio present-day tokamaks, and future
devices such as ITER and DEMO. We chose the spacing of the
grid to be a higher density around typical threshold zones (e.g.
− R

Te
dTe
dr ≈ 5) and zones of high non-monoticity (e.g. ŝ ≈ 0.7)

based on previous extensive experience with application of
QuaLiKiz within integrated modelling and standalone. See
Table I for the bounds of the generated dataset.

To aid with successful neural network regression, as dis-
cussed in the subsequent sections, QuaLiKiz was modified
to additionally output fluxes and transport coefficients aris-
ing solely from individual classes of modes, i.e. ITG, TEM,
ETG. Mode identification is determined by mode number (ion
or electron scale) and mode frequency (ion or electron direc-
tion). The ETG electron heat flux is defined as the qe arising
from the spectrum kθ ρs > 2. To separate ITG and TEM fluxes,
the saturation rule was evaluated twice for electron modes and
ion modes separately, at ion-scales. This can lead to inconsis-
tencies compared to combining all ion-scale modes together
in the saturation rule. However, in practice, the difference be-
tween summing the separate ITG and TEM fluxes together (in
cases where they coexist in the spectrum) compared to their
self-consistent total evaluation in the saturation rule, is typ-
ically less than 20%. To further extend the general applica-
bility of the neural networks, we use a form of GyroBohm
normalization for all transport coefficients in this work, as de-
fined in Equations 6-11

cGB ≡
√

Ai,0mpT 1.5
e

q2
eB2

0a
(6)

ΓGB ≡
a

nscGB
ΓSI (7)

DGB ≡
1

cGB
DSI (8)

VGB ≡
a

cGB
VSI (9)

qGB ≡
a

nsTscGB
qSI (10)

χGB ≡
1

cGB
χSI (11)

a and R are the midplane-averaged minor and major radii of
the last-closed-flux-surface. Unless noted otherwise, all ra-
dial derivatives are against the midplane-averaged minor ra-
dius r ≡ rminor. For convenience, we define the normalized

4

TABLE I. 9D hyperrectangle bounds and number of points of the
QuaLiKiz neural network training set. Each input is non-uniformly
distributed in space, with a finer resolution in experimentally more
relevant regimes.

variable # points min max
kθ ρs 18 0.1 36
R/LTe 12 0 14
R/LTi 12 0 14
R/Ln 12 -5 6
q 10 0.66 15
ŝ 10 -1 5
r/R 8 0.03 0.33
Ti/Te 7 0.25 2.5
ν∗ 6 1×10−5 1
Ze f f 5 1 3

Total 3×108 ≈ 1.3MCPUh

length scales:

LTi,e ≡−Ti,e

(
dTi,e

dr

)−1

(12)

Ln ≡−n
(

dn
dr

)−1

(13)

the normalized collision frequency:

ν
∗ ≡ ν

∗
e ≡ νeτbounce (14)

νe ≡ 917.4Ze f f (10−19ne)Λe(103Te)
−1.5

(15)

Λe ≡ 15.2−0.5ln(10−20ne)+ ln(103Te)
(16)

τbounce ≡
qR

(r
R)

1.5
√

qe
me

Te

(17)

where qe and me are the electron charge and mass respectively,
and finally the effective ion charge Ze f f :

Ze f f ≡
∑i niZ2

i

∑i niZi
=

∑i niZ2
i

ne
(18)

IV. PHYSICS-BASED NEURAL NETWORK TRAINING

Regularized neural networks provide a smooth regression
of supplied training data. It does not assume any features of
the underlying mapping. Physics-informed features can be
directly implemented into the training methodology to signif-
icantly improve the fidelity of the surrogate transport model.
For our application, we desire the following features:

• sharp flux discontinuities at critical (temperature) gra-
dients of the underlying instabilities

• identical critical (temperature) gradient for all transport
channels driven by a single (TEM/ITG) instability

This was found essential for consistent results in integrated
modelling.

x1

x2

x3

x4

Γe/qe

x1

x2

x3

x4

qe

x1

x2

x3

x4

qi/qe

Γe

qi

FIG. 3. Schematic overview of the Γe and qe predicted by a com-
bined leading flux and ratio-predicting neural network. Three sep-
arate FFNNs, one predicting the leading flux qe and two ratio-
predicting network predicting Γe/qe and qi/qe are combined to a
network ensemble that predicts Γe, qe, and qi.

A. Training targets

The identical critical thresholds for all transport channels
was forced by a careful choice of training targets. The trans-
port coefficients were separated into a leading flux and flux ra-
tios. For example, for TEM fluxes, the leading flux is the elec-
tron heat flux qe, resulting in the flux ratios qi/qe and Γe/qe.
Networks are then trained on the leading flux and flux ratios
separately, resulting in a leading flux network, and flux ra-
tio networks. In the transport model implementation, the flux
ratio predictions and leading flux predictions are multiplied
together to re-obtain the original transport fluxes qi and Γe.
This procedure is sketched in Figure 3. The fact that the lead-
ing flux is zero in the stable region (below the critical thresh-
old), guarantees that the thresholds of all transport channels
are identical. Increased smoothness and quality in the regres-
sion is achieved by removing training set outliers through data
filtering (see section IV C).

Splitting the training targets by mode (ITG, TEM, ETG)
was found important for obtaining flux ratio regressions of
sufficient quality. Flux ratio network training for total fluxes
(i.e, corresponding to the original QuaLiKiz output, as op-
posed to each of the separated ITG, TEM, ETG flux outputs)
was unable to converge to a result of sufficient quality for a
robust surrogate turbulence model, even after extensive hy-
perparameter scans. This is likely due to sharp discontinu-
ities present in the flux ratios when not separating the fluxes.
This is apparent in a TEM-ITG transition, for example in
a scan of R/LTi as shown in Figure 4. The boundary be-

5

0 1 2 3 4 5
R/LTi

0

5

10

15

20

25

30

35

40
he

at
 fl

ux
 q

i,e
qi, TEM

qi, ITG

qe, TEM

qe, ITG

qi, ion

qe, ion

FIG. 4. The QuaLiKiz predicted total heat fluxes for electrons qe
and ions qi for multiple values of R

LTi
, while keeping the other input

parameters constant (pluses and crosses). We also show neural net-
works fit with the methodology described in IV. Important to note is
the capture of sharp transport characteristics around − R

Ti

dTi
dr ≈ 3.1.

Note the excellent quality of regression throughout. The discrepancy
for the highest R

LTi
point is due to it being filtered out of the training

set due to non-experimentally-relevant high flux, see section IV C

tween ITG and TEM regimes for this specific parameter set
is − R

Ti

dTi
dr ≈ 3.1. Above this value (ITG regime), qi/qe > 1.

Below this value (TEM regime), qi/qe� 1. The transition be-
tween these regimes is extremely sharp, a feature challenging
to capture by a regularized neural network. Instead, we use
the mode-specific fluxes calculated by QuaLiKiz described in
Section III, where the mode-specific flux ratios within the ITG
and TEM regimes shows significantly less structure. Neural
networks are fit for each mode separately. Then, in the trans-
port model implementation the per-mode fluxes are added to-
gether in postprocessing using an unweighted sum. Fitting
the separate modes results in clearer thresholds without tran-
sition regions, enabling the use of the modified cost function
in IV B, resulting in a sharper transition at the threshold. As
seen in figure 4, the neural networks fits (solid and dashed
lines) from the combined ITG + TEM networks accurately re-
produces the non-trivial structure of the ITG-TEM transition.

B. Customized cost function

Training a neural network means optimizing the weights
and biases of the network to minimize a cost function C,
which typically compares for each set of inputs, the neural
network output to desired targets - in our case the QuaLiKiz

input-output mapping. Typically the cost function consists of
a measure of goodness-of-fit, and a regularizing term, as al-
ready shown in Eq. 3. We have customized the cost function
for our application beyond this standard implementation, to
impose prior physics knowledge of the mapping structure into
the system. This prior knowledge consists of: sharp instabil-
ity thresholds, zero flux in the region where no instabilities
are predicted, and identical transport flux thresholds for all
transport channels. This last point has been treated through
the leading-flux and flux-ratio paradigm introduced in section
IV A. We now summarize the other two.

The sharpness of the critical threshold is achieved by only
including the unstable points (where instabilities are pre-
dicted) in the measure of goodness-of-fit Cgood for the leading
flux regression. Otherwise, if including the zero flux points
explicitly, then due to regularization some smoothing at the
discontinuous critical threshold region is inevitable, leading to
a loss of accuracy in the regression. By only including the un-
stable points, the leading flux neural network predictions are
free to extrapolate to negative fluxes below the critical thresh-
old, which are then clipped to zero in the transport model im-
plementation, leading to the desired sharp critical threshold
behaviour for all transport channels.

We then wish to avoid any possible FFNN extrapolation
to spurious non-zero fluxes in the stable region below critical
threshold. This is done by controlling the allowed range of ex-
trapolation in the stable region. We add an additional penalty
term Cstab in the cost function for the leading flux regression,
for samples predicted to be stable by QuaLiKiz. This penalty
term punishes positive FFNN predictions in ostensibly stable
regions, while remaining zero for negative FFNN predictions
in the stable region (which are then subsequently clipped to
zero).

The customized cost function is summarized in Eq.19. The
free parameters λregu, λstab, and Cstab, as well as other hyper-
parameters like network topology, are then optimized using a
simple grid search. To test generalization, the dataset is split
in a test set of 5% never seen during training, and a validation
set of 5% used during training to avoid overfitting on training
data. The remainder is used as training set. So, for each net-
work prediction NNi relating to a QuaLiKiz calculation QLKi
we have for all n samples and k weights:

C =Cgood +λreguCregu +λstabCstab (19)

Cgood =

 1
n

n
∑

i=1
(QLKi−NNi)

2, if QLKi 6= 0

0, if QLKi = 0
(20)

Cregu =
k

∑
i=1

w2
i (21)

Cstab =

0, if QLKi 6= 0
1
n

n
∑

i=1
NNi− cstab, if QLKi = 0

(22)

6

C. Training set filtering

Inaccurate data in the training set can have a deleterious
impact on the neural network training by overly biasing the
regression towards an inaccurate representation. Such inac-
curacies can arise due to unexplored corners in parameter
space present in the QuaLiKiz scan, outside the commonly
used (and experimentally relevant) parameter regimes of the
code. While several code improvements were already made
for some of these regimes on a case by case basis, surveyal
by eye of the entire dataset was not feasible due to data size.
Therefore a conservative approach was taken in filtering the
training set to remove untrusted QuaLiKiz flux calculations.
As the dataset is too large for memory, dask framework26 was
used to allow for general out-of-core processing of arbitrar-
ily large array-like structures. For the networks trained in this
work, data points were deemed invalid and not included in
training, according to the following heuristic criteria:

• Difference between total particle flux and derived parti-
cle flux from diffusion and convection transport coeffi-
cients is more than 50%, i.e.

∣∣∣Γs−(−Dsdns/dr+Vsns)
Γs

∣∣∣< 0.5

• Difference between unweighted sum of ITG + TEM
mode contributions, and self-consistent total flux cal-
culation, was more than 50%

• Ambipolarity was violated by more than 50%

• Any transport coefficient is non-zero but predicted to be
smaller than 10−4 in GyroBohm (GB) units

• Outliers in the flux-ratio distributions were removed by
visual examination of the data histograms and determin-
ing cut-off points corresponding to tails of the distribu-
tions. These were determined as:

0.05 < qe,IT G/qi,IT G < 1.5 (23)
0.02 < Γe,IT G/qi,IT G < 0.6 (24)

0.05 < qi,T EM/qe,T EM < 2.0 (25)
0.03 < Γe,T EM/qe,T EM < 0.8 (26)

Where s is the electron e or ion i species, and x is the
transport coefficient of interest, e.g. Γ or q.

In addition, to restrict the training set to a more experimentally
relevant regime, all points with either total ion or electron en-
ergy fluxes larger than 33 (in GB units) were removed, which
is far beyond typically encountered in core plasmas.

D. Measures of goodness

Performance indicators are a critical tool for differentiating
the quality of different neural networks, trained with different
hyperparameters, to assess the optimal networks to use in our
application. In contrast to classical regression tasks, the final
loss is not the key performance indicator of the trained net-
work. Instead, for our application, how well the trained neural

network performs as a transport model within integrated trans-
port modelling is the most important. However, using the inte-
grated model directly in the training pipeline is cumbersome
and computationally expensive. Instead, we define metrics
relating to the aforementioned capture of known physical fea-
tures and use these in conjunction with the classical test loss to
judge the quality of the trained networks after training. To do
this we take 1D slices in the main driving gradient (for each
mode) from the full dataset and let the network predict over
the range of this slice. The main driving gradients are taken to
be the electron temperature gradient for TEM and ETG, and
the ion temperature gradient for ITG. The full dataset contains
2.4×107 such slices, but taking 5% was sufficient to statis-
tically differentiate networks with different hyperparameters.
We first define for each slice:

• The neural network critical gradient cNN,crit . This is the
location where the neural network leading flux predic-
tions cross from positive to negative fluxes correspond-
ing to the transition from unstable to stable QuaLiKiz
regions.

• The spurious stable prediction cspur. This is first en-
countered point in the QuaLiKiz stable region, when de-
scending from high gradient to low gradient, where the
neural network predictions spuriously transitions from
negative flux (clipped to zero in the transport code im-
plementation) to positive flux

• The QuaLiKiz critical gradient proxy cQLK,crit . This is
taken as the midpoint between the gradient slice grid-
points corresponding to the transition from zero to pos-
itive fluxes in the original QuaLiKiz data

Using these quantities, we found the following measures to be
important:

• The percentage of slices where QuaLiKiz predicts a
threshold, and QLKNN does not

• The percentage of slices where QLKNN predicts spuri-
ous flux in the stable region

• The mean absolute distance between the QuaLiKiz and
QLKNN thresholds 1

n ∑
n
i |cNN,crit − cQLK,crit |

• The smoothness in the unstable zone as defined from
the second derivative with respect to the driving gradi-
ent: 1

n ∑
n
i | ∂ 2x

∂ (R/LTs)
2 |, if R/LTs > cNN,crit . This strongly

depends on the regularisation hyperparameter.

• The relative distance of spurious stable flux prediction
and predicted threshold cNN,crit−cspur

cNN,crit

An overview of these distances is shown in Figure 5. A trained
network never has an absolute minimum in all these metrics
simultaneously, so instead a trade-off is made. In this work
we have not attempted to unify these metrics in a single value.
Instead, the metrics are used as guidance to select a small
number of networks that are then tested inside the integrated
model. The metrics for the final implemented networks can be

7

TABLE II. An overview of the measures of goodness as described in
Section IV D: The percentage of slices with no threshold (No thresh
frac) and without spurious flux predictions (No spurious frac), the ab-
solute threshold mismatch (Abs thresh mismatch), relative spurious
flux prediction distance (Rel spurious dist), and smoothness in the
unstable zone (Unstab zone smooth). These quantities are shown for
the three leading flux networks qe,ET G, qe,T EM , and qi,IT G. These
statistics were taken on a reduced 7D dataset, fixing Ze f f = 1 and
ν∗ = 1e−3. No attempt is made to combine these measures of good-
ness into a single final value, nor is currently known what the upper
and lower bounds are. However, as shown later in this work, these
values were found sufficient for good model performance in inte-
grated modelling.

No thresh
frac [%]

No
spurious
frac [%]

Abs thresh
mismatch

Rel
spurious
dist [%]

Unstab
zone
smooth

qe,ET G 3.3 97.7 -0.38 -0.44 0.017
qe,T EM 14.3 98.6 -0.31 -0.70 0.008
qi,IT G 4.2 99.2 -0.26 -0.52 0.0300

3 4 5 6 7 8
R/LTi

0

1

2

3

4

5

6

7

8

IT
G

he
at

 fl
ux

 q
i,e

spurious
distance

thresh
mismatch

3 4 5 6 7 8
R/LTi

0

1

2

3

4

5

6

7

8

IT
G

he
at

 fl
ux

 q
i,e

QuaLiKiz
proxy
threshold

QLKNN
threshold

FIG. 5. Predictions of the ITG driven heat flux for the ions (red) and
electrons (blue). We show three types of networks, networks trained
using a standard RMS error on both the stable and unstable points
(dash-dot, left) and only on the unstable points (dashed, left). These
networks show clear mismatch between transport channels and Qua-
LiKiz prediction, as well as prediction of fluxes in the stable region.
The physics-based neural network (right) have no mismatch between
transport channels, a sharper threshold closer to the QuaLiKiz pre-
diction, as well as no prediction of flux in the stable region.

found in Table II. All these metrics are identical for the leading
flux network and their associated ratio network because of the
choice of training targets described in Section IV A. Finding
minimum required values of the metrics is outside the scope
of this work, but we note the low percentage of stable flux
predictions for all networks, and the low values for threshold
mismatch. Because of the low percentage of stable flux pre-
dictions, the relative spurious distance is thought to be of less
importance, while the smoothness was assumed to be suffi-
cient by visual inspection of many neural network predictions
on random slices. Finally, while the measures of goodness for
the TEM networks are not as good as the others, we found it
encouraging enough to implement them in the later-described
transport models. However, for future work improving these
networks specifically would be beneficial.

V. TRAINING PIPELINE

The networks were trained using the TensorFlow27 frame-
work. TensorFlow is an open source framework allowing var-
ious machine learning algorithms to be run efficiently on het-
erogeneous machines, both for CPU and for GPU architec-
tures. The framework can be used to train neural networks
out-of-the-box, but as a general framework care has to be
taken that the use-case it is applied to matches the expecta-
tions of the framework. In this work, we have identified and
worked around two limitations of the TensorFlow framework
at time of writing. Firstly, TensorFlow is most commonly used
for deep learning. In deep learning, the amount of training
samples versus the size of the network, and thus its evalua-
tion speed, is relatively small. In this work, the networks are
shallow and the amount of training samples large. As such,
we have implemented a simple but factor two quicker shuf-
fling algorithm using numpy28. This results in 1.25x (CPU)
to 2x (Tesla P100 GPU) reduction of training time. Secondly,
TensorFlow uses its own proprietary format to save the trained
neural network weights and biases to disk. This would mean
any integrated framework would need to depend on Tensor-
Flow/python to use the neural network predictions. This is
inconvenient and non-performant for many integrated frame-
works, especially if they are in MATLAB (RAPTOR) and For-
tran (JINTRAC). Instead, we wrote a lightweight communi-
cation format using JSON between TensorFlow, and an im-
plementation in Fortran with wrappers for Python and MAT-
LAB. Using these MKL accelerated native Fortran functions
a network with 3 layers and 128 neurons can be evaluated
within 60 µs on a single core or 100 ms if the derivatives of
the neural network output with respect to the neural network
inputs are also evaluated. These wrappers are freely available
at GitLab29.

Neural network training involves optimizing training hy-
perparameters. While many algorithms to optimize hyperpa-
rameters exist, the authors are not aware of a commonly used
readily-available framework to do this. As such, we have writ-
ten a thin wrapper around TensorFlow, using a PostgreSQL
database and Spotify’s Luigi framework30 to interact with su-
percompute job schedulers and train, validate and analyse net-
works trained with the QLKNN training framework. This al-
lows the user to set up simple hypergrid hyperparameter scans.
For the dataset used in this work we have found optimal hyper-
parameters which work well for a dataset of reduced 7D space
(fixing Ze f f = 1 and ν∗ = 1e−3), also work sufficiently well
for networks trained on the full 9D space. Additionally, hy-
perparameters optimal for ITG neural networks were found to
work well for networks for the other modes in exploratory hy-
perparameter scans. Using this property, we have done wide
scans of the following hyperparameters for qi,IT G, resulting in
over 1000 trained neural networks:

• number of layers

• nodes per layer

• goodness of fit

– RMSE

8

• regularization

– L2

– early stopping patience

• loss function weights

– cost L2 scale λregu

– cost stable positive scale λstab

– cost stable positive barrier Cstab

• Validation fraction (the test fraction was kept constant)

This resulted in the following optimal hyperparameters:
RMSE as measure of goodness, L2 and early stopping with
15 patience as regularization and overfitting prevention. The
networks were trained with the ADAM algorithm31. Then, for
each leading flux a small scan over number of layers, nodes
per layer, λregu, and λstab was carried out. This resulted in
optimal settings of 3 layers, 128 nodes, 1e-5 and 1e-3 re-
spectively. Finally, all networks were trained for the 9D set
with a small hyperparameter scan around the found optimal
7D value, giving the same optimal value. The final networks
are freely available on GitLab32.

VI. ROTATION RULE

To save computation time, the dataset was ran without ro-
tation. Beyond adding additional dimensions in training set
input-space with associated cost, running QuaLiKiz with ro-
tation takes ×4 more computation time due to a loss of sym-
metry in the internal integration routines. However, since the
impact of rotation on confinement can be critical, particularly
in high performance H-modes, we implemented a new flux
suppression rule in postprocessing. This rule is based on a
new set of linear GENE33 scans around the GA-Standard case,
coupled to a methodology to assess the impact of rotation on
linear growth-rates in spite of the Floquet fluctuations34,35.
These scans consisted of toroidal rotation scans for various q,
ε ≡ r

R , and ŝ, capturing both the effects of E×B stabilisation
and Parallel Velocity Gradient (PVG) destabilization. The rule
scales all ion-scale fluxes with a tuned function frot(q, ŝ,ε). It
depends also on the rotationless maximum ion-scale growth
rate γ0, which is predicted by an additional neural network
based on the HPC-generated QuaLiKiz database, and the nor-
malized E×B shearing rate γE×B defined in Equation 27.

γE×B ≡−
dvperp

dr
R

cre f
(27)

cre f ≡

√
Tre f

mp
(28)

Where vperp is the perpendicular velocity, Tre f is a refer-
ence temperature of 1 keV, and mp is the proton mass. The
TEM/ITG ion i and electron e transport coefficient x is then

scaled with frot as described in Equation 29.

frotrule = c1q+ c2ŝ+ c3/ε− c4 (29)
frot = max(1+ frotruleγE/γ0,0) (30)

xi/e,IT G/T EM = frot ∗ xi/e,IT G/T EM (31)

Where the values of the constants were determined to be c1 =
0.13, c2 = 0.41, c3 = 0.09, and c4 = 1.65. Using this rule, we
are able to capture partially the effect of rotation on transport
in a computationally quick way.

VII. APPLICATION IN TRANSPORT CODES

Tokamak transport, here confined to the 1D (radial) evolu-
tion of plasma density, temperature, and angular momentum
in the plasma core, is governed by a highly non-linear coupled
system of partial differential equations. Generally this system
is too complicated to solve fully explicitly coupled from first
principles with direct numerical simulation, so assumptions
have to be made to improve tractability. Timescale separation
between transport and turbulent process timescales allows the
system of equations to be decoupled in mathematically and
computationally decoupled modules. This is illustrated in the
1D energy equation (in cylindrical coordinates for simplicity)
shown in Equation 32. Analogues exist for the magnetic flux
diffusion equation, density equation and momentum equation.
The transport coefficients qs and sources Qs(r, t) are typically
calculated by physics models, under the assumption that the
process timescale is much less than the PDE timestep. In this
study we focus on the energy and density transport, as these
are the coefficients calculated by QLKNN.

3
2
(∂nsTs)

∂ t
+

1
r
(∂ rqs)

∂ r
= Qs(r, t) (32)

We have implemented QLKNN as a transport module inside
JINTRAC and RAPTOR19. In the current implementation
QLKNN provides the main ion flux qi,1, electron heat flux
qe and electron particle flux Γe. For multiple ion species we
assume the same GyroBohm heat flux for each ion. This in-
volves a multiplication by ion density, and hence leads to neg-
ligible impurity heat flux as expected. Contrary to RAPTOR
which evolves electron density directly, JINTRAC solves the
ion density equations for particle transport. Since the current
version of QLKNN contains only Γe, we thus assume for each
ion Γi =

ni
neZi

Γe, maintaining ambipolarity. Finally, for nu-
merical stability, we use either an effective diffusion De f f or
convection Ve f f , derived from the total particle flux, depend-
ing on the flux direction and density gradient. Ve f f is used for
up-gradient particle transport and for low density gradients(∣∣∣ R

Ln

∣∣∣< 0.1
)

. Future work will aim to improve on these as-
sumptions by neural network fits on species dependent Di and
Vi directly, which is important for multiple-isotope fuelling
and impurity transport applications.

Neural networks do not extrapolate well outside their train-
ing set boundaries. In this work, this is trivial to detect, as
the training set was a bounded regular hyperrectangle. We

9

chose to clip the inputs to the input layer of the neural net-
work within the bounds of the hyperrectangle, with a mar-
gin of 5% on all sides. Alternative approaches for are also
possible, such as training multiple neural networks to form a
“committee”, where extrapolation is detected from increased
variance of the committee predictions in zones with sparse or
non-existent data. This increase in variance arises from differ-
ent local minima of the weight optimizations due to random
initialisation. This is more suitable for training sets which are
not pre-selected hyperrectangles, such as the training derived
from experimental databases14. We chose not to implement
this here due to the additional calculation times involved, and
the trivial structure of our training set.

A. QLKNN simulation results within integrated modelling

We now compare QLKNN simulations to full QuaLiKiz
within integrated modelling, for a representative set of 3 JET
H-mode discharges. The correspondence between QuaLiKiz
and the experimental profiles will not be discussed here, and
on this point we refer the reader to the citations where the
original JINTRAC-QuaLiKiz simulations were carried out for
each of the cases. We focus on the correspondence between
QuaLiKiz and QLKNN, as well as between the implementa-
tions within JINTRAC and RAPTOR.

To judge the quality of the neural network regression and
the impact of the made assumptions, we first show a com-
parison of QLKNN and QuaLiKiz on the high performance
JET baseline #9243611 within both JINTRAC and RAPTOR
integrated modelling. The JINTRAC-RAPTOR comparison
further acts as a benchmark exercise for correct coupling of
QLKNN within the code suites. These simulations correspond
to an averaged 500 ms time-window during discharge flat-
top. A Gaussian Process Regression fit is performed on the
kinetic profile data, and the distribution average is used as ini-
tial condition11. The current, temperature and density profiles
are then evolved over multiple energy confinement times un-
til the temperature and density profiles are in stationary-state,
and compared to the experimental fits. As QLKNN is only ap-
plicable for turbulent transport in the tokamak core, we evolve
temperature and density only inside ρN,tor = 0.85, and include
a proxy transport coefficient for sawtooth-induced transport
in the core for all simulations in this work.11. Appendix A
contains a full overview of the used settings. Furthermore,
JINTRAC and RAPTOR contain a different treatment of mag-
netic geometry. To reduce the impact of these differences and
instead compare QLKNN itself as close as possible for the
JINTRAC-RAPTOR benchmark, we force the geometric nor-
malization constants a and R, as well as the q and ŝ profile
to be identical to the final condition of the JINTRAC simula-
tions at the QLKNN model input. We show three simulations
to investigate QLKNN model performance in different levels
of increasing physics fidelity.

In Figure 6 we show in the left column a simulation closest
to the QLKNN assumptions, namely a single Carbon impu-
rity species and no rotation. We then increase physics fidelity
in the center column by using a more realistic mix of im-

purity isotopes, and inclusion of the ad-hoc electromagnetic
stabilisation rule11 and solving the magnetic equilibrium self-
consistently with ESCO. These settings are described in detail
in11 where the original JINTRAC-QuaLiKiz simulations were
carried out. Finally in the right column we include the effect
of rotation in the outer-half radius of the plasma5,11 using the
QuaLiKiz native impact-of-rotation prediction for QuaLiKiz,
and for QLKNN the new QLKNN-rotation-rule as described
in section VI. The parameter of merit for QLKNN perfor-
mance is the relative root mean square (RRMS) difference of
the predicted profiles compared to the original QuaLiKiz runs.
See Equation 33, where the summation is over JINTRAC sim-
ulation radial grid points. The RRMS between JINTRAC-
QLKNN and JINTRAC-QuaLiKiz are shown in Table III.

RRMS≡

√
∑

n
i=0(QLKi− ˆNNi)2

∑
n
i=0 QLK2

i
(33)

As is clear from the left and middle columns in Figure 6, cor-
responding to the first two table rows, the final kinetic profiles
predicted by JINTRAC-QLKNN and JINTRAC-QuaLiKiz
agree very well. The maximum discrepancy is on the order
1-10%. Importantly, this small hit in accuracy comes with mo-
mentous speed increases, especially for the full-physics case,
from around 7 days of walltime on 16 cores for JINTRAC-
QLKNN to around 20 minutes of walltime on two cores for
JINTRAC-QLKNN. At this simulation speed, QLKNN itself
was no longer the bottleneck in the JINTRAC-QLKNN sim-
ulations, and increasing the amount of cores further had lit-
tle effect. The largest difference between QLKNN and Qua-
LiKiz can be found in the full-physics case, shown in the
rightmost column and last row of III. This discrepancy is is
mainly caused by the different treatment of rotation, which is
expected. While the inclusion of rotation did lead to an in-
crease in ne and Ti in the QLKNN simulations, for this case
the degree of stabilisation is less than in QuaLiKiz itself.

The RAPTOR-QLKNN simulations also match the
JINTRAC-QuaLiKiz simulations well, in the 2-10% range.
As the QLKNN model in both JINTRAC and RAPTOR were
identical, further differences are attributed to differences in the
numerical schemes implemented in RAPTOR and JINTRAC,
which will be investigated in future work. We emphasize that
the RAPTOR-QLKNN simulation took only 90 s on a single
core using 0.05 s time steps. This 5 order of magnitude sim-
ulation speedup, at similar accuracy, compared to the origi-
nal JINTRAC-QuaLiKiz simulations, is the key result of this
work. Furthermore, in these RAPTOR simulations, QLKNN
was still the bottleneck, so extending QLKNN inside RAP-
TOR using MPI parallelism is currently under investigation
for yet further speedup.

Next we show the general applicability of QLKNN in two
more JET shots. The first is the high collisionality baseline
JET H-mode scenario #7334218,36, where the simulation cor-
responds to a stationary-state during flattop, and the GPR fit
time-window was taken to be 500 ms. The second case is high
performance JET hybrid scenario #92398, subject to DT ex-
trapolation in upcoming campaigns37. To demonstrate the ca-
pabilities of JINTRAC-QLKNN for dynamic evolution, this

10

92436 Reduced physics

0.0 0.2 0.4 0.6 0.8 1.0
N, tor []

0
1
2
3
4
5
6
7
8
9

10
11

T i
,e

[k
eV

]
JINTRAC-QLKNN
RAPTOR-QLKNN
QuaLiKiz
GP fit 1
electron
ion
HRTS Te

CX Ti

0.0 0.2 0.4 0.6 0.8 1.0
N, tor []

0
1
2
3
4
5
6
7
8

n e
[1

019
m

3]
92436 Rotationless

0.0 0.2 0.4 0.6 0.8 1.0
N, tor []

0
1
2
3
4
5
6
7
8
9

10
11

T i
,e

[k
eV

]

JINTRAC-QLKNN
QuaLiKiz
GP fit 1
electron
ion
HRTS Te

CX Ti

0.0 0.2 0.4 0.6 0.8 1.0
N, tor []

0
1
2
3
4
5
6
7
8

n e
[1

019
m

3]

92436 Full-physics

0.0 0.2 0.4 0.6 0.8 1.0
N, tor []

0
1
2
3
4
5
6
7
8
9

10
11

T i
,e

[k
eV

]

JINTRAC-QLKNN
QuaLiKiz
GP fit 1
electron
ion
HRTS Te

CX Ti

0.0 0.2 0.4 0.6 0.8 1.0
N, tor []

0
1
2
3
4
5
6
7
8
9

n e
[1

019
m

3]

FIG. 6. The final kinetic profiles of the JINTRAC-QuaLiKiz (solid) and JINTRAC-QLKNN (dash-dot) simulations of JET shot #92436.
Shown are the final temperatures for the ions (top, red) and electrons (top, blue) as well as the final electron density (bottom, blue). From left
to right we show three cases of increasing physics fidelity: a reduced physics case, a more complete but rotationless case, and finally a case
with rotation. Note the excellent agreement between QLKNN and QuaLiKiz in all figures, although a larger discrepancy was found for the
case with rotation. This is expected, as the treatment of rotation is different in QuaLiKiz and QLKNN.

TABLE III. A comparison of the final kinetic profiles of JINTRIC-
QuaLiKiz and JINTRAC-QLKNN using the relative root mean
square profile difference (RRMS). Shown are a simulation close to
QLKNN assumptions (Reduced physics), a simulation with realistic
isotope mix and magnetic geometry, but without rotation (Rotation-
less), and the same simulation with rotation (Full-physics), all for
JET shot #92436. The average was taken in the simulation region
0.2 < ρN,tor < 0.85. The differences between QLKNN and Qua-
LiKiz are small, especially for the rotationless simulations. The dif-
ferent treatment of rotation results in larger differences for the full-
physics case.

Simulation RRMS [%]
Ti Te ne

Reduced physics (JINTRAC) 3.9 2.3 0.9
Reduced physics (RAPTOR) 9.8 3.0 1.5
Rotationless 1.8 8.4 0.5
Full-physics 2.6 15 14

discharge was simulated during the density buildup following
the LH transition. The GPR fits for each snapshot during the
evolution was taken to be 50 ms. Both cases were re-run with
JINTRAC-QuaLiKiz for this paper, with interpretive impuri-
ties, meaning that the impurity profiles were constrained to

TABLE IV. The final kinetic profile differences between JINTRIC-
QuaLiKiz and JINTRAC-QLKNN using the relative root mean
square profile difference (RRMS) for the simulations of JET shot
#73342 and #92398. We show simulations without rotation (Rota-
tionless), as well as with rotation (Full-physics), similar to III. Again,
the differences between QLKNN and QuaLiKiz are small for the ro-
tationless case, and larger for the full-physics case.

Simulation RRMS [%]
Ti Te ne

73342 rotationless 0.3 1.5 0.9
73342 full-physics 3.1 3.8 2.8
92398 rotationless 12 10 7
92398 full-physics 13 10 9.9

match the main ion profile peaking.
The final kinetic profiles and comparison between Qua-

LiKiz and QLKNN for #73342 are shown in Figure 7 and
Table IV, and for #92398 in Figure 8. For #92398 we also
show the temperature and density temporal evolution at three
radial locations in Figure 9.

Again we note the excellent agreement between JINTRAC-
QuaLiKiz and JINTRAC-QLKNN. The rotationless #73342
case matches excellently within 2%. #92398 matches less

11

73342 Rotationless

0.0 0.2 0.4 0.6 0.8 1.0
N, tor []

0

1

2

3

4
T i

,e
[k

eV
]

JINTRAC-QLKNN
QuaLiKiz
GP fit 1
electron
ion
HRTS Te

CX Ti

0.0 0.2 0.4 0.6 0.8 1.0
N, tor []

0
1
2
3
4
5
6
7
8
9

10
11
12

n e
[1

019
m

3]
73342 Full-physics

0.0 0.2 0.4 0.6 0.8 1.0
N, tor []

0

1

2

3

4

T i
,e

[k
eV

]

JINTRAC-QLKNN
QuaLiKiz
GP fit 1
electron
ion
HRTS Te

CX Ti

0.0 0.2 0.4 0.6 0.8 1.0
N, tor []

0
1
2
3
4
5
6
7
8
9

10
11
12

n e
[1

019
m

3]

FIG. 7. The final kinetic profiles of the JINTRAC-QuaLiKiz (solid)
and JINTRAC-QLKNN (dash-dot) simulations of JET shot #73342.
Shown are the final temperatures for the ions (top, red) and electrons
(top, blue) as well as the final electron density (bottom, blue). Both
cases were run with interpretive impurities without rotation (left) and
with rotation (right). The QLKNN predictions lie close to the Qua-
LiKiz ones, in the order of 4% at maximum, which show the gener-
ality of applying QLKNN as quicker surrogate for the full QuaLiKiz
model.

well in comparison, around 10%. While still good, we expect
the match to improve by expanding the QLKNN input dimen-
sionality, most notably a better capture of different impurity
species and Shafranov shift, which are both planned in fu-
ture work. Note that the better agreement between JINTRAC-
QuaLiKiz and JINTRAC-QLKNN in the #92436 case for the
rotationless case compared to #92398 may simply be coinci-
dental, as the impact of the input dimensions not included in
QLKNN can ’cancel out’. Next generations of QLKNN will
have further increased input dimensionality.

For the cases with rotation, the impact on #73342 is small,
simply due to low rotation in this high-density case. For
#92398, the agreement between the native QuaLiKiz and
QLKNN rotation rules is excellent, both boosting ne and Ti
significantly, and by the same magnitude. Note that Te is
barely impacted by rotation, since the Te profile is predicted
to be clamped by ETG turbulence for this discharge, both in
the original QuaLiKiz and the QLKNN simulations.

The dynamic behaviour of QLKNN for #92398 is shown
in Figure 9. The match between JINTRAC-QuaLiKiz and
JINTRAC-QLKNN is excellent, most notably the density
build-up in the lower plot, staying within a discrepancy of 4%
at mid-radius for the whole duration. However, the small dif-
ferences between the two models compound from the outer-
radius inward and over multiple timesteps, resulting in the
relatively larger but still acceptable discrepancy for the final
condition in Figure 8. While factor 4 less than compared to
#92436, the speed-up gained in the #92398 simulation is still

92398 Rotationless

0.0 0.2 0.4 0.6 0.8 1.0
N, tor []

0
1
2
3
4
5
6
7
8
9

T i
,e

[k
eV

]

JINTRAC-QLKNN
QuaLiKiz
GP fit 1
electron
ion
HRTS Te

0.0 0.2 0.4 0.6 0.8 1.0
N, tor []

0
1
2
3
4
5
6
7
8

n e
[1

019
m

3]

92398 Full-physics

0.0 0.2 0.4 0.6 0.8 1.0
N, tor []

0
1
2
3
4
5
6
7
8
9

T i
,e

[k
eV

]

JINTRAC-QLKNN
QuaLiKiz
GP fit 1
electron
ion
HRTS Te

0.0 0.2 0.4 0.6 0.8 1.0
N, tor []

0
1
2
3
4
5
6
7
8

n e
[1

019
m

3]

FIG. 8. The final kinetic profiles of the JINTRAC-QuaLiKiz (solid)
and JINTRAC-QLKNN (dash-dot) simulations of JET shot #92398.
Shown are the final temperatures for the ions (top, red) and electrons
(top, blue) as well as the final electron density (bottom, blue). Both
cases were run with interpretive impurities without rotation (left) and
with rotation (right). Here the disagreement between QuaLiKiz and
QLKNN is larger than previous cases, but still within 13%. Future
improvements to the QLKNN model are expected to lower these dif-
ferences, but this result shows that even in this state the QLKNN
model can be used for quick explicative studies.

very significant, from 11 hours on 16 cores to 5 wallminutes
on 2 cores.

VIII. CONCLUSIONS AND OUTLOOK

We have shown a method to train physics-based neural net-
works as turbulent transport models, which we applied to
generate a surrogate model for the fast quasilinear gyroki-
netic transport model QuaLiKiz. Utilizing HPC, we generated
a large dataset of 3 · 108 flux calculations, which was used
as training set for fully connected feed forward neural net-
works for regression. Prior physics knowledge of the under-
lying model features was incorporated by using a customized
cost function, choosing appropriate training targets, and look-
ing beyond traditional measures of goodness. This surro-
gate model, QLKNN, has been integrated into two integrated
modelling suites, JINTRAC and RAPTOR. We applied the
JINTRAC-QLKNN ensemble to carry out predictive dynamic
simulations of core transport in three JET shots, covering a
representative spread of H-mode operating space. We have
also shown one similar simulation using RAPTOR-QLKNN,
in good agreement with JINTRAC-QLKNN. This benchmark
was important for verifying the implementation of QLKNN in
both code suites. Furthermore, the RAPTOR-QLKNN simu-
lation is significantly faster than JINTRAC-QLKNN by 2 or-
ders of magnitude. This was due primarily to larger timesteps

12

6.5 7.0 7.5 8.0 8.5

2

4

6
T e

[k
eV

] N = 0.3

N = 0.5

N = 0.8

JINTRAC-QLKNN QuaLiKiz electron ion

6.5 7.0 7.5 8.0 8.5

2.5

5.0

7.5

T i
[k

eV
]

N = 0.3
N = 0.5

N = 0.8

6.5 7.0 7.5 8.0 8.5
time [s]

4

6

n e
[1

019
m

3]

N = 0.3
N = 0.5
N = 0.8

FIG. 9. A time-dependent JINTRAC-QLKNN simulation without
rotation of JET #92398. Note the density buildup that is very well
captured by QLKNN. The RRMS differences at ρ = 0.5 for the full
time-evolution are Te = 8%, Ti = 9%, and ne = 4%

in RAPTOR’s implicit PDE solver, which is greatly facilitated
by the analytical input-output derivatives available in the neu-
ral network transport model. The steady-state and dynamic
kinetic profiles match those of the full QuaLiKiz simulations
closely, while being up to five orders of magnitude faster to
run.

The largest discrepancy between QLKNN and QuaLiKiz
is caused by the different rotation rules employed between
QLKNN and QuaLiKiz. The rotationless cases studied in this
work showed differences from 1%-10% in the final kinetic
profiles. The rotation cases studied showed mildly larger dif-
ferences ranging from 3%-15%. The rotation discrepacy was
more prevalent for the #92436 case studied. An improved
treatment of rotation will be part of future work, for exam-
ple by implementing the quench rule on the individual growth
rates in the spectrum before evaluating the saturation rule, thus
capturing spectral shifts.

Future work will improve the QLKNN model by extend-
ing to larger input space, focusing on the impurity density
gradient, and multiple-ion transport important for multiple-
isotope fuelling applications and impurity transport. Addi-
tionally, using a robust method to fit a large amount of ex-
perimental kinetic profiles11, one can base a training set on
experimental data, instead of the hyperrectangle methodology
described here. This allows for more input dimensions to be
used, as well as including rotation by using the native Qua-
LiKiz rotation model, instead of a rotation rule as described
here. There are also other techniques to include physics in-
formation in neural networks. The late fusion method can
be used to include functional information in the network ar-
chitecture itself, for example by constraining the mapping to
a critical gradient model, and has already been successfully
used in a proof-of-principle QuaLiKiz surrogate model38.

Beyond the model improvements, work can now commence
on extensive experimental validation of QLKNN predictions,

as well as using QLKNN for scenario optimisation and de-
sign. As shown in this work, physics-based neural network
surrogate models can enable first-principle dynamic transport
simulations at unprecedented speeds, opening up new avenues
for tokamak scenario optimization and realtime control appli-
cations.

ACKNOWLEDGMENTS

This work has been carried out within the framework of
the EUROfusion Consortium and has received funding from
the Euratom research and training programme 2014-2018 and
2019-2020 under grant agreement No 633053. The views
and opinions expressed herein do not necessarily reflect those
of the European Commission. This research used resources
of the National Energy Research Scientific Computing Cen-
ter (NERSC), a U.S. Department of Energy Office of Sci-
ence User Facility operated under Contract No. DE-AC02-
05CH11231. We are grateful to F. Jenko for assistance with
computational resources.

Appendix A: Appendixes

1F. M. Poli, Physics of Plasmas 25, 055602 (2018).
2E. J. Doyle, W. A. Houlberg, Y. Kamada, V. Mukhovatov, T. H. Osborne,
A. Polevoi, G. Bateman, J. W. Connor, J. G. Cordey, T. Fujita, X. Gar-
bet, T. S. Hahm, L. D. Horton, A. E. Hubbard, F. Imbeaux, F. Jenko,
J. E. Kinsey, Y. Kishimoto, J. Li, T. C. Luce, Y. Martin, M. Ossipenko,
V. Parail, A. Peeters, T. L. Rhodes, J. E. Rice, C. M. Roach, V. Rozhansky,
F. Ryter, G. Saibene, R. Sartori, A. C. C. Sips, J. A. Snipes, M. Sugihara,
E. J. Synakowski, H. Takenaga, T. Takizuka, K. Thomsen, M. R. Wade,
H. R. Wilson, ITPA Transport Physics Topical Group, ITPA Confinement
Database and Modelling Topical Group, and ITPA Pedestal and Edge Top-
ical Group, Nuclear Fusion 47, S18 (2007).

3W. Horton, B. Hu, J. Q. Dong, and P. Zhu, New Journal of Physics 5, 14
(2003).

4M. Barnes, I. G. Abel, W. Dorland, T. Görler, G. W. Hammett, and F. Jenko,
Physics of Plasmas 17, 056109 (2010).

5J. Citrin, C. Bourdelle, F. J. Casson, C. Angioni, N. Bonanomi, Y. Came-
nen, X. Garbet, L. Garzotti, T. Görler, O. Gürcan, F. Koechl, F. Imbeaux,
O. Linder, K. van de Plassche, P. Strand, and G. Szepesi, Plasma Physics
and Controlled Fusion 59, 124005 (2017).

6C. Bourdelle, J. Citrin, B. Baiocchi, A. Casati, P. Cottier, X. Garbet, F. Im-
beaux, and JET Contributors, Plasma Physics and Controlled Fusion 58,
014036 (2016).

7QuaLiKiz homepage.
8G. M. Staebler, J. E. Kinsey, and R. E. Waltz, Physics of Plasmas 14,
055909 (2007).

9G. Cenacchi and A. Taroni, JET-IR , 84 (1988), eNEA-RT-TIB–88-5.
10M. Romanelli, G. Corrigan, V. Parail, S. Wiesen, R. Ambrosino, P. da Silva,

A. Belo, L. Garzotti, D. Harting, F. Köchl, T. Koskela, A. Lauro-Taroni,
C. Marchett, A. Mattei, E. Militello-asp, M. F. F. Nave, S. Pamela, A. Salmi,
P. Strand, and G. Szepesi, Plasma and Fusion research 9, 3403023 (2014).

11A. Ho, J. Citrin, F. Auriemma, C. Bourdelle, F. J. Casson, H.-T. Kim,
P. Manas, G. Szepesi, and H. Weisen, Nuclear Fusion 59, 056007 (2019).

12S. Breton, F. J. Casson, C. Bourdelle, J. Citrin, Y. Baranov, Y. Camenen,
C. Challis, G. Corrigan, J. Garcia, L. Garzotti, S. Henderson, F. Koechl,
E. Militello-Asp, M. O’Mullane, T. Pütterich, M. Sertoli, and M. Valisa,
Nuclear Fusion 58, 096003 (2018).

13O. Linder, J. Citrin, G. M. D. Hogeweij, C. Angioni, C. Bourdelle, F. J.
Casson, E. Fable, A. Ho, F. Koechl, and M. Sertoli, Nuclear Fusion 59,
016003 (2018).

http://dx.doi.org/10.1063/1.5021489
http://dx.doi.org/10.1088/0029-5515/47/6/s02
http://dx.doi.org/ 10.1088/1367-2630/5/1/314
http://dx.doi.org/ 10.1088/1367-2630/5/1/314
http://dx.doi.org/ 10.1063/1.3323082
http://dx.doi.org/10.1088/1361-6587/aa8aeb
http://dx.doi.org/10.1088/1361-6587/aa8aeb
http://stacks.iop.org/0741-3335/58/i=1/a=014036
http://stacks.iop.org/0741-3335/58/i=1/a=014036
http://qualikiz.com
http://dx.doi.org/10.1063/1.2436852
http://dx.doi.org/10.1063/1.2436852
https://inis.iaea.org/search/search.aspx?orig_q=RN:19097143
http://dx.doi.org/10.1585/pfr.9.3403023
http://dx.doi.org/10.1088/1741-4326/ab065a
http://dx.doi.org/10.1088/1741-4326/aac780
http://dx.doi.org/10.1088/1741-4326/aae875
http://dx.doi.org/10.1088/1741-4326/aae875

13

TABLE V. Lorum ipsum With additional BgB tranport (ion particle = 1) lower limits for thermal (10)

Field name/option Value/setting
Shot number 73342 (both) 92398 (both) 92436 (full) 92436 (NN comp)
JAMS version v121218 v080817 v121218
Number of grid points 51 101 101 101
Start time a (s) 60.75 46.3779 50 50
End time a (s) 62.75 48.6 52 52
Min. time step (s) 1e-13 1.0e-08 1.0e-13 1e-13
Max. time step (s) 1e-3 1.0e-03 1.0e-03 1e-3
Ion (1) mass (u) 2 2 2 2
Simulation boundary 0.85 0.85 0.85 0.85
Equilibrium EFIT ESCO ESCO EFIT
Equilibrium boundary - 0.995 0.998 -
Toroidal field - 2.798 2.8 -
Plasma current 2.5e6 2.2e6 2.9e6 2.9e6
Neoclassical transport model NCLASS NCLASS NCLASS NCLASS
Bootstrap current yes yes yes yes
BgB transport factor (χ) 0.08 0.03 0.08 0.08
BgB transport factor (mom) 1 3 1.25 1.25
Particle tansport min 10 1 10 10
Impurities Interpretive Interpretive SANCO SANCO

TABLE VI. 73342

Additional transport
Shape Gaussian Gaussian Gaussian
Centre 0 0 0
Height (cm 2 s -1) 4e4 2e4 2e4
Width 0.25 0.25 0.25

TABLE VII. 92398

Additional transport
Shape - Gaussian -
Centre - 0 -
Height (cm 2 s -1) - 0.15 -
Width - 1e3 -

14O. Meneghini, S. P. Smith, P. B. Snyder, G. M. Staebler, J. Candy, E. Belli,
L. Lao, M. Kostuk, T. Luce, T. Luda, J. M. Park, and F. Poli, Nuclear
Fusion 57, 086034 (2017).

15R. J. Goldston, D. C. McCune, H. H. Towner, S. L. Davis, R. J. Hawryluk,
and G. L. Schmidt, Journal of Computational Physics 43, 61 (1981).

16A. Pankin, D. McCune, R. Andre, G. Bateman, and A. Kritz, Computer
Physics Communications 159, 157 (2004).

17M. D. Boyer, S. Kaye, and K. Erickson, Nuclear Fusion 59, 056008 (2019).
18J. Citrin, S. Breton, F. Felici, F. Imbeaux, T. Aniel, J. F. Artaud, B. Baioc-

chi, C. Bourdelle, Y. Camenen, and J. Garcia, Nuclear Fusion 55, 092001
(2015).

TABLE VIII. 92436

Additional transport
Shape Gaussian Gaussian Gaussian
Centre 0 0 0
Height (cm 2 s -1) 2e4 1e4 1e4
Width 0.212 0.212 0.212

TABLE IX. impurities

species 1 species 2 species 3
simulation m c ss m c ss m c ss
73342 12 6 4
92398 58 28 28
92436 (full-physics) 9 4 4 58 28 28 184 74 74
92436 (reduced-physics) 12 6 6

19F. Felici, J. Citrin, A. A. Teplukhina, J. Redondo, C. Bourdelle, F. Imbeaux,
and O. Sauter, Nuclear Fusion 58, 096006 (2018).

20S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed. (Pren-
tice Hall PTR, Upper Saddle River, NJ, USA, 1998).

21G. Cybenko, Mathematics of Control, Signals and Systems 2, 303 (1989).
22M. Nielsen, “Neural networks and deep learning,” (2019).
23L. Bottou, F. E. Curtis, and J. Nocedal, arXiv e-prints , arXiv:1606.04838

(2016), arXiv:1606.04838 [stat.ML].
24D. Masters and C. Luschi, CoRR abs/1804.07612 (2018),

arXiv:1804.07612.
25J. Citrin, H. Arnichand, J. Bernardo, C. Bourdelle, X. Garbet, F. Jenko,

S. Hacquin, M. J. Pueschel, and R. Sabot, Plasma Physics and Controlled
Fusion 59, 064010 (2017).

26D. D. Team, Dask: Library for dynamic task scheduling (2016).
27M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Cor-

rado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Lev-
enberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schus-
ter, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke,
V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke,
Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on het-
erogeneous systems,” (2015), software available from tensorflow.org.

28S. van der Walt, S. C. Colbert, and G. Varoquaux, Computing in Science
Engineering 13, 22 (2011).

29QLKNN-fortran repository ().
30Luigi repository.
31D. P. Kingma and J. Ba, CoRR abs/1412.6980 (2014).
32QLKNN JSON networks repository ().
33F. Jenko, Computer Physics Communications 125, 196 (2000).
34V. I. Dagnelie, Dynamics of linear ITG modes with flow shear in ballooning

space, Master’s thesis, Utrecht University (2017).

http://stacks.iop.org/0029-5515/57/i=8/a=086034
http://stacks.iop.org/0029-5515/57/i=8/a=086034
http://dx.doi.org/ 10.1016/0021-9991(81)90111-X
http://dx.doi.org/ 10.1016/j.cpc.2003.11.002
http://dx.doi.org/ 10.1016/j.cpc.2003.11.002
http://dx.doi.org/10.1088/1741-4326/ab0762
http://stacks.iop.org/0029-5515/55/i=9/a=092001
http://stacks.iop.org/0029-5515/55/i=9/a=092001
http://dx.doi.org/ 10.1088/1741-4326/aac8f0
http://dx.doi.org/10.1007/BF02551274
http://neuralnetworksanddeeplearning.com
http://arxiv.org/abs/1606.04838
http://arxiv.org/abs/1804.07612
http://arxiv.org/abs/1804.07612
http://dx.doi.org/10.1088/1361-6587/aa6d1d
http://dx.doi.org/10.1088/1361-6587/aa6d1d
https://dask.org
http://tensorflow.org/
http://tensorflow.org/
http://dx.doi.org/10.1109/MCSE.2011.37
http://dx.doi.org/10.1109/MCSE.2011.37
http://gitlab.com/qualikiz-group/QLKNN-fortran
https://github.com/spotify/luigi
http://arxiv.org/abs/1412.6980
http://gitlab.com/qualikiz-group/QLKNN-hyper
http://dx.doi.org/10.1016/S0010-4655(99)00489-0
https://dspace.library.uu.nl/handle/1874/351603

14

35V. I. Dagnelie, J. Citrin, F. Jenko, M. J. Pueschel, T. Görler,
D. Told, and H. Doerk, Physics of Plasmas 26, 012502 (2019),
https://doi.org/10.1063/1.5030416.

36B. Baiocchi, C. Bourdelle, C. Angioni, F. Imbeaux, A. Loarte, and
M. Maslov, Nuclear Fusion 55, 123001 (2015).

37F. J. Casson, H. Patten, C. Bourdelle, S. Breton, J. Citrin, F. Köchl, C. An-

gioni, Y. Baranov, R. Bilato, E. A. Belli, C. D. Challis, G. Corrigan,
A. Czarnecka, O. Ficker, L. Garzotti, M. Goniche, J. P. Graves, T. Johnson,
K. Kirov, P. J. Knight, E. A. Lerche, M. J. Mantsinen, J. Mlynář, M. Sertoli,
M. Valisa, and J. E. T. Contributors, IAEA book of abstacts (2018).

38D. Schaefer, Hybrid Neural Networks in Nuclear Fusion Transport Mod-
elling, Master’s thesis, Faculty of Physics, LMU (2019).

http://dx.doi.org/ 10.1063/1.5030416
http://arxiv.org/abs/https://doi.org/10.1063/1.5030416
http://dx.doi.org/ 10.1088/0029-5515/55/12/123001

